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ABSTRACT

This paper presents a partitioning and allocation algorithm
for an iterative stream compiler, targeting heterogeneous
multiprocessors with constrained distributed memory and
any communications topology. We introduce a novel defini-
tion of connectedness that enables the algorithm to model
the capabilities of the compiler. The algorithm uses convex-
ity and connectedness constraints to produce partitions that
are easier to compile and require short pipelines. Software
pipelining is an effective transformation, but it increases
memory footprint and latency, and has a startup overhead.
Our algorithm takes account of these downstream costs.

We show results for the StreamIt 2.1.1 benchmarks for
an SMP, 2 × 2 mesh, SMP plus accelerator, and IBM QS20
blade, which has two Cell processors. Our results show that
the average performance is within 5% of the unrestricted
optimum found using a brute force search, while seldom re-
quiring software pipelining. The heuristic is robust, and fast
enough to be inside the feedback loop of an iterative com-
piler.

Categories and Subject Descriptors

D.3.4 [Programming Languages]: Processors—Compil-
ers

General Terms

Algorithms, Performance

Keywords

Stream Programming, Partitioning, Convexity, Multicore

1. INTRODUCTION
Recent trends in computer architecture point to an in-

creasing number of on-chip processor cores, particularly in
the portable embedded space [26]. Many embedded sys-
tems contain multiple ISAs or microarchitectures, both to
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optimize algorithm-specific cores and to mitigate Amdahl’s
law [21]; e.g. Intel IXP2850 [16], TI OMAP [7], Nexperia
Home Platform [9], and ST Nomadik [2]. Programs using
explicit threads have to be tuned to match the target, and
often require updating to use increasing numbers of cores.
Hence the interest in automatically mapping a portable pro-
gram onto a heterogeneous multiprocessor.

Many multimedia and radio applications contain abun-
dant task and data parallelism, but it is hard to extract from
C code. Stream languages represent the application as inde-
pendent actors communicating via point-to-point streams,
which is natural for signal processing, is deterministic, and
exposes concurrency to the compiler.

This paper presents an algorithm that maps a stream pro-
gram onto a heterogeneous target, fusing kernels and as-
signing them to processors. Although the primary goal is
to achieve high resource utilisation, the choice of partition
affects performance indirectly through its effect on buffer
allocation and software pipelining (see Section 3.1). Since
the search space is large, it is impractical to model precise
memory, latency, and startup overheads of software pipelin-
ing. We use the heuristic that these costs increase with the
number of pipeline stages.

We use a static partition for two reasons. Firstly, to en-
able compile-time optimizations between kernels in the same
task; e.g. polyhedral loop transformations [8]. Secondly, task
migration on a distributed memory processor requires DMA
transfer to/from the local store, which must be done all at
once, rather than on demand through caches. For example, a
context switch on the Cell SPE requires about 30µs [14]. For
the target applications, variation in complexity happens at
the small timescale, rather than being divided into phases in
the same way as, say, a C compiler. For independent SPEC
workloads, a dynamic policy is preferable [4].

The input to the partitioning algorithm is the program
graph of kernels and streams. The output is the mapping to
fuse kernels to tasks, and to allocate tasks to processors. We
distinguish kernels, which are present in the source program,
from tasks, which are present in the executable, contain mul-
tiple kernels and are scheduled on a known processor. The
partitioning problem, defined in section 4, is NP-hard, so
we approach its solution using heuristics.

The partitioning algorithm supports unstructured graphs
with variable data rates and computation times. There are
many streaming models of computation [27], but it is suffi-
cient to view the kernels as Kahn processes [18], which are
independent threads communicating through blocking op-
erations on point-to-point streams. The algorithm requires
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Figure 1: The mapping phase of the ACOTES com-
piler, showing the partitioning algorithm that is the
focus of this paper (in the dashed block)

the average data rate on each stream, and the average load
of each kernel on each processor. These values could be
obtained from a profile or, in cases like Synchronous Data
Flow [22], derived statically.

On average, across the StreamIt benchmarks, the parti-
tions generated by the algorithm are within 5% of the per-
formance of the optimum unrestricted partition, and in most
cases do not require software pipelining.

The main contributions of this paper are:

• A partitioning approach that favours convex partitions,
defined below, producing close to optimal throughput
using a short software pipeline

• A new definition of connectedness that enables the al-
gorithm to generate only partitions that the compiler
can support

• An algorithm that maps unstructured stream programs
onto heterogeneous systems, and is fast enough for an
iterative compiler

2. THE ACOTES STREAM COMPILER
This work is part of the ACOTES European project [17],

which is developing an open source stream compiler for em-
bedded systems. This compiler will automatically map a
stream program, written using the Stream Programming
Model (SPM) [1], an annotated version of the C program-
ming language, onto a multicore system, applying task fu-
sion and blocking transformations. The target system is rep-
resented using the Abstract Streaming Machine (ASM) [6],
which supports heterogeneous and homogeneous multipro-
cessors, with distributed or shared memory.

Figure 1 shows how the partitioning algorithm fits into
this stream compiler. First, a polyhedral optimisation pass
unrolls to aggregate computation and communication, and
splits stateless kernels for greater parallelism. This is fol-
lowed by the partitioning algorithm described in this paper,
and outlined in Section 1. The final pass performs software
pipelining and allocates memory for the stream buffers.

Interactions between the three phases cause a phase or-
dering problem, which we solve by (a) making passes aware
of downstream passes, and (b) using an iterative compiler.
The first is achieved using the convexity constraint, which
controls the length of the pipeline, reducing the demand for
stream buffers. The latter is addressed by ensuring that the
partitioning algorithm is fast enough to be executed several
times, if necessary, with different blocking factors.

3. CONVEX CONNECTED PARTITIONS

3.1 Convexity
A partition is convex if the graph of dependencies be-

tween tasks is acyclic. Equivalently, every directed path
between two kernels in the same task is internal to that
task. The convexity constraint is intended to avoid long
software pipelines. A partitioning algorithm unaware of the
cost of pipelining may require long pipelines for a small in-
crease in throughput. The optimal unrestricted partition for
the StreamIt 2.1.1 serpent benchmark [11] on two Cells is
10% faster than the optimal convex partition, but it requires
209 pipeline stages rather than 31. We did not obtain the
CPLEX Solver to evaluate StreamRoller, but since it uses
ILP to solve a similar problem, its result should be sim-
ilar. This translates into higher memory use, which may
simply not fit, as well as startup overhead and latency. Ta-
ble 1 shows that partitions from our algorithm seldom re-
quire pipelining, and performance is, on average, within 5%
of optimum.

Figure 2(a) shows the convex partition from our heuristic
for StreamIt filterbank on a 3-core SMP. Each processor has
a single task containing the kernels of its colour. Data flow
is from processor p1 (black) to p2 (grey) and p3 (white),
and from p2 to p3—an acyclic graph. Figure 3(a) shows an
execution trace, with shades of grey corresponding to five
iterations.

Figure 2(b) shows an optimal unrestricted partition. It is
not convex because there is communication in both direc-
tions between p2 (grey) and p3 (white), so the partition is
optimal only assuming perfect dynamic scheduling or soft-
ware pipelining. Figure 3(b) shows a trace without software
pipelining, and it has stalls where dependencies prevent com-
putation from being overlapped, so throughput is 53% lower
than the convex partition. Figure 3(c) is pipelined using the
stage assignment phase from the SGMS algorithm [20]. It
has 0.2% higher throughput than the convex partition, but
due to startup overhead would break even only after 8,000
iterations.

When the benefit from software pipelining is above some
threshold, the algorithm relaxes connectedness and convex-
ity. Section 6 shows the partition of vocoder, which benefits
from software pipelining. The result is close to optimal per-
formance using a short pipeline.

3.2 Connectivity
The connectedness constraint is primarily to help code

generation, since it is easier to fuse adjacent kernels, whose
relative frequencies are known via the stream between them.
Figure 4(a) shows a program using SPM [1], our annotated
version of C for stream programming. Kernels read and
write perform IO, and update manages the automaton and
sends only accepting states. The macros NEW_STATE and
ACCEPT_STATE manage the automaton, and are irrelevant to
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(a) Convex, loosely connected partition (b) Unrestricted partition (c) Convex, strictly connected

Figure 2: Example partitions of the StreamIt filterbank benchmark onto a 3-core SMP. Each node is a kernel,
and each edge is a stream

p1

p2

p3

0.0s 0.0005s 0.001s 0.0015s 0.002s

(a) Convex partition from heuristic (time: 1.00)

p1

p2

p3

0.0s 0.0005s 0.001s 0.0015s 0.002s

(b) Unrestricted without pipelining (time: 2.11)

p1

p2

p3

0.0s 0.0005s 0.001s 0.0015s 0.002s

(c) Unrestricted partition with pipelining (time: 1.00)

Figure 3: Traces for five iteration of filterbank,
scheduled using SGMS. Different iterations are iden-
tified using shades of grey.

the discussion. Consider the case where the partition merges
read and write into task 1, with update in task 2. This par-
tition is not convex, so pipelining is required. Task 1 is not
connected, so the compiler requires the relative frequencies
of read and write.

Both problems can be solved using dynamic scheduling,
by switching between tasks when a push or a pop starts
to wait. Dynamic scheduling adds overhead and unpre-
dictibility, which are undesirable in real-time systems. In
the absence of a runtime dynamic scheduler, this example
requires either an extra stream carrying the condition, as in
Figure 4(b), or duplicating the calculation of the condition,
plus the state on which it is based, which would duplicate
the whole update kernel.

The general case requires duplicating state or creating a
dependence cycle. In Figure 5, fusing k2 and k3 requires
fusing the entire graph. The relationship between the firing
rates of k2 and k3 depends on all conditions on the path
between them. Adding a stream from k4 to fused k2 and k3,
carrying some function of e and f creates a directed cycle,
since there is already a stream in the other direction; that
is, from k3 to k4.

A näıve definition of connectivity, strict connectivity, con-
siders a partition to be connected when each processor has a
weakly connected subgraph. Unfortunately, wide split-joins,
as in filterbank, do not usually have good partitions subject
to this constraint. In Figure 2(a), p2 (grey) is not strictly
connected, so our strict heuristic produces the partition in
sub-figure (c), which has performance 28% worse than (a).
In general, strict connectedness allows only the processors
containing the split or the join kernel to have kernels from
more than one branch.

We generalize connectivity by providing to the partition-
ing algorithm a set of basic connected sets [25], each of which
specifies kernels that the compiler can pairwise merge. For
strict connectivity, there is a basic connected set for each
pair of communicating kernels.

This allows the partitioning algorithm to be adapted to
the compiler and source language(s). If the compiler un-
derstands StreamIt [28] splitters and joiners, there should
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int state = 0;

#pragma taskgroup

while (1)

{

#pragma task output(c)

int c = fgetc(fin);

#pragma task input(c)

{

state = NEW STATE(state, c);

if (ACCEPT STATE(state))

{

#pragma task input(state)

fwrite(&state, sizeof(int), 1, fout);

}

}

}

Read

Update

Write

void task 1(void) {

while (1) {

int c = fgetc(fin);

push(stream1, c);

if (pop(stream2)) {

state = pop(stream3);

fwrite(&state, sizeof(int), 1, fout);
}

}

}

void task 2(void) {

int state = 0;

while(1) {

state = NEW STATE(state, pop(stream1));

cond = ACCEPT STATE(state);
push(stream2, cond);

if (cond)
push(stream3, state);

}

}

Read

Write

Update

(a) Source code for automaton (b) Simplified compiled code

Figure 4: Motivation of connectivity: example programs with data dependent pushes and pops

k1

k2

k3

k4

if (a)

if (b)

if (c)

if (d)

if (e)

if (f )

Figure 5: If k2 and k3 are fused into one task, then
the entire graph must be fused

be a basic connected set for each splitter (joiner) contain-
ing its successors (predecessors), which solves the problem
outlined above. Similarly, there may also be a basic con-
nected set covering each region of the program graph that
is internally SDF.

4. FORMALISATION OF THE PROBLEM
The target is represented as an undirected bipartite graph

H = (V, E), where V = P ∪ I is the set of vertices, a
disjoint union of processors, P , and interconnects, I ; and
E is the set of edges. Each processor, p, has weight, wp,
equal to its clock speed in GHz, and each interconnect,
u, has weight, wu, equal to its bandwidth in GB/s. The
static route between processors p and q is represented by
ru

pq = 1 if it uses interconnect u, and 0 otherwise. In gen-
eral, ru

pq 6= ru
qp; e.g. dimension-order routing on a mesh.

Figure 6 shows the topology of our example targets, omit-
ting the edge and vertex weights and the routing table. This
representation is a simplified form of the Abstract Stream-
ing Machine (ASM) [6]. Figure 6(c) has two “processors”,
a and b, present only to achieve the correct topology, but
unable to execute code; therefore wa = wb = 0.

The program is represented as a directed acyclic graph,
G = (K, S), where K is the set of kernels, and S is the
set of streams. If the program is cyclic, then each strongly
connected component is contracted into a single vertex. The

load of kernel i on processor p, denoted cip, is the mean
number of gigacycles in some fixed time period τ . Similarly,
the load of stream ij, denoted cij is the mean number of
gigabytes transferred in time τ .

The basic connected sets are a collection, C = {Cj}, of
subsets of K, where each Cj is a set of pairwise connected
kernels. A subset L ⊆ K is connected if, for any pair of
kernels k, k′ ∈ L, there is a sequence k = k1, k2, · · · , kn = k′,
with each ki ∈ L and each pair of consecutive kernels, ki and
ki+1, connected by being members of some Cj . The whole
set of kernels, K, should be connected.

The output of the algorithm is two map functions. Firstly,
T maps kernels onto tasks, and secondly, P maps tasks onto
processors. The partition implied by T must be convex, so
the graph of dependencies between tasks is acyclic.

Let Tp = P−1(p) be the tasks on processor p, and Kt =
T−1(t), Kp =

S

t∈Tp
Kt be the kernels on task t or proces-

sor p. The graph of t is the induced graph, Gt = G(Kt),
containing the kernels in t and internal streams. The task
dependence graph GT is the result of contracting each task
in G into a single vertex.

The cost on processor p or interconnect u is:

C
p =

X

i∈Kp

cip

wp

C
u =

X

p,q∈P

r
u
pq

X

i∈Kp,j∈Kq

cij

wu

The goal is to find the allocation (T, P ), which minimises
the maximum values of all the Cp and Cu, subject to the
convexity and connectedness constraints.

4.1 Predicting memory use of tasks
When multiple kernels are fused into one task, we need

to predict the memory use of the task, given the memory
use and composition of each kernel. Finding the minimum
memory use is an NP-complete problem [3], even ignoring
the possibility to overlap the buffers for two or more streams.
Not only that, but the partitioning algorithm needs to pre-
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p1 p2 p3

i1

p1 i1 p2

i2 i3

p3 i4 p4

(a) SMP with three processors (b) 2 × 2 mesh

p11 p13 p15 p17 p21 p23 p25 p27

i1

a i3 b
i2

p12 p14 p16 p18 p22 p24 p26 p28

(c) IBM QS20 with two Cell processors (SPEs only)

p1 p2 p3 a1

i1

(d) SMP 3 with accelerator (a1)

Figure 6: Topology of the targets used in this paper
(interconnects are shown as shaded rectangles)

dict, or at least bound, the memory use from the actual
compiler, which is unlikely to be the theoretical minimum.

In this paper, we assume that the combined code size is
the sum of the code sizes for the kernels, and that the total
memory size is one block, plus the length of the history, for
each internal stream, and the original memory size for each
external stream. This calculation is orthogonal to the rest
of the algorithm.

5. DESCRIPTION OF THE ALGORITHM
The partitioning algorithm is split into two phases. The

first phase produces an initial partition that is both convex
and connected, with at most one task per processor. The
second phase, refinement, improves the initial partition, and
has some ability to escape from local minima; it can also
create multiple tasks per processor.

The first phase could produce a trivial initial partition,
which has all kernels in a single task, assuming enough mem-
ory. Our results show that the refinement phase still finds a
good partition. A good initial partition, however, decreases
the total time of the mapping algorithm, since it requires
fewer passes of the refinement phase.

The refinement phase uses several algorithms based on
Kernighan and Lin’s graph partitioning algorithm [19], and
is repeated until there is no further improvement. The main
step offloads kernels from bottleneck processors, while main-
taining connectedness and convexity. If this produces no
benefit, then one additional task is created, if enabled, and
the new partition is kept if the improvement is larger than
some threshold (currently 5%).

5.1 Initial partition
The initial partition is generated by recursively subdivid-

ing the target and program graphs into halves, mapping each
half separately. This continues until there is either a single

kernel, which is mapped to some processor, or a single pro-
cessor, which executes all kernels.

Partitioning the target

The algorithm first divides the target into two subgraphs, P1

and P2, and an aggregate interconnect, I , balancing two ob-
jectives: the subgraphs should have roughly equal total CPU
performance, and the aggregate interconnect bandwidth be-
tween them should be low. Figure 7(a) shows the result of
dividing the mesh target from Figure 6(b).

The optimal target partition is found as follows. First,
the communications bottleneck for uniformly random traffic
between P1 and P2 is given by:

C = max
u∈I

X

p∈P1,q∈P2

ru
pq + ru

qp

wu
(1)

The target is divided into halves to maximise α, the prod-
uct of C with the total performance of the less powerful of
P1 or P2:

α = C min (
X

p∈P1

w
p
,

X

q∈P2

w
q) (2)

We find an approximate solution using a variant of the
Kernighan and Lin partitioning algorithm.

Partitioning the program

The program (sub)graph is given edge and vertex weights.
The edge weight for stream ij, denoted cij is the cost in
cycles in time τ , if assigned to the aggregate interconnect,
rather than internal to P1 or P2. The vertex weight for
kernel i is a pair (ciP1 , ciP2), the cost of assigning it to P1

or P2, respectively. The goal is to find a two-way partition
{K1, K2} to minimize the bottleneck given by:

c = max (
X

i∈K1

c
iP1 ,

X

j∈K2

c
jP2 ,

X

i∈K1,j∈K2

cij) (3)

The partitioning algorithm is a branch and bound search.
Each node in the search tree inherits a partial partition
(K1, K2), and unassigned vertices X; at the root K1 = K2 =
φ and X = K. It chooses some kernel v ∈ X, adjacent to
K1 with K1 ∪ {v} convex and connected (or any v if K1 is
empty) then switches on either adding v and its ancestors
to K1, or v and its descendants to K2. If adding vertices to
K1 would cause K2 ∪ X to become disconnected, then the
subtree contains no connected partitions, so is pruned.

Figure 7(b) and (c) show a program and its branch and
bound search, with each node labelled by its sets K1 and K2.
The minimal cost, cK1K2 , for all partitions in the subtree
rooted at node (K1, K2) is at least as large as the partial
sum on the vertices already assigned:

c
K1K2 ≥ lb = max (

X

i∈K1

c
iA

,
X

i∈K2

c
iB

,
X

i∈K1,j∈K2

cij) (4)

Any valid partition in the subtree gives an upper bound
on the optimal cost in that subtree. Since (K1, X ∪ K2) is
always valid:

c
K1K2 ≤ ub = max (

X

i∈K1

c
iA

,
X

i/∈K1

c
iB
,

X

i∈K1,j /∈K1

cij) (5)

In Figure 7(c), the node marked {x, φ} has K1 = {x} and
K2 = φ. The known cost on P1 is 5.5, being the cost of kernel
x divided by the performance of P1. The known costs on P2
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P1 {p1, p3} I {i1, i4} P2 {p2, p4}

2 2 2

(a) First level partition of the target in Figure 6(b)
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t
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{φ, φ}

{x, φ}

{φ, xyzt}

{xy, φ} {x, yt}

{xyzt, φ} {xy, zt} {xz, yt} {x, yzt}

lb = 0, ub = 20

lb = 5.5
ub = 29

cost = 20

lb = 11
ub = 11

lb = 9
ub = 29

cost = 20 cost = 11 cost = 20 cost = 29

(b) Stream program and first level partition (c) Branch and bound search for first level partition

Figure 7: First level partition in the initial partition algorithm

and the interconnect are both zero. Hence by Equation (4),
lb = max(5.5, 0, 0) = 5.5. Similarly, by Equation (5), the
upper bound on the optimum is the cost of partition {x, yzt},
so ub = 29.

The search algorithm tries to quickly find a good partition,
so that more of the search tree is pruned by having its lower
bound greater than some upper bound. It uses a depth-first
search, and chooses vertex v adjacent to K1 (as it must)
with the highest cost on whichever processor currently has
the greatest load, then first considers adding it to the other
processor.

5.2 Refinement of the Partition
The refinement stage starts with a valid initial partition,

and improves it by applying the optimization passes de-
scribed below. As shown in Figure 1, these steps are applied
in sequence, and iterated until no further improvement is
seen. The optimization passes are:

Merge tasks A greedy algorithm merges low cost tasks
and has the effect of freeing processors and reducing
communications

Move bottlenecks The main optimization pass moves ker-
nels from bottleneck processors

Create tasks Create a new task to relax the connectedness
and convexity constraints, and keep the new partition
if the benefit is larger than some threshold

Reallocate tasks A greedy algorithm improves the alloca-
tion of tasks to processors

The passes are described in detail below.

Merge tasks

This step uses a greedy algorithm to merge tasks whose
union is convex and connected, as long as it does not cause a
new bottleneck. This pass often reduces bus traffic, and frees
up processors so they can accept kernels without restriction.
Since there are usually far fewer tasks than kernels, we de-
fine the basic connected sets of tasks: Dj = {T (k) : k ∈ Cj},
where T (k) was defined earlier as the task containing kernel

k, and set D = {Dj : |Dj | ≥ 2}. In this case, the union of
T1 and T2 is connected if {T1, T2} ⊆ Dj , some Dj ∈ D.

In Section 4, we defined the task dependence graph, GT , as
the directed acyclic graph on the tasks. Define d(T1, T2) = 1
if there is a path from T1 to T2 of length two or more, and 0
otherwise. This can be calculated in time O(|T |2), using a
topological sort. The greedy algorithm finds, using a branch
and bound search, the connected pair of tasks T1 and T2 with
minimum total cost on either of their current processors,
such that d(T1, T2) = 0. If the bottleneck cost after merging
is no greater than the current bottleneck cost, then the tasks
are merged and allocated to the processor on which they
have the minimum total cost. The algorithm continues until
no more tasks can be merged.

Move bottlenecks

This pass identifies a bottleneck processor, p1, then consid-
ers moving a set M1 of kernels from some task on p1 to a
task on another processor, q1, without violating convexity
or connectedness. The cost metric to minimise is the max-
imum of the costs on p1, q1 and all interconnects, after the
move:

C = max(Cp1 , C
q1 , max

u∈I
C

u) (6)

This metric excludes the other processors, otherwise if
some other processor had the same cost as p1, its contribu-
tion would hide the benefit of any move.

Some kernels must be moved, even if doing so has a nega-
tive benefit—hence the algorithm has some ability to escape
from local minima. After tentatively moving set M1, record
the bottleneck cost and identify the new bottleneck proces-
sor, p2, which may still be p1, and tentatively move a set M2

to another processor. We continue moving kernels, with the
constraint that no kernel can be moved back to a processor
that it has previously been allocated to. For instance, none
of the kernels in M1 may be tentatively moved back to p1,
but they may be moved a second time to another processor.
This process continues until either there are no remaining
valid moves, or a fixed limit, currently 50 moves, is reached.
The final partition is that of the intermediate point in the
algorithm with the maximum overall performance.
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Any kernel, k, can potentially be moved to any task on
a different processor if there is a kernel k′ on the new task
that shares a basic connected set with k. There are three
additional requirements. Firstly, if k is neither a source nor
a sink in its current task, T , then T −{k} cannot be convex.
It is always necessary to move either k and all its ancestors in
T , or k and all its descendants in T . Secondly, it is necessary
to check, using a breadth-first or depth-first search on the
basic connectivity sets, whether the remainder of the old
task is still connected. Thirdly, there are several ways that
the move can create a cycle in the task dependency graph,
and this can be checked using a topological sort.

Create tasks

This pass moves a kernel k on a bottleneck processor onto
another processor, creating new tasks as necessary to be-
come convex and connected. It then runs the Move Bottle-
necks pass, with the restriction that the kernel cannot be
moved from its new processor. The new partition is kept if
the performance is improved by more than some threshold,
currently 5%.

The most expensive kernel, on its current bottleneck pro-
cessor, is considered first. This kernel may be moved to any
processor in use for which the cost of the kernel is less than
the current bottleneck cost. There is no advantage in mov-
ing a kernel to an unused processor, since that is the first
thing that the Move Bottlenecks pass would do. If there are
no valid choices, then the second most expensive kernel on
the same processor is considered, and so on.

Kernel k is placed on some other processor in order to
minimize the sum of the weights of the large kernels, in-
cluding k, on the new processor; the large kernels are those
of weight at least half that of the kernel being moved. The
reason for ignoring lightweight kernels is that these are most
likely to be able to be easily offloaded onto other processors.

Reallocate tasks

The reallocation pass decreases communications traffic by
permuting the loads on the processors. This pass is executed
even if the bottleneck is on one of the processors. It only
moves tasks between similar processors attached to different
buses. Similar processors are those for which all kernel com-
putation times are identical. For instance, it can permute
the four processors on the 2 × 2 mesh target, or SPEs on
different processors on the two-Cell QS20 target.

The algorithm is similar to Kernighan & Lin, in that it
swaps similar processors in a greedy manner to minimize
the maximum load on the buses, even if doing so makes the
bottleneck worse. After swapping the loads on two proces-
sors, they are fixed for the rest of the pass. The algorithm
continues until there are no processors left, and outputs the
best partition seen.

6. EVALUATION
We used the StreamIt 2.1.1 benchmarks [11] to evaluate

our heuristic algorithm and convex connected partitions in
general. The StreamIt benchmarks have the two-terminal
series-parallel structure of StreamIt, but are the most widely
used streaming benchmarks. We used the program graph,
work estimates and data rates from the StreamIt 2.1.1 com-
piler. The StreamIt compiler modifies the stream program
graph before calculating the work estimates, so our kernel

counts differ from those of the source program. The number
of kernels ranges from 8 to 120, and has average 54.

Figure 8 shows performance vs. iteration in the refinement
phase. At each point is plotted the minimum of all partitions
seen so far. This graph shows that the refinement algorithm
quickly converges to a good solution, even from a trivial ini-
tial partition. It also shows that the initial partition is on
average within 4% of the performance of the final partition,
although the worst case is 33% slower. The sub-figures have
very different scales on the vertical axes. We show the num-
ber of iterations in the graphs, since our implementation is
in unoptimised Python. Nevertheless, the per benchmark
partitioning time on a 2GHz Intel MacBook is average 10.0
seconds and maximum of 58.4 seconds.

Figure 9 shows the normalized execution time for the par-
titions found by the heuristic, using strict and loose con-
nectivity, against the optimal unrestricted partition, which
has time 1.0. The strictly connected partitions for channel,
filterbank, fm and radar have bad performance because of
the wide split joins. The third column of Table 1 gives the
width of each benchmark, which is the maximum size of a
subset of kernels with no paths between any pair of them
(an anti-chain). For example, the filterbank benchmark, il-
lustrated in Figure 2, has a width of 16. The benchmarks
with poor performance using strict connectivity tend to be
the benchmarks with the largest width, although this is a
great simplification.

Figure 9 also shows the bottleneck cost for the loosely con-
nected partition generated by our heuristic when software
pipelining is enabled. Software pipelining is most benefi-
cial for the vocoder benchmark on SMP3 with accelerator,
and radar on IBM QS20. Figure 10 shows the partition of
vocoder on SMP with accelerator found using the heuris-
tic, which uses eleven pipeline stages if scheduled using the
stage assignment phase of the SGMS algorithm [20]: six for
computation and five for DMA. The main improvement in
throughput comes from splitting the workload on a1 into two
tasks. This benchmark has two heavyweight kernels that
should run on the accelerator, but the cost of the smallest
convex task containing both of them is very large. The op-
timal unrestricted partition is 9% faster, but it requires 45
pipeline stages.

The only bad results are des, serpent, and tde on IBM
QS20. These three suffer since our fast greedy algorithm
gets stuck in a local optimum, with several large tasks of
similar total cost.

Table 1 shows the pipeline lengths for the unrestricted
and heuristic partitions. The pipelines were generated using
SGMS [20], so half of the pipeline stages perform computa-
tion. The partitions that do not require software pipelines
are given in parentheses. Some of the cells for the unre-
stricted partitions are empty, since finding the true opti-
mum is slow (Figure 9 uses a lower bound). The unre-
stricted partitions for serpent and tde on Cell have long
software pipelines because the programs themselves are long
pipelines, and unless it is bus bound, there is no incentive
for short pipelines. There are four data points in Figure 9
where our heuristic algorithm used software pipelining.

7. RELATED WORK
There has been a great deal of work in automatically map-

ping stream programs onto multiprocessor systems. The
Ptolemy II software environment [10] is an actor-based model
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Figure 9: Normalized execution time for the StreamIt 2.1.1 benchmarks for the three variants of the heuristic
algorithm. The unrestricted partition has execution time 1.0, and larger bars are slower.

Benchmark
Num.

kernels
Width

Number of pipeline stages for unrestricted & heuristic

SMP 3 2×2 Mesh QS20 (2 Cell) SMP 3 + Acc.
u h u h u h u h

bitonic-sort 40 4 27 (5) 35 (7) 35 (19) 9 (7)
channel 55 17 11 (5) 9 (7) 9 (7) 9 (5)
dct 8 1 9 (5) 9 (7) 9 (9) 13 (5)
des 53 3 77 (31)
fft 17 1 13 (5) 27 (7) 33 (23) 17 (7)
filterbank 85 16 19 (5) 19 (7) 23 (9) 19 (5)
fm 43 12 9 (5) 17 (5) 21 (9) 17 (5)
mpeg2 23 5 23 (5) 19 (7) 29 (19) 15 (7)
radar 57 12 13 (5) 9 (5) 19 13 19 (5)
serpent 120 2 143 (5) 163 (7) 209 (31)
tde 29 1 39 (5) 41 (7) 57 33 23 (9)
vocoder 114 17 29 7 29 (7) 29 (7) 45 11
Average ratio 5.9 5.0 2.4 2.8

Table 1: The number of pipeline stages for the optimal unrestricted partitions and the partitions generated by
our heuristic (loosely connected with pipelining). Partitions that do not need pipelining are in parentheses.
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Figure 10: Vocoder benchmark on SMP 3 with accelerator using software pipelining.

for real-time embedded systems that supports several mod-
els of computation, including Synchronous Dataflow (SDF)
and Kahn Process Networks (KPN). Related work from the
Ptolemy project explores the more theoretical aspects of par-
titioning and scheduling data flow graphs for multiproces-
sors [13].

The Stream Graph Modulo Scheduling (SGMS) algorithm
is part of StreamRoller [20], a StreamIt compiler for the
Cell Architecture. This algorithm splits stateless kernels,
partitions the graph, and statically schedules. The split-
ting and partitioning problem is translated into an Integer
Linear Programming (ILP) problem, which is solved using
CPLEX [15]. This approach uses mature technology to solve
the ILP problem; it also applies kernel splitting in the same
step, rather than using the iterative approach we follow.

Their partitioning algorithm considers only CPU loads,
and ignores communications bandwidth. This may be suffi-
cient for a single Cell processor, which has a high-bandwidth
on-chip bus, but it is inappropriate when communication is
off-chip, as in the Cell QS20 target, or when a bottleneck
may appear in part of an on-chip network, such as a large
mesh.

The StreamRoller ILP formulation does not attempt to
find a partition that minimises the memory, latency and
startup overheads introduced by software pipelining. Since
it uses an ILP solver to find a (close to) optimal solution
to a problem with similar objective and constraints to our
unrestricted partition, the resulting pipeline length should
be similar. StreamRoller does not have any concept sim-
ilar to our connectivity constraint. We believe that when
the program is written using an unrestricted programming
language, the partitioning algorithm requires some mecha-
nism to model which kernels can be statically scheduled by
the compiler. They do not restrict the memory footprint on
each processor, although it appears that their ILP formula-
tion could be extended to do so.

The StreamIt compiler [12, 11] targets the Raw Micropro-
cessor [29], symmetric multicore architectures, and clusters
of workstations. This is a long running project with a pub-
licly available compiler and benchmark suite. The StreamIt
source language imposes a structure on the stream program
graph, where each kernel has a single input and a single out-
put, and kernels are composed in pipelines, split-joins, and
feedback loops. Since the kernels have static data rates, the
compiler can fuse any set of kernels. The default partitioner
uses dynamic programming. Our model of the source pro-
gram is more general, since we target unstructured program
graphs with variable data rates, and we use the connected-

ness constraint to reason about the capabilities of the com-
piler. Our model of the target system is also more general,
since we can target a heterogeneous multiprocessor system
with any communications topology.

Liao et al. [23] use affine partitioning to map regular mul-
tidimensional programs written using the Brook language [5]
onto a four-processor SMP. The R-Stream compiler (www.-
reservoir.com/r-stream.php) is a proprietary high level com-
piler for stream programs, which uses a polyhedral model to
partition code and data to a parametric parallel machine.
Gedae [24] is a proprietary GUI tool for mapping data
flow graphs to a heterogeneous multiprocessor system. The
transformations are under user control, and the partition is
not automatically found by the compiler.

8. CONCLUSIONS
In this paper, we presented a fast and robust partitioning

algorithm for an iterative stream compiler. The algorithm
maps an unstructured variable data rate stream program
onto a heterogeneous multiprocessor system with any com-
munications topology. The algorithm favours convex con-
nected partitions, which do not require software pipelining
and are easy to compile, but it can break these constraints
when necessary for performance. The partitions generated
by the heuristic seldom require software pipelines, and the
performance is, on average, within 5% of the optimum per-
formance.
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