
J. Parallel Distrib. Comput. 73 (2013) 284–292
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Parallel approaches to machine learning—A comprehensive survey
Sujatha R. Upadhyaya
Infosys Technologies, Bangalore, India

a r t i c l e i n f o

Article history:
Received 1 May 2011
Received in revised form
16 September 2012
Accepted 7 November 2012
Available online 16 November 2012

Keywords:
Distributed and parallel machine learning
GPU
Map reduce

a b s t r a c t

Literature has always witnessed efforts that make use of parallel algorithms / parallel architecture to
improve performance; machine learning space is no exception. In fact, a considerable effort has gone into
this area in the past fifteen years. Our report attempts to bring together and consolidate such attempts.
It tracks the development in this area since the inception of the idea in 1995, identifies different phases
during the time period 1995–2011 and marks important achievements. When it comes to performance
enhancement, GPU platforms have carved a special niche for themselves. The strength of these platforms
comes from the capability to speed up computations exponentially by way of parallel architecture /
programmingmethods.While it is evident that computationally complex processes like image processing,
gaming etc. stand to gain much from parallel architectures; studies suggest that general purpose tasks
such as machine learning, graph traversal, and finite state machines are also identified as the parallel
applications of the future. Map reduce is another important technique that has evolved during this period
and as the literature has it, it has been proved to be an important aid in delivering performance ofmachine
learning algorithms on GPUs. The report summarily presents the path of developments.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction: parallel machine learning

MACHINE learning offers a wide range of statistical algorithms
for analysis, mining and prediction. It includes various techniques
such as association rule mining, decision trees, regression, support
vector machines, and other data mining techniques. All these
algorithms are computationally expensive which makes them the
ideal cases for implementation using parallel architecture/parallel
programming methods. One of the earliest efforts in this direction
dates back to 1995, where K. Thearling [69] discussed the
possibilities of enhancing the performance of the popular machine
learning approaches such as memory-based reasoning, neural
networks, and genetic algorithms by adopting a parallel processing
approach. During 1995–2000, there were a number of efforts that
focused on improving performance of the association rule mining
algorithm by means of parallel programming. A survey report
on ‘‘Parallel and Distributed Association Mining’’ by Mohammed
Zaki [57], gives a complete summary of efforts made in this period.
However, the efforts so far did not focus on performing machine
learning tasks on graphic processors. ‘Fast matrix multiplication
on graphics processors’ published in 2001 [43] is one of the
first reports that discussed building functions on GPUs. Although
efforts like this cannot be marked as machine learning tasks,
they in turn helped analyze the machine learning algorithms

E-mail addresses: sujatha_upadhyaya@infosys.com,
sujatha.upadhyaya@gmail.com.

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.11.001
from the perspective of running them on parallel architecture.
Such attempts triggered the efforts that focused on building
machine learning techniques on the graphic processors. During
the years 2002–2010 there has been a surge of reports that
focused on data mining tasks on GPUs. These reports primarily
discussed the performance improvement of data mining and other
machine learning techniques by algorithm enhancements or even
by making use of other popular techniques such as ‘map reduce’
algorithm. Currently, we see this space buzzing with activity, with
focus on text mining, data mining, map reduce and GPU-based
implementations.

During the entire stretch of these 15 years, three distinct trends
are identified, that record a shift in focus. In the first trend that
covered the period from 1995 to date, the focus is on introducing
parallelism intoMachine learning. These efforts includeworks that
leverage distributed multicore architectures or simply introduce
parallelism into the procedure in a different manner. Interestingly,
even with the introduction of specialized hardware such as GPUs,
similar efforts have continued even until now. However, with the
advent of the GPUs in the early 2000s, there was a visible shift
of focus in research to machine learning on GPU platforms. The
data monster article presented 2009 predicted a paradigm shift
being brought about by introduction of GPUs [24]. The last decade
haswitnessedmultiple efforts on GPU processors, however, during
the latter 5 years which marked the third trend, most of the
efforts were largely influenced by the use of map reduce technique
too. The map reduce technique seemed to have influenced all
domains of computer science with its growing popularity after its

http://dx.doi.org/10.1016/j.jpdc.2012.11.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2012.11.001&domain=pdf
mailto:sujatha_upadhyaya@infosys.com
mailto:sujatha.upadhyaya@gmail.com
http://dx.doi.org/10.1016/j.jpdc.2012.11.001


S.R. Upadhyaya / J. Parallel Distrib. Comput. 73 (2013) 284–292 285
application in web search by Google. The present report sees this
entire stretch of fifteen years (1995–2010) as a period before GPU,
after GPUs and a period after map reduce popularization, namely

1. General parallel data mining and machine learning ap-
proaches: From 1995 until now.

2. Parallel data mining and machine learning on GPUs: From
2000 until now.

3. Parallel data mining and machine learning with map reduce
techniques. From year 2005 until now.

2. General parallel machine learning approaches

In this category, we take into consideration every parallel
machine learning effort that does not particularly refer to GPU
architecture or map reduce technique. The time period observed is
1995until now. It is interesting to note thatmost of the effortswere
related to data mining, particularly frequent itemset mining and
association rule mining. However, there have been several other
efforts focusing onperformance issues, and othermachine learning
tasks/algorithms like text mining,

2.1. Association rule mining and frequent itemset mining

Association rule mining (ARM) and frequent itemset mining
(FIM) are closely related topics. Finding frequent itemsets is
deemed to be a prerequisite to ARM and is the most critical step
in association rule mining. An association rule mining is a problem
of arriving at the rules of the form A implies B where A and
B are itemsets, with good frequency and strength. Support of a
rule is defined as the joint probability of transactions containing
both A and B and the confidence of the rule is the conditional
probability that a transaction contains B given that it contains
A. As mentioned in the Introduction, Zaki et al. [77] cover all
the technical aspects of parallel association rule mining/frequent
itemset mining. It summarizes the similar efforts between 1996
and 1999 and brings out issues varying from types of algorithm
to characteristic features of algorithms. This present report looks
into almost every aspect of data mining although it does not
trace the individual contribution of the reports. This is one of the
landmark reports that summarize the efforts until 1999. Mueller
et al. published a report on the comparison of fast sequential
itemset mining algorithms with parallel approaches [51] in 1995
that summarizes the state of art.

2.1.1. Major algorithms and other observations—ARM

A. Algorithms: Association rule mining was first introduced in
1993, although the parallel data mining paradigm was introduced
much later. Many of the then existing algorithms were tried and
modified to work on the parallel platforms. The Apriori algorithm,
DHP (Direct Hash Pruning) algorithm and DIC(Dynamic Itemset
mining) are some of the algorithms that have greatly influenced
parallel association rulemining space. In fact, the Apriori algorithm
forms the basis for almost all the algorithms including DIC and
DHP. The categorization is chosen for the sake of simplicity of
presentation. The following sectionwill discuss the algorithms that
were developed in parallel data mining contexts.
Algorithms based on the Apriori algorithm: The Apriori algo-
rithm was first proposed by Agarwal et al. in 1993. Although this
algorithm was originally proposed for a sequential context, it was
later adopted inmany parallel contexts. Many algorithmswere de-
veloped and tried on ‘shared memory’ and ‘shared nothing’ archi-
tectures and later modified to suit other platforms too.

The following section discusses the parallel algorithms influ-
enced by the Apriori algorithm and these algorithms represent a
sequential improvement on the previous one. They differ in the
methods adopted for partitioning and distributed mining of large
itemsets. A substantial improvement on performance and scalabil-
ity factors was shown through these implementations.
Count distribution: This algorithm is designed to keep the
processors busy even at the cost of performing redundant
calculations. Each processor generates the complete candidate k-
itemset, using the frequent itemset generated in the previous pass.
Since the frequent itemset generated is common, all the processors
will be generating identical candidate itemsets for each pass. Each
processor then independently generates the local support count for
candidates in the candidate itemset and at the end all local counts
are taken into consideration to get the global count and build the
frequent itemset.
Data distribution: Quite contrary to the count distribution algo-
rithm data distribution algorithm each processor processes mu-
tually exclusive candidate itemsets. The disadvantage is that each
processor will have to broadcast the local data to other processors
in each pass unlike the count distribution algorithm that broad-
casts only the counts in each pass.
Candidate distribution: This algorithm attempts to avoid synchro-
nizing at the end of each pass. In each pass the algorithm divides
the frequent itemset into such away that eachprocessor can gener-
ate a unique candidate set independent of other processors, while
the data is selectively replicated.
Intelligent data distribution: The algorithm uses the aggregate
memory of the parallel computer employing an intelligent data
partition scheme and an efficient communication system. The
algorithm improves over the data distribution algorithm.
Hybrid distribution: This is an improvement over the previous one
that aims at load balancing by dynamic partitioning. In order to
ensure this, the locally stored portion of the databases is sent to
other processors by a ring based all-to-all broadcast.
Fast distribution algorithm: In this algorithm, the process of
generation of candidates remains the same as the Apriori
algorithm. The relationship between the local and global large sets
is used to generate a smaller set of candidates, thus reducing the
number of messages to be passed. Two pruning techniques local
and global hash tree pruning techniques that ensure that O(n)
messages are sufficient against the typical requirement of O(n∧2)
messages.
NPA: In the Non-Partitioned Apriori algorithm the candidate
itemsets are partitioned such that each piece fits into the local
memory of a processor and is copied into all the processors. Each
of the processors proceeds individually to identify the k-itemsets
and thehash tables are thenupdated to determine the consolidated
support strength across the processors.
SPA: In SPA or the Simply-Partitioned Apriori the data is shared or
broadcast to all the processors.
HPA: The Hash-Partitioned Apriori algorithm partitions the candi-
date itemset using a hash function and this reduces the broadcast-
ing efforts and the comparison workload.
HPA-ELD: The HPAworkswell, however, if the size of the candidate
itemset is smaller than the systemmemory, HPAdoes notmakeuse
of the remaining space. The HPA-ELD (HPA with Extremely large
itemset duplication) does utilize the memory by copying some
of the itemsets. It chooses the frequently occurring itemsets and
copies them over the processors so that all the space is used.
Algorithms based on DHP algorithm:Direct Hashing and Pruning
or DHP is one of the earliest ARM algorithms that focused on fast
generation of itemsets and reduction in database size. Although
the above-mentioned algorithms based on the Apriori algorithm
did use hash-based partitions, they did not use hashing techniques
to prune search trees. The DHP algorithm is extended on the



286 S.R. Upadhyaya / J. Parallel Distrib. Comput. 73 (2013) 284–292
Apriori algorithm, where hashing techniques were used to prune
the hash search trees. The algorithm is proposed by Park et al. [58];
it describes a hashing technique for fast generation of frequent
itemsets (particularly 2-itemsets) and a pruning technique to
reduce the size of the transaction data base.
Parallel data mining for association rules: This algorithm is a
generalized version of DHP. This algorithm shortly known as PDM,
consists of parallel generation of candidate itemsets and parallel
determination of large itemsets. It uses a hash table to generate the
candidate itemsets in earlier passes and in later passes computes
the most frequent itemsets from the candidate itemset directly.
Each pass in the algorithm works on the portion of the data that
resides in the database partition of the particular node and needs
to obtain information from the other processors to obtain global
count.
Algorithms based on DIC (Dynamic Itemset Counting): This
algorithmwas designed to overcome the disadvantages of previous
algorithms (Apriori and DHP) that required several passes on the
database. It reduces the number of passes required for generating
the frequent itemset and number of items scanned per pass.
APM (adaptive parallel mining): It is often called the Asynchronous
Parallel Algorithm and is based onDIC (Dynamic Itemset Counting)
algorithms. The DIC algorithm divides the database into intervals,
performs counts on intervals rather than the entire database.
However, the APM algorithm overcomes the problems caused
due to uneven distribution of data and ensures homogeneity
of distribution within the itemset partition. This algorithm is
proposed specifically for a shared memory processor to overcome
the performance degradation caused by the synchronization
requirement in shared memory multiprocessors, because of the
conventional level-wise approach. With this approach all the
participating processors are made to work on the computation of
support without having to wait for others to finish. The algorithm
also achieved less I/O requirements,
Other algorithms:
Fast parallel mining (FPM): The FPM is a modification of the
count distribution algorithm, which adopts distributed and global
pruning techniques. Simple messaging schemes of the algorithm
were the added contributions of this method.
Parallel frequent pattern growth algorithm: This algorithm is based
on FPG that extracts frequent patterns from a FP tree, without
candidate itemset generation.
B. Noted publications and their contribution to parallel
association rule mining

‘‘Efficient parallel data mining for Association rules’’, by Park
et al. [57], in 1995 is one of the earliest efforts on parallel data
mining that aims at efficient identification of large itemsets by a
hashing technique that collects the count information pertaining
to itemsets within a partition.

Yet another attempt on introducing parallelism in association
rule mining and frequent itemset mining was described in
‘‘Hash-based Parallel Algorithms for Mining Association Rules’’ by
Shintani et al. [67] in 1996. In the present report, the authors
proposed four algorithms; NPA (Non-Partitioned Apriori), SPA
(Simply Partitioned Apriori), HPA (Hash-Partitioned Apriori) and
HPA-ELD (HPA with Extremely Large itemset Duplication). Their
experiments showed that HPA and HPA-ELD are efficient in
handling very large data sets and also successfully handled the data
skew problem. All these algorithms were implemented in a share-
nothing environment.

A similar effort on parallel datamining on a share-nothingmul-
tiprocessor by Agarwal et al. [2] in 1996, entitled ‘‘Parallel Mining
of Association Rules’’ proposed three algorithms, namely, Count
Distribution algorithm, Data Distribution algorithm, and candidate
distribution algorithmwhich focus onminimizing communication.
These algorithms were modified Apriori algorithms proposed by
the same authors in 1993 to suit the parallel data mining context.
In another effort authors presented an encoding scheme that facil-
itated the fast discovery of association rule mining [1]. The count
distribution algorithm achieves this at the expense of carrying out
redundant computations in parallel, whereas the count distribu-
tion algorithm effectively utilized the main memory and the can-
didate distribution algorithm exploits the semantics of the prob-
lem to reduce synchronization and load balancing efforts. In a dis-
tributed environment it is expensive to broadcast messages across
the sites.

‘‘A Fast Distributed Algorithm for Mining Association Rules’’
by Cheung et al. [17], 1996 presents a distributed algorithm
that makes use of local and global pruning techniques to reduce
the number of candidate itemsets. It presents an algorithm that
reduces the time complexity ofmessage support fromO(n2) in case
of a straight adaptation of Apriori algorithm to O(n).

‘‘Parallel Data mining for Association Rules on Shared Memory
Multiprocessors’’ by Zaki et al. [78] in 1996, describes a parallel
approach to data mining on shared memory multiprocessors,
which is yet another hash-based approach. The contribution of the
present report included optimization of joining, pruning, balancing
of hash trees and concluded on considerable performance gains.

‘‘Scalable Parallel Distribution Algorithm’’ by Han et al. [38]
in 1997 came up with the next set of parallel data mining
algorithms as an improvement on the data distribution algorithm,
namely the ‘‘intelligent data distribution algorithm’’ and ‘‘hybrid
distribution algorithm’’, the latter being an improvement over the
former. The algorithms address the concerns regarding memory,
communication overhead and redundant communication.

In 1997, Zaki et al. [79,80] published ‘‘Parallel Algorithms for
Discovery of Association Rules’’, which discusses itemset clustering
techniques with respect to parallel data mining. The itemset
clustering technique is a new algorithm proposed by the same
authors for approximating the potentially large frequent itemset.
The algorithms also make use of efficient traversal techniques to
generate the candidate itemsets.

Cheung et al. [19] proposed FPM (Fast Parallel Mining) for
mining association rules on a shared nothing platform in their
report entitled ‘‘Effect of Data Skewness in Parallel Mining
of Association Rules’’ in 1998. The FPM employs the count
distribution algorithm adoption with two new candidate pruning
techniques called the distributed pruning and global pruning. They
particularly tested the newapproach to data skew issues and found
that the distributed pruning is very effective in handling a high
degree of skewness in data whereas the global pruning technique
is very effective when mild skewness is observed.

Cheng et al. [18] proposed yet another parallel algorithm
called the Asynchronous Parallel Algorithm (is also referred as
APM-Adaptive Parallel Algorithm) that was studied on a shared
memory multiprocessor in their report entitled ‘‘Asynchronous
Parallel Algorithm’’. This effort focused on the specific need of
the shared memory system, where communication is no longer
an issue as in the case of a shared nothing distributed system.
However, the shared I/O becomes a bottleneck as the processors
seek access to the partitions during the iterations. An adaptive
interval configuration technique suggested in the present report
generates interval configuration such that the created partitions
have a high homogeneity of inter-partition itemset distribution.

In 1999, a survey report by Zaki [77], entitled ‘‘Parallel and
Distributed Associated Rule Mining’’ presented a comprehensive
summary of the similar efforts carried out until 1999. The present
report lists the efforts, the differences in approaches and a future
outlook thereon.

‘‘Parallel Data Mining for Association Rules on Shared-memory
Systems’’ written in 2001, by Zaki et al. [59] presents a sequential



S.R. Upadhyaya / J. Parallel Distrib. Comput. 73 (2013) 284–292 287
association mining algorithm that is designed especially for a
shared memory multiprocessor environment. Given the fact that
the data structures like the hash trees suffer from suboptimal data
locality, this algorithm explores novel means for load balancing
the computation in the enumeration of frequent associations. They
also present an optimization scheme for balancing the hash tree
data structure to improve locality and reduce false sharing.

In 2002, Pham et al. [62] presented a distributed algorithm
for association rule mining, which adopted the Apriori algorithm
for a distributed environment employing the mobile agent
(MA) Technology. The present report showed the experimental
evaluation of the algorithm to prove advantages of the approach.

In 2003, another effort presented by Veloso et al. [70] described
a parallel and distributed frequent itemset mining on dynamic
data sets. This is the first effort that considers the presence of
a dynamic and distributed data set. The presented algorithm
maintains the required information despite data updates, without
examining the entire database. This algorithmhandles the problem
of parallelizing the incremental algorithm. In another attempt to
run frequent itemset mining in a parallel manner, the authors
modified a trie based algorithm [75]. In this attempt, the input
instructions were read by a parallel computer. The authors of the
paper [76] presented an effort where they attempted to build on a
data structure that was previously used in a sequential algorithm
and found that trie structure performedwell in the parallel context.

‘‘Parallel Leap’’ is one of the first efforts to run pattern mining
on a massive distributed framework [25]. The research effort
presented in VLDB 2007, by Liu et al. [45] presents a FPG (Frequent
Pattern Growth) algorithm on a modern multicore processor to
overcome the underutilization of the multicore processor. The
report presented an overwhelming 400% improvement in speedup
compared to the state of the art algorithm. It describes a new
technique called cache conscious FP Array andmakes use of a lock-
free data set tiling technique.

‘‘Toward Terabyte Pattern Mining—An Architecture Conscious
Solution’’ was presented by Buehrer et al. [8] which discussed the
need for taking fully into consideration the architectural capabil-
ities of a system for designing an algorithm. The proposed ap-
proach adapts the FPGrowth algorithm and leverages its capability.
It employs optimization techniques for improving cache, memory
and I/O utilization using pruning and tiling techniques, and effi-
cient data placement strategies. The pointer based nature of tree
structure implementation makes the algorithm all the more effi-
cient. The strip marshaling and merging mechanism proposed in
the present report makes serialization and merging of local trees
efficient. Itminimizes synchronization between nodes and reduces
data size at each node.

Craus et al. [21] presented the generalized parallel algorithm
in 2008 that gave itself to parallelism in a much better manner
compared to other algorithms. While most of the parallel
algorithms were developed on the existing linear algorithms, the
authors of this contribution devised new algorithms that would
make parallelization much effective. Unlike the Apriori algorithm,
in this case the communication pattern would be known before
the algorithm starts and that gave a big advantage. The set of
transactions can be distributed to processors before the beginning
of algorithm. The algorithm strategy makes sure that a processor
is free to do the itemset computation without having to wait for
other processors to finish.

2.2. Other machine learning approaches

While association rule mining recorded the highest number of
research efforts among the parallel machine learning efforts, there
were other efforts that focused on other popular machine learn-
ing concepts. The initial attempts include approaches to convert
the existing machine learning approaches to suit a parallel pro-
gramming scheme, introducing parallelism into typical tasks re-
lated tomachine learning such as cross-validation.We alsowitness
efforts on performance optimization, development of frameworks
and adaptation of different parallel architectures/environments to
machine learning. It is difficult to collect and comprehend relevant
information in this section is difficult as one has to bring together
all the machine learning efforts (other than ARM) done using par-
allel approaches. Since there are many techniques that may be la-
beled as machine learning, it is a tough task to consolidate infor-
mation under this head. However, it is understood that other ma-
chine learning approaches are not widely studied like ARM. An ef-
fort ismade here to consolidate such research. It has been observed
that, usually decision tree classifiers, SVMs and neural networks
are tried to adopt parallel approach.

2.2.1. Noted publications and contributions
One of the earliest efforts in this direction was presented in

K. Thearling [69] that presented a massively parallel architecture
and the algorithms for analyzing time series data. According to
the author, massively parallel architectures are useful in both
memory-based and computation based algorithms. The report
described the method to run memory-based reasoning (MBR)
applications. Typical MBR applications that use megabytes of data
can easily be processed on this massively parallel architecture.
It also presented the method to run computationally complex
problems such as neural networks and genetic algorithms.

In 1998, Joshi et al. [42] presented a scalable parallel algorithm
for decision tree-based classification. This was designed to
overcome the latency involved in making the splitting decision,
especiallywhen attributes are continuous. It presents amechanism
to construct and search a distributed hash table, when there are
many values to be hashed.

Narlikar [52] presented a parallel, multithreaded decision
tree builder that adopted a high level, fine grained, formulation
for refining C4.5 classifier. It uses lightweight threads that
are dynamically created and destroyed to bring about better
performance. The divide and conquer approach of C4.5 is employed
to introduce parallelism.

Another report by Zaki et al. [81] presented parallel classifi-
cation using the decision tree approach on shared memory pro-
cessors. The data parallelism is based on the attribute scheduling
among the processors. The task pipelining and dynamic load bal-
ancing also contributed to the performance improvement.

Boxer et al. [7] presented a report on parallel algorithms
for pattern recognition that is scalable for certain patterns in a
Euclidian space. This effort is the first one to apply a parallel
approach to pattern recognition

Bowyer et al. [6], also presented a parallelized version of the C
4.5 decision Tree algorithm, that was ported to work on an ASCII
Red Parallel Supercomputer. It allows test results from a validation
test set to be stored as weights in the leaves of the tree. The
algorithm design allowed the processors to work independently
without communicating with each other.

Cross-validation is an important task in machine learning that
measures the effectiveness of the algorithm. It is also highly time
intensive involving many iterations of learning. Celis et al. [14]
presented a parallel approach for cross-validation in Weka, a
popular machine learning tool. The n folds of cross-validation
are made to run on n different processors and results are then
integrated to achieve considerable speed.

Jin and Agarwal [41] presented a generic approach to parallel
decision tree classification that could be adopted in other machine
learning approaches such as association rule mining. The method
is based on the AVC groups (combination of AVC (attribute value
class label) sets for all attributes) that comprise of three subgroups,



288 S.R. Upadhyaya / J. Parallel Distrib. Comput. 73 (2013) 284–292
namely, small, concise and partial AVCs. The parallelization is
brought about by working independently on the subgroups.

There are quite a few efforts on training and building an SVM
classification engine by employing parallel approaches. Cascade
SVM, presented by Graf et al. [36] is a parallel approach to SVM
training that needs a mention here. This approach spoke about
splitting the large data into smaller sets and then runningmultiple
SVMs on them. The partial results are combined and filtered in
a cascade of SVMs until the global optimum is reached. Another
similar objective was presented in the report [71]. The authors
proposed a hierarchical and parallel approach for training SVMs.
The approach was successful in achieving speedup in training
while reducing the number of support vectors and maintaining
generalization accuracy. A book [5] published in 2007 discussed
in depth the algorithmic and computational issues associated with
optimization strategies for solving the SVM dual problem. The
authors also examine the parallel approaches in two chapters of
the same book.

A parallel approach to evidence propagation in a probabilistic
inference in a Bayesian network was shown in Xia et al. [74]. The
authors employed a re-rooting approach along with collaborative
scheduling, exploiting both task and data parallelism. On an eight
core machine the speedup achieved was almost eight times.

An attempt run SVM on Java Optimized Platform (JOP) was
demonstrated by Pederson et al. [60]. This work adopted a class-
based approach.

A recent report on a streaming parallel decision tree algorithm
that is capable of processing possibly infinite data is presented by
Ben-Haim et al.. It processes streaming data in a breadth firstmode
using horizontal parallelism. At the core it builds histograms in an
online manner and then these histograms are used for decision
making on new tree nodes at the master processor [3].

A significant contribution is observed in the area of Neural Net-
works too. The reports [65,47,72,29,53,23,5,48] have recorded such
attempts. A survey of ANNs onmassively parallel architectures has
been presented in [65] in the year 2002. Report [47] presents an
attempt to implement a scalable NN on a massively parallel archi-
tecture, with an objective to carry out pattern recognition applica-
tions. This attempt is a fairly recent one reported in the year 2005
(an updated versionwas published in 2008). In this approach, neu-
rons in each layer are distributed equally over all processors, how-
ever, all input is fed to each processor. Most of the work presented
in this section exploits the ability of parallel platforms to perform
matrix/vector manipulations quickly. Lastly, the work in [23], talks
about a parallel implementation for a cluster system. This used a
network parallel training approach to implement the same. Task
decomposition for addressing a K -class classification problemwas
achieved by dividing it into a series of nCr 2-class problems. Each
of the two 2-class problems can be learned in parallel and later the
trained modules are integrated according to the module combina-
tion principles.

3. Data mining, machine learning and related efforts on GPUs

In the time frame 1999–2000, scientists toyed around with the
idea of using graphics processors for general purpose computing.
The machine learning research was quick to respond and we
see a number of interesting and innovative research initiatives.
The survey report [54,55] on the adaptation of GPU for general
purpose computation identifies the map reduce paradigm, matrix
manipulation, query processing, databases and data mining as the
areas of traction. In this section we make an effort to look at the
machine learning aspect since the year 2000.
3.1. Major observations

Using graphics processors for general purpose computation
seemed to be a definite trend during this decade. Among the
several other applications, popular use of graphics processors
included large matrix/vector operations molecular dynamics,
signal processing, ray tracing, simulation, sequence matching,
speech recognition, databases, sorting, searching and medical
imaging. As is very obvious, many of the above-mentioned
tasks such as large matrix/vector operations sequence matching,
databases, sorting, searching and medical imaging are closely
related to machine learning and the contributions in these areas in
turn took the machine learning research a step forward. Although
the initial years until 2004 did not see the adaptation of GPU
architecture for machine learning as a major trend, the later years
saw someof the very significantwork inmachine learning and data
mining.

In this section, a summary of the work that contributed to
machine learning research indirectly is presented. Fast string
matching, matrix operations, stream mining, searching, sorting
and database operations are typical problems addressed in this
category. Matrix manipulation being a very important part of
image processing is one of the usually discussed problems on
GPUs. While some emphasized on speedy matrix manipulation
for visualization/image/pixel processing, certain efforts focused on
matrix manipulation for numeric methods, which are useful from
the point of view of machine learning implementations.

3.2. Machine learning and related techniques on GPUs: major
publications and their contributions

Amongst the general purpose computation applications of
GPUs, machine learning is considered to be the most prominent
one. In this section, an attempt is made to present all the research
efforts made to explore the possibilities of using GPUs for machine
learning until now. Given that, the GPUs understand only graphics
data, data related to general purpose computation problems needs
to be expressed in terms of graphics data in order to be solved.
It is observed that in the initial years, the basic functionalities
such as matrix multiplication and other matrix manipulation,
string matching, sorting, query processing and other database
operations etc., required for running the complex algorithms were
implemented. These efforts are a step toward machine learning
adoption. In order to show the gradual progress over the years
these efforts are also mentioned in the present report, although
they do not discuss the machine learning algorithms directly. The
forthcoming years saw the development of complete machine
learning algorithms on the GPU platform. All of these efforts
presented in this Section do not utilize the map reduce framework
as it is intended to present such efforts separately. It is interesting
to observe that a lot of work spanning across a large spectrum of
algorithms has been done in a short span. In depth studies relating
to a particular subject are not observed. These studies cover a broad
spectrum of topics rather than a deep understanding of a certain
topic.

One of the earliest attempts on graphics processors closely
related with machine learning is the attempt to run matrix
multiplication, a basic computation element of most of the
machine learning algorithms [43]. In the present report the authors
make an attempt to adapt the technique from parallel computing
and perform a portion computation at each processor. In fact, this
was the first attempt to use the graphics processor for general
computation, when it was believed that GPUs are not meant
for such operations. It was shown that GPUs gave a competitive
performance and it triggered many attempts in that direction.



S.R. Upadhyaya / J. Parallel Distrib. Comput. 73 (2013) 284–292 289
A conjugate gradient and amulti grid solver were implemented
on aGPU in [4] and itwas shown thatGPUs can be successfully used
like a streaming processor with high floating point performance.
In the year 2009, an attempt to fast string matching on GPU was
presented by Schats et al. This attempts the marks the beginning
of text processing on GPUs.

Among the first sorting algorithms to be implemented on a
GPU is the work presented in [31], where a cache efficient sorting
algorithm that can be used in database and data mining contexts
was presented. The authors used the texturemapping andblending
capabilities of the GPUs to the bi-tonic sorting. The parallelism and
the vector processing capabilities of the GPUs were exploited to
establish this. Fat string matching algorithm given by [64] is one of
the first attempt to use GPUs for string processing.

Fang et al. [35] presented a fast and approximate stream min-
ing algorithm for construction of e- approximate quantile and fre-
quency summaries. They used sorting as the computational ele-
ment for histogram construction. The sorting algorithm developed
in this context used the periodic balanced sorting network and it
exploited the high computational power and the memory band
width of GPUs. This is one of the earliest effortswheremassive data
collected by logs, sensor networks andweb tracking is processed as
streams generated by periodic queries and to compute numerical
statistics.

Guha et al. [37] presented an informative seminar on utilizing
the prowess of GPUs for data mining and visualization to KDD
audience. This tutorial presented the methods of exploiting
the parallel architecture of GPUs for typical clustering and
classification algorithms, regression and other typical statistics
analysis, matrix/vector operations, data streaming, analysis and
view. It also familiarized the audience with the tools and
applications for processing data as streams with pixel level
parallelism on GPUs.

‘‘Scalable Clustering Using Graphics Processors’’ by Cao et al. [9]
is the first tomodify a clustering algorithm for GPU, making it scal-
able to process huge data. The authors identify the components
in clustering algorithms that are computationally expensive and
modify them suitably to run on graphics processors. The work pre-
sented is based on a K means algorithm, where distance com-
putation and comparison are expensive operations. The authors
propose a new distance measuring scheme based on the fragment
vector processing and multi-pass rendering. The algorithm mini-
mizes the data transmission between the CPU and GPU taking into
account the low bandwidth.

A new document clustering algorithm inspired by nature
called, ‘the flocking-based algorithm’ is presented in the report
by Charles et al. [15] in the Journal of Undergraduate Research.
In this agent based approach, the organization of the document
emerges through an interaction amongst a group of agents. The
similar documents flock together and loosely organize themselves
according to the subject. The authors implemented and tested
the algorithm on both sequential and parallel platforms and
compared the performances. Although GPU outdid the single core
performance, themethod posed certain restrictions on the number
of documents that could be processed.

GPUTeraSort, an application that performed sorting on billions
of database records was presented by Govindaraju et al. [32] in
ACM SIGMOD in 2006. This is one of the reports that boosted
the large scale computational efforts on GPUs. The sorting
algorithm used both data and task parallelism and achieved high
performance on GPU and showed that terabytes of data can be
processed at the cost of few pennies. In the year 2007 too, a
database query processing effort on GPU was presented in ACM
SIGMOD [26]. The same research group presented another report
in the next ACM SIGMOD in 2008 on performing relational joins on
GPUs. These three reports are marked as milestones in database
processing on GPUs. This group started their work on GPUs as
early as 2005 where they presented efficient sorting algorithm for
database operations [33,34]. One more effort on efficient scatter
and plot operations on GPU was also presented in 2007 [40].

Another report presented in the Journal of Parallel and
Distributed Computing authored by Che et al. [16] discussed a
performance leap achieved by an implementation of a K Means
clustering algorithm on GPUs among the several other general
purpose applications of GPU.

GPUminer presented by Fang et al. [27] discussed a parallel
data mining system that implemented K means clustering and
Apriori frequent pattern mining algorithms. Although the authors
did not compare the performance of their K means algorithmwith
the previous implementations, they presented the performance
studies on a quad-core CPU and GPU. This attempt specially
focused on architecture focused implementation where the data
storage and buffer management is based on CPU, parallel mining is
based on co-processing and visualization is based on GPU.

An SVM training and prediction method was implemented by
A. Carpenter and was presented in [10]. The second order heuristic
employed significantly reduces iterations required for the running
the module for decomposing and solving the quadratic program.
However, the method proves to be efficient as the number of data
points increase. Surprisingly, this attempt preceded by Catanzaro
et al. [11], that used the map reduce paradigm to develop an SVM
solver. This used CUDA, the specialized language for programming
on GPU.

Latent Semantic Analysis, a technique usually used for reducing
the dimension of term-document data sets using singular value
composition (SVD) was designed to run on GPU by Cavanagh
et al. [13]. They chose the Lancozs algorithm that tridiagonalizes
a matrix for computing SVD faster as it involves a matrix-vector.
This attempt was also one of the earliest CUDA implementations.
The limitations of the system and the used language were found
to be the constraints for leveraging the benefits of such an
implementation to the fullest.

An effort to optimize the K means clustering algorithmwas pre-
sented in Zechner et al. [82]; this time leveraging the benefits of
coding on CUDA. The present report leveraged the architectural as-
pects of the platform to overcome the shortcomings of the previous
implementations. The distance calculations were parallelized on
GPUs and the sequential updating of centroidswere done on a CPU.

An effort to implement the Apriori algorithm for frequent item-
set mining (FIM) on GPU hardware was shown in Fang et al. [28].
The authors demonstrated twoways of implementing the FIM; one
ofwhich used the GPU alonewhile the other uses both the GPU and
CPU memory. They used a bitmap-based approach that made use
of a trie for demonstrating both the above-mentioned approaches.
They also implemented a pure bitmap-based approach to run a
GPU implementation.

Building the TF/IDF representation from raw text data is an
important task involved in text mining. The problem of ranking
documents based on TFIDF search was accelerated using GPU by
Zhang and Potok [85]. The report was one of the first reports to
work on text mining. It mainly dealt with introducing parallelism
to the process of building a token frequency hash table for each
document. This requires that preprocessing tasks like tokenizing,
stemming, etc. be made to run in a parallel manner. A global token
frequency hash table is then built and TF/IDF values are calculated
to find the relevance of a document with respect to a topic.

According to [73], one can achieve a fair amount of success in
processing the very large data sets that do not fit in GPU memory.
Here, the authors primarily investigated the viability of processing
very large data sets on GPUs for practical implementations. They
demonstrated the popular K means clustering algorithm and
measured the performance against the ‘Minebench’ benchmark to
prove the efficiency of their approach.



290 S.R. Upadhyaya / J. Parallel Distrib. Comput. 73 (2013) 284–292
In 2010, the data/document clustering problem was addressed
by three reports [22,83,84]. It is interesting to note that these
contributions that appeared in noted journals/conferences came
from the same group. The large scale data clustering solution
presented in [22] was based on a flocking algorithm mentioned
in one of their previous works [15]. The present report described
methods to overcome the shortfalls experiencedwith the previous
work where the large size of the document information caused
frequent GPU global device memory reads. The global memory
device is not cached and has a delay of hundreds of cycles per
read. In order to encounter this problem, some document terms
were cached in shared memory for faster access. The initial
approached was also replaced by a new method that used a
document similarity matrix that could be used to read directly for
document comparison.

The flocking algorithm used in [15] is not regarded as one of the
machine learning techniques; however; the purpose of document
clustering is typically addressed by textmining, amachine learning
approach. A highly parallelized approach for calculating the TF/IDF
values for gathering similarity of documents as in text mining
was demonstrated by the same research group in [85]. They
employed the flocking-based simulation algorithm for document
clustering using the TF/IDF values for similarity comparison in [83]
and showed a performance lift. Another similarity measure TF/ICF
proposed in yet another report was also employed here as
computation of TF/IDF on parallel architecture did not improve
the performance to a great extent. In summary, the present report
archived several approaches and combined machine learning
aspects with simulation algorithms and suggested alternates for
document clustering.

The best performing combination in the above-mentioned ef-
fort; namely the flocking-based clustering similaritymeasurement
calculated using the TF/ICF was implemented on a four node GPU
cluster and presented in [84]. The ML algorithms based on kernel
methods scale poorly as the data size increases. This problem was
addressed by Srinivasan et al. [68] by employing GPUs partially.
The GPUs are typically used to accelerate matrix operations such
as decomposition, product and their iterative formulations, which
are amply used in kernel methods.

Three attempts on implementing decision trees (of different na-
ture) on GPUs are presented in [66,61,30]. The report presented
in [66] demonstrated an object recognition motive. They devel-
oped a strategy to transform forest data structure from a list of
binary trees to a 2D texture. The implementation was a hundred
times faster compared to the CPU counterpart. A tree-based con-
text clustering is demonstrated in [61]. Node splitting in the de-
cision tree is carried out independent of all other splits, gaining
considerable speed. A tree level parallelism was adopted in [30]
to build extremely randomized trees.

An attempt to implement Neural Networks [49] on GPUs is
reported in Ly et al.. Unlike the normal parallelization approaches,
this approach focused on getting the element matrix operations
optimized so that the overall gain in performance ismet. The report
showed that the implementation gain was about 66 fold, although
the element operations sped up more than 1000 fold, because of
the communication overhead.

The work reported by Gneuron [63] is yet another attempt to
build neural networks on GPUs, where the authors made an at-
tempt to identify the hotspots that are critical and tried to paral-
lelize the same. The focuswas on the elements of operationswithin
the training cycle, but the training cycle was not parallelized.

4. Data mining and machine learning using map reduce
technique

The map reduce technique popularized by Google Inc. has
brought a paradigm shift to the way in which data is handled in
distributed/parallel environments. We see the adoption of map
reduce technique right from the multicore era. Clearly, with the
advent of GPUs, the map reduce technique turned out to be an
effective tool to elevate parallel performance. In fact, the number
of reports we find in this section is quite small, indicating the
scope for research in this space. This section covers the efforts
that engage the map reduce technique in a parallel environment
including multicores and GPUs. The literatures studied under this
Section were published from 2005 onwards.

4.1. Major observations

The map reduce technique has been popular for quite some
time. However, it has been explored in a very limitedmanner.Most
of the efforts have been triggered fromaneed to performbetter in a
certain application context. Therefore, there remains a lot of scope
to explore the algorithmic aspects.

4.2. Parallel data mining/machine learning using map reduce
technique—major publications and their contributions

The very first implementation of a map reduce framework
on a multicore environment and subsequent demonstration of
a machine learning algorithm was done by Chu et al. [20]. The
authors presented a broadly applicable map reduce framework for
running most of the machine learning algorithms. The framework
is based on the premise that all algorithms can be expressed in
summation form. The computations are done by differentmappers
and the final summation is carried out by the reducer. The authors
demonstrated the working of LWLR, LR, Naïve Bayes, PCA, Support
Vector Machine, ICA, GDA, ICA and Neural network etc. on this
framework.

Both He et al. [39] and Catanzaro et al. [12] developed a map
reduce framework on GPUs using CUDA. While Catanzaro et al.
demonstrated use of this framework by implementing SVM on
it; He et al. demonstrated functions such as string matching,
matrix multiplication, building of inverted index, etc.. He et al.
developed a set of APIs similar to those of a CPU-based map
reduce implementation and hid the programming complexities
on GPU considerably. The framework developed by Catanzaro
et al. required the user to define a map function, a set of reduce
operators and a cleanup function operates on the results of
reduction. DisMarc is one of the recent efforts that exploits the
computing prowess of GPUs to process huge data on a map
reduce framework [50]. It successfully hides the complexity of GPU
programing behind a simple map-reduce interface.

A parallel FP Growth algorithm was presented by Li et al. [46].
An attempt to parallelize a FP Growth, a popular FIM algorithm
was done here. The algorithm partitions computations in such a
way that each machine carries out a set of independent mining
tasks, eliminating the computational dependencies between the
machines. A linear speed up was shown.

Lin et al. [44] published a book on ‘‘Data-Intensive Text
Processing with map reduce’’ in 2010. In this book the author
provides a detailed explanation of the map reduce system and
the method to implement various text processing approaches on
them. They discuss the whole approach on Hadoop distributed
architectures to emphasize the parallel advantage brought about
by map reduce.

An attempt to implement a massively parallel ensemble of
decision trees with map reduce has been presented in [56]. A map
reduce job to find the best split when there is too much data to fit
in the memory was defined. The map reduce framework was also
employed to grow the entire tree as long as it fits in the memory.



S.R. Upadhyaya / J. Parallel Distrib. Comput. 73 (2013) 284–292 291
5. Critical gaps, open problems and scope for research

One important observation is that breadth and depth of
research in ARM space is very high and it follows a continuous
record. This seemed to be natural in a way; as ARM is required
to process huge databases and indicated the need adopt parallel
approaches to reduce processing time. However, other machine
learning approaches have been studied rather intermittently,
although decision trees and neural networks seem to have a fair
share too. More than academic innovation, application scenarios
seem to have driven research in this space. It is important to note
that there is plenty of scope to work on these areas.

We note that an effort to consolidate these efforts with respect
to performance improvement, memory utilization, processor
utilization etc., would give a comprehensive picture. It requires a
humongous effort to realize this, as these reports correspond to
efforts on varied hardware with different specifications. It may not
make sense to compare each of them against the other, however,
it would be worth consolidating them under broader categories.

A lot of work has been done on the theoretical front and most
of the performance issues are well addressed. However, the most
important gap the author sees is at the application front, where
these algorithms are deployed in actual business contexts. The
business world witnesses very few scenarios where the benefits
of parallel machine learning are actually realized. With the advent
of cloud environment, there is a need for real life applications to
be modified for the cloud context. The need for working with a lot
of data should open up a lot of opportunities for deploying parallel
algorithms.

The map reduce framework has not yet been fully exploited
in the machine learning context. Given that the map reduce
framework can greatly enhance the performance of applications on
GPUs, such a combinationwould be a boon to themachine learning
age. This would make analysis, data visualization and prediction
run on desktopswithout latency, irrespective of the amount of data
that needs to be handled. The greatest advantage is the reduction
of cost brought about by GPUs.

The next natural step is to work on distributed environments
such as GPU or GPU/CPU clusters and the cloud using a distributed
framework for map reduce such as Hadoop. In a practical sense,
GPUs have performed better than multicores and are much less
expensive. In the context of the cloud too, where the cost of
hardware is a concern, it makes sense to adopt GPUs to take care
of the cost and speed concerns.

Big data analytics is gaining prominence today. While the
techniques for handling the size of data are mature, techniques for
deriving semantics from a large amount of data are conspicuously
absent. It is very important to invest efforts in bringing out
the semantics of the data, where both data mining and parallel
approaches have a great role to play. Knowledge extraction
powers of machine learning need to be employed to learn from
large, unstructured data in a distributed manner. This is another
direction yet unexplored. This is a big step toward realizing
the semantic web and knowledge extraction by mining the
unstructured sources.

6. Conclusion

Machine Learning has become more relevant today than ever,
given the availability of a huge amount of information and the need
to analyze and predict business insights. This necessitates that
the speed of processing information is increased exponentially.
Needless to say, parallel approaches make a lot of sense in
this context. An effort to understand the parallel approaches to
machine learning has been made here.
We have attempted to present a holistic picture of parallel
machine learning efforts for the past one and a half decade.
We have grouped the efforts based on the influence of new
technologies that were introduced in this period. Accordingly, we
have classified these efforts as; the ones that did not consider both
map reduce technique and GPUs (Year 1999–2000 and beyond),
the ones that were employed on GPUs (Year 2000–2005 and
beyond) and the ones that used the map reduce technique (Year
2005 onward). A few of the efforts that discussed the map reduce
technique on GPU were included in the last category.

We observe that there are a good number of efforts on realizing
greater performance both in terms of speedup and memory
utilization. However, there are fewer application contexts. Our
study shows that there are many opportunities to work on both
algorithmic and application aspects of machine learning on GPU
and on map reduce frameworks and on a combination of both. Of
course, the cloud-based aspects of machine learning are almost
unexplored and this definitely is the direction to look forward to.
Last but not least, aspects of knowledge extraction from large and
unstructured data, particularly theweb, for realizing semanticweb
offers open opportunities for research. This capabilitywill go a long
way into benefitting from the collaborative efforts that work on
realizing the semantic web.

References

[1] R. Agrawal, et al., Fast discovery of association rules, in: Advances in
Knowledge Discovery and Data Mining, AAAI Press, 1996.

[2] R. Agrawal, J. Shafer, Parallel mining of association rules, in: IEEE TKDE, 1996.
[3] Y. Ben-Haim, E. Yom-Tov, A streaming parallel decision tree algorithm, Journal

of Machine Learning (2010).
[4] J. Bolz, I. Farmer, E. Grinspun, P. Schr¨oder, Sparse matrix solvers on the GPU:

conjugate gradients and multigrid, in: ACM SIGGRAPH, 2003.
[5] L. Bottou, O. Chapelle, D. DeCoste, J. Weston (Eds.), Large Scale Kernel

Machines, The MIT Press, 2007.
[6] K.W. Bowyer, L. Hall, T. Moore, N. Chawla, A parallel decision tree builder for

mining very large visualization datasets, in: IEEE Conference on Systems, Man
and Cybernetics, 2000.

[7] L. Boxer, R. Miller, A. Rau-Chaplin, Scalable parallel algorithms for geometric
pattern recognition, Journal of Parallel and Distributed Computing (1999).

[8] G. Buehrer, S. Parthasarathy, S. Tatikonda, Toward terabyte pattern mining—
an architecture conscious solution, in: 12th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2007.

[9] F. Cao, A.K.H. Tung, A. Zhou, Scalable clustering using graphics processors, in:
WAIM 2006, 2006.

[10] A. Carpenter, CUSVM: a CUDA implementation of support vector classification
and regression, 2009. http://patternsonascreen.net/cuSVMDesc.pdf.

[11] B. Catanzaro, N. Sundaram, K. Keutzer, Fast support vector machine training
and classification on graphics processors, in: ICML 2008, 2008.

[12] B. Catanzaro, N. Sundaram, K. Keutzer, A map reduce framework for
programming graphics processors, in: PACT 2008, 2008.

[13] J.M. Cavanagh, T.E. Potok, X. Cui, Parallel latent semantic analysis using
graphics processor unit, in: 11th Annual Conference Companion on Genetic
and GECCO’09, Evolutionary Computation Conference: Late Breaking Papers,
2009.

[14] S. Celis, D.R. Musicant, Weka parallel: machine learning in parallel, Technical
Report, Carlton College, CS TR 2002, 2002.

[15] J.ST. Charles, R.M. Patio, T.E. Potok, X. Cui, Flocking-based document clustering
on the graphics processing unit, US department of energy, Journal of
Undergraduate Research (2006).

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J.W. Sheaffer, K. Skadron, A performance
study of general-purpose applications on graphics processors using CUDA,
Journal of Parallel and Distributed Computing (2008) 350–371.

[17] D. Cheung, et al., A fast distributed algorithm for mining association rules, in:
International Conference Parallel and Distributed Information Systems, 1996.

[18] D. Cheung, K. Hu, S. Xia, Asynchronous parallel algorithm for mining
association rules on shared-memory multi-processors, in: ACM Symposium
on Parallel algorithms and Architectures, 1998.

[19] D. Cheung, Y. Xiao, Effect of data skewness in parallel mining of association
rules, in: Pacific-Asia ConferenceKnowledgeDiscovery andDataMining, 1998.

[20] C. Chu, S.K. Kim, Y. Lin, Y. Yu, G. Bradski, A.Y. Ng, K. Olukotun, Map-reduce for
machine learning on multicore, in: NIPS, 2006.

[21] M. Craus, A. Archip, A generalized parallel algorithm for frequent itemset
mining, in: 12th WSEAS International Conference on Computers, 2008.

[22] X. Cui, J. Beaver, J.S. Charles, T. Potok, The GPU enhanced parallel computing
for large scale data clustering, in: Book Chapter of GPU Computing Gems 2010,
Springer, 2010.

http://patternsonascreen.net/cuSVMDesc.pdf


292 S.R. Upadhyaya / J. Parallel Distrib. Comput. 73 (2013) 284–292
[23] G. Dahl, A. McAvinney, T. Newhall, Parallelizing neural networks training for
cluster systems’, in: PDCN, 2008.

[24] A. DI Blas, T. Kaldeywey,Why graphics processorswill transformdatabase pro-
cessing? Data monster, 2009. http://spectrum.ieee.org/computing/software/
data-monster/0.

[25] M. El-Hajj, O. Zaiane, Parallel leap: large-scale maximal, pattern mining in a
distributed environment, in: ICPADS, 2006.

[26] R. Fang, B. He, M. Lu, K. Yang, N.K. Govindaraju, Q. Luo, P.V. Sander, Gpuqp:
query co-processing using graphics processors, in: ACM SIGMOD 2007.

[27] W. Fang, K.K. Lau, M. Lu, X. Xiao, C.K. Lam, P.Y. Yang, B. He, Q. Luo, P.V. Sander,
K. Yang, GPUMiner: parallel data mining on graphics processors, Technical
Report HKUST-CS08-07, Oct 2008.

[28] W. Fang, M. Lu, X. Xiao, B. He, Q. Luo, Frequent itemset mining on graphics
processors, in: 4th International Workshop on Data Management On New
Hardware, 2009.

[29] P. Farber, K. Asanovic, Parallel neural network training on multi-spert, in:
IEEE 3rd International Conference on Algorithms and Architectures for Parallel
Processing, 1997.

[30] M. Geary, H. Lee, D. Signorelli, J. Vaughan, Implementing extremely
randomized trees in CUDA, Technical Report, Stanford University, 2009.

[31] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim, A. Nguyen, Y. Chen, P. Dubey,
Cache-conscious frequent pattern mining on a modern processor, in: VLDB,
2005.

[32] N. Govindaraju, J. Gray, R. Kumar, D.Manocha, GPUTeraSort: high performance
graphics co-processor sorting for large database management, in: ACM
SIGMOD, 2006.

[33] N.K. Govindaraju, B. Lloyd, W. Wang, M. Lin, D. Manocha, Fast computation of
database operations using graphics processors, in: ACM SIGMOD, 2004.

[34] N.K. Govindaraju, N. Raghuvanshi, M. Henson, D. Tuft, D. Manocha, A cache-
efficient sorting algorithm for database and data mining computations using
graphics processors, Technical Report, University of North Carolina, 2005.

[35] N.K. Govindaraju, N. Raghuvanshi, D. Manocha, Fast and approximate stream
mining of quantiles and frequencies using graphics processors, in: ACM
SIGMOD, 2005.

[36] H.P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, Vladimir Vapnik, Parallel support
vector machine: the cascade SVM, in: NIPS, 2005.

[37] S. Guha, S. Krishnan, S. Venkatasubramanian, Tutorial.: data visualization and
mining using the GPU, KDD, 2005.

[38] E.H. Han, G. Karypis, V. Kumar, Scalable parallel data mining for association
rules, in: Proceeding of the ACM Conference Management of Data, 1997.

[39] B. He, W. Fang, Q. Luo, N.K. Govindaraju, T. Wang, Mars: a map reduce
framework on graphics processors, in: PACT 2008, 2008.

[40] B. He, N.K. Govindaraju, Q. Luo, B. Smith, Efficient gather and scatter operations
on graphics processors, in: SC 2007, 2007.

[41] R. Jin, G. Agarwal, Communication and memory efficient parallel decision tree
construction, in: Third SIAM Conference on Data Mining, 2003.

[42] M.V. Joshi, G. Garypis, V. Kumar, ScalParC: a new scalable and efficient parallel
classification algorithm for mining large datasets, in: International Parallel
Processing Symposium, 1998.

[43] E.S. Larsen, D. Mcallister, Fast matrix multiplies using graphics hardware, in:
SC 2001, 2001.

[44] J. Lin, C. Dyer, Data-Intensive Text Processing with Map Reduce, Morgan
Kaufmann Book, 2010.

[45] L. Liu, E. Li, Y. Zhang, Z. Tang, Optimization of frequent itemset mining on
multiple-core processor, in: VLDB 2007, 2007.

[46] H. Li, Y. Wang, D. Zhang, M. Zhang, E. Chang, PFP: parallel FP-growth for query
recommendation, in: ACM Recommender Systems 2008.

[47] L.N. Long, A. Gupta, Scalable massively parallel artificial neural networks, in:
AIAA 2005, 2005.

[48] B. Lu, M. Ito, Task decomposition and module combination based on
class relations: a modular neural network for pattern classification, IEEE
Transactions on Neural Networks 10 (5) (1999).

[49] D.L. Ly, V. Paprotski, D. Yen, Neural networks on GPUS: restricted Boltzmann
machines, Technical Report, University of Toronto, 2008.

[50] A.Mooley, K.Murthy, H. Singh, DisMaRC: a distributedmap reduce framework
on CUDA, Technical Report, University of Texas, 2009.

[51] A. Mueller, Fast sequential and parallel algorithms for association rule mining,
a comparison, Technical Report, 1995.

[52] G.J. Narlikar, A parallel, multi-threaded decision tree builder, Technical Report,
CMU, CMU-CS-98-184, 1998.

[53] M. Oldroyd, Optimization of Massively Parallel Neural Networks, Fultus
Publishing, ISBN: 1596820101, 2004.

[54] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A.E. Lefohn, T.J.
Purcell, A survey of general-purpose computation on graphics hardware, in:
EUROGRAPHICS 05, 2005.

[55] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A.E. Lefohn, T.J.
Purcell, A survey of general-purpose computation on graphics hardware,
Computer Graphics Forum (2007).

[56] B. Panda, J.S. Herbach, S. Basu, R.J. Bayardo, Massively parallel learning of tree
ensembles with map reduce, in: VLDB, 2009.

[57] J.S. Park, M. Chen, P.S. Yu, Efficient parallel data mining for association rules,
in: ACM International Conference Information and Knowledge Management,
1995.

[58] J.S. Park, M. Chen, P.S. Yu, An effective hash-based algorithm for mining
association rules, in: ACM SIGMOD1995, 1995.
[59] S. Parthasarathy, M.J. Zaki, M. Ogihara, W. Li, Parallel data mining for
association rules on shared memory systems, Journal of Knowledge and
Information Systems (2001).

[60] R.U. Pedersen, M. Schoeberl, Short paper: object oriented machine learning
with a multicore real-time java processor, in: JTRES 10, 2010.

[61] N. Pilkington, H. Zen, An implementation of decision tree-based context
clustering on graphics processing units, in: Interspeech 2010, 2010.

[62] A.H. P. Nguyen, T.B. Ho, A distributed algorithm for mining association rules,
in: The Third International Conference on Parallel and Distributed Computing,
Applications and Technologies, 2002.

[63] R.D. Prabhu, Gneuron: parallel neural networkswith GPU, in: HiPC 2007, 2007.
[64] M.C. Schats, C. Trapnell, Fast exact string matching on the GPU, Technical

Report, Stanford, 2009.
[65] U. Seiffert, Artificial neural networks on massively parallel computer

hardware, in: ESANN’02, 2002.
[66] T. Sharp, Implementing decision trees and forests on a GPU, in: ECCV 2008,

2008.
[67] T. Shintani, M. Kitsuregawa, Hash-based parallel algorithms for mining

association rules, in: International Conference on Parallel and Distributed
Information Systems, 1996.

[68] B.V. Srinivasan, Q. Hu, R. Duraiswami, GPUML: graphical processors for
speeding kernel machines, in: Workshop on High Performance Analytics,
Algorithms, Implementations and Applications, Seoul Conference on Data
Mining, 2010.

[69] K.K. Thearling, Massively parallel architectures and algorithms for time series
analysis, in: L. Nadel, D. Stien (Eds.), Lectures in Complex Systems, Addison-
Wesley, 1995.

[70] A. Veloso, M. Erick Otey, S. Parthasarathy, W. Meira Jr., Parallel and distributed
frequent itemset mining on dynamic datasets, in: HiPC, 2003.

[71] Y. Wen, B. Lu, in: J. Wang, X. Liao, Z. Yi (Eds.), Hierarchical and Parallel
Method for Training Support Vector Machines, in: ISNN LNCS, vol. 3496, 2005,
pp. 881–886.

[72] I. Wesley-Smith, A parallel artificial neural network implementation, in:
NCUR, 2006.

[73] R. Wu, B. Zhang, M. Hsu, GPU accelerated large scale analytics, Technical
Report, 2009-38, 2009.

[74] Y. Xia, X. Feng, V.K. Prasanna, Parallel evidence propagation on multicore
processors, in: PACT 2009, 2009.

[75] L. Yang, Pruning and visualizing generalized association rules in parallel
coordinates, in: IEEE TKDE, 2005.

[76] Y. Ye, C.-C. Chiang, A parallel apriori algorithm for frequent itemsets mining,
in: SERA, 2006.

[77] M.J. Zaki, Data mining parallel and distributed association mining: a survey,
in: IEEE Concurrency, 1999.

[78] M.J. Zaki, et al., Parallel data mining for association rules on shared-memory
multi-processors, in: Supercomputing’96, 1996.

[79] M.J. Zaki, et al., Parallel algorithms for fast discovery of association rules, in:
Data Mining and Knowledge Discovery, 1997.

[80] M.J. Zaki, et al., Parallel algorithms for discovery of association rules, in: KDD,
1997.

[81] M.J. Zaki, C. Ho, R. Agrawal, Parallel classification for data mining on shared-
memory multiprocessors, in: ICDE, 1999.

[82] M. Zechner, M. Granitzer, Accelerating K means on the graphics processor
via CUDA, in: First International Conference on Intensive Applications and
Services, INTENSIVE’09, 2009.

[83] Y. Zhang, F. Mueller, X. Cui, T.E. Potok, Data-intensive document clustering on
GPU clusters, Journal of Parallel and Distributed Computing (2010).

[84] Y. Zhang, F. Mueller, X. Cui, T. Potok, Large-scale multi-dimensional document
clustering on GPU clusters, in: IEEE International Parallel & Distributed
Processing Symposium IPDPS 2010, 2010.

[85] Y. Zhang, F. Mueller, X.T. Potok, GPU accelerated text mining, in: Workshop
on Exploiting Parallelism using GPUs and Other Hardware-Assisted Methods,
March 2009.

Further reading

[1] A. Hoisie, O. Lubeck, H. Wasserman, Performance and scalability analysis of
teraflop-scale parallel architectures using multidimensional wavefront appli-
cations, International Journal on High Performance Computing Applications
(2000).

[2] T.T. Rogers, J.L. McClelland, Pre´cis of semantic cognition: a parallel distributed
processing approach, Behavioral and Brain Sciences 31 (2008) 689–749.

[3] J. Shalf, The new landscape of parallel computer architecture, SciDAC 2007,
Journal of Physics: Conference Series 78 (2007) 012066.

Sujatha R. Upadhyaya was awarded a Ph.D. in Computer
Science from IIT Madras–INDIA, in the year 2007. She
worked with Infosys Technologies, Bangalore, India as a
senior researcher until January 2011. Presently, she leads
the research efforts at Xurmo Technologies, Bangalore.
Her research interests span across ontologies, knowledge
modeling, machine learning, data and text analytics and
performance of algorithms. At themoment she’s exploring
the applications of large scale machine learning especially
on parallel platforms and graphics hardware. She can be
contacted at sujatha.upadhyaya@gmail.com

http://spectrum.ieee.org/computing/software/data-monster/0
http://spectrum.ieee.org/computing/software/data-monster/0
http://spectrum.ieee.org/computing/software/data-monster/0
http://spectrum.ieee.org/computing/software/data-monster/0
http://spectrum.ieee.org/computing/software/data-monster/0
http://spectrum.ieee.org/computing/software/data-monster/0
http://spectrum.ieee.org/computing/software/data-monster/0
http://spectrum.ieee.org/computing/software/data-monster/0

	Parallel approaches to machine learning---A comprehensive survey
	Introduction: parallel machine learning
	General parallel machine learning approaches
	Association rule mining and frequent itemset mining
	Major algorithms and other observations---ARM

	Other machine learning approaches
	Noted publications and contributions


	Data mining, machine learning and related efforts on GPUs
	Major observations
	Machine learning and related techniques on GPUs: major publications and their contributions

	Data mining and machine learning using map reduce technique
	Major observations
	Parallel data mining/machine learning using map reduce technique---major publications and their contributions

	Critical gaps, open problems and scope for research
	Conclusion
	References
	Further reading


