
151

A Practical GPU Based KNN Algorithm
Quansheng Kuang, and Lei Zhao*

School of Computer Science and Technology, Soochow University, Suzhou 215006, China
Email: kqs.net@163.com, zhaol@suda.edu.cn

Abstract—The KNN algorithm is a widely applied method
for classification in machine learning and pattern
recognition. However, we can't be able to get a satisfactory
performance in many applications, as the KNN algorithm
has a high computational complexity. Recent developments
in programmable, highly paralleled Graphics Processing
Units (GPU) have opened a new era of parallel computing
which deliver tremendous computational horsepower in a
single chip. In this paper, we describe a practical GPU
based K Nearest Neighbor (KNN) algorithm implemented
by CUDA. In our algorithm, a data segmentation method
has introduced in the distances computation step to adapt to
the CUDA thread model and memory hierarchy. We obtain
highly increase in performance compared to ordinary CPU
version.

Index Terms—K Nearest Neighbor, Data Segmentation,
GPU, CUDA

I. INTRODUCTION

For the past decade, the programmable Graphic
Processing Units (GPU) has evolved into a kind of many-
core processor with highly paralleled and multithreaded
features. Compared with generic x86 based CPU, the
current GPU provide tremendous computational
horsepower and higher memory bandwidth. Nowadays,
the GPU has been at the leading edge of chip-level
parallelism and expanded the scope of application from
3D rendering to general purpose computing.

The KNN algorithm is a widely applied method for
classification or regression in pattern recognition and
machine learning. As a lazy learning, KNN algorithm is
instance-based and used in many applications in the field
of statistical pattern recognition, data mining, image
processing and many others. The KNN algorithm is
simple but computationally intensive. When the size of
train data set and test data set are both very large, the
execution time may be the bottleneck of the application.

In this paper, we propose a novel parallel KNN
algorithm based on GPU. Our algorithm is specially
designed for NVIDIA Compute Unified Device
Architecture (CUDA), adopting the thread model and
memory hierarchy of NVIDIA’s GPU. A data
segmentation method and a parallel Radix Sort are
proposed to make full use of the computational
horsepower of the GPU. As the results, on an inexpensive
graphics card we can archive over 30X speedup than an
ordinary CPU version. Therefore, KNN algorithm under
huge number dataset and high dimension dataset are now
practical and feasible.

The organization of the paper is as follows. Section 2

describes related work, including KNN algorithm and the
programming architecture of the GPU. Section 3 presents
the details of implementation of KNN algorithm based on
GPU. In Section 4, experimental data are given and we
conduct the analysis of the results. Finally, we conclude
the paper in Section 5.

II. RELETED WORK

A. Principle of KNN algorithm
KNN algorithm is widely applied in pattern recognition

and data mining for classification, which is famous for its
simplicity and low error rate.

The principle of the algorithm is that, if majority of the
k most similar samples to a query point qi in the feature
space belong to a certain category, then a verdict can be
made that the query point qi fall in this category.
Similarity can be measured by the distance in the feature
space, so this algorithm is called K Nearest Neighbor
algorithm. A train data set with accurate classification
labels should be known at the beginning of the algorithm.
Then for a query data qi, whose label is not known and
which is presented by a vector in the feature space,
calculate the distances between it and every point in the
train data set. After sorting the results of distances
calculation, decision of the class label of the test point qi
can be made according to the label of the k nearest points
in the train data set.

Each point in d-dimensional space can be expressed as
a d-vector of coordinates, such as:

 1 2(, ,...,)np p p p= . (1)

The distance between two points in the multi-
dimensional feature space can be defined in many ways.
Using Euclidean distance is usually to be the most
ordinary method, that is:

 2

1
(,) ()

n

i i
i

dist p q p q
=

= −∑ . (2)

Alternatively, Manhattan distance can also be used as:

1

'(,) | |
n

i i
i

dist p q p q
=

= −∑ . (3)

The quality of the train data set directly affects the
classification results. At the same time, the choice of
parameter K is also very important, for different K could
result in different classification labels. * Corresponding Author: zhaol@suda.edu.cn.

ISBN 978-952-5726-07-7 (Print), 978-952-5726-08-4 (CD-ROM)
Proceedings of the Second Symposium International Computer Science and Computational Technology(ISCSCT ’09)

Huangshan, P. R. China, 26-28,Dec. 2009, pp. 151-155

© 2009 ACADEMY PUBLISHER
AP-PROC-CS-09CN005

152

The KNN algorithm is simple in calculation and can be
applied to high-dimensional data sets. Nevertheless, when
the test set, train set, and data dimension are larger than
expected, the computational complexity will be huge and
the operation time will be very long. When test set and
train sets contain m and n vectors in d-dimensional feature
space respectively, the time complexity of this algorithm
is ()O m n di i . At present, there are also some
optimizations to improve the efficiency of algorithm, such
as using KD-Tree to improve storage efficiency, or to
lower precision for improve efficiency such as
Approximate Nearest Neighbor Searching (ANN). There
are also some papers present that some points in the train
set take little or no effects to the final result, which could
be cut to reduce the computational scale. In some cases,
these methods can reduce the executing time by half.

B. GPGPU and CUDA
Nowadays, the theoretically performance of GPU is far

more than that of GPU. The reason behind the
discrepancy in floating-point computation capability
between the CPU and the GPU is that the GPU is
specialized for compute-intensive, highly paralleled
computation, which exactly what graphics rendering does.
Therefore, the GPU is designed to be more transistors in it
are devoted to data processing rather than data caching
and flow control.

Considering the huge computational horsepower
delivered by GPU, methods were taken to make GPU play
an active role in non-graphics purpose, which called
General Purpose GPU (GPGPU). Nevertheless,
applications specially designed for graphics hardware
abstraction using graphics languages is difficult before
CUDA appears. CUDA (Compute Unified Device
Architecture), parallel programming model is designed to
overcome this challenge by providing standard
programming languages such as C to the programmers
instead of imposing them to map non-graphics application
through the graphics application programming interfaces.

Figure 1 shows the threads abstraction of CUDA. The
host means the CPU while the device refers to the GPU.

The beginning and the end of the application executed by
the CPU must be serial code, in which one or more steps
could be organized parallelism. The parallel code, which

called “Kernel”, is assigned to the device as a grid of
Thread Blocks. The Thread Block containing hundreds of
threads is dispensed to a Streaming Multi-processor (SM)

for execution, which is composed by 8 Streaming
Processors (SP). Each 32 threads in a Thread Block are

organized into a Warp during executing. This is also
referred as SIMT (Single Instruction, Multiple Threads)

model.

Another important key point in CUDA architecture is

the memory hierarchy. The register is the fastest but could
only be accessible by a thread. Each SM contains 16KB of
shared memory, which is shared by a Thread Block. The
Global Memory is the video memory in the graphics card,
which is usually have wide bandwidth and high frequency
and much more faster than the host memory. The Texture
Memory and the Constant Memory have the same speed
as Global Memory but read-only and cached in the SM, as
illustrated in Figure 2.

III. KNN ALGORITHM BASED ON CUDA

A. Overview
The basic process of KNN algorithm is as follows. First,

the data pre-processing phase is to initialize the labeled d-
dimensional train data set as well as the test data set to be
classified. Second, select one test point in the test data set
and calculate the distances between it and each point in
the train data set. The next phase is to sort the results of
distances computation, and find out K smallest results
according to the parameter K. The fourth step is to
determine the class label of the test point by the election
result of K points. Finally, select another point in test data

Figure 2. Memory Hierarchy in CUDA

Figure 1. Threads Organization in CUDA

153

set and go to step two repeatedly until the test data set is
empty.

Euclidean distance is used in this paper. For the
purposes of distances comparing, it is not necessary to
compute the final square root in the Euclidean distance
expression. So the squared distance will be used in phase
two to reduce the computation.

According to the results of the analysis, the distances
calculation phase can be highly paralleled and can reach a
high speedup ratio in GPU implementation. The sorting
step can also obtain benefits by using GPU acceleration.
The remaining step, such as the determination of class
labels are simple and consume little time that will be
implemented on the CPU.

B. Segmentation method in distances computation
In the distances computation phase, distances between

every point in the test set and each point in the train set
should be calculated.

For the consideration to reduce program branching and
to streamline operations, this paper adopts the way in
matrices to restore multi-dimensional data set. The train
data set A and the test data set B are both d-dimensional
sets. That is, the number of features or columns to
describe each vector in data set is d. The number of
vectors or instances or samples in the train data set is n,
while m for the test data set. Consequently, we restore the
train data set as a n×d matrix in the memory, and a m×d
matrix for the test data set. The result set C, which
containing all the distances between each pair of points in
A and B, is described in a m×n matrix. So the element in
data set C which located in column x and row y, presents
the distance between the vector in A whose row number is
x, and the vector in B whose row number is y. As
discussed earlier, the distances restored in C are squared
Euclidean distances as the computation of square root
does not affect the sorting results. The overall
computational complexity of this phase is ()O m n di i .

The result data set C is divided into a large number of

the tiles with the width of T. Each thread in the GPU takes
charge of one element in C, i.e. computes one distance
between a pair of vectors in A and B. Each Thread Block
containing T×T threads that calculates one tile in C.
Consequently, there are (m/T)×(n/T) Thread Blocks in all.
In order to take full advantage of the high-speed Shared
Memory in the GPU, we introduce a batch loading
strategy when reading data from Global Memory. That is,

each tile in A and the corresponding tile in B is loaded
from Global Memory to Shared Memory for one step of
calculation, when before each thread computes the square
of difference between tow corresponding elements in A
and B, and adds the result to the exact position in C. The
batch loading strategy should be repeated d/T times to
obtain a tile of squared Euclidean distances between T
vectors in A and another T vectors in B. The pseudo code
of the kernel function is shown as follows:

Algorithm 1: distances_computation(train, test, result)

{Each block is given the 2-Dimensional identifier bx, by, and tx,

ty for each thread. }

sub_result = 0;

temp = 0;

for each sub-tile in dimension/T do

loads shared_train in train set to shared memory ;

loads shared_test in test set to shared memory;

syncthreads;

for k=0 to T do

temp = shared_test[ty][k] - shared_prob[tx][k];

sub_result += temp * temp;

end for

syncthreads;

add sub_result to the corresponding position in result set;

end for

Some limitations of CUDA specification are as follows:
the maximum number of threads per block is 512; the
maximum number of active threads per multiprocessor is
768; the maximum number of active blocks per
multiprocessor is 8; the amount of shared memory
available per multiprocessor is 16 KB organized into 16
banks, etc. According to the consideration of various
constraints, it is appropriate to set T to the number of 16.
Consequently, each Thread Block contains 256 threads,
every Stream Multiprocessor would execute 3 Threads
Blocks at the same time, and the number of Thread Blocks
being parallel execution should be 3 times of the number
of Stream Multiprocessor on the GPU.

This data segmentation strategy could make full use of
the Shared Memory and could reduce reading and writing
to the Global Memory. We can achieve 90X speedup in a
low-end GPU than a CPU in the experimental result.
Please refer to Section 4 for details.

C. Parallel Sort based on CUDA
Generally speaking, it is difficult to use GPU to

accelerate sorting algorithms to a wondrous speedup ratio
as in the distance computation phase, for there are too
many branches in the thread and it’s not fit for the GPU
execution. Another reason is that the computational
complexities of the current sorting algorithms are already
very low. Among the CPU serial sorting algorithms,
Quick Sort being the fastest one, is dominating the
performance evaluation even in the same time complexity
of (log)O n n algorithms when applying large amounts of

Figure 3. Data Segmentation Method in Distances Computation

154

data. An implementation of a GPU-based parallel Bitonic
Sort for huge data set introduced by us could bring a good
performance of 10X~20X speedup compared to the CPU
serial ordinary version of Bitonic Sort. However, it is not
so significant compared to CPU Quick Sort.

Finally, the sorting algorithm we applied in this paper
is a CUDA-based Radix Sort proposed in reference [7]. In
a Radix Sort, it assumes that the keys are d-digital
numbers and sorts one digit from least to most significant
of the keys at a time. The implementation of the Radix
Sort is divided into four steps:

1) Each block loads and sorts its tile in Shared Memory
using b iterations of 1-bit split. Empirically, we can reach
best overall performance by choosing b = 4.

2) Each block writes back the results to Global Memory,
including its 2b-entry digit histogram and the sorted data
tile

3) Conduct a prefix sum over the p×2b histogram table,
which stored in column-major order, to compute global
digit offsets.

4) Using prefix sum results, each block copies its
elements to their corresponding output position.

This sorting algorithm can reach many times in
performance compared with CPU Quick Sort. In the final
performance test, the sorting phase occupied the largest
proportion of the overall computing time. The sorting
phase becomes the bottleneck in performance of the
whole application.

D. Label decision
This step is to decide the classification label of the

query point in test data set, according to the K nearest
points in train data set. In this paper, a simple statistical
election is made to complete the target among the labels
of K points. As the result of the previous phase, we can
get K nearest neighbor of a query point in the train data set,
then we statistic the occurrences of each classification
label. The most frequently occurred label would be chosen
as the forecasting label of this query point. Weighted
statistical methods can also be use in this step. The
principle of this method is that the nearer neighbor to the
query point should have a higher weight. We also have to
define the weight values in advance in this method.

However, the computational complexity of this phase is
low and it consumes little time. In our experimental
results, no more than 20ms was spent during execution of
this step. Meanwhile, the program branches are very high,
and it is difficult to optimize for the GPU execution.
Therefore, the CPU is adapted to accomplish this work.

IV. EXPERIMENTAL RESULTS

A. Environments
The computer used to do this comparison is a Pentium

D 2.8GHz dual core CPU with 1.5GB of DDR2 memory.
The graphic card used is a G92 based NVIDIA GeForce
9600GSO with 96 streaming processors and 192bit
384MB of DDR3 memory interfaced with a PCI-Express
1.1 port.

The test data, Adult dataset, is from the UCI Machine
Learning Repository. The number of classification label is
2, with 123 numbers of features. The values had been
normalized into [0, 1] of real numbers. The a1a data set
including a train set with the size of 30956 and the test
data set is 1605, while the a2a data set including a train set
of 30296 and the test set is 2265.

B. Performance and analysis
The CUDA implementation of GPU-based algorithm

introduces by this paper is identified as “GPU”. For
comparison, the original CPU serial algorithm is
identified as “CPU” and Approximate Nearest Neighbor
Searching using brute force method with KD-Tree
optimization is identified as “ANN-Brute”. The
initialization and input-output part of the program using in
the methods are almost the same. The execution times of
core part in each algorithm are shown in Figure 4.

As is shown in the figure, the advantage of GPU

algorithm in overall execution time is obvious. In a1a data
set, we achieved the speedup of 32.61X compared with
CPU algorithm and 14.98X with ANN-Brute method. In
a2a data set, we reached the speedup of 34.91X compared
with CPU algorithm and 15.36X with ANN-Brute method.

Since a kind of data segmentation method is presented
in this paper and the tile size is 16, so we obtained
appreciative performance in high-dimensional data sets.
But if the data dimension is relatively small or even lower
than 16, the performance will be reduced, when we should
reconsider the tile size as parameter. In this condition, we
can use rectangle tile instead of squared tile. For example,
use an 8-width and 32-height tile, to adapt some small
dimension data set, while the number of threads per block
is still kept 256.

It could also be found during the experiments that, the
decision of classification label phase in the algorithm is
about 16ms. This phase is relatively simple and the
execution time is very short and negligible, when
Distances calculation and sorting phase occupying most of
the time. Because the ANN-Brute algorithm as a whole
process is completely different from GPU and CPU
algorithms, we use Table 1 to illustrate the execution time
in each phase in GPU-based algorithm and CPU
comparison algorithm. The distances calculation phase is
presented in T1, the sorting phase is T2 and the label

3328 4390

108531

153250

49860
67422

0

60000

120000

180000

a1a a2atime(ms)

GPU CPU ANN-Brute

Figure 4. Execution Time-Overall

155

decision time is T3. The proportion of distances
computation phase is shown in the last column.

As is shown in the table, the distances calculation phase

is occupying the major proportion of the execution time in
CPU implementation. In the CUDA implementation
proposed in this paper, we had already achieved 94X and
96X speedup separately in this phase and made it
occupying a smaller proportion of the overall execution
time, transforming the bottleneck to the sorting phase. In
fact, the complexity of sorting algorithm had already
relatively low and most of the time was spent in reading
and writing operation to the Graphics Memory, resulting
that in the sorting phase we could only obtain 12X~13X
speedup than that in CPU implementation.

Being a classification algorithm, the accuracy of the

method should be presented as routine. Figure 5 gives us
the accuracy of the algorithm. The accuracy of the three
methods shows little difference, for the principle of them
is just the same. In KNN Brute Search algorithms, the
final result depends entirely on the quality of the data set.
The slight difference of the results is due to sorting step-
for the same distances between the query point and that
from train set with different category label was cut by the
parameter K differently because of unstable sorting
algorithms.

V. CONCLUSION

This paper presented a CUDA based KNN algorithm,
which could take full advantage of the computational
horsepower of GPU and its multi-leveled memory
architecture, making the performance of the method
obtain greatly enhancement compared with CPU
implementation. The tremendous increase in performance
reached a cluster of computers, on which is only a PC
with a 500RMB ($73) cost graphics card. This method is
valuable for the KNN method in high dimensions, large
amounts of data for applications.

ACKNOWLEDGMENT
The paper is supported by National Natural Science

Foundation of China (No. 60873047) and Natural Science
Foundation of Jiangsu Province of China (No.
BK2008154).

The authors are grateful to all the people for helpful
suggestions. The authors would like to thank all the
reviewers for their helpful comments on earlier drafts of
this paper.

REFERENCES
[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and

A. Y. Wu. “An optimal algorithm for approximate nearest
neighbor searching fixed dimensions”, Journal of the ACM,
45(6):891–923, 1998.

[2] D. M. Mount, S Arya. “ANN: A library for approximate
nearest neighbor searching”,
http://www.cs.umd.edu/~mount/ANN/

[3] Enhua Wu, Youquan Liu, “Emerging technology about
GPGPU”, APCCAS. IEEE Asia Pacific Conference on
Circuits and Systems, 2008.

[4] “NVIDIA CUDA Compute Unified Device Architecture:
Programming Guide”, Version 2.3, July 2009.

[5] Feng Cao, Anthony K. H. Tung, and Aoying Zhou,
“Scalable clustering using graphics processors”, Lecture
Notes in Computer Science, Advances in Web-Age
Information Management - 7th International Conference,
WAIM 2006.

[6] Daniel Cederman and Philippas Tsigas, “A Practical
Quicksort Algorithm for Graphics Processors”, In the
Proceedings of the 16th Annual European Symposium on
Algorithms (ESA 2008), Lecture Notes in Computer
Science Vol.: 5193, pages 246 - 258, Springer-Verlag 2008.

[7] Nadathur Satish, Mark Harris, Michael Garland,
“Designing efficient sorting algorithms for manycore
GPUs”, Proc. 23rd IEEE Int’l Parallel & Distributed
Processing Symposium, May 2009.

[8] Wenbin Fang, “Parallel Data Mining on Graphics
Processors”, Technical Report HKUST-CS08-07, Oct
2008.

[9] V. Garcia, E. Debreuve, M. Barlaud.Fast, “K nearest
neighbor search using GPU”, In Proceedings of the CVPR
Workshop on Computer Vision on GPU, June 2008.

[10] Buck, Ian, “GPU Computing: Programming a Massively
Parallel Processor”, CGO '07.

[11] Mark Harris, “Parallel Prefix Sum (Scan) with CUDA”,
http://www.nvidia.com/object/cuda_home.html，2008-1.

[12] Mark Harris, “Optimizing Parallel Reduction in CUDA”,
http://www.nvidia.com/object/cuda_home.html, 2007-11.

[13] Xiaowen Chu, Kaiyong Zhao, Mea Wang, “Massively
Parallel Network Coding on GPUs”, IPCCC 08.

[14] X.-W. Chu, K.-Y Zhao, and M. Wang, “Practical Random
Linear Network Coding on GPUs”, Technical Report, Dec
2008.

[15] M. Suhail Rehman, Kishore Kothapalli, P. J. Narayanan,
“Fast and Scalable List Ranking on the GPU”, 23rd
International Conference on Supercomputing (ICS), June
2009.

[16] John Stratton, Sam Stone, Wen-mei Hwu, “MCUDA: An
Efficient Implementation of CUDA Kernels on Multi-
cores”, Technical report, IMPACT-08-01, March, 2008.

TABLE I. EXECUTION TIME IN EACH PHASE

 T1
(ms)

T2
(ms)

T3
(ms)

T1/(T1+T2+T3)
(%)

a1a GPU 828 2484 16 24.88%

a1a CPU 77871 30645 15 71.75%

a2a GPU 1141 3233 16 25.99%

a2a CPU 110492 42752 16 72.10%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%

a1a a2a

GPU CPU ANN-Brute

Figure 5. The Accuracy of Classification

