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Abstract—The KNN algorithm is a widely applied method 
for classification in machine learning and pattern 
recognition. However, we can't be able to get a satisfactory 
performance in many applications, as the KNN algorithm 
has a high computational complexity. Recent developments 
in programmable, highly paralleled Graphics Processing 
Units (GPU) have opened a new era of parallel computing 
which deliver tremendous computational horsepower in a 
single chip. In this paper, we describe a practical GPU 
based K Nearest Neighbor (KNN) algorithm implemented 
by CUDA. In our algorithm, a data segmentation method 
has introduced in the distances computation step to adapt to 
the CUDA thread model and memory hierarchy. We obtain 
highly increase in performance compared to ordinary CPU 
version. 
 
Index Terms—K Nearest Neighbor, Data Segmentation, 
GPU, CUDA 

I.  INTRODUCTION 

For the past decade, the programmable Graphic 
Processing Units (GPU) has evolved into a kind of many-
core processor with highly paralleled and multithreaded 
features. Compared with generic x86 based CPU, the 
current GPU provide tremendous computational 
horsepower and higher memory bandwidth. Nowadays, 
the GPU has been at the leading edge of chip-level 
parallelism and expanded the scope of application from 
3D rendering to general purpose computing. 

The KNN algorithm is a widely applied method for 
classification or regression in pattern recognition and 
machine learning. As a lazy learning, KNN algorithm is 
instance-based and used in many applications in the field 
of statistical pattern recognition, data mining, image 
processing and many others. The KNN algorithm is 
simple but computationally intensive. When the size of 
train data set and test data set are both very large, the 
execution time may be the bottleneck of the application. 

In this paper, we propose a novel parallel KNN 
algorithm based on GPU. Our algorithm is specially 
designed for NVIDIA Compute Unified Device 
Architecture (CUDA), adopting the thread model and 
memory hierarchy of NVIDIA’s GPU. A data 
segmentation method and a parallel Radix Sort are 
proposed to make full use of the computational 
horsepower of the GPU. As the results, on an inexpensive 
graphics card we can archive over 30X speedup than an 
ordinary CPU version. Therefore, KNN algorithm under 
huge number dataset and high dimension dataset are now 
practical and feasible. 

The organization of the paper is as follows. Section 2 

describes related work, including KNN algorithm and the 
programming architecture of the GPU. Section 3 presents 
the details of implementation of KNN algorithm based on 
GPU. In Section 4, experimental data are given and we 
conduct the analysis of the results. Finally, we conclude 
the paper in Section 5.  

II.  RELETED WORK 

A. Principle of KNN algorithm 
KNN algorithm is widely applied in pattern recognition 

and data mining for classification, which is famous for its 
simplicity and low error rate. 

The principle of the algorithm is that, if majority of the 
k most similar samples to a query point qi in the feature 
space belong to a certain category, then a verdict can be 
made that the query point qi fall in this category. 
Similarity can be measured by the distance in the feature 
space, so this algorithm is called K Nearest Neighbor 
algorithm. A train data set with accurate classification 
labels should be known at the beginning of the algorithm. 
Then for a query data qi, whose label is not known and 
which is presented by a vector in the feature space, 
calculate the distances between it and every point in the 
train data set. After sorting the results of distances 
calculation, decision of the class label of the test point qi 
can be made according to the label of the k nearest points 
in the train data set. 

Each point in d-dimensional space can be expressed as 
a d-vector of coordinates, such as: 

 1 2( , ,..., )np p p p= . (1) 

The distance between two points in the multi-
dimensional feature space can be defined in many ways. 
Using Euclidean distance is usually to be the most 
ordinary method, that is: 
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Alternatively, Manhattan distance can also be used as: 
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The quality of the train data set directly affects the 
classification results. At the same time, the choice of 
parameter K is also very important, for different K could 
result in different classification labels. * Corresponding Author: zhaol@suda.edu.cn. 
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The KNN algorithm is simple in calculation and can be 
applied to high-dimensional data sets. Nevertheless, when 
the test set, train set, and data dimension are larger than 
expected, the computational complexity will be huge and 
the operation time will be very long. When test set and 
train sets contain m and n vectors in d-dimensional feature 
space respectively, the time complexity of this algorithm 
is ( )O m n di i . At present, there are also some 
optimizations to improve the efficiency of algorithm, such 
as using KD-Tree to improve storage efficiency, or to 
lower precision for improve efficiency such as 
Approximate Nearest Neighbor Searching (ANN). There 
are also some papers present that some points in the train 
set take little or no effects to the final result, which could 
be cut to reduce the computational scale. In some cases, 
these methods can reduce the executing time by half. 

B. GPGPU and CUDA 
Nowadays, the theoretically performance of GPU is far 

more than that of GPU. The reason behind the 
discrepancy in floating-point computation capability 
between the CPU and the GPU is that the GPU is 
specialized for compute-intensive, highly paralleled 
computation, which exactly what graphics rendering does.  
Therefore, the GPU is designed to be more transistors in it 
are devoted to data processing rather than data caching 
and flow control. 

Considering the huge computational horsepower 
delivered by GPU, methods were taken to make GPU play 
an active role in non-graphics purpose, which called 
General Purpose GPU (GPGPU). Nevertheless, 
applications specially designed for graphics hardware 
abstraction using graphics languages is difficult before 
CUDA appears. CUDA (Compute Unified Device 
Architecture), parallel programming model is designed to 
overcome this challenge by providing standard 
programming languages such as C to the programmers 
instead of imposing them to map non-graphics application 
through the graphics application programming interfaces. 

Figure 1 shows the threads abstraction of CUDA. The 
host means the CPU while the device refers to the GPU. 

The beginning and the end of the application executed by 
the CPU must be serial code, in which one or more steps 
could be organized parallelism. The parallel code, which 

called “Kernel”, is assigned to the device as a grid of 
Thread Blocks. The Thread Block containing hundreds of 
threads is dispensed to a Streaming Multi-processor (SM) 

for execution, which is composed by 8 Streaming 
Processors (SP). Each 32 threads in a Thread Block are 

organized into a Warp during executing. This is also 
referred as SIMT (Single Instruction, Multiple Threads) 

model. 

 
Another important key point in CUDA architecture is 

the memory hierarchy. The register is the fastest but could 
only be accessible by a thread. Each SM contains 16KB of 
shared memory, which is shared by a Thread Block. The 
Global Memory is the video memory in the graphics card, 
which is usually have wide bandwidth and high frequency 
and much more faster than the host memory. The Texture 
Memory and the Constant Memory have the same speed 
as Global Memory but read-only and cached in the SM, as 
illustrated in Figure 2. 

III.  KNN ALGORITHM BASED ON CUDA 

A. Overview 
The basic process of KNN algorithm is as follows. First, 

the data pre-processing phase is to initialize the labeled d-
dimensional train data set as well as the test data set to be 
classified. Second, select one test point in the test data set 
and calculate the distances between it and each point in 
the train data set. The next phase is to sort the results of 
distances computation, and find out K smallest results 
according to the parameter K. The fourth step is to 
determine the class label of the test point by the election 
result of K points. Finally, select another point in test data 

Figure 2.  Memory Hierarchy in CUDA 

Figure 1.  Threads Organization in CUDA 
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set and go to step two repeatedly until the test data set is 
empty. 

Euclidean distance is used in this paper. For the 
purposes of distances comparing, it is not necessary to 
compute the final square root in the Euclidean distance 
expression. So the squared distance will be used in phase 
two to reduce the computation. 

According to the results of the analysis, the distances 
calculation phase can be highly paralleled and can reach a 
high speedup ratio in GPU implementation. The sorting 
step can also obtain benefits by using GPU acceleration. 
The remaining step, such as the determination of class 
labels are simple and consume little time that will be 
implemented on the CPU. 

B. Segmentation method in distances computation 
In the distances computation phase, distances between 

every point in the test set and each point in the train set 
should be calculated. 

For the consideration to reduce program branching and 
to streamline operations, this paper adopts the way in 
matrices to restore multi-dimensional data set. The train 
data set A and the test data set B are both d-dimensional 
sets. That is, the number of features or columns to 
describe each vector in data set is d. The number of 
vectors or instances or samples in the train data set is n, 
while m for the test data set. Consequently, we restore the 
train data set as a n×d matrix in the memory, and a m×d 
matrix for the test data set. The result set C, which 
containing all the distances between each pair of points in 
A and B, is described in a m×n matrix. So the element in 
data set C which located in column x and row y, presents 
the distance between the vector in A whose row number is 
x, and the vector in B whose row number is y. As 
discussed earlier, the distances restored in C are squared 
Euclidean distances as the computation of square root 
does not affect the sorting results. The overall 
computational complexity of this phase is ( )O m n di i . 

 
The result data set C is divided into a large number of 

the tiles with the width of T. Each thread in the GPU takes 
charge of one element in C, i.e. computes one distance 
between a pair of vectors in A and B. Each Thread Block 
containing T×T threads that calculates one tile in C. 
Consequently, there are (m/T)×(n/T) Thread Blocks in all. 
In order to take full advantage of the high-speed Shared 
Memory in the GPU, we introduce a batch loading 
strategy when reading data from Global Memory. That is, 

each tile in A and the corresponding tile in B is loaded 
from Global Memory to Shared Memory for one step of 
calculation, when before each thread computes the square 
of difference between tow corresponding elements in A 
and B, and adds the result to the exact position in C. The 
batch loading strategy should be repeated d/T times to 
obtain a tile of squared Euclidean distances between T 
vectors in A and another T vectors in B. The pseudo code 
of the kernel function is shown as follows: 

Algorithm 1: distances_computation(train, test, result) 

{Each block is given the 2-Dimensional identifier bx, by, and tx, 

ty for each thread. } 

sub_result = 0; 

temp = 0; 

for each sub-tile in dimension/T do 

loads shared_train in train set to shared memory ; 

loads shared_test in test set to shared memory; 

syncthreads; 

for k=0 to T do 

temp = shared_test[ty][k] - shared_prob[tx][k]; 

sub_result += temp * temp; 

end for 

syncthreads; 

add sub_result to the corresponding position in result set; 

end for 

Some limitations of CUDA specification are as follows: 
the maximum number of threads per block is 512; the 
maximum number of active threads per multiprocessor is 
768; the maximum number of active blocks per 
multiprocessor is 8; the amount of shared memory 
available per multiprocessor is 16 KB organized into 16 
banks, etc. According to the consideration of various 
constraints, it is appropriate to set T to the number of 16. 
Consequently, each Thread Block contains 256 threads, 
every Stream Multiprocessor would execute 3 Threads 
Blocks at the same time, and the number of Thread Blocks 
being parallel execution should be 3 times of the number 
of Stream Multiprocessor on the GPU. 

This data segmentation strategy could make full use of 
the Shared Memory and could reduce reading and writing 
to the Global Memory. We can achieve 90X speedup in a 
low-end GPU than a CPU in the experimental result. 
Please refer to Section 4 for details. 

C. Parallel Sort based on CUDA 
Generally speaking, it is difficult to use GPU to 

accelerate sorting algorithms to a wondrous speedup ratio 
as in the distance computation phase, for there are too 
many branches in the thread and it’s not fit for the GPU 
execution. Another reason is that the computational 
complexities of the current sorting algorithms are already 
very low. Among the CPU serial sorting algorithms, 
Quick Sort being the fastest one, is dominating the 
performance evaluation even in the same time complexity 
of ( log )O n n algorithms when applying large amounts of 

Figure 3.  Data Segmentation Method in Distances Computation 
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data. An implementation of a GPU-based parallel Bitonic 
Sort for huge data set introduced by us could bring a good 
performance of 10X~20X speedup compared to the CPU 
serial ordinary version of Bitonic Sort. However, it is not 
so significant compared to CPU Quick Sort.  

Finally, the sorting algorithm we applied in this paper 
is a CUDA-based Radix Sort proposed in reference [7]. In 
a Radix Sort, it assumes that the keys are d-digital 
numbers and sorts one digit from least to most significant 
of the keys at a time. The implementation of the Radix 
Sort is divided into four steps: 

1) Each block loads and sorts its tile in Shared Memory 
using b iterations of 1-bit split. Empirically, we can reach 
best overall performance by choosing b = 4. 

2) Each block writes back the results to Global Memory, 
including its 2b-entry digit histogram and the sorted data 
tile  

3) Conduct a prefix sum over the p×2b histogram table, 
which stored in column-major order, to compute global 
digit offsets. 

4) Using prefix sum results, each block copies its 
elements to their corresponding output position. 

This sorting algorithm can reach many times in 
performance compared with CPU Quick Sort. In the final 
performance test, the sorting phase occupied the largest 
proportion of the overall computing time. The sorting 
phase becomes the bottleneck in performance of the 
whole application.  

D. Label decision 
This step is to decide the classification label of the 

query point in test data set, according to the K nearest 
points in train data set. In this paper, a simple statistical 
election is made to complete the target among the labels 
of K points. As the result of the previous phase, we can 
get K nearest neighbor of a query point in the train data set, 
then we statistic the occurrences of each classification 
label. The most frequently occurred label would be chosen 
as the forecasting label of this query point. Weighted 
statistical methods can also be use in this step. The 
principle of this method is that the nearer neighbor to the 
query point should have a higher weight. We also have to 
define the weight values in advance in this method. 

However, the computational complexity of this phase is 
low and it consumes little time. In our experimental 
results, no more than 20ms was spent during execution of 
this step. Meanwhile, the program branches are very high, 
and it is difficult to optimize for the GPU execution. 
Therefore, the CPU is adapted to accomplish this work. 

IV.  EXPERIMENTAL RESULTS 

A. Environments 
The computer used to do this comparison is a Pentium 

D 2.8GHz dual core CPU with 1.5GB of DDR2 memory. 
The graphic card used is a G92 based NVIDIA GeForce 
9600GSO with 96 streaming processors and 192bit 
384MB of DDR3 memory interfaced with a PCI-Express 
1.1 port. 

The test data, Adult dataset, is from the UCI Machine 
Learning Repository. The number of classification label is 
2, with 123 numbers of features. The values had been 
normalized into [0, 1] of real numbers. The a1a data set 
including a train set with the size of 30956 and the test 
data set is 1605, while the a2a data set including a train set 
of 30296 and the test set is 2265. 

B. Performance and analysis 
The CUDA implementation of GPU-based algorithm 

introduces by this paper is identified as “GPU”. For 
comparison, the original CPU serial algorithm is 
identified as “CPU” and Approximate Nearest Neighbor 
Searching using brute force method with KD-Tree 
optimization is identified as “ANN-Brute”. The 
initialization and input-output part of the program using in 
the methods are almost the same. The execution times of 
core part in each algorithm are shown in Figure 4. 

 
As is shown in the figure, the advantage of GPU 

algorithm in overall execution time is obvious. In a1a data 
set, we achieved the speedup of 32.61X compared with 
CPU algorithm and 14.98X with ANN-Brute method. In 
a2a data set, we reached the speedup of 34.91X compared 
with CPU algorithm and 15.36X with ANN-Brute method. 

Since a kind of data segmentation method is presented 
in this paper and the tile size is 16, so we obtained 
appreciative performance in high-dimensional data sets. 
But if the data dimension is relatively small or even lower 
than 16, the performance will be reduced, when we should 
reconsider the tile size as parameter. In this condition, we 
can use rectangle tile instead of squared tile. For example, 
use an 8-width and 32-height tile, to adapt some small 
dimension data set, while the number of threads per block 
is still kept 256. 

It could also be found during the experiments that, the 
decision of classification label phase in the algorithm is 
about 16ms. This phase is relatively simple and the 
execution time is very short and negligible, when 
Distances calculation and sorting phase occupying most of 
the time. Because the ANN-Brute algorithm as a whole 
process is completely different from GPU and CPU 
algorithms, we use Table 1 to illustrate the execution time 
in each phase in GPU-based algorithm and CPU 
comparison algorithm. The distances calculation phase is 
presented in T1, the sorting phase is T2 and the label 
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Figure 4.  Execution Time-Overall 
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decision time is T3. The proportion of distances 
computation phase is shown in the last column. 

 
As is shown in the table, the distances calculation phase 

is occupying the major proportion of the execution time in 
CPU implementation. In the CUDA implementation 
proposed in this paper, we had already achieved 94X and 
96X speedup separately in this phase and made it 
occupying a smaller proportion of the overall execution 
time, transforming the bottleneck to the sorting phase. In 
fact, the complexity of sorting algorithm had already 
relatively low and most of the time was spent in reading 
and writing operation to the Graphics Memory, resulting 
that in the sorting phase we could only obtain 12X~13X 
speedup than that in CPU implementation. 

 
Being a classification algorithm, the accuracy of the 

method should be presented as routine. Figure 5 gives us 
the accuracy of the algorithm. The accuracy of the three 
methods shows little difference, for the principle of them 
is just the same. In KNN Brute Search algorithms, the 
final result depends entirely on the quality of the data set. 
The slight difference of the results is due to sorting step-
for the same distances between the query point and that 
from train set with different category label was cut by the 
parameter K differently because of unstable sorting 
algorithms. 

V.  CONCLUSION 

This paper presented a CUDA based KNN algorithm, 
which could take full advantage of the computational 
horsepower of GPU and its multi-leveled memory 
architecture, making the performance of the method 
obtain greatly enhancement compared with CPU 
implementation. The tremendous increase in performance 
reached a cluster of computers, on which is only a PC 
with a 500RMB ($73) cost graphics card. This method is 
valuable for the KNN method in high dimensions, large 
amounts of data for applications. 

ACKNOWLEDGMENT 
The paper is supported by National Natural Science 

Foundation of China (No. 60873047) and Natural Science 
Foundation of Jiangsu Province of China (No. 
BK2008154).  

The authors are grateful to all the people for helpful 
suggestions. The authors would like to thank all the 
reviewers for their helpful comments on earlier drafts of 
this paper. 

REFERENCES 
[1] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and 

A. Y. Wu. “An optimal algorithm for approximate nearest 
neighbor searching fixed dimensions”, Journal of the ACM, 
45(6):891–923, 1998. 

[2] D. M. Mount, S Arya. “ANN: A library for approximate 
nearest neighbor searching”, 
http://www.cs.umd.edu/~mount/ANN/ 

[3] Enhua Wu, Youquan Liu, “Emerging technology about 
GPGPU”, APCCAS. IEEE Asia Pacific Conference on 
Circuits and Systems, 2008. 

[4] “NVIDIA CUDA Compute Unified Device Architecture: 
Programming Guide”, Version 2.3, July 2009. 

[5] Feng Cao, Anthony K. H. Tung, and Aoying Zhou, 
“Scalable clustering using graphics processors”, Lecture 
Notes in Computer Science, Advances in Web-Age 
Information Management - 7th International Conference, 
WAIM 2006. 

[6] Daniel Cederman and Philippas Tsigas, “A Practical 
Quicksort Algorithm for Graphics Processors”, In the 
Proceedings of the 16th Annual European Symposium on 
Algorithms (ESA 2008), Lecture Notes in Computer 
Science Vol.: 5193, pages 246 - 258, Springer-Verlag 2008. 

[7] Nadathur Satish, Mark Harris, Michael Garland, 
“Designing efficient sorting algorithms for manycore 
GPUs”, Proc. 23rd IEEE Int’l Parallel & Distributed 
Processing Symposium, May 2009. 

[8] Wenbin Fang, “Parallel Data Mining on Graphics 
Processors”, Technical Report HKUST-CS08-07, Oct 
2008. 

[9] V. Garcia, E. Debreuve, M. Barlaud.Fast, “K nearest 
neighbor search using GPU”, In Proceedings of the CVPR 
Workshop on Computer Vision on GPU, June 2008. 

[10] Buck, Ian, “GPU Computing: Programming a Massively 
Parallel Processor”, CGO '07. 

[11] Mark Harris, “Parallel Prefix Sum (Scan) with CUDA”, 
http://www.nvidia.com/object/cuda_home.html，2008-1. 

[12] Mark Harris, “Optimizing Parallel Reduction in CUDA”, 
http://www.nvidia.com/object/cuda_home.html, 2007-11. 

[13] Xiaowen Chu, Kaiyong Zhao, Mea Wang, “Massively 
Parallel Network Coding on GPUs”, IPCCC 08. 

[14] X.-W. Chu, K.-Y Zhao, and M. Wang, “Practical Random 
Linear Network Coding on GPUs”, Technical Report, Dec 
2008. 

[15] M. Suhail Rehman, Kishore Kothapalli, P. J. Narayanan, 
“Fast and Scalable List Ranking on the GPU”, 23rd 
International Conference on Supercomputing (ICS), June 
2009. 

[16] John Stratton, Sam Stone, Wen-mei Hwu, “MCUDA: An 
Efficient Implementation of CUDA Kernels on Multi-
cores”, Technical report, IMPACT-08-01, March, 2008. 

 

 

TABLE I.  EXECUTION TIME IN EACH PHASE 

 T1 
(ms) 

T2 
(ms) 

T3 
(ms) 

T1/(T1+T2+T3) 
(%) 

a1a GPU 828 2484 16 24.88% 

a1a CPU 77871 30645 15 71.75% 

a2a GPU 1141 3233 16 25.99% 

a2a CPU 110492 42752 16 72.10% 
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Figure 5.  The Accuracy of Classification 


