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Abstract—In this paper we present the implementation
of a framework for accelerating training and classification
of arbitrary Convolutional Neural Networks (CNNs) on the
GPU. CNNs are a derivative of standard Multilayer Percep-
tron (MLP) neural networks optimized for two-dimensional
pattern recognition problems such as Optical Character
Recognition (OCR) or face detection. We describe the basic
parts of a CNN and demonstrate the performance and
scalability improvement that can be achieved by shifting the
computation-intensive tasks of a CNN to the GPU. Depending
on the network topology training and classification on the
GPU performs 2 to 24 times faster than on the CPU.
Furthermore, the GPU version scales much better than the
CPU implementation with respect to the network size.

Keywords-machine learning; convolutional neural net-
works; GPGPU; CUDA; performance; scalability;

I. INTRODUCTION

Neural Networks (NNs) perform very well on pattern
recognition tasks with a large amount of training data. For
image classification, like Optical Character Recognition
(OCR), Convolutional Neural Networks (CNNs) deliver
state-of-the-art performance [1]. CNNs are a derivative of
Multilayer Perceptron (MLP) neural networks optimized
for two-dimensional pattern recognition. The area of ap-
plications for CNNs is widespread. They are used for
handwriting recognition [1] [2], face, eye and license plate
detection [3] [4] [5], and in non-vision applications such
as semantic analysis [6].

The biggest drawback of CNNs, besides a complex
implementation, is the long training time. Since CNN
training is very compute- and data-intensive, training with
large data sets may take several days or weeks. The huge
number of floating point operations and relatively low
data transfer in every training step makes this task well
suited for GPGPU (General Purpose GPU) computation
on current Graphic Processing Units (GPUs). The main
advantage of GPUs over CPUs is the high computational
throughput at relatively low cost, achieved through their
massively parallel architecture.

In the past using the GPU for general purpose cal-
culations required a deep understanding of the hardware
architecture, where the problems had to be implemented
using a graphics API like OpenGL or DirectX. Therefore,
the algorithms had to be transformed into a graphics
pipeline friendly format. With the emergence of CUDA
(Compute Unified Device Architecture) [7] and the so-
called unified shader architecture [8] things have changed.
The CUDA language bears resemblance to the C pro-
gramming language and is therefore much more common

for a programmer than the graphics API languages. This
results in a shorter training period, faster adoption and
higher efficiency. Furthermore, unified shaders are better
adapted to perform general computations than earlier ar-
chitectures. Probably, the biggest drawback of CUDA is its
limitation to the NVIDIA hardware, but future languages
like OpenCL [9] or DirectX 11 Compute Shader [10] will
solve this problem. It is expected that these manufacturer
independent languages will make GPGPU computing even
more popular.

In contrast to other classifiers like Support Vector
Machines (SVMs) where several parallel implementations
for CPUs [11] and GPUs [12] exist, similar efforts for
CNNs are missing. Therefore, we implemented a high
performance library in CUDA to perform fast training
and classification of CNNs on the GPU. Our goal was to
demonstrate the performance and scalability improvement
that can be achieved by shifting the computation-intensive
tasks of a CNN to the GPU. We will describe some
scalability experiments in the following sections.

The paper is organized as follows: The next section
introduces CNNs and describes their basic building blocks.
Section III describes some characteristics of CUDA, fol-
lowed by Section IV with a brief outline of other pub-
lications in this research area. Our implementations are
presented in Section V, while Section VI presents our
benchmarks and the obtained results. Finally, Section VII
concludes this paper.

II. CONVOLUTIONAL NEURAL NETWORKS

The traditional approach for two-dimensional pattern
recognition is based on a feature extractor, the output of
which is fed into a neural network. This feature extractor
is usually static, independent of the neural network and
not part of the training procedure. It is not an easy task
to find a “good” feature extractor because it is not part of
the training procedure and therefore it can neither adapt
to the network topology nor to the parameters generated
by the training procedure of the neural network.

CNNs make this difficult task part of the network and
act as a trainable feature extractor with some degree of
shift, scale, and deformation invariance [2]. They are
composed of three different types of layers: convolutional
layers, subsampling layers (optional), and fully connected
layers. These layers are arranged in a feed-forward struc-
ture as shown in Fig. 1. The convolutional layers are
responsible for the feature extraction (edges, corners, end
points or non visual features in other signals), using the



Figure 1. Architecture of the LeNet5 [2] variant used in this work (based on Fig. 2 in [2]).

Figure 2. Illustration of the convolution and subsampling process inside
a CNN (based on Fig. 3.5 in [13]).

Figure 3. The convolutional layer of a CNN (from [14]).

two key concepts of local receptive fields and shared
weights. Since the exact location of the detected features
are less important but the relative position to other features
are relevant, the succeeding subsampling layer performs
a local averaging and subsampling. This reduces the shift
and distortion sensibility of the detected features. The fully
connected layer acts as a normal classifier similar to the
layers in traditional MLP networks. A detailed description
of the architectural concepts behind these layers is given
in [2], while a brief explanation of the composition and
the mathematical model of these layers is given in the
following subsections.

A. Convolutional Layer

The convolutional layers are the core of any CNN. A
convolutional layer consists of several two-dimensional
planes of neurons, the so-called feature maps. Each neuron
of a feature map is connected to a small subset of neurons
inside the feature maps of the previous layer, the so-
called receptive fields (see also Fig. 2). The receptive fields
of neighboring neurons overlap and the weights of these
receptive fields are shared through all the neurons of the
same feature map. The feature maps of a convolutional
layer and its preceding layer are either fully or partially
connected (either in a predefined way or in a randomized
manner).

First, the convolution between each input feature map
and the respective kernel is computed. Corresponding
to the connectivity between the convolutional layer and
its preceding layer these convolution outputs are then
summed up together with a trainable scalar, known as the

bias term. Finally, the result is passed through an activation
function (e.g. tanh). An illustration of this process is given
in Fig. 3.

The output y(l)n of a feature map n in a convolutional
layer l is given by

y(l)n (x, y) = f (l)

( ∑
m∈M(l)

n

∑
(i,j)∈K(l)

w(l)
mn(i, j) ⋅

y(l−1)m (x ⋅ ℎ(l) + i, y ⋅ v(l) + j) + b(l)n

)
(1)

where K(l) =
{
(i, j) ∈ ℕ2 ∣ 0 ≤ i < k

(l)
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(l)
y

}
,

k
(l)
x and k

(l)
y are the width and the height of the con-

volution kernels w
(l)
mn of layer l, and b

(l)
n is the bias of

feature map n in layer l. The set M (l)
n contains the feature

maps in the preceding layer l − 1 that are connected to
feature map n in layer l. The values ℎ(l) and v(l) describe
the horizontal and vertical step size of the convolution in
layer l (usually 1), while f (l) is the activation function of
layer l.

B. Subsampling Layer

To reduce the size of consecutive feature maps a sub-
sampling layer is usually placed between two convolu-
tional layers. This type of layer reduces the outputs of a
certain number of adjacent neurons (normally a square of
2×2 neurons) of a feature map in the previous layer to
a single value. Afterwards it multiplies a single weight
to this value, adds a bias and passes the result through an
activation function to obtain the result of the output feature



Figure 4. The subsampling layer of a CNN (from [14]).

map. Subsampling layers have the same number of feature
maps as the preceding convolutional layer, where each
feature map of the subsampling layer is always connected
to the corresponding one in the previous convolutional
layer (1-to-1 connection).

The output y(l)n of a feature map n in the subsampling
layer l is calculated according to

y(l)n (x, y) = f (l)

(
w(l)

n ⋅

∑
(i,j)∈S(l)

y(l−1)n (x ⋅ sx + i, y ⋅ sy + j) + b(l)n

)
(2)

where S(l) =
{
(i, j) ∈ ℕ2 ∣ 0 ≤ i < s

(l)
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(l)
y

}
,

s
(l)
x and s

(l)
y define width and height of the subsampling

kernel of layer l, and b
(l)
n is the bias of feature map n in

layer l. The value w
(l)
n is the weight of feature map n in

layer l and f (l) the activation function of layer l.
Fig. 4 illustrates the process that is performed by a

subsampling layer. As subsampling layers are optional a
simpler CNN can be build by replacing the consecutive
convolutional and subsampling layers with a convolutional
layer that uses a step size greater than 1 (for an example
see [1]).

C. Fully Connected Layer

After the convolutional and subsampling layers one
or more fully connected layers follow. These layers are
always used in a CNN and are similar to the layers in a
standard MLP. In those layers the outputs of all neurons
in layer l − 1 are connected to every neuron in layer l.

The output y(l)(j) of neuron j in a fully connected layer
l is given by

y(l)(j) = f (l)

⎛⎝N(l−1)∑
i=1

y(l−1)(i) ⋅ w(l)(i, j) + b(l)(j)

⎞⎠
(3)

where N (l−1) is the number of neurons in the preceding
layer l−1, w(l)(i, j) is the weight for the connection from
neuron i in layer l − 1 to neuron j in layer l, and b(l)(j)
is the bias of neuron j in layer l. As for the other two
layers, f (l) represents the activation function of layer l.

Fig. 2 illustrates the process of a 5×5 convolution
followed by a 2×2 subsampling inside a CNN, while
an example for a possible composition of convolutional,
subsampling and fully connected layers is shown in Fig. 1.

CNNs are usually trained with a variant of the gradient-
based backpropagation method [15]. All training patterns
along with the expected outputs are fed into the network.

Afterwards the network error (the difference between the
actual and expected output) is backpropagated through
the network and used to compute the gradient of the
network error w.r.t. the weights. This gradient is then used
to update the weight values according to a specific rule
(e.g. stochastic, momentum, etc.) [13] [14] [15]. For a
description of the backpropagation algorithm in CNNs the
reader is referred to [13] and [14].

III. COMPUTE UNIFIED DEVICE ARCHITECTURE

CUDA (Compute Unified Device Architecture) [7] de-
scribes a proprietary language by NVIDIA which is based
on C and contains some special extensions to enable
efficient programming of NVIDIA’s graphic processors
since the G80 (released 2006). The extensions mainly
cover commands to enable multithreading on GPU and
to access the different types of memory on the GPU.

In contrast to the traditional approach of programming
GPUs through graphics shading languages like OpenGL or
DirectX, a programmer does not need experiences in com-
puter graphics to be able to write GPGPU applications us-
ing CUDA. However, certain knowledge of the hardware is
indispensable to write efficient and fast GPGPU programs.
Every CUDA device consists of a certain number of so-
called Streaming Multiprocessor (SM). Each SM contains
eight Shader Units (SUs), a Multithreaded Instruction Unit
and on-chip Shared Memory that can be accessed by
all eight SUs. Every SU can perform one multiplication
and one MAD operation (a floating point multiplication
followed by a floating point addition on the result) every
clock cycle, but the whole SM can only perform the same
piece of code on different data using multiple threads. This
parallel computing architecture is called SIMT (Single
Instruction, Multiple Threads). Furthermore, a SM can
issue a new command only every fourth clock cycle of
the SU, which means that the same command has to be
executed at least 32 times in distinct threads to totally
utilize a single SM.

The CUDA programming model reflects the specific
hardware topology of these GPUs. Fig. 5 shows how
threads are grouped and mapped to the hardware in
CUDA. At startup of a function on the GPU (a so-
called kernel) the system creates a certain number of
threads defined by the programmer. The entirety of all
those threads is called the grid. The grid is composed
of a specific number of thread blocks. These blocks are
arranged in a two-dimensional manner on the grid with
a maximum size of 65,535×65,535 blocks. Each block
is assigned to one SM and the threads in a block are
arranged in a three-dimensional array. The maximum size
of each dimension of a block is 512×512×64, but the
maximum number of threads in a block cannot exceed
512 threads (for performance reasons each block should
contain at least 32 threads). Each thread has access to
various kinds of memory with different characteristics (see
also Fig. 5). Using the most appropriate memory the right
way (e.g. coalesced access to global memory, avoiding
bank conflicts in shared memory) is one of the most



Figure 5. CUDA threading and memory topology.

effective means of improving performance [16].
Because of the manycore structure of actual GPUs they

are very well suited for any application with a lot of
floating point operations that can be processed in parallel.
Some important performance numbers and a comparison
to a CPU are listed in Table I. This table describes the
actual hardware used for our experiments. Compared to
the CPU the GPU numbers look quite impressive, but it
should be considered that the peak performance of 1010.8
GFLOPS/s promoted by NVIDIA can only be achieved
if every SM can execute 8 multiplications and 8 MAD
operations at the same time.

One drawback of today’s GPGPU programming is the
rather slow data transfer from the GPU’s memory to the
main memory of the CPU. This is not a big disadvantage
when running a neural network because the amount of data
that has to be copied from and to the GPU (the network’s
input and its output) is relatively small in comparison with
the big matrices that must be handled inside the network.

Another downside of the actual NVIDIA GPUs is that
they either do not support double precision (DP) floating
point numbers (G80 – G98, compute capability 1.0 and
1.1) or peak performance drops to approximately one tenth
of single precision (SP) performance (on GT200, compute
capability 1.2). Furthermore, these GPUs are not fully
IEEE-754 (IEEE Standard for Floating-Point Arithmetic)

compliant [7]. However, this does not seem to be any
problem when it comes to neural networks. Our tests
showed no difference between single and double precision
nor between CPU and GPU implementation in terms of
the classification rates of the tested networks.

IV. RELATED WORK

During the last years much work has been investigated
to improve the performance of neural networks on the
GPU. Some of the first GPU implementations of neural
networks were presented in [17] and [18]. While the first
work only enhanced the performance of the classification
part of a neural network using the vertex and pixel shader
of a GPU, the latter one also accelerated the training of a
neural network.

The first porting of a CNN to the GPU has been released
in [19]. It was limited to the network proposed in [1] using
the outdated architecture of vertex and pixel shader and
implemented through the DirectX API.

In [20] one of the first neural networks for the new
unified shader architecture using CUDA was implemented.
A GPU implementation of a so-called Neocognitron neural
network, which is quite similar to a CNN, was presented
in [21]. This work only focuses on the improvement of
the recognition part on the GPU, training of this network
is not considered.

However, as far as we know, no prior effort was made
to build a complete framework for accelerating training
and classification of arbitrary CNNs on modern GPUs.

V. IMPLEMENTATION

We implemented a high performance but still flexible
library in C++ and CUDA to accelerate the training and
classification process of arbitrary CNNs. Due to the fact
that the ideal parameters of a neural network (network
structure, initial value range, learning method, learning
rate, etc.) can only be determined by testing and evalu-
ating, shortening the training time often leads to better
results. We started with a straight forward implementa-
tion without any manual parallelization or vectorization
(CPUtriv.). To fairly compare the GPU with the CPU
variant of our library, we optimized this implementation
using functions from Intel’s Performance Libraries IPP
(Integrated Performance Primitives, ver. 6.1) [22] and
MKL (Math Kernel Library, ver. 10.2) [23] (CPUopt.).
Those libraries take the full advantage of the newest
Streaming SIMD Extensions (SSE) of the CPU. These
enhancements resulted in a quite fast implementation.

The GPU implementation (GPU) using CUDA ex-
changes the mathematical vector and matrix operations
with functions either from NVIDIA’s CUBLAS Li-
brary [24] if appropriate functions are available there or
our own implementations otherwise. Each kernel-function
performs one mathematical operation, e.g. a matrix-vector
multiplication or the summation of all elements in a vector.
In order to not affect the C++ class structure of the
CPU implementation each CUBLAS or self implemented
function (kernel-call) is embedded in a templatized C++



Table I
TECHNICAL SPECIFICATIONS OF THE HARDWARE USED FOR PERFORMANCE MEASUREMENTS IN THIS PAPER

Core i7 860 GeForce GTX 275

Processsor core clock 2800 MHz 633 MHz
ALU clock 5600 MHz 1404 MHz
Memory size 4096 MB 896 MB
Bandwidth core ↔ memory 21.3 GB/s 127.0 GB/s
Number of processor cores 4 30
Local cache per core 64 KB L1 + 512 KB L2 + 2048 KB L3 16 KB (shared) + 8 KB (texture) + 8 KB (constant)
SP FLOPS / core and clock cycle 4 MUL or ADD 8 MUL and 8 MAD
Total SP FLOPS peak performance 89.6 GFLOPS/s 1010.8 GFLOPS/s
Termal Design Power 95 Watt 216 Watt

function. This means that after every operation on the
GPU the program control is passed back to the CPU, even
if no data transfer between CPU and GPU is necessary.
Although this introduces some small overheads the general
reusable structure of our library is preserved. During the
tests of the networks running on the GPU we noticed a
CPU load of approx. 12% on our (virtual) eight-core test
machine, which means that one core was fully occupied.

The following paragraphs describe some characteristics
of the implemention, while the interested reader is referred
to our implementation. In order to encourage further
development in this research area we have made our source
code publicly available [25].

A. Making CNNs simpler

In most implementations of standard MLP networks
each layer forwards its activation to the next layer during
forward propagation and “pulls” the error back from the
following layer during backpropagation. This has two
major drawbacks for CNNs: First, it is very complicated
to implement it for CNNs because, caused by border
effects, the number of outgoing connections is not equal
for all neurons in a convolutional layer. Second, every
layer has to know the type of its subsequent layer. This is
quite cumbersome and not beneficial for a flexible library.
Therefore, we used the easier and more flexible approach
to “push” the error back to the previous layer as described
in [1]. The advantage of this method is that the number
of incoming connections of each neuron in a layer, even
in a convolutional one, is always constant. Furthermore,
this technique does not require any knowledge about the
neighboring layers and the resulting regular structure of
the backpropagation process can be better optimized.

B. Making CNNs faster

Convolutions are not easy to optimize because of their
irregular memory access pattern. The data is not accessed
in the same order as it resides in memory and not all values
are accessed equally often. To make access patterns more
linear we used the “unfolding” technique (see [19], section
2). The input is copied to a matrix where the elements
of each convolutional kernel form one row (in [19]) or
one column (in our implementation [25]). Therefore, most
of the input elements appear several times in this matrix.
Once the unfolding is done the forward- and backpropa-
gation of the convolutional layer can be implemented as a

matrix product. This does not only result in an easier but
also a much better optimizable implementation.

C. Debugging

Since incorrect implementations of a neural network
sometimes yield reasonable results we proved the cor-
rectness of our implementations with two methods. We
computed the Jacobian matrix (see [26], page 148) using
the backpropagation function and an arbitrarily accurate
estimate of it by adding small variations to the input and
calling the forward propagation function. Next, we applied
the comparison described in [1]. Furthermore, we proved
the correctness of the gradients computed by the back-
propagation function by comparing them with gradients
computed via finite differences (see [27], subsection 4.4).

VI. BENCHMARKS AND RESULTS

All benchmarks in this paper were performed in single
precision on an Intel Core i7 860 with a GeForce GTX
275 running Ubuntu 9.04 (system price in fall 2009
approx. e 900). The technical specifications of these two
processors are shown in Table I. All benchmarks consisted
of 1,000 training iterations of the networks described in
subsection VI-A. Such a training iteration is composed of
one forward propagation (a training pattern is fed into the
network and produces some output), one backpropagation
(based on the difference between the actual and the desired
output, a gradient for every single weight in the network
is calculated) and the weights update (the gradients cal-
culated during backpropagation are multiplied with the
learning rate and added to the actual weights). In case
of the CUDA version the time to copy the training pattern
to the GPU and the result to the main memory is also
considered. For each iteration a separate input pattern was
used. Note that we were interested in the scaling behavior
of our implementations. To test this behavior with different
settings we decided to restrict our tests to the basic case
(one iteration for each pattern) and a small number of
input patterns (1,000).

For our performance and scalability tests we performed
measurements on two different networks: The network
proposed by Simard et al. in [1] (called SimardNet from
now on) and the LeNet5 [2]. In all benchmarks we
compared the three different implementations explained
in the previous section (CPUtriv., CPUopt., GPU). As
compiler we used the GNU C++ Compiler (g++, version
4.3.3) to generate the CPU executables and NVIDIA’s
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Figure 6. Execution time composition of the three different implemen-
tations performing 1,000 learning iterations of a LeNet5.

CUDA Compiler (nvcc, version 2.3) to generate the code
that runs on the GPU. Compiler optimizations were turned
on for the g++ compiler (option -O3). Because we did not
observe any performance improvements when turning on
the compiler optimization for the nvcc compiler we used
the standard settings. The basic patterns for our input data
stem from the well known MNIST database [28]. It is one
of the most widely known pattern classifier benchmarks
and consists of size-normalized and centered images of
handwritten digits (0− 9).

A. Tested Networks

The SimardNet has been suggested by Simard et al.
as a fast and simple CNN for OCR [1]. It consists of
two convolutional and two fully connected layers. The
convolutional layers use a step size of two, which makes
subsampling layers superfluous. The typical recognition
rate on the MNIST database (without any extension of
the dataset) is about 99.1% [29].

The LeNet5 has been proposed by Yann LeCun, the
inventor of CNNs, in [2]. The variant tested in this paper
is composed of three convolutional, two subsampling and
two fully connected layers as shown in Fig. 1. The typical
recognition rate on the MNIST database [28] (without any
extension of the dataset) is about 98.8%.

B. Composition of Execution Time

In our first experiment we investigated the partition of
the LeNet5’s training time for the three different CNN
versions. The result is shown in Fig. 6. As one can clearly
see, the backpropagation part (bprop) takes most of the
overall time in all three versions. The forward propagation
(fprop) is although quite time consuming. The weight
update (update) consumes less time. Although the absolute
execution time is quite different the percent distribution
of the different parts is rather similar (except the weight
update for the GPU version). The overhead caused by
copying data (copy) to and from the GPU is quite small
in the GPU version (a few percentages of the overall
execution time).

C. Scaling Input Size

In this benchmark we scaled the input size of the
training patterns fed to a LeNet5. Increasing the input
size automatically increases the number of neurons in the

convolutional and subsampling layers and the number of
trainable parameters (weights, biases). The input’s side
length was increased stepwise by eight pixels as shown
in Table II. Fig. 7(a) shows the execution time of all
three implementations with different input sizes. While the
CPU version using Intel’s Performance Libraries clearly
outperforms the trivial implementation, the CUDA version
is not only the fastest one but it also scales best with the
input size. This is underlined by Fig. 7(b) which shows
the speedup of the GPU version in comparison to the
trivial CPU version (CPUtriv./GPU) and to the optimized
CPU version (CPUopt./GPU). The speedup grows with
the input size and the GPU version definitely scales better
than the CPU versions with large input sizes.

D. Scaling Feature Maps and Inner Neurons

The last benchmark shows how the implementations
scale with the number of neurons inside the network.
We tested the SimardNet with all possible combinations
resulting from doubling the feature maps/neurons of all
inner layers. The input size remained fixed at 29×29,
while the output size was set to 10. The properties of the
tested network’s variants are listed in Table III. As shown
in Fig. 8(a) and 8(b) the optimized CPU variant scales
better than the trivial one when doubling the feature maps
in one of the first two inner layers or the neurons in the
third inner layer. However, the GPU version indisputable
scales best with the size of any inner layer.

VII. CONCLUSION AND FUTURE WORK

This article shows that GPUs work quite well for
convolutional neural networks. The relatively low amount
of data to transfer to the GPU for every pattern and the big
matrices that have to be handled inside the network seem
to be appropriate for GPGPU processing. Furthermore, our
experiments showed that the GPU implementation scales
much better than the CPU implementations with increasing
network size.

For future work we plan to use the GPU version
to accomplish complex experimental tests with different
network topologies and parameter settings (e.g. differ-
ent learning rates). The whole MNIST database includes
60,000 training patterns and we have to perform several
training iterations for each training pattern. Therefore, one
single test run (training and evaluation) can take days with
the trivial CPU version. The GPU version will enable a
faster execution of these tests and facilitate experiments
with alternative data sets and larger input patterns.

Another aspect to evaluate is the power consumption.
The wattage of a system as the one used for testing in this
paper nearly doubles when using the GPU instead of the
CPU for computations. Because of the enormous speedup
that can be achieved the whole training process should
consume less power when running on the GPU. However,
further experiments are needed for an accurate evaluation.
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Figure 7. Execution time (a) and corresponding speedup (b) of the three different implementations performing 1,000 learning iterations of a LeNet5.

Table II
PROPERTIES OF THE TESTED LENET5 VARIANTS

Input size a Network properties Execution time (in seconds) Speedup

Input area Neurons Trainable parameters Connections CPUtriv. CPUopt. GPU
CPUtriv.

GPU

CPUopt.
GPU

32×32 1,024 8,010 51,046 331,114 3.6567 2.0317 0.9345 3.9132 2.1742
40×40 1,600 13,770 60,646 956,842 7.2532 3.6693 1.1103 6.5326 3.3048
48×48 2,304 21,130 79,846 2,047,210 13.0610 5.9001 1.3388 9.7554 4.4068
56×56 3,136 30,090 108,646 3,602,218 21.1530 8.7290 1.6000 13.2206 5.4556
64×64 4,096 40,650 147,046 5,621,866 32.5300 12.1500 1.9901 16.3463 6.1054
72×72 5,184 52,810 195,046 8,106,154 44.5400 16.5210 2.3532 18.9274 7.0207
80×80 6,400 66,570 252,646 11,055,082 59.4970 21.3960 2.9072 20.4650 7.3595
88×88 7,744 81,930 319,846 14,468,650 76.3710 26.5900 3.5705 21.3894 7.4471
96×96 9,216 98,890 396,646 18,346,858 95.1780 33.1480 4.1635 22.8601 7.9616

104×104 10,816 117,450 483,046 22,689,706 116.4700 40.8270 4.9055 23.7427 8.3227

a width×height of the input pattern

REFERENCES

[1] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best Prac-
tices for Convolutional Neural Networks Applied to Visual
Document Analysis,” in Proc. of the 7th Int. Conference on
Document Analysis and Recognition, 2003, pp. 958–962.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
Based Learning Applied to Document Recognition,” in
Proc. of the IEEE, vol. 86, no. 11, 1998, pp. 2278–2324.

[3] C. Garcia and M. Delakis, “Convolutional Face Finder: A
Neural Architecture for Fast and Robust Face Detection,”
IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 26, no. 11, pp. 1408–1423, 2004.

[4] J. C. L. Lam and M. Eizenman, “Convolutional Neural
Networks for Eye Detection in Remote Gaze Estimation
Systems,” in Proc. of the Int. MultiConference of Engineers
and Computer Scientists, vol. 1, 2008, pp. 601–606.

[5] Z. Zhao, S. Yang, and X. Ma, “Chinese License Plate
Recognition Using a Convolutional Neural Network,” in
Proc. of the Pacific-Asia Workshop on Computational Intel-
ligence and Industrial Application, vol. 1, 2008, pp. 27–30.

[6] R. Collobert and J. Weston, “A Unified Architecture for
Natural Language Processing: Deep Neural Networks with

Multitask Learning,” in Proc. of the 25th Int. Conference
on Machine Learning, vol. 307, 2008, pp. 160–167.

[7] NVIDIA, “NVIDIA CUDA – Programming Guide,” http:
//www.nvidia.com/object/cuda home.html, August 2009.

[8] D. Luebke and G. Humphreys, “How GPUs Work,” IEEE
Computer, vol. 40, no. 2, pp. 96–100, 2007.

[9] The Khronos Group, “OpenCL Overview,” http://www.
khronos.org/opencl, August 2009.

[10] C. Boyd, “DirectX 11 Compute Shader,” in The 35th
Int. Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 2008), http://s08.idav.ucdavis.edu/
boyd-dx11-compute-shader.pdf.

[11] L. Bottou, O. Chapelle, D. DeCoste, and J. Weston, Large-
Scale Kernel Machines. MIT Press, 2007, ch. Large-Scale
Parallel SVM Implementation, I. Durdanovic, E. Cosatto,
and H. P. Graf, pp. 105–138.

[12] B. Catanzaro, N. Sundaram, and K. Keutzer, “Fast Support
Vector Machine Training and Classification on Graphics
Processors,” in Proc. of the 25th Int. Conference on Ma-
chine Learning, vol. 307, 2008, pp. 104–111.

[13] S. Duffner, “Face Image Analysis With Convolutional
Neural Networks,” Ph.D. dissertation, Albert-Ludwigs-
Universität Freiburg, 2007.

[14] S. L. Phung and A. Bouzerdoum, “MATLAB Library for



0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Architecture (feature maps/neurons in each layer)

E
x
ec

u
ti

o
n

ti
m

e
in

se
co

n
d

s

5,
50

,1
00

,1
0

5,
50

,2
00

,1
0

5,
10

0,
10

0,
10

5,
10

0,
20

0,
10

10
,5

0,
10

0,
10

10
,5

0,
20

0,
10

10
,1

00
,1

00
,1

0

10
,1

00
,2

00
,1

0

CPUtriv.

CPUopt.

GPU

(a) Execution time

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

Architecture (feature maps/neurons in each layer)
S

p
ee

d
u

p

5,
50

,1
00

,1
0

5,
50

,2
00

,1
0

5,
10

0,
10

0,
10

5,
10

0,
20

0,
10

10
,5

0,
10

0,
10

10
,5

0,
20

0,
10

10
,1

00
,1

00
,1

0

10
,1

00
,2

00
,1

0

CPUtriv./GPU

CPUopt./GPU

(b) Speedup

Figure 8. Execution time (a) and corresponding speedup (b) of the three different implementations performing 1,000 learning iterations of a SimardNet.

Table III
PROPERTIES OF THE TESTED SIMARDNET VARIANTS

Architecture a Network properties Execution time (in seconds) Speedup

Input area Neurons Trainable parameters Connections CPUtriv. CPUopt. GPU
CPUtriv.

GPU

CPUopt.
GPU
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