
Applied Energy 201 (2017) 412–418
Contents lists available at ScienceDirect

Applied Energy

journal homepage: www.elsevier .com/ locate/apenergy
A GPU deep learning metaheuristic based model for time series
forecasting
http://dx.doi.org/10.1016/j.apenergy.2017.01.003
0306-2619/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding authors at: Grupo da Causa Humana, Ouro Preto, Brazil.
E-mail addresses: igor.machado@ime.uerj.br (I.M. Coelho), vncoelho@gmail.com

(V.N. Coelho).
Igor M. Coelho a,b,⇑, Vitor N. Coelho a,c,*, Eduardo J. da S. Luz d, Luiz S. Ochi c, Frederico G. Guimarães e,
Eyder Rios f

aGrupo da Causa Humana, Ouro Preto, Brazil
bDepartment of Computing, State University of Rio de Janeiro, Rio de Janeiro, Brazil
c Institute of Computing, Universidade Federal Fluminense, Niterói, Brazil
dDepartment of Computing, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
eDepartment of Electrical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
f Institute of Computing, UESPI, Paranaíba, Brazil

h i g h l i g h t s

� A CPU-GPU mechanism is proposed in order to accelerate time series learning.
� Disaggregated household energy demand forecasting is used as case of study.
� Suggestions to embed the proposed low energy GPU based system into smart sensors.
� Parallel forecasting model accuracy evaluation with a metaheuristic training phase.
a r t i c l e i n f o

Article history:
Received 30 September 2016
Received in revised form 2 January 2017
Accepted 3 January 2017
Available online 9 January 2017

Keywords:
Deep learning
Graphics processing unit
Hybrid forecasting model
Smart sensors
Household electricity demand
Big data time-series
a b s t r a c t

As the new generation of smart sensors is evolving towards high sampling acquisitions systems, the
amount of information to be handled by learning algorithms has been increasing. The Graphics
Processing Unit (GPU) architecture provides a greener alternative with low energy consumption for min-
ing big data, bringing the power of thousands of processing cores into a single chip, thus opening a wide
range of possible applications. In this paper (a substantial extension of the short version presented at
REM2016 on April 19–21, Maldives [1]), we design a novel parallel strategy for time series learning, in
which different parts of the time series are evaluated by different threads. The proposed strategy is
inserted inside the core a hybrid metaheuristic model, applied for learning patterns from an important
mini/microgrid forecasting problem, the household electricity demand forecasting. The future smart
cities will surely rely on distributed energy generation, in which citizens should be aware about how
to manage and control their own resources. In this sense, energy disaggregation research will be part
of several typical and useful microgrid applications. Computational results show that the proposed
GPU learning strategy is scalable as the number of training rounds increases, emerging as a promising
deep learning tool to be embedded into smart sensors.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Sometimes called as the hugest machine ever built, the power
grid has been undergoing several improvements. Researchers and
the industry have been focusing on efficiently integrating Renew-
able Energy Resources (RER) into the grid. The massive insertion
of RER is usually assisted by Artificial Intelligence (AI) based algo-
rithms and models [2], which are being embedded into Smart
Meters (SM) [3]. The proposal described in this current study is a
potential tool to be embedded into SM, being able to forecast use-
ful information from big data disaggregated load time series. These
load time series have the potential of assisting RER integration in
mini/microgrid systems, in which users might employ smart
devices to self-manage their resources and demands.

SM are ‘‘smart” in the sense that the modest use of sensors is
being replaced by devices with plenty of computational abilities.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2017.01.003&domain=pdf
http://dx.doi.org/10.1016/j.apenergy.2017.01.003
mailto:igor.machado@ime.uerj.br
mailto:vncoelho@gmail.com
http://dx.doi.org/10.1016/j.apenergy.2017.01.003
http://www.sciencedirect.com/science/journal/03062619
http://www.elsevier.com/locate/apenergy


I.M. Coelho et al. / Applied Energy 201 (2017) 412–418 413
Usually, these computational abilities are developed based on AI
techniques or specific strategies envisioned by its creator/pro-
grammer. This class of meters are starting to communicate to each
other [4] and to introduce important information to be dealt with
by decision makers. These software based sensors are crucial for
the decision making process over these scenarios filled with
uncertainties.

Among AI techniques found in the literature, deep learning
based ones are in evidence. Deep learning has been applied to sev-
eral classification and regression problems. Part of its success is
due to automatic feature extraction at different levels of abstrac-
tion. Automatic feature extraction promotes the easy re-
utilization of models on different domains without a field-
specialist human intervention. Moreover, deep learning allows
the representation of the nonlinearities, often associated with
complex real-world data. Deep learning models have been used
to achieve state-of-the art results in the field of computer vision
[5,6] and have also been applied to the problem of time series fore-
casting [7–10].

Popular deep learning approaches are based on convolutional
networks [5], restricted boltzman machines (deep belief networks)
[11] and deep autoencoders [12]. However, these methods are
often difficult to interpret and reproduce. According to Hu et al.
[13] several authors treat deep network architectures as a black
box. Another limitation of popular deep learning methods is the
high memory consumption [14]. In contrast, the method proposed
in this work is of easy interpretation and has low memory con-
sumption, which means a competitive advantage over popular
methods of deep learning.

Coelho et al. [15] recently introduced a Hybrid Forecasting
Model (HFM), which calibrates its fuzzy rules using metaheuristic
based procedures. Without applying any filter or pre-processing
energy consumption time series, the HFM model showed to be
competitive with other specialized approaches from the literature
and easily generalized for performing n-steps-ahead forecast.

The extension proposed here (a substantial extension of the
short version presented at REM2016 on April 19–21, Maldives
[1]) explores the learning capabilities of the HFM tool, in which
feature extraction is done by Neighborhood Structures (NS).
Fig. 1 details a generalized version of how the proposed model
works. In this current work, only layer 2 is considered, in which
the special operator returns the average values of all active func-
tions, namely ‘‘activations”. NS are used for calibrating each
parameter of each activation function: lag input for the backshift
operator, rule position and application weight. Furthermore, the
metaheuristic calibration algorithm is able to regulate the size of
the layer, adding or removing functions.

Motivated by the new class of big data time series, which are
reality in several areas (such as in the energy industry, biology,
neuroscience, image processing, among others), we decide to
enhance the HFMmodel with a new parallel forecasting evaluation
strategy. In particular, in this current work, Graphics Processing
Unit (GPU) were designed to be used for forecasting different parts
of a microgrid load time series. The use of GPU based architectures
can provide a greener alternative with low energy consumption for
mining information from such huge datasets [16]. Each GPU pro-
vides thousands of processing cores with much faster arithmetic
operations than a classic Central Processing Unit (CPU). In a nut-
shell, we aim at generating ensemble GPU threads learning pro-
cess, which provide independent forecasts, optimized in order to
reduce a given statistical quality measure. GPU seems to fit the
scope of the HFM, since the model can be implemented and
adapted to GPU computing, particularly because the method uses
metaheuristics algorithms and was implemented in the core of
the OptFrame [17]. The automatic parameters calibration process
of the HFM also matches big data time-series requirements, mainly
due to its metaheuristic based learning phase. For this purpose, NS
plays a vital role in calibrating the model and finding more efficient
solutions. Associated with the power and flexibility of the meta-
heuristics, the absence of parameters tuning simplify the applica-
tion of the proposed framework to different times series, in
particular, when n-steps-ahead forecasting is required.

This paper considers a mini/microgrid forecasting problem as
case of study, the Disaggregated Household Electricity Demand
Forecasting. Researchers had begun to publicly release their data
sets, such as the Reference Energy Disaggregation Dataset (REDD)
[18], which provides low-frequency power measurements (3–4 s
intervals) available for 10–25 individually monitored circuits. The
household electricity demand forecasting has great potential for
microgrid applications, such as the design of green buildings and
houses [19]. Forecasting different disaggregated time series from
a house opens a wide range of possibilities for efficient RER inte-
gration. Considering that billions of dollars are being spent to
install SM [20], researchers are advocating that appliance level
data can promote numerous benefits.

In the remaining of this paper we introduce the GPU architec-
ture in detail (Section 2) and the GPU disaggregated forecasting
process (Section 3). The computational results and the analyzed
parameters are presented in Section 4 and, finally, Section 5 draws
some final considerations.
2. GPU architecture

The GPU was originally designed for graphic applications (thus
receiving the name of a Graphics Processing Unit) such that any
non-graphic algorithm designed for GPU had to be written in terms
of graphics APIs such as OpenGL. This allowed the development of
scalable applications for computationally expensive problems,
such as collision simulations in physics [21]. The GPU program-
ming model evolved towards the modern General Purpose GPU
(GPGPU), with more user-friendly and mature tools for application
development such as CUDA, a proprietary C++ language extension
from NVIDIA, one of the main GPU manufacturers [16].

The GPU architecture is organized as an array of highly threaded
streaming multiprocessors, each one containing a number of pro-
cessing units (cores), besides a multi-level memory structure.
The configuration of GPU hardware depends on the compute capa-
bility, a parameter related to GPU micro-architecture that defines
which hardware features will be available for CUDA development.
A CUDA program consists of one or more phases that are executed
in CPU or GPU. The GPU code is implemented as C++ functions
known as kernels, that are launched by CPU code in a compute grid,
usually formed by a large number of threads that execute the same
kernel aiming at exploiting data parallelism. The threads in a grid
are organized in a two-level hierarchy, where first level is arranged
as a three-dimensional array of blocks, each one containing up to
1,024 threads. In second level, each block is also arranged in a
three-dimensional way. The dimensions of a grid are designed by
the programmer and should observe the limits determined by
the compute capability of the hardware.

After a kernel is launched, each block is assigned to a single
streaming multiprocessors, which executes the threads of a block
in groups called warps. Each warp is processed according to SIMD
(Single Instruction, Multiple Data) model, meaning all threads in a
warp execute same instruction at any time. Global memory
accesses or arithmetic operations performed by some thread also
affects warp execution, forcing all threads in the same warp to wait
until the operation is completed. To hide the latency related to
those operations, GPU schedules another warp to keep SM busy.
This is possible because GPU is able to handle more threads per
SM than cores available.



Fig. 1. HFM deep learning model.

414 I.M. Coelho et al. / Applied Energy 201 (2017) 412–418
The communication between the CPU and the GPU is done
through the GPU global memory. However, the data transfer
from/to this resource is usually a bottleneck to application perfor-
mance. Therefore, the amount of data copies between CPU and GPU
have to be minimized for efficient implementation, and the other
levels of the GPU memory hierarchy must be explored. The mem-
ory hierarchy is one of the most distinguished features of the cur-
rent GPUs. It includes the global memory, a local register memory
for each thread and a shared memory for each block of threads.
This last type of memory is usually of main importance in order
to achieve high performance in GPU programming, by assigning
similar tasks to threads in the same GPU block. Due to the low
energy consumption of the GPUs and high processing power, the
integration between CPUs and GPUs can be explored in order to
improve forecasting algorithms.
1 For interpretation of color in Fig. 2, the reader is referred to the web version of
this article.
3. HFM with GPU disaggregated forecasting process

Let us consider a target time series ts ¼ y1; . . . ; yt , comprising a
set of t observations. The goal is to estimate/predict a finite
sequence fŷtþ1; . . . ; ŷtþkg, with k indicating the k-steps-ahead to
be predicted, namely the forecasting horizon.

The idea explored in our approach relies on the independence of
the training rounds, which are then performed by different GPU
threads. Different training rounds can be seen as independent win-
dows, which are known to be an interesting application for design-
ing high-performance hardware with parallel computation [22]. In
fact, this application is specially fit to the GPU computing SIMD
paradigm [23]. The threads in a GPU warp execute the same
instruction simultaneously, but over different parts of the training
set. With this disaggregated forecasting process, it is possible to
drastically reduce the computing effort by sharing it with thou-
sands of independent processing units in a single GPU.

Fig. 2 depicts an example of a time series divided during the
model performance evaluation process, performed by n different
threads. Due to the nature of the load time series dealt with in this
current work, it only depends on past data (in green1) for predicting
the next values. In this sense, each thread can handle a forecasting
round over a part of the complete time series (an analogy to the
bag of tasks problems), generating, as output (in blue), the predicted
values for that specific part, stored in the GPU global memory. For-
mally, in a single step sliding window strategy, each thread runs
an independent forecasting process, returning its predicted values
for a given k-steps-ahead forecasting horizon (a finite sequence of
fŷtthreadiþ1; . . . ; ŷtthreadiþkg predicted values, with tthreadi 2 ½1; . . . ; t � k�).
In the sliding window strategy [24], the two boxes together should
move along the whole time series. Finally, the CPU concatenates
the set of predicted values returned by each thread. Following this
strategy, the CPU should only dedicate its efforts in performing the
accuracy evaluation of the returned forecasts. For the family of time
series tackled here, the disaggregated household energy consump-
tion, the HFM will now have a parallel strategy for evaluating its
accuracy, which will check the quality of the neighbor solutions
faster.

In particular, the HFM requires a minimum number of tsmaxLag

samples for feeding its model. This parameter guides the range in
which the NS can calibrate the backshift operators. Parameter
tsmaxLag limits the oldest lag to be used by the forecasting model
(represented by the length of the green boxes).



Fig. 2. HFM with a sliding window parallel GPU forecasting process.

I.M. Coelho et al. / Applied Energy 201 (2017) 412–418 415
4. Computational experiments

The REDD considered in this study provides low-frequency data
for household electricity demand forecasting. Statistical analysis of
well-known forecasting models over this data set was done by Veit
et al. [25]. Following their description, we extracted the data of
house 1 from Apr 18th 2011 22:00:00 GMT to May 2nd 2011
21:59:00 GMT.

Four different time series are analyzed here: three different
individually monitored circuits; and one of the two-phase main
input. Since the time series have several gaps, holes/breaks due
to meters or sensors not providing measurements, they were inter-
polated. Each individual house component passed through linear
interpolations in order to have a granularity of 1 s for each ana-
lyzed time series. The tests were carried out on a computer Intel
i7-4790 K 4.00 GHz, 16 GB RAM, equipped with a NVIDIA GPU
GTX TITAN X, 12 GB of global memory, 3072 CUDA cores, compli-
ant with Maxwell microarchitecture.

4.1. Speedup analysis

Different parts of the analyzed time series were analyzed, being
composed of a total number of samples hereafter called nSamples:
Fig. 3. Parallel forecasting model speedup
5,000; 10,000; 50,000; 100,000; 200,000; 500,000 and 1,000,000.
The ability of the proposal in handling different forecasting hori-
zons was also analyzed for the following values of steps-ahead k
(s): 1, 2, 5, 10, 60, 360, 720, 1800, 3600 and 7200. Thus, the max-
imum forecasting horizon analyzed was 2 h, the equivalent of
7200 s.

Following this design, the HFM model was fed with
nSamplesþ k samples, allowing it to perform at least one training
round for each configuration. For each configuration, 1000 function
evaluations were performed during the metaheuristic based train-
ing phase of the HFM. Fig. 3 depicts a superimposed interaction
plots, generated using the ggplot2 R package. Time was measured
with precision of millisecond (ms).

In order to compare the pure CPU and the parallel CPU-GPU
strategy, we rely on the concept of speedup, where the time spent
by the CPU sequential algorithm is divided by the time spend by
the parallel (to perform the same task). Analyzing Fig. 3, one can
conclude that as the number of samples increases, the GPU outper-
forms CPU performance with an average speedup of nearly 15
times. On the other hand, we could also conclude that the disaggre-
gated forecasting process was not suitable for small size time ser-
ies, when the GPU gain does not compensate the initial overhead
and the lack of work for the GPU threads.

We also study the speedups in a different way, by relating the
speedup growth with the Number of Training Rounds, namely
NTR, related to each configuration. Basically, the NTR, also known
as Number of Training Cycles, following a k step-ahead sliding win-
dow strategy, is equal to the number of samples divided by the
forecasting horizon, as described in Eq. (1). The NTR is equal to
the number of tasks launched by the GPU.
tsNTR ¼ tsnSamples � tsmaxLag

tsk
ð1Þ

Thus, we calculated the NTR for each configuration, rounded it
and cut into the following intervals: 0; 200; 500; 1,000; 10,000;
50,000; 100,000; 500,000 and 1,000,000. As can be noticed, the last
two higher intervals were only executed for forecasting horizons
with steps-ahead equal to 1, 2, 5, 10 or 60.

Fig. 4 shows the speedup in relation to the NTR, considering dif-
ferent forecasting horizons. By considering the gains on different
training rounds it is possible to verify an increasing speedup. Even
for long term forecasting, the amount of global memory accessed
in GPU did not considerably reduce the speedup. In fact, the GPU
seems to be able to produce greater speedups from 10 to 60 steps
ahead. When the method performs longer term predictions the
high amount of work done by each GPU thread implied in lower
speedups.
according to the number of samples.



Fig. 4. Speedup according to the number of tasks.

416 I.M. Coelho et al. / Applied Energy 201 (2017) 412–418
In addition, we verify the performance of the proposed parallel
evaluation strategy in a multi-CPU architecture. Experiments were
run using an Intel Core i7-7500U, 2.70 GHz, with the OpenMP of g+
+ 5.4. The batch of experiments was designed in order to verify the
speedup with 1 thread to 7 CPU threads. Analogously to the previ-
ous experiments, we analyzed the same set of values for k and
nSamples. The best model performance was verified when 4
threads were running in parallel. In this case, the average speedup
was around 180%, quite low compared to the speedup of the pro-
posed GPU strategy. However, we believe that investing in this
kind multi-CPU architecture is also promising, in particular, due
to its more uniform speedup, as can be verified in both plots
depicted in Fig. 5.
Fig. 5. Speedups according to t
4.2. REDD dataset results with high granularities

In this section, we report some initial results with 1 s training
phases of the proposed parallel HFM model, following a similar
batch of experiments reported by Veit et al. [25]. As done by them,
we verified the performance of our model regarding 18 different
configurations, with granularities of 15, 30 and 60 min, covering
seven different forecasting horizons of 1440, 720, 360, 180, 60,
30 and 15 min.

The sliding window strategy was used for iteratively training
and testing the model. Thus, the data set was split into windows
with defined lengths (3 days + 3 days as possible inputs to be used
by the model, parameter tsmaxLag). Instead of setting the sliding
he number of CPU threads.



Fig. 6. MAPE for n-steps-ahead forecasting and different granularities with a sliding window strategy.

I.M. Coelho et al. / Applied Energy 201 (2017) 412–418 417
length to 24 h, we explore the whole time series, moving the slid-
ing windows with a single unit (15, 30 or 60 min).

Fig. 6 shows heatmaps of the Mean Absolute Percentage Error
(MAPE). These initial results suggest the competitiveness of our
proposal with the results reported in the literature. In particular,
we highlight our solid performance in forecasting horizons higher
than 60, mainly due to the metaheuristic self-calibration strategy
used by our proposed framework. Since the proposed parallel fore-
casting evaluation strategy does not interfere with the quality of
the prediction model, the convergence of the proposed parallel
HFM model follows the previously validated pure HFM model.

Embedding the proposed framework inside SM and daily
devices [26], using personal supercomputers with accelerators
such as FPGA [27], GPUs, ARM, Intel MIC architecture, would allow
more precise real-time decision making. Furthermore, for energy
applications, such as embedding the proposed tool into SM, GPUs
have been advocated as the green alternative, with low cost per
computation. More specifically, future studies should design novel
strategies for limiting, or self-calibrating, the maximum oldest lag
to be used by the HFM model. When the model requests inputs of
recent lags, values that had just been predicted should be feedback
into the model, what generates a highly dependent computation
(over previous values) that may not be easily explored by parallel
paradigms. Exploring the advantages and disadvantages of those
inputs on a parallel n-step-ahead time series forecasting sounds
a worth topic to be studied.

Finally, we suggest the application of the proposed framework
for tackling other important big data time series of the energy sec-
tor, such as solar radiation, rainfall and wind speed forecasting, or
even other types of time series, such as for Electroencephalography
and Magnetoencephalography learning and classification.
5. Conclusions

In this paper, a multithread based strategy was designed for
checking the performance of a metaheuristic based n-steps-
ahead time series forecasting model. The main core of our strategy
was to split the time series into independent training parts. As case
of study, data from an important microgrid energy forecasting
problem was used.
The proposed GPU deep learning strategy appears to be scalable
as the number of time series training rounds increases, achieving
up to 45 times speedup over a single threaded CPU implementa-
tion and, on average, around 15 times. Being extensible for n-
steps-ahead forecasting, we verified that increasing the forecasting
horizon, at a certain level, may decrease the total speedup perfor-
mance, since more work is effectively assigned to each of the thou-
sands of processing cores in a GPU.

Exploring the fact that machine learning techniques can be used
to break down household energy consumption data into individual
appliances, we explored our proposal performing forecasting in a
public energy disaggregation dataset. In this sense, we used this
kind of time series forecasting problem as example expecting that
using efficient AI algorithms, in conjunction with smart meters, is a
cost-effective and scalable solution for the rise of smart homes. The
obtained results suggested that the proposal could be applied in
the new generation of mini/microgrid software based sensors,
since it showed a reasonable performance for predicting energy
consumption of different household components.

Acknowledgment

Vitor N. Coelho would like to thank the Brazilian funding agen-
cies CAPES and the PPGEE/UFMG, for sponsoring the trip to REM
2016, and FAPERJ (inside the scope of the project ‘‘Autonomia em
redes inteligentes assistida por ferramentas da inteligência com-
putacional”), for supporting and encouraging the development of
this study. Frederico G. Guimarães was supported by the Brazilian
agencies CNPq (312276/2013-3 and 306850/2016-8) and FAPE-
MIG. Luiz S. Ochi was supported by FAPERJ and CNPq
(301593/2013-2) and Igor M. Coelho by FAPERJ.

The authors would like to thank the anonymous reviewers for
their valuable comments and feedback, as well as the REM 2016
session chairs, for motivating us to extended the presented work.

References

[1] A hybrid deep learning forecasting model using gpu disaggregated function
evaluations applied for household electricity demand forecasting, Energy
Procedia 2016;103C:280–285. http://dx.doi.org/10.1016/j.egypro.2016.11.286.

[2] Kow KW, Wong YW, Rajkumar RK, Rajkumar RK. A review on performance of
artificial intelligence and conventional method in mitigating PV grid-tied

http://dx.doi.org/10.1016/j.egypro.2016.11.286


418 I.M. Coelho et al. / Applied Energy 201 (2017) 412–418
related power quality events. Renew Sust Energy Rev 2016;56:334–46. http://
dx.doi.org/10.1016/j.rser.2015.11.064.

[3] McHenry MP. Technical and governance considerations for advanced metering
infrastructure/smart meters: technology, security, uncertainty, costs, benefits,
and risks. Energy Policy 2013;59:834–42. http://dx.doi.org/10.1016/j.
enpol.2013.04.048.

[4] Bertoldo R, Poumadère M, Rodrigues Jr LC. When meters start to talk: the
public’s encounter with smart meters in France. Energy Res Soc Sci
2015;9:146–56. http://dx.doi.org/10.1016/j.erss.2015.08.014 [special Issue on
Smart Grids and the Social Sciences].

[5] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44.
[6] Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. Overfeat:

integrated recognition, localization and detection using convolutional
networks. In: International Conference on Learning Representations (ICLR
2014); 2014. arXiv preprint arXiv:1312.6229.

[7] Mirowski PW, LeCun Y, Madhavan D, Kuzniecky R. Comparing svm and
convolutional networks for epileptic seizure prediction from intracranial eeg.
In: 2008 IEEE workshop on machine learning for signal processing. IEEE; 2008.
p. 244–9.

[8] Mohamed A-r, Dahl GE, Hinton G. Acoustic modeling using deep belief
networks. IEEE Trans Audio Speech Language Proc 2012;20(1):14–22.

[9] Ngiam J, Khosla A, Kim M, Nam J, Lee H, Ng AY. Multimodal deep learning. In:
Proceedings of the 28th international conference on machine learning (ICML-
11). p. 689–96.

[10] Lv Y, Duan Y, Kang W, Li Z, Wang F-Y. Traffic flow prediction with big data: a
deep learning approach. IEEE Trans Intell Transp Syst 2015;16(2):865–73.

[11] Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets.
Neural Comput 2006;18(7):1527–54.

[12] Bengio Y, Yao L, Alain G, Vincent P. Generalized denoising auto-encoders as
generative models. In: Advances in neural information processing systems. p.
899–907.

[13] Hu G, Yang Y, Yi D, Kittler J, Christmas W, Li SZ, et al. When face recognition
meets with deep learning: an evaluation of convolutional neural networks for
face recognition. In: Proceedings of the IEEE international conference on
computer vision workshops. p. 142–50.

[14] Rhu M, Gimelshein N, Clemons J, Zulfiqar A, Keckler SW. Virtualizing deep
neural networks for memory-efficient neural network design. arXiv preprint
arXiv:1602.08124.

[15] Coelho VN, Coelho IM, Coelho BN, Reis AJ, Enayatifar R, Souza MJ, et al. A self-
adaptive evolutionary fuzzy model for load forecasting problems on smart grid
environment. Appl Energy 2016;169:567–84. http://dx.doi.org/10.1016/j.
apenergy.2016.02.045.
[16] Kirk DB, Wen-mei WH. Programming massively parallel processors: a hands-
on approach. 2nd ed. Morgan Kaufman; 2012.

[17] Coelho IM, Munhoz PLA, Haddad MN, Coelho VN, Silva MM, Souza MJF, et al. A
computational framework for combinatorial optimization problems. In: VII
ALIO/EURO workshop on applied combinatorial optimization, Porto. p. 51–4.

[18] Kolter JZ, Johnson MJ. Redd: a public data set for energy disaggregation
research. In: Workshop on Data Mining Applications in Sustainability
(SIGKDD), San Diego, CA.

[19] Pipattanasomporn M, Kuzlu M, Rahman S. An algorithm for intelligent home
energy management and demand response analysis. IEEE Trans Smart Grid
2012;3(4):2166–73. http://dx.doi.org/10.1109/TSG.2012.2201182.

[20] Armel KC, Gupta A, Shrimali G, Albert A. Is disaggregation the holy grail of
energy efficiency? The case of electricity. Energy Policy 2013;52:213–34.
http://dx.doi.org/10.1016/j.enpol.2012.08.062 [special Section: Transition
Pathways to a Low Carbon Economy].

[21] Zou Y, Zhou X, Ding G, He Y, Jia M. A GPGPU-based collision detection
algorithm. In: ICIG ’09. Fifth international conference on image and graphics,
2009. p. 938–42. http://dx.doi.org/10.1109/ICIG.2009.127.

[22] Nedjah N, Macedo Mourelle L. High-performance hardware of the sliding-
window method for parallel computation of modular exponentiations. Int J
Parallel Programming 2009;37(6):537–55. http://dx.doi.org/10.1007/s10766-
009-0108-7.

[23] Flynn MJ. Some computer organizations and their effectiveness. IEEE Trans
Comput 1972;C-21(9):948–60.

[24] Fowers J, Brown G, Cooke P, Stitt G. A performance and energy comparison of
FPGAs, GPUs, and multicores for sliding-window applications. In: Proceedings
of the ACM/SIGDA international symposium on field programmable gate
arrays. FPGA ’12. New York, NY, USA: ACM; 2012. p. 47–56. http://dx.doi.org/
10.1145/2145694.2145704.

[25] Veit A, Goebel C, Tidke R, Doblander C, Jacobsen H-A. Household electricity
demand forecasting: benchmarking state-of-the-art methods. In: Proceedings
of the 5th international conference on future energy systems. e-Energy
’14. New York, NY, USA: ACM; 2014. p. 233–4. http://dx.doi.org/10.1145/
2602044.2602082.

[26] Gradl S, Kugler P, Lohmüller C, Eskofier B. Real-time ecg monitoring and
arrhythmia detection using android-based mobile devices. In: 2012 annual
international conference of the IEEE engineering in medicine and biology
society. p. 2452–5.

[27] Qiu J, Wang J, Yao S, Guo K, Li B, Zhou E, et al. Going deeper with embedded
FPGA platform for convolutional neural network. In: Proceedings of the 2016
ACM/SIGDA international symposium on field-programmable gate
arrays. ACM; 2016. p. 26–35.

http://dx.doi.org/10.1016/j.rser.2015.11.064
http://dx.doi.org/10.1016/j.rser.2015.11.064
http://dx.doi.org/10.1016/j.enpol.2013.04.048
http://dx.doi.org/10.1016/j.enpol.2013.04.048
http://dx.doi.org/10.1016/j.erss.2015.08.014
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0025
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0035
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0035
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0035
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0035
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0040
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0040
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0045
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0045
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0045
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0050
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0050
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0055
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0055
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0060
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0060
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0060
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0065
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0065
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0065
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0065
http://dx.doi.org/10.1016/j.apenergy.2016.02.045
http://dx.doi.org/10.1016/j.apenergy.2016.02.045
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0080
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0080
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0085
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0085
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0085
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0090
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0090
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0090
http://dx.doi.org/10.1109/TSG.2012.2201182
http://dx.doi.org/10.1016/j.enpol.2012.08.062
http://dx.doi.org/10.1109/ICIG.2009.127
http://dx.doi.org/10.1007/s10766-009-0108-7
http://dx.doi.org/10.1007/s10766-009-0108-7
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0115
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0115
http://dx.doi.org/10.1145/2145694.2145704
http://dx.doi.org/10.1145/2145694.2145704
http://dx.doi.org/10.1145/2602044.2602082
http://dx.doi.org/10.1145/2602044.2602082
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0130
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0130
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0130
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0130
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0135
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0135
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0135
http://refhub.elsevier.com/S0306-2619(17)30004-1/h0135

	A GPU deep learning metaheuristic based model for time series forecasting
	1 Introduction
	2 GPU architecture
	3 HFM with GPU disaggregated forecasting process
	4 Computational experiments
	4.1 Speedup analysis
	4.2 REDD dataset results with high granularities

	5 Conclusions
	Acknowledgment
	References


