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Abstract 

Using dedicated hardware to do machine learning 
typically ends up in disaster because of cost, 
obsolescence, and poor software. The popularization 
of Graphic Processing Units (GPUs), which are now 
available on every PC, provides an attractive 
alternative. We propose a generic 2-layer fully 
connected neural network GPU implementation which 
yields over 3X speedup for both training and testing 
with respect to a 3GHz P4 CPU. 

1. Introduction 

OCR and on-line handwritten recognition are 
computationally expensive. Training time is a major 
bottleneck for improving handwriting recognition (3+ 
weeks, depending on the language). Printed OCR, 
being off-line, is also limited by test time (currently at 
about 1000 character per second). 

Using dedicated hardware to do machine learning 
most often ends up in disaster. The hardware is 
typically expensive, unreliable, without libraries, 
poorly documented, and obsolete within a few years. 
The machine learning software typically only 
implements a few algorithms in an obscure language 
under very constrained architectural conditions. The 
results cannot be shared with other researchers, let 
alone customers, who do not have the hardware, 
patience, or interest. One of the authors has witnessed 
or participated in several such misadventures with 
analog chips, FPGAs, and coarse-grained parallel 
computers. 

The situation has changed recently with the 
popularization of Graphic Processing Units (GPUs) 
[I]. The GPU is a single-chip processor that is 
designed to accelerate the real-time three-dimensional 
(3D) graphics that are displayed to a user. Initially a 
feature of high-end graphics workstations, the GPU has 

found its way onto the personal computer bus as an 
accelerator of graphics functions for which a 
conventional central processing unit (CPU) was ill- 
suited or simply too slow. 

Current trends in GPU design and configuration 
have given them larger dedicated memory, higher 
bandwidth to graphics memory, and increased internal 
parallelism. In addition, current GPUs are designed 
with eves-increasing degrees of programmability. With 
the introduction of programmability, the GPU has 
gained enough flexibility to find use in non-graphics 
applications. Furthermore, the data-parallel 
architecture of GPUs delivers dramatic performance 
gains, compared to CPUs for computationally-intensive 
applications. Extensions to alternative graphics 
algorithms and scientific computing problems have 
been explored in a number of instances [2] [3] [4]. 

GPU cards are now mass produced for the consumer 
market and are therefore inexpensive ($200-$500 for a 
high-end graphics card). They are programmable 
through languages such as DirectX or OpenGL. The 
graphics primitives still use triangles, but the hardware 
also allows the instructions to render each pixel to be 
specified by a program, which can be loaded before the 
triangle(s) is (are) rendered. These programmable 
triangle renderers are called "pixel shaders". The 
instructions of the program in the shaders are close to 
assembly language, since each has a direct hardware 
implementation. The new flexibility introduced by 
pixel shaders allows not only naturalistic rendering of 
surfaces, but also brings the GPU closer to a general 
purpose parallel processor. It is the latter aspect that 
we will exploit in this paper. 

We have explored several machine learning 
algorithms for potential implementation on a GPU. We 
eliminated SVMs, HMMs, Decision Trees, Nearest 
Neighbors, Boosting, and various search optimization, 
because of their high memory access requirements. 
Neural networks, however, seem particularly well 
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suited for GPU implementation, provided that the 
weights reside on the GPU. In this paper we describe 
how to implement a Zlayer fully connected network on 
a GPU, but other architecture such as convolutional 
networks (SDNN and TDNN) are possible. 

2. General architecture 

The CPU and GPU communicate through the 
Accelerated Graphics Port (AGP) Bus. The CPU-to- 
GPU bandwidth is lGB/s, but the GPU-to-CPU 
bandwidth is very limited. Because data transfer is 
slow and asymmetric, the learning parameters reside on 
the GPU, and only the training data or testing data are 
transmitted to the GPU in the recognition loop. The 
new PC1 Express cards promise a much better 
bandwidth in both directions. 

During training, the learning parameters can be 
transferred back to the CPU at regular, but long 
intervals to verify the learning progress without 
introducing overhead. During testing, the classification 
results, which typically comprise a small amount of 
data, can be sent back to the CPU is small batches with 
little overhead. The current AGP bus bandwidth favors 
applications where the number of multiply-adds done 
on the GPU is much greater than the number of bytes 
transmitted over the bus. Because of this limitation, we 
have chosen to implement neural network training to 
illustrate the use of GPU. For simplicity, we have 
implemented a 2-layer fully connected network that we 
train on the MMST dataset. With N hidden units, we 
have about 3N multiply-adds for each input number 
transferred across the AGP bus during training with 
vanilla backpropagation. The number of hidden units 
N must be at least 300 to circumvent the AGP 
bottleneck (see results section). We have not tested 
the PC1 Express bus, but we expect that this limit will 
be lowered significantly. 

The general architecture is illustrated in Figure 1. 
The first step is to load the shaders, initial weights, and 
other learning parameters on the GPU. The CPU pre- 
loads as much as possible onto the GPU before 
entering the training loop. In our example, the learning 
parameters are the weights of each of the neural 
network layers, and the thresholds of each unit. The 
learning parameter is a single scalar called the learning 
rate. The programs P are for the different shaders used 
for the forward and backward propagation, and for the 
weight updates. 

In the next step, the CPU starts to loop on the 
training data, and accumulates groups of training data. 
The reason for the groups is that there is a cost of 
initiating a data transfer between CPU and GPU. 

Transferring the data by groups of several patterns at a 
time is more efficient. In our training session, the 
groups consist of 1000 patterns. The patterns are pairs 
of 28-by-28 pixel images (X) and their target labels 
(T). 

We then have a preprocessing step where X is 
transformed into X' and X' is sent to the GPU instead 
of X. The preprocessing step can have many different 
functions, such as putting the data in better form 
(normalization), extracting intelligent or complex 
features, generating new examples by distorting 
existing ones (enriching the data set), etc. In theory, 
the preprocessing could be done either on the GPU or 
the CPU. In practice, it is much easier to program on 
the CPU than the GPU. This means that if the 
preprocessing is computationally inexpensive, it is 
much easier to run it on the CPU. In our case, the 
preprocessing is used to generate artificial data 
(translation, rotation, etc) from the original data. This 
process is known to improve generalization [5]. 
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Figure 1. Left, data flow diagram for training 
machine learning algorithms on the GPU. Right, 
corresponding data flow during testing. 

Once the training data has been loaded on the GPU, 
the CPU instructs the GPU to run the various shaders 
that make up the learning algorithm. A description of 
the shaders can be found in the next section. A typical 
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learning algorithm is represented in a box inside the 
GPU. The learning algorithm computes a function 
G(X1,W) as a function of the preprocessed input X' 
and the trainable parameters W. The goal is to make 
this output as close as possible as the target value T. 
An error between G(X',W) and T is computed, and 
error signals (e.g. gradient with respect to W) are sent 
back to the learning machine. The weights are then 
updated in order to reduce the error between G(X',W) 
and T. 

For training our 2-layer neural networks, the 
forward and backpropagation correspond to about 
twenty different shaders (some of which are called 
multiple times). The number and complexity of 
shaders can of course vary depending on the algorithm 
used. The shaders are called for each pattern in a 
group (1000 times in our case). For stochastic 
gradient descent, the learning parameters are updated 
after processing each pattern in the group. For batch 
gradient descent, the learning parameter gradients are 
accumulated over several patterns before the learning 
parameters are updated. Whether to use stochastic or 
batch gradient descent depends heavily on the 
application and the learning algorithm (and for some 
learning algorithms, such as SVM, the questions does 
not arise). For handwriting recognition and neural 
networks, stochastic gradient descent is preferable, and 
this is what we implemented. 

Figure 1 shows that it is possible to get information 
(such as error or weights) back from the GPU during 
the training loop. This is useful to adjust learning 
parameters (e.g. learning rate), but it must not be done 
too often if the cost of transfer over the bus is high. 

Finally, when the training session is completed, after 
a fixed number of iterations, or when a desired error 
threshold has been achieved, the training is stopped and 
the learning parameters are downloaded to the CPU 
and saved. 

The testing architecture is very similar to the 
training architecture, except that the classification 
results must be transferred back to the CPU. For the 
MNIST database, the classification results are so small 
(10 probability numbers for each of the classes), that 
the result can be sent back to the GPU after each 
presentation if desired for interactive use. 

3. Using pixel shaders for machine learning 
computation 

In the Direct3D component of DirectX 9, there are 
two elements, called vertex shaders and pixel shaders, 
that are highly programmable. Both types of shaders 

are concerned with the rendering of triangles (the 
building blocks of graphics objects) to an output 
device. Vertex shaders can be used for tasks like spatial 
transformation and animation of the vertices of 
triangles (hence the name). Pixel shaders, which are of 
greater interest in this context, are used to render (that 
is, to calculate the color values of) the individual pixels 
in one triangle at a time. 

A pixel shader is expressed as a series of 
instructions in DirectX shader assembly language, 
which is a limited, hardware-independent language 
defined by DirectX. The code in a shader is executed 
once for each pixel in a triangle being rendered, and its 
only effect is to set the values of the 4-vector for that 
pixel. The limitations of the shader language, and the 
lack of side effects, mean that the GPU is free to render 
pixels in any order and using as much parallelism as its 
hardware can support, resulting in very high 
performance. The fact that a pixel is a Cvector affords 
yet another kind of parallelism; each execution of a 
pixel shader can calculate four elements (e.g. four 
adjacent elements of a vector) at once. 

Many of the facilities that an assembly-language 
programmer would expect can be used within pixel 
shaders, including constants, registers, addition, 
subtraction, multiplication, reciprocal, a small set of 
transcendental functions, and so on. 

Machine learning algorithms typically use simple 
primitives such as: 

1. Inner products (between vectors or matrix 
and vector) 

2. Outer products (between vectors) 
3. Linear algebra (e.g. addition, subtraction, 

multiplication by a scalar) on vectors or 
matrices 

4. Non-linearity (e.g. tanh, sigmoid, 
thresholding) applied to a vector or a matrix 

5. Matrix transpose 

We will show how to implement each of these 
operations with pixel shaders, and illustrate how they 
can work together with the example of an end-to-end 
implementation of a fully connected 2-layer neural 
network, for both training and use in a real setting. 
However it should be clear that the concept can be used 
with other learning algorithms made out of the same 
primitives. 

3.1 Implementing point-to-point operation 

All of the operations above can be implemented 
using one or more pixel shaders. The first challenge is 
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to make a shader calculate a result that is a rectangle in 
GPU memory - in other words, a 2-dimensional matrix 
of floating-point values. As stated before, pixel shaders 
render all pixels in a given triangle. However, we can 
also specify a rectangular viewport, and the GPU will 
only calculate pixels within the intersection of the 
viewport and the triangle (Figure 2, right). 

bua sourct 

given pixel. Their values cannot be shared between 
pixels (this would break the parallelism assumption) 
but can be used locally for intermediate results. For 
example, we can transpose any array or vector while 
copying its values to a new location. Suppose we have 
a source rectangle whose left, right, top, and bottom 
coordinates are I ,  r, t ,  and b. We would specify a 
texture rectangle whose coordinates are t, b, 1, and r. 
Then, inside the pixel shader, we would swap the x and 
y texture coordinates before using them to fetch a value 
from the source and copy it to the destination. At the 
end of rendering, the destination will contain the 
transpose of the source. In figure 2, left, the rendering 
of the current pixel of the destination will retrieve 
texture coordinates (15, 7) from the texture rectangle; 
but before fetching the texture value, we will reverse 
the row and column coordinates so that we actually 
read the value from location (7, 15), which is located 
inside the actual vector we are transposing. 

Figure 2. Top left, triangle clipped to rectangular 
region. Top right, use of texture mapping to do 
operation with multiple operand. Bottom, 
transposition. 

In the degenerate case, the viewport is a row or a 
column to access memory vectors. Using viewports, 
we can implement unary operations like x = F(x) for 
vectors and rectangular matrices. 

DirectX allows us to allocate a rectangular region of 
memory as a workspace. On current hardware we can 
allocate rectangles inside a square region of at least 
2048 x 2048 pixels (each Cvalued), depending on 
memory. 

Pixel rendering depends on multiple regions 
because of surface texture, reflection, transparency, etc. 
DirectX provide a mechanism - texture mapping - to 
map more than one source rectangle to the current 
destination. At least 8 such mappings can be used at 
once in current hardware. With multiple sources, we 
can implement operations such as (vector A - vector B - 
> vector C).  At each pixel in C ,  we fetch the texture- 
mapped values from A and B, perform elementary 
math on register values, and store the result. 

We can extend the usefulness of textures by using 
arithmetic on register values inside a shader. Registers 
are local variables which the shader can use to render a 

Using the four coordinate planes 
The GPU workspace has 4 planes - each pixel 

consists of x, y, z, and w values. These values can be 
accessed as rows of pixels (O:x, O:y, 0:z, O:w, l:x, 
l:y ...) or columns (O:x, l:x, 2:x, ...), where 0:x means 
pixel 0, plane x. This layout does not affect copy or 
vector transpose operations, but certain operation such 
as matrix transpose and mathematical operations must 
take plane indexing into account. 

Outer Product 
The outer product of two vectors can be 

accomplished with use of all four planes, but another 
new technique must be introduced, which we will 
designate the indexer texture. This is a way to select 
the value in just one of the four planes of a vector 
which has been mapped to elements as described 
above. 

E 
m 

Figure 3. Outer dot product. Each pixel has 
values in 4 planes (left). Individual plane values 
must be extracted and reused for outer product 
(right). 
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In figure 3, we compute the outer product C = A X B. 
The problem is that BO (N:x for pixel N, plane x) must 
be accessed and reused for AO, Al ,  A2, and A3. This 
is not a point-to-point operation (the strength of pixel 
shaders). BO can be extracted by using a mask 
[1,0,0,0] and using the dot operation: BO = 
dot([BO,B l,B2,B3],[1,0,0,0]). The value B 1 can be 
accessed using [O, 1,0,0], and so on. 

Inner product 
Inner products present a problem because they 

require that we accumulate a sum while looping over 
several values. This goes against the shader 
architecture which assumes there is no communication 
between adjacent pixels. So an inner product cannot be 
implemented as a single pixel shader. However, we 
can accomplish it by using a series of shaders and some 
additional memory. 

Coo = '40.0 * Bo.0 + A0,l * Bo.1 + A0.2 * B0.2 + A0.3 * B0.3 
Clo = Al,o * B1.o + Ai,i * B1.1 + -41.2 * B1.2 + A1,3 * B1,3 

Figure 4. Inner product. The dot product is done 
as a point to point partial product. Darker lines 
indicate how cells are multiplied. Some of the 
columns of A are collapsed by the dot operation. 
Rows of C must be further summed, with 
successive "reduce" operations to complete the 
dot product. 

We show in figure 4 how the inner product can be 
computed by point-to-point operations in C. The rows 
of C must then be summed by doing successive 
summation passes, each corresponding to a distinct 
shader. 

Results 
We have implemented a generic 2-layer fully 

connected neural network using the Pixel Shader 2.0 
( A n )  and 3.0 (NVIDIA) languages for the GPU. This 
implementation is truly versatile because preprocessing 
and postprocessing can easily be done on the CPU. 
These typically represent a very small fraction of the 
computation for the end-to-end system. Our test 
application is the MNIST handwritten digit database. 

We have experimented extensively with different 
memory layouts and different hardware. Low 
precision floating point operations (24 bits, with 16-bit 
mantissa) limits the training accuracy of the AT1 
Radeon X8OO card2. The reason is that weight updates 
need a large mantissa due to the cumulative effect of 
small gradients. The AT1 GPU error rate after training 
is about twice as high as with the CPU, as a result of 24 
bits weight updates. This is not good enough for 
commercial applications, but may be sufficient for 
rapid testing of new algorithms. For 
testingldeployment, 24 bits is more than enough 
accuracy, and GPU and CPU yield identical results. 
The NVIDIA GeForce 6800 Ultra GPU, which 
supports 32-bit precision, is as accurate as the CPU for 
both testing and training. Our CPU implementation 
used full dot products with compile SSE optimization 
enabled on a 3GHz P4. We also report results obtained 
with the Intel Math Kernel Library (MKL). The results 
are summarized in Table 1. 

Table 1: The Znd column indicates the number of 
pattern updates per second as a function of the 
number of hidden units. The next 3 columns 
show the relative speedup for the Intel Math 
Kernel Library (MKL), the AT1 Radeon X800, and 
the NVlDlA GeForce 6800 Ultra. In each cell, 1'' 
line is for training and Znd line is for deployment. 
The best usable numbers are represented in 
bold. The results in parenthesis are not usable 
for training. 

Hidden CPU MKL AT1 NVIDIA 
units GPU GPU 

200 (train) 500 2.1 (2.1) 1.3 
200 (test) 201 1 1.1 0.9 0.6 
600(train) 165 2.2 (5.9) 2.3 
600 (test) 723 1.1 2.4 1.2 

1000 (train) 89 2.2 (7.0) 3.3 
1000 (test) 440 1.1 3.4 1.4 

These results must be interpreted with caution. 
Memory access speed plays a significant role on the 
performance. Small network that entirely fit in the L2 
cache (512K) are faster in terms of multiply-add per 
seconds (for both CPU and MKL). For networks that 
do not fit in the cache (as in the table), MKL yields a 
2X speedup for training but not for testing. This is 
because the back propagation requires a transpose of 
the weight matrix. The basic CPU implementation is 
slow on back propagation because the transpose 

The next generation is rumored to support 32 bits. 

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05) 
1520-5263/05 $20.00 © 2005 IEEE 



generates memory accesses in a direction not favored 
by the cache. MKL has an optimization which 
performs the transpose by small block which yields a 
2X speedup for the whole training update. The MKL 
implementation takes full advantage of the P4 cache 
architecture. Neither NVIDIA nor AT1 has released 
the necessary information to make the corresponding 
optimizations on GPUs. At this point, we can only 
second guess how the GPU cache is organized and our 
reported performances are well below what NVDIA 
and AT1 advertise. 

On small fully connected neural network (200 
hidden units), MKL is the winner with a 2X speedup 
for training. For medium and large network, the 
NVDIA is best for training, yielding up to 3.3X 
speedup over the basic implementation. The AT1 24 
bits training, although faster, does not converge to a 
usable solution. For test or deployment, however, the 
AT1 yields the best results, with 2.4X to 3.4X speedup, 
depending on the size of the network. 

Conclusion 
We have implemented a generic and versatile end- 

to-end learning algorithm on the GPU. This has 
already yielded a better than 3X speedup in both 
training and test time (although on different cards). 
Unlike dedicated machine learning hardware, there is 
no risk of obsolescence for our system and software. 
The GPUs are mass produced off-the-shelf hardware, 
and they are quickly and regularly replaced by new 
generation GPUs which not only run faster, but support 
the code written for the previous generation. Graphics 
has brought SIMD computing to the masses. GPU 
performance is currently increasing faster than CPU 
performance, which means that our implementation's 
speedup will increase with each new generation of 
GPU (the last generation upgrade yielded a 2X 
speedup). Programmability of SIMDJpixel shaders is 
become easier with each generation (e.g. Pixel shader 
3) and the graphic card manufacturers have great 
incentive to make GPU more general purpose. It is 
likely that the next generation of AT1 cards will support 
32 bits floating point. 

OCR and on-line handwritten recognition are prime 
target applications for GPUs. Training time is a major 
bottleneck for handwriting recognition (1-3 weeks, 
depending on the language). Printed OCR, being off- 
line, is limited by test time (currently at about 1000 
character per second). In both case, GPUs bring a 
much needed speedup. The current paper describes the 
implementation of a fully connected 2-layers network 
on a GPU. We are currently working on a GPU 
implementation of convolutional networks. 
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