
Using GPUs for Machine Learning Algorithms

Dave ~teinkraus', Ian ~ u c k ~ * , Patrice Y. ~ imard '
' Microsoft Research, One Microsoft Way, Redmond, WA 98056

2 Stanford University, 282 Gates Bldg, Stanford, CA 94305

steinkraus@hotmail.com, patrice@microsoft.com, ianbuck@nvidia.com

Abstract

Using dedicated hardware to do machine learning
typically ends up in disaster because of cost,
obsolescence, and poor software. The popularization
of Graphic Processing Units (GPUs), which are now
available on every PC, provides an attractive
alternative. We propose a generic 2-layer fully
connected neural network GPU implementation which
yields over 3X speedup for both training and testing
with respect to a 3GHz P4 CPU.

1. Introduction

OCR and on-line handwritten recognition are
computationally expensive. Training time is a major
bottleneck for improving handwriting recognition (3+
weeks, depending on the language). Printed OCR,
being off-line, is also limited by test time (currently at
about 1000 character per second).

Using dedicated hardware to do machine learning
most often ends up in disaster. The hardware is
typically expensive, unreliable, without libraries,
poorly documented, and obsolete within a few years.
The machine learning software typically only
implements a few algorithms in an obscure language
under very constrained architectural conditions. The
results cannot be shared with other researchers, let
alone customers, who do not have the hardware,
patience, or interest. One of the authors has witnessed
or participated in several such misadventures with
analog chips, FPGAs, and coarse-grained parallel
computers.

The situation has changed recently with the
popularization of Graphic Processing Units (GPUs)
[I]. The GPU is a single-chip processor that is
designed to accelerate the real-time three-dimensional
(3D) graphics that are displayed to a user. Initially a
feature of high-end graphics workstations, the GPU has

found its way onto the personal computer bus as an
accelerator of graphics functions for which a
conventional central processing unit (CPU) was ill-
suited or simply too slow.

Current trends in GPU design and configuration
have given them larger dedicated memory, higher
bandwidth to graphics memory, and increased internal
parallelism. In addition, current GPUs are designed
with eves-increasing degrees of programmability. With
the introduction of programmability, the GPU has
gained enough flexibility to find use in non-graphics
applications. Furthermore, the data-parallel
architecture of GPUs delivers dramatic performance
gains, compared to CPUs for computationally-intensive
applications. Extensions to alternative graphics
algorithms and scientific computing problems have
been explored in a number of instances [2] [3] [4].

GPU cards are now mass produced for the consumer
market and are therefore inexpensive ($200-$500 for a
high-end graphics card). They are programmable
through languages such as DirectX or OpenGL. The
graphics primitives still use triangles, but the hardware
also allows the instructions to render each pixel to be
specified by a program, which can be loaded before the
triangle(s) is (are) rendered. These programmable
triangle renderers are called "pixel shaders". The
instructions of the program in the shaders are close to
assembly language, since each has a direct hardware
implementation. The new flexibility introduced by
pixel shaders allows not only naturalistic rendering of
surfaces, but also brings the GPU closer to a general
purpose parallel processor. It is the latter aspect that
we will exploit in this paper.

We have explored several machine learning
algorithms for potential implementation on a GPU. We
eliminated SVMs, HMMs, Decision Trees, Nearest
Neighbors, Boosting, and various search optimization,
because of their high memory access requirements.
Neural networks, however, seem particularly well

* Currently at NVDIA Corporation, MS 14, 2701 San Tomas Expressway, Santa Clara, CA95050

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

suited for GPU implementation, provided that the
weights reside on the GPU. In this paper we describe
how to implement a Zlayer fully connected network on
a GPU, but other architecture such as convolutional
networks (SDNN and TDNN) are possible.

2. General architecture

The CPU and GPU communicate through the
Accelerated Graphics Port (AGP) Bus. The CPU-to-
GPU bandwidth is lGB/s, but the GPU-to-CPU
bandwidth is very limited. Because data transfer is
slow and asymmetric, the learning parameters reside on
the GPU, and only the training data or testing data are
transmitted to the GPU in the recognition loop. The
new PC1 Express cards promise a much better
bandwidth in both directions.

During training, the learning parameters can be
transferred back to the CPU at regular, but long
intervals to verify the learning progress without
introducing overhead. During testing, the classification
results, which typically comprise a small amount of
data, can be sent back to the CPU is small batches with
little overhead. The current AGP bus bandwidth favors
applications where the number of multiply-adds done
on the GPU is much greater than the number of bytes
transmitted over the bus. Because of this limitation, we
have chosen to implement neural network training to
illustrate the use of GPU. For simplicity, we have
implemented a 2-layer fully connected network that we
train on the MMST dataset. With N hidden units, we
have about 3N multiply-adds for each input number
transferred across the AGP bus during training with
vanilla backpropagation. The number of hidden units
N must be at least 300 to circumvent the AGP
bottleneck (see results section). We have not tested
the PC1 Express bus, but we expect that this limit will
be lowered significantly.

The general architecture is illustrated in Figure 1.
The first step is to load the shaders, initial weights, and
other learning parameters on the GPU. The CPU pre-
loads as much as possible onto the GPU before
entering the training loop. In our example, the learning
parameters are the weights of each of the neural
network layers, and the thresholds of each unit. The
learning parameter is a single scalar called the learning
rate. The programs P are for the different shaders used
for the forward and backward propagation, and for the
weight updates.

In the next step, the CPU starts to loop on the
training data, and accumulates groups of training data.
The reason for the groups is that there is a cost of
initiating a data transfer between CPU and GPU.

Transferring the data by groups of several patterns at a
time is more efficient. In our training session, the
groups consist of 1000 patterns. The patterns are pairs
of 28-by-28 pixel images (X) and their target labels
(T).

We then have a preprocessing step where X is
transformed into X' and X' is sent to the GPU instead
of X. The preprocessing step can have many different
functions, such as putting the data in better form
(normalization), extracting intelligent or complex
features, generating new examples by distorting
existing ones (enriching the data set), etc. In theory,
the preprocessing could be done either on the GPU or
the CPU. In practice, it is much easier to program on
the CPU than the GPU. This means that if the
preprocessing is computationally inexpensive, it is
much easier to run it on the CPU. In our case, the
preprocessing is used to generate artificial data
(translation, rotation, etc) from the original data. This
process is known to improve generalization [5].

CPU
I AGP bur GPU

C
r.L.w

lntbal trainable parsm W
I

cornputallon space

rend X'. T to GPU -
Cdl shadcrs on GPU Pameterr W

Done lrelnlng

C

mnhd

Figure 1. Left, data flow diagram for training
machine learning algorithms on the GPU. Right,
corresponding data flow during testing.

Once the training data has been loaded on the GPU,
the CPU instructs the GPU to run the various shaders
that make up the learning algorithm. A description of
the shaders can be found in the next section. A typical

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

learning algorithm is represented in a box inside the
GPU. The learning algorithm computes a function
G(X1,W) as a function of the preprocessed input X'
and the trainable parameters W. The goal is to make
this output as close as possible as the target value T.
An error between G(X',W) and T is computed, and
error signals (e.g. gradient with respect to W) are sent
back to the learning machine. The weights are then
updated in order to reduce the error between G(X',W)
and T.

For training our 2-layer neural networks, the
forward and backpropagation correspond to about
twenty different shaders (some of which are called
multiple times). The number and complexity of
shaders can of course vary depending on the algorithm
used. The shaders are called for each pattern in a
group (1000 times in our case). For stochastic
gradient descent, the learning parameters are updated
after processing each pattern in the group. For batch
gradient descent, the learning parameter gradients are
accumulated over several patterns before the learning
parameters are updated. Whether to use stochastic or
batch gradient descent depends heavily on the
application and the learning algorithm (and for some
learning algorithms, such as SVM, the questions does
not arise). For handwriting recognition and neural
networks, stochastic gradient descent is preferable, and
this is what we implemented.

Figure 1 shows that it is possible to get information
(such as error or weights) back from the GPU during
the training loop. This is useful to adjust learning
parameters (e.g. learning rate), but it must not be done
too often if the cost of transfer over the bus is high.

Finally, when the training session is completed, after
a fixed number of iterations, or when a desired error
threshold has been achieved, the training is stopped and
the learning parameters are downloaded to the CPU
and saved.

The testing architecture is very similar to the
training architecture, except that the classification
results must be transferred back to the CPU. For the
MNIST database, the classification results are so small
(10 probability numbers for each of the classes), that
the result can be sent back to the GPU after each
presentation if desired for interactive use.

3. Using pixel shaders for machine learning
computation

In the Direct3D component of DirectX 9, there are
two elements, called vertex shaders and pixel shaders,
that are highly programmable. Both types of shaders

are concerned with the rendering of triangles (the
building blocks of graphics objects) to an output
device. Vertex shaders can be used for tasks like spatial
transformation and animation of the vertices of
triangles (hence the name). Pixel shaders, which are of
greater interest in this context, are used to render (that
is, to calculate the color values of) the individual pixels
in one triangle at a time.

A pixel shader is expressed as a series of
instructions in DirectX shader assembly language,
which is a limited, hardware-independent language
defined by DirectX. The code in a shader is executed
once for each pixel in a triangle being rendered, and its
only effect is to set the values of the 4-vector for that
pixel. The limitations of the shader language, and the
lack of side effects, mean that the GPU is free to render
pixels in any order and using as much parallelism as its
hardware can support, resulting in very high
performance. The fact that a pixel is a Cvector affords
yet another kind of parallelism; each execution of a
pixel shader can calculate four elements (e.g. four
adjacent elements of a vector) at once.

Many of the facilities that an assembly-language
programmer would expect can be used within pixel
shaders, including constants, registers, addition,
subtraction, multiplication, reciprocal, a small set of
transcendental functions, and so on.

Machine learning algorithms typically use simple
primitives such as:

1. Inner products (between vectors or matrix
and vector)

2. Outer products (between vectors)
3. Linear algebra (e.g. addition, subtraction,

multiplication by a scalar) on vectors or
matrices

4. Non-linearity (e.g. tanh, sigmoid,
thresholding) applied to a vector or a matrix

5. Matrix transpose

We will show how to implement each of these
operations with pixel shaders, and illustrate how they
can work together with the example of an end-to-end
implementation of a fully connected 2-layer neural
network, for both training and use in a real setting.
However it should be clear that the concept can be used
with other learning algorithms made out of the same
primitives.

3.1 Implementing point-to-point operation

All of the operations above can be implemented
using one or more pixel shaders. The first challenge is

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

to make a shader calculate a result that is a rectangle in
GPU memory - in other words, a 2-dimensional matrix
of floating-point values. As stated before, pixel shaders
render all pixels in a given triangle. However, we can
also specify a rectangular viewport, and the GPU will
only calculate pixels within the intersection of the
viewport and the triangle (Figure 2, right).

bua sourct

given pixel. Their values cannot be shared between
pixels (this would break the parallelism assumption)
but can be used locally for intermediate results. For
example, we can transpose any array or vector while
copying its values to a new location. Suppose we have
a source rectangle whose left, right, top, and bottom
coordinates are I , r, t , and b. We would specify a
texture rectangle whose coordinates are t, b, 1, and r.
Then, inside the pixel shader, we would swap the x and
y texture coordinates before using them to fetch a value
from the source and copy it to the destination. At the
end of rendering, the destination will contain the
transpose of the source. In figure 2, left, the rendering
of the current pixel of the destination will retrieve
texture coordinates (15, 7) from the texture rectangle;
but before fetching the texture value, we will reverse
the row and column coordinates so that we actually
read the value from location (7, 15), which is located
inside the actual vector we are transposing.

Figure 2. Top left, triangle clipped to rectangular
region. Top right, use of texture mapping to do
operation with multiple operand. Bottom,
transposition.

In the degenerate case, the viewport is a row or a
column to access memory vectors. Using viewports,
we can implement unary operations like x = F(x) for
vectors and rectangular matrices.

DirectX allows us to allocate a rectangular region of
memory as a workspace. On current hardware we can
allocate rectangles inside a square region of at least
2048 x 2048 pixels (each Cvalued), depending on
memory.

Pixel rendering depends on multiple regions
because of surface texture, reflection, transparency, etc.
DirectX provide a mechanism - texture mapping - to
map more than one source rectangle to the current
destination. At least 8 such mappings can be used at
once in current hardware. With multiple sources, we
can implement operations such as (vector A - vector B -
> vector C). At each pixel in C , we fetch the texture-
mapped values from A and B, perform elementary
math on register values, and store the result.

We can extend the usefulness of textures by using
arithmetic on register values inside a shader. Registers
are local variables which the shader can use to render a

Using the four coordinate planes
The GPU workspace has 4 planes - each pixel

consists of x, y, z, and w values. These values can be
accessed as rows of pixels (O:x, O:y, 0:z, O:w, l:x,
l:y ...) or columns (O:x, l:x, 2:x, ...), where 0:x means
pixel 0, plane x. This layout does not affect copy or
vector transpose operations, but certain operation such
as matrix transpose and mathematical operations must
take plane indexing into account.

Outer Product
The outer product of two vectors can be

accomplished with use of all four planes, but another
new technique must be introduced, which we will
designate the indexer texture. This is a way to select
the value in just one of the four planes of a vector
which has been mapped to elements as described
above.

E
m

Figure 3. Outer dot product. Each pixel has
values in 4 planes (left). Individual plane values
must be extracted and reused for outer product
(right).

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

In figure 3, we compute the outer product C = A X B.
The problem is that BO (N:x for pixel N, plane x) must
be accessed and reused for AO, Al , A2, and A3. This
is not a point-to-point operation (the strength of pixel
shaders). BO can be extracted by using a mask
[1,0,0,0] and using the dot operation: BO =
dot([BO,B l,B2,B3],[1,0,0,0]). The value B 1 can be
accessed using [O, 1,0,0], and so on.

Inner product
Inner products present a problem because they

require that we accumulate a sum while looping over
several values. This goes against the shader
architecture which assumes there is no communication
between adjacent pixels. So an inner product cannot be
implemented as a single pixel shader. However, we
can accomplish it by using a series of shaders and some
additional memory.

Coo = '40.0 * Bo.0 + A0,l * Bo.1 + A0.2 * B0.2 + A0.3 * B0.3
Clo = Al,o * B1.o + Ai,i * B1.1 + -41.2 * B1.2 + A1,3 * B1,3

Figure 4. Inner product. The dot product is done
as a point to point partial product. Darker lines
indicate how cells are multiplied. Some of the
columns of A are collapsed by the dot operation.
Rows of C must be further summed, with
successive "reduce" operations to complete the
dot product.

We show in figure 4 how the inner product can be
computed by point-to-point operations in C. The rows
of C must then be summed by doing successive
summation passes, each corresponding to a distinct
shader.

Results
We have implemented a generic 2-layer fully

connected neural network using the Pixel Shader 2.0
(A n) and 3.0 (NVIDIA) languages for the GPU. This
implementation is truly versatile because preprocessing
and postprocessing can easily be done on the CPU.
These typically represent a very small fraction of the
computation for the end-to-end system. Our test
application is the MNIST handwritten digit database.

We have experimented extensively with different
memory layouts and different hardware. Low
precision floating point operations (24 bits, with 16-bit
mantissa) limits the training accuracy of the AT1
Radeon X8OO card2. The reason is that weight updates
need a large mantissa due to the cumulative effect of
small gradients. The AT1 GPU error rate after training
is about twice as high as with the CPU, as a result of 24
bits weight updates. This is not good enough for
commercial applications, but may be sufficient for
rapid testing of new algorithms. For
testingldeployment, 24 bits is more than enough
accuracy, and GPU and CPU yield identical results.
The NVIDIA GeForce 6800 Ultra GPU, which
supports 32-bit precision, is as accurate as the CPU for
both testing and training. Our CPU implementation
used full dot products with compile SSE optimization
enabled on a 3GHz P4. We also report results obtained
with the Intel Math Kernel Library (MKL). The results
are summarized in Table 1.

Table 1: The Znd column indicates the number of
pattern updates per second as a function of the
number of hidden units. The next 3 columns
show the relative speedup for the Intel Math
Kernel Library (MKL), the AT1 Radeon X800, and
the NVlDlA GeForce 6800 Ultra. In each cell, 1''
line is for training and Znd line is for deployment.
The best usable numbers are represented in
bold. The results in parenthesis are not usable
for training.

Hidden CPU MKL AT1 NVIDIA
units GPU GPU

200 (train) 500 2.1 (2.1) 1.3
200 (test) 201 1 1.1 0.9 0.6
600(train) 165 2.2 (5.9) 2.3
600 (test) 723 1.1 2.4 1.2

1000 (train) 89 2.2 (7.0) 3.3
1000 (test) 440 1.1 3.4 1.4

These results must be interpreted with caution.
Memory access speed plays a significant role on the
performance. Small network that entirely fit in the L2
cache (512K) are faster in terms of multiply-add per
seconds (for both CPU and MKL). For networks that
do not fit in the cache (as in the table), MKL yields a
2X speedup for training but not for testing. This is
because the back propagation requires a transpose of
the weight matrix. The basic CPU implementation is
slow on back propagation because the transpose

The next generation is rumored to support 32 bits.

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

generates memory accesses in a direction not favored
by the cache. MKL has an optimization which
performs the transpose by small block which yields a
2X speedup for the whole training update. The MKL
implementation takes full advantage of the P4 cache
architecture. Neither NVIDIA nor AT1 has released
the necessary information to make the corresponding
optimizations on GPUs. At this point, we can only
second guess how the GPU cache is organized and our
reported performances are well below what NVDIA
and AT1 advertise.

On small fully connected neural network (200
hidden units), MKL is the winner with a 2X speedup
for training. For medium and large network, the
NVDIA is best for training, yielding up to 3.3X
speedup over the basic implementation. The AT1 24
bits training, although faster, does not converge to a
usable solution. For test or deployment, however, the
AT1 yields the best results, with 2.4X to 3.4X speedup,
depending on the size of the network.

Conclusion
We have implemented a generic and versatile end-

to-end learning algorithm on the GPU. This has
already yielded a better than 3X speedup in both
training and test time (although on different cards).
Unlike dedicated machine learning hardware, there is
no risk of obsolescence for our system and software.
The GPUs are mass produced off-the-shelf hardware,
and they are quickly and regularly replaced by new
generation GPUs which not only run faster, but support
the code written for the previous generation. Graphics
has brought SIMD computing to the masses. GPU
performance is currently increasing faster than CPU
performance, which means that our implementation's
speedup will increase with each new generation of
GPU (the last generation upgrade yielded a 2X
speedup). Programmability of SIMDJpixel shaders is
become easier with each generation (e.g. Pixel shader
3) and the graphic card manufacturers have great
incentive to make GPU more general purpose. It is
likely that the next generation of AT1 cards will support
32 bits floating point.

OCR and on-line handwritten recognition are prime
target applications for GPUs. Training time is a major
bottleneck for handwriting recognition (1-3 weeks,
depending on the language). Printed OCR, being off-
line, is limited by test time (currently at about 1000
character per second). In both case, GPUs bring a
much needed speedup. The current paper describes the
implementation of a fully connected 2-layers network
on a GPU. We are currently working on a GPU
implementation of convolutional networks.

Acknowledgement
We would like to thank Kumar Chellapilla for useful
discussions, suggestions, and getting MKL results.

References
[I] M. Macedonia, "The GPU Enters Computing's
Mainstream," IEEE Computer, 2003, pp. 106-108.
[2] T.J. Purcell, I. Buck, W. Mark, & P. Hanrahan, "Ray
Tracing on Programmable Graphics Hardware," ACM
Transactions on Graphics, 21 (3), 2002, pp. 703-712.
[3] J. Kruger, and R. Westermann, "Linear Operators for
GPU Implementation of Numerical Algorithms,"
Proceedings of SIGGRAPH, San Diego, 2003, pp. 908-916.
[4] J. Bolz, I. Farmer, E. Grinspun, & P. Schroder, "Sparse
Matrix Solvers on the GPU: Conjugate Gradients and
Multigrid,", Proceedings of SIGGRAPH, San Diego, 2003,
pp. 917-924.
[5] P. Y. Simard, D. Steinkraus, & J. Platt, "Best Practice for
Convolutional Neural Networks Applied to Visual Document
Analysis," International Conference on Document Analysis
and Recognition (ICDAR), IEEE Computer Society, Los
Alamitos, 2003, pp. 958-962.

Proceedings of the 2005 Eight International Conference on Document Analysis and Recognition (ICDAR’05)
1520-5263/05 $20.00 © 2005 IEEE

