
2740 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 47, NO. 10, OCTOBER 2017

GPU-Accelerated Parallel Hierarchical Extreme
Learning Machine on Flink for Big Data

Cen Chen, Kenli Li, Senior Member, IEEE, Aijia Ouyang, Zhuo Tang, and Keqin Li, Fellow, IEEE

Abstract—The extreme learning machine (ELM) has become
one of the most important and popular algorithms of machine
learning, because of its extremely fast training speed, good gen-
eralization, and universal approximation/classification capability.
The proposal of hierarchical ELM (H-ELM) extends ELM from
single hidden layer feedforward networks to multilayer percep-
tron, greatly strengthening the applicability of ELM. Generally
speaking, during training H-ELM, large-scale datasets (DSTs)
are needed. Therefore, how to make use of H-ELM framework
in processing big data is worth further exploration. This paper
proposes a parallel H-ELM algorithm based on Flink, which is
one of the in-memory cluster computing platforms, and graphics
processing units (GPUs). Several optimizations are adopted to
improve the performance, such as cache-based scheme, reason-
able partitioning strategy, memory mapping scheme for mapping
specific Java virtual machine objects to buffers. Most impor-
tantly, our proposed framework for utilizing GPUs to accelerate
Flink for big data is general. This framework can be utilized
to accelerate many other variants of ELM and other machine
learning algorithms. To the best of our knowledge, it is the
first kind of library, which combines in-memory cluster comput-
ing with GPUs to parallelize H-ELM. The experimental results
have demonstrated that our proposed GPU-accelerated parallel
H-ELM named as GPH-ELM can efficiently process large-scale

Manuscript received September 25, 2016; revised December 26, 2016;
accepted March 16, 2017. Date of publication April 24, 2017; date of cur-
rent version September 15, 2017. This work was supported in part by the
Key Program of National Natural Science Foundation of China under Grant
61432005, in part by the National Outstanding Youth Science Program of
National Natural Science Foundation of China under Grant 61625202, in
part by the International (Regional) Cooperation and Exchange Program of
National Natural Science Foundation of China under Grant 6161101215,
in part by the National Natural Science Foundation of China under Grant
61370095, Grant 61472124, and Grant 61662090, in part by the International
Science and Technology Cooperation Program of China under Grant
2015DFA11240 and Grant 2014DFB30010, in part by the National High-Tech
Research and Development Program of China under Grant 2015AA015305,
and in part by the Key Technology Research and Development Programs
of Guangdong Province under Grant 2015B010108006. This paper was
recommended by Associate Editor G.-B. Huang. (Corresponding author:
Kenli Li.)

C. Chen, K. Li, and Z. Tang are with the College of Information Science
and Engineering, Hunan University, Changsha 410082, China, and also
with the National Supercomputing Center, Changsha 410082, China (e-mail:
chencen@hnu.edu.cn; lkl@hnu.edu.cn; ztang@hnu.edu.cn).

A. Ouyang is with the College of Information Science and Engineering,
Hunan University, Changsha 410082, China, the National Supercomputing
Center, Changsha 410082, China, and also with the Department of
Information Engineering, Zunyi Normal College, Zunyi 563006, China (e-
mail: oyaj@hnu.edu.cn).

K. Li is with the College of Information Science and Engineering,
Hunan University, Changsha 410082, China, the National Supercomputing
Center, Changsha 410082, China, and also with the Department of Computer
Science, State University of New York, New Paltz, NY 12561 USA (e-mail:
lik@newpaltz.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2017.2690673

DSTs with good performance of speedup and scalability, leverag-
ing the computing power of both CPUs and GPUs in the cluster.

Index Terms—Big data, deep learning (DL), Flink, GPGPU,
hierarchical extreme learning machine (H-ELM), parallel.

I. INTRODUCTION

A. Motivation

W ITH the rapid development of Internet and Internet
of Things technologies, recent years have witnessed

a surge of data at a fast speed. Due to the development of big
data technologies, many decision methods based on the tra-
ditional experience and intuition have been replaced by data
analysis and data mining. Many researchers have focused on
getting valuable information and knowledge from massive data
with data mining or machine learning methods [1], [2].

During the past years, the extreme learning
machine (ELM) [3]–[5] has become one of the most
important and popular algorithms of machine learning and
artificial intelligence, because of its extremely fast training
capacity, good generalization, and universal approximation/-
classification capability. Unlike other traditional learning
algorithms, e.g., back propagation (BP)-based neural net-
works (NNs), ELM theories believe that the hidden layer
of ELM does not need to be iteratively tuned and the
parameters of the hidden layer can be generated randomly.
Theoretically, Huang et al. [6], [7] have proved that with
randomly generated hidden neurons, ELM still maintain its
universal approximation capability. Tang et al. [8] proposed a
hierarchical ELM (H-ELM) framework for multilayer percep-
trons (MLPs), which is based on the universal approximation
capability of the original ELM. This proposal has extended
the original ELM algorithm from shallow architecture to deep
architecture, largely strengthening the applicability of ELM.
The H-ELM framework contains two main components:
1) several unsupervised feature encoding layers and 2) super-
vised feature classification based on the original ELM. Unlike
the greedy layerwise training of deep learning (DL), once
the previous layer is established, the weights of the current
layer are fixed without fine-tuning, making it more efficient
in learning performance than the DL [8].

Generally speaking, applications on MLPs (e.g.,
images/videos) usually require large-scale datasets (DSTs).
As we know, there are many hidden layers in H-ELM frame-
work. These factors engender the need for large amounts
of computing resources and cost plenty of time to train

2168-2216 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

CHEN et al.: GPU-ACCELERATED PARALLEL H-ELM ON FLINK FOR BIG DATA 2741

H-ELM framework, thus making it prohibitive to complete
the training job on a single computer. How to make use
of H-ELM algorithm in processing a large amount of data
is worth further exploration, which constitutes one main
challenge for researchers.

Hadoop, an open source MapReduce framework [9], has
been highly successful in implementing large-scale data-
intensive applications on commodity clusters. Xun et al. [10]
proposed a parallel mining algorithm for frequent item-
sets using MapReduce. Ding et al. [11] proposed a
novel attribute equilibrium dominance reduction accelerator
(DCCAEDR) based on the distributed coevolutionary cloud
model and MapReduce, aiming at the tremendous challenge
of attribute reduction for big data mining and knowledge
discovery.

However, it is a disk-based system and every MapReduce
stage can only interact with other stages through the Hadoop
distributed file system (HDFS). In-memory cluster comput-
ing platforms (e.g., Flink [12] and Spark [13]) are designed
to process data-intensive applications with distributed in-
memory architecture, and provide similar scalability, and
fault-tolerance characteristics to Hadoop. Because of their in-
memory parallel execution model which saves huge amounts
of disk I/O operations time, they are more suitable for data
mining and machine learning that require many iterative
operations.

Over the past few years, graphics processing units (GPUs)
have emerged as parallel processors thanks to their high
computational power and low price, especially for high-
performance computing area. In many supercomputers, such
as Tianhe and Titan, CPUs and GPUs cooperate together to
produce powerful computing. The trend of using heteroge-
neous CPU-GPU clusters is now mainstream. For example,
each computing node of the Tianhe-1A has two Intel Xeon
X5670 CPUs and one NVIDIA Tesla M2050 GPU. As with
the high computing power of GPUs, many researchers have
focused on utilizing GPUs to accelerate the DL and have
obtained excellent effect. NVIDIA has developed deep NN
library (cuDNN) [14] which is a GPU-accelerated library for
deep NNs. Coates et al. [15] utilized a cluster of GPU servers
with Infiniband interconnects and MPI to train extremely large
networks (with over 1 billion parameters) within a couple of
days.

B. Contributions

Existing in-memory cluster computing platforms have been
proven to be outstanding platforms for processing big data
with high performance, high fault tolerance, high-level and
easy programming model, and high compatibility with many
open source stacks. Apache Flink is a new open source plat-
form for both distributed stream and batch data processing.
Spark and Flink are quite similar. As we know, H-ELM
framework consists of many hidden layers, which are similar
with the iterative operation. The in-memory parallel execution
model provided by Flink can cache the data in the distributed
memory in the cluster, thus saving huge amounts of disk I/O
operations time between two layers. Through deep analysis of

the details of H-ELM, we find that Flink is a very appropriate
platform for parallelizing H-ELM framework.

Moreover, through analyzing the execution process of
H-ELM framework, we find that some time-consuming sub-
processes are appropriate for being executed in GPUs.
Through accelerating them by GPUs, a high speedup will
be achieved. However, in-memory cluster computing plat-
forms, such as Flink and Spark can only run on CPUs now.
That is to say, these platforms cannot leverage the available
computing resources of GPUs, or benefit from the acceler-
ation of GPUs, which may be present in the nodes of the
cluster.

In this paper, we have proposed a novel parallel H-ELM
combining Flink and GPUs to process large-scale DSTs. Our
algorithms are built on top of Flink, thus inheriting the exist-
ing good reliability and expandability of Flink. Due to the
fact that Spark and Flink are very similar, our design can be
easily integrated into Spark. To the best of our knowledge, it
is the first kind of library, which combines in-memory clus-
ter computing with GPUs to parallelize H-ELM, inheriting the
outstanding features of both in-memory cluster computing and
GPU. The framework for utilizing GPUs to accelerate H-ELM
on Flink is an extension of our previous work [16]. In this
new framework, we proposed a heterogeneous task manage-
ment for hybrid CPUs and GPUs, in which CPUs and GPUs
cooperate together to fulfill the works assigned to them, thus
achieving a better acceleration than our previous work. Our
main contributions are as follows.

1) The suboperations of H-ELM which need to be paral-
lelized are parallelized on Flink, thus benefiting from
the in-memory cluster computing. In the meantime, sev-
eral optimizations are adopted to improve the scalability
and performance of our parallelization. Furthermore, we
accelerate our proposed parallel algorithm through lever-
aging the high computing power of GPUs, which may be
present in the clusters, thus improving the performance
greatly.

2) Our proposed parallel algorithm is based on both Flink
and GPUs, thus inheriting the outstanding features of
both Flink and GPUs. Our proposed parallel algo-
rithm has good fault tolerance and reliability, supporting
distributed file system, high performance for itera-
tive computing, and high computing power provided
by GPUs.

3) Our proposed framework for utilizing GPUs to acceler-
ate applications on Flink for big data is widely applica-
ble, in which CPUs and GPUs cooperate with each other
to fulfill the tasks with high performance. Many other
variants of ELM and other machine learning algorithms
can benefit from our proposed framework.

The remainder of this paper is organized as follows.
Sections II and III review related work and provide more
background information. Section IV describes our proposed
parallel H-ELM framework on Flink (PH-ELM). Section V
presents details of accelerating our proposed parallel H-ELM
framework by GPUs (GPH-ELM). Section VI analyzes our
proposed algorithms. Section VII presents the performance
results. Section VIII concludes this paper.

2742 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 47, NO. 10, OCTOBER 2017

II. RELATED WORKS

ELM was first proposed by Huang et al. [4], [5] to train
single-hidden layer feedforward NNs (SLFNs). Thanks to the
efforts of different scholars and researchers, ELM algorithm
has been greatly developed and improved. Many researchers
have come up with different variants of ELM algorithm.
Liang et al. [17] proposed an online sequential ELM (OS-
ELM) algorithm, which could train the data block of either
fixed or unfixed sizes in an incremental quantity. Thus, it
provides a way of utilizing the ELM algorithm to train a
large number of data samples. Rong et al. [18] proposed an
online sequential fuzzy ELM for function approximation and
classification problems. Huang et al. [19] has put forward
the semi-supervised ELM based on manifold regularization
and ELM.

With the development of ELM algorithm, many scholars
have focused on the study of distributed ELM algorithm.
He et al. [20] proposed the parallel ELM (PELM) algorithm
based on MapReduce. Wang et al. [21] put forward the parallel
OS-ELM based on OS-ELM and MapReduce model for train-
ing the incremental data samples in parallel. Xin et al. [22]
came up with ELM* algorithm which has higher efficiency
than PELM.

We can find that there are many matrix operations in
H-ELM framework. Many works have focused on efficient par-
allel matrix multiplication. Among traditional parallel matrix
multiplication based on MPI, SUMMA [23] is the most popu-
lar distributed matrix multiplication algorithm. It is obvious
that these methods have the disadvantage that all the data
needs to be resided in the shared memory of the cluster.
Furthermore, these solutions require designing complicated
fault tolerance mechanisms. To solve the low programmabil-
ity of traditional distributed approaches, Schmidt et al. [24]
proposed an approach to integrate R into [25]. However, this
approach still suffers the fault tolerance problems. Recently,
HAMA [26], which is based on Hadoop and MapReduce
model, provides distributed matrix computations. However,
the execution performance of HAMA is not efficient due to
the overhead and disk operations of the MapReduce jobs.
Due to the high computational performance of GPUs, many
researchers from both academia and industry have proposed
GPU-based accelerated matrix operation libraries or algo-
rithms, such as cuBLAS [27] and [28]. Li et al. [29] proposed a
partitioning scheme for SpMV on GPUs and multicore CPUs.
Yang et al. [30] proposed a probabilistic modeling method to
improve the performance of SpMV on GPUs. However, they
are not distributed operation libraries.

III. BACKGROUND

A. ELM Learning Algorithm

During the past decades, many researchers have studied the
universal approximation capability of SLFNs deeply [31], [32].
It is usually assumed that the activation function of the hidden
neurons is continuous and differentiable, and the parameters of
hidden neurons need to be adjusted during training. However,
it has been proven that randomly generated networks with the

outputs being solved by least mean square are able to maintain
the universal approximation capability [6], [7].

ELM was put forward for “generalized” SLFNs, where the
hidden layer does not need to be neuron alike [3], [33]. The
output function of generalized SLFNs with l hidden nodes can
be represented by

fl(x) =
l∑

i=1

βiG(ai, bi, x), x ∈ Rd, βi ∈ Ro (1)

where βi is the output weight of the ith hidden node con-
necting with the output layer, ai is the input weight vector
connected the input layer to the ith hidden node, bi is the
bias weight of the ith hidden node, G(x) denotes the activa-
tion function, d denotes the dimension of the sample and o
denotes the dimension of the label of the sample.

For N arbitrary distinct samples (xi, ti), xi ∈ Rd, ti ∈ Rm, i =
1, . . . , N, where xi is the training data vector, ti represents
the target of each sample. Equation (1) can be expressed
compactly as

Hβ = T (2)

where H is the hidden layer output matrix (randomized
matrix), T is the training data target matrix, β is the output
weight vector. H, T , and β are expressed as

H =
⎡

⎢⎣
G(a1, b1, x1) · · · G(al, bl, x1)

...

G
(
a1 , b1, xN

) · · · G(al, bl, xN)

⎤

⎥⎦

N×l

β =
⎡

⎢⎣
βT

1
...

βT
l

⎤

⎥⎦

l×o

T =
⎡

⎢⎣
tT1
...

tTN

⎤

⎥⎦

N×m

. (3)

Different from traditional learning algorithms, ELM tends to
reach not only the smallest training error but also the smallest
norm of output weights [3]

Minimize : ‖Hβ − T‖2 + ‖β‖. (4)

In the classical implementation of ELM [4], [5], the minimal
norm least square method is used to obtain the output weight
vector

β∗ = H†T (5)

where H† is the Moore–Penrose (MP) generalized inverse of
matrix H. The orthogonal projection method can be efficiently
used to calculate the MP inverse: H† = (HTH)−1HT if HTH is
nonsingular, or HT(HHT)−1 if HHT is nonsingular. According
to the ridge regression theory, it was recommended that a
positive value (1/λ) can be added during the calculation of
the output weights, thus achieving a more stable solution and
better generalization performance. Therefore, we can have

β = HT
(

1

λ
+ HHT

)−1

T. (6)

And the corresponding output function of ELM is

f (x) = h(x)β = h(x)HT
(

1

λ
+ HHT

)−1

T. (7)

CHEN et al.: GPU-ACCELERATED PARALLEL H-ELM ON FLINK FOR BIG DATA 2743

Or we can have

β =
(

1

λ
+ HTH

)−1

HTT (8)

f (x) = h(x)β = h(x)

(
1

λ
+ HHT

)−1

HTT. (9)

Huang et al. [3] demonstrated that the solutions to (6)
and (8) are actually consistent to minimize ||Hβ − T||2 +
λ||β||2, which is the essential target of ELM as mentioned
before. As for big data circumstance, the number of hidden
nodes is much less than that of training samples. According
to the matrix theory, with SVD method, a small matrix HTH
could be calculated instead of the large matrix HHT .

B. ELM-Based Sparse Autoencoder

Representational learning, e.g., stacked autoencoder, is
effective in learning useful features for achieving high gen-
eralization performance [34]. Apart from being used to train
SLFNs, the ELM theory has also been applied to build an
autoencoder for MLP. Autoencoder aims at learning represen-
tations of the input that are robust to small irrelevant changes
in input and always functions as some sort of feature extrac-
tor in a multilayer learning framework [35]. Mathematically,
an autoencoder takes an input vector x, and first maps it to
a higher level representation y through a deterministic map-
ping y = hθ (x) = g(A · x + b), parameterized by θ = {A, b},
where g(·) is the activation function, A is a d × d′ weight
matrix and b is a bias vector. The resulting latent repre-
sentation y is then mapped back to a reconstructed vector
z in the input space z = hθ ′(y) = g(A′ · y + b) with
θ ′ = {A′, b′}.

Tang et al. [8] proposed ELM-based sparse autoencoder.
Through performing �1 optimization, more sparse and com-
pact features of the inputs are generated for the establish-
ment of ELM autoencoder. Unlike the autoencoders (i.e.,
BP-based algorithm) used in traditional DL algorithms, the
input weights of the proposed ELM-based sparse autoen-
coder are established by searching the path back from a
random space. The optimization model of the ELM sparse
autoencoder proposed in [8] can be denoted as the following
equation:

Oβ = argmin
β

{p(β)+ q(β)} (10)

where p(β) = ||Hβ−X||2, and q(β) = ||β||�1 is the �1 penalty
term of the training model.

Beck and Teboulle [36] proposed a fast iterative shrinkage-
thresholding algorithm (FISTA) to solve the problem in (10).
It has been proven that FISTA has a global rate of convergence
which is significantly better, both theoretically and practically,
especially for big data. The pseudo-code of implementing
FISTA for solving ELM-based sparse autoencoder is shown
in Algorithm 1.

C. H-ELM Framework for Deep Learning

Tang et al. [8] proposed an H-ELM framework for
MLPs. The H-ELM training architecture has two separate

Algorithm 1 ELM-Based Sparse Autoencoder Overview

Input: The training dataset matrix X: {(xi)|xi ∈ Rd, i = 1, ..., N};
Hidden node output function: G(ai, bi, x);
The number of hidden nodes: l;
The iteration size: size;
Hidden node matrix V: (ai, bi), i = 1, ..., l;

Output: The hidden weight vector: β;
1: Calculate the hidden layer output matrix H;
2: Calculate the matrix HT H;
3: Calculate the matrix HT X;
4: Calculate the Lipschitz constant γ of the the gradient of smooth

convex function ∇p depends on the maximum eigenvalue of
HT H;

5: y1 ← β0 ∈ Rn and t1 ← 1;
6: for (i = 0; i ≤ size; i++) do
7: Calculate βk using Equation (11) and Equation (12):

βk ← pL(yk)← Tα

(
yk − 2

1

γ
HT Hyk + 2

1

γ
HT X

)
; (11)

Tα(x)← (|β| − α)+ sgn(β), α← λ

γ
(12)

8: Calculate tk+1 using Equation (13):

tk+1 ←
1+

√
1+ 4t2k
2

(13)

9: Calculate yk+1 using Equation (14):

yk+1 ← βk +
(

tk − 1

tk+1

)
(βk − βk−1) (14)

10: end for
11: return βk.

parts: 1) unsupervised hierarchical feature representation and
2) supervised feature classification. For the former phase, the
ELM-Based sparse autoencoder described in Section III-B is
performed to extract multilayer sparse features of the input
data. While for the latter one, the original ELM algorithm is
used for making the final decision.

During each forward feature representation layer, the input
raw data should be first transformed into an ELM random
feature space, which can help to exploit hidden informa-
tion among training samples. Then, a multilayer unsupervised
learning is performed to eventually obtain the high-level
sparse features by the ELM-Based sparse autoencoder algo-
rithm. Mathematically, the output of each hidden layer can be
represented as

Oi = G(Oi−1 × βi−1) (15)

where Oi is the output of the ith layer, Oi−1 is the output of the
(i−1)th layer, G(·) denotes the activation function of the hid-
den layers, and β represents the output weights of the (i−1)th
hidden layer. Unlike the existing DL frameworks [37], where
all the hidden layers are put together as a whole system, each
hidden layer of H-ELM is an independent module, and func-
tions as a separated feature extractor. Once the feature of the
previous hidden layer is extracted, the weights or parameters
of the current hidden layer will be fixed, and do not need to
be fine-tuned.

2744 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 47, NO. 10, OCTOBER 2017

TABLE I
PARALLELIZATION SUBOPERATIONS

Algorithm 2 H-ELM Framework for Training

Input: The training dataset matrix X: {(xi)|xi ∈ Rd, i = 1, ..., N};
The number of hidden layer for sparse autoencoder: m;

Output: Output weight vector of each layer: βi;
1: Randomly generate hidden node matrix for each layer for sparse

autoencoder Vi, i = 1, ..., m;
2: Randomly generate hidden node matrix for original ELM Vm+1;

3: O0 ← X;
4: for (i = 0; i < m; i++) do
5: Calculate hidden weight vector βi by Algorithm 1 using Oi−1

and Vi as its parameters;
6: Oi ← Oi−1 × βi;
7: end for
8: Calculate output weight vector βm+1 by Equation (8) using Om

and Vm as its parameters;
9: return βi, i = 1, ..., m+ 1.

After multilayer unsupervised feature learning, the resul-
tant outputs of the Kth layer OK , are viewed as the high-level
features extracted from the input data. When used for clas-
sification, they are randomly perturbed, and then utilized as
the inputs of the supervised ELM to obtain the final results of
the whole network. The overall algorithm of training H-ELM
framework is shown in Algorithm 2.

IV. PARALLEL H-ELM FRAMEWORK WITH FLINK

In this section, we parallelize the training process and
prediction process of H-ELM framework on Flink named as
PH-ELM, taking advantage of the distributed in-memory com-
puting platform. Flink is designed as a popular processing
platform that is suitable for big data mining. The key program-
ming model of Flink is the abstract distributed DST, which is
similar with resilient distributed DST [13]. DST represents
a collection of distributed items, which can be manipulated
across many computing nodes concurrently. Programmers can
define a series of user-defined actions (e.g., map, reduce, join,
and group) for the DSTs. Due to the fact that Spark and
Flink are quite similar, our design can be easily integrated
into Spark.

A. Selective Parallelization

Among many suboperations in training process described in
Algorithms 1 and 2 and suboperations in prediction process,
which operations should we parallelize? A naive approach

is to parallelize all the operations. However, some opera-
tions run more quickly on a single machine rather than on
multiple machines in parallel. That is because the overhead
incurred by using distributed computing exceeds gains made
by parallelizing the task. Therefore, simple tasks where the
input data is very small are carried out faster on a single
machine. Thus, we divide the suboperations into two groups:
1) those to be parallelized and 2) those to be run in a single
machine.

As discussed in Section III, there are four subprocesses in
H-ELM framework: 1) sparse autoencoder in training process
(SAT); 2) original ELM in training process (OET); 3) sparse
autoencoder in prediction process (SAP); and 4) original ELM
in prediction process (OEP). We go through the execution pro-
cess of H-ELM framework to select the suboperations which
contain large-scale inputs.

For processing large-scale DSTs, N is very large, while l,
d is small (N is the number of input data samples; d is the
dimension of input data samples; and l is the number of hidden
nodes). HTH is an l× l matrix, HT is an l×N matrix, H is an
N × l matrix, while O is an N × m matrix. The computation
cost of calculation shown in lines 5–10 of Algorithm 1 is
small. In addition, after the calculation of HTH and HTT , the
computation cost of the line 3 of (8) is also small. Therefore,
we implement these operations on a single machine.

Through deep analysis, all the suboperations of H-ELM
framework which are required to be parallelized are listed
in Table I. These suboperations can be divided into three
types: 1) calculation of H; 2) multiplication of HT and another
large matrix; and 3) multiplication of a large matrix and small
matrix β.

B. PH-ELM Overview

According to the three types of suboperations presented
above, we have proposed three basic parallel algorithms on
Flink and adopted a series of optimizations to improve the
performance. The parallel training process and prediction
process of H-ELM are based on these three basic paral-
lel algorithms: 1) cache-based parallel hidden layer output
matrix (CPHOM); 2) cache-based parallel β matrix multipli-
cation (CPBMM); and 3) adaptive transpose hidden matrix
multiplication (ATHMM).

The workflow of PH-ELM is as presented in Fig. 1. During
PH-ELM, the executions of both sparse autoencoder layers

CHEN et al.: GPU-ACCELERATED PARALLEL H-ELM ON FLINK FOR BIG DATA 2745

Fig. 1. PH-ELM overview.

and the original ELM layer are parallelized on Flink. Before
the training process, the data to be processed is stored in
HDFS at first. Then it is loaded into Flink’s distributed mem-
ory system as a DST object. In the meantime, the hidden node
parameters of all the autoencoder layers and the original ELM
layer are generated randomly. Suppose that there are m sparse
autoencoder layers. Through our proposed parallel H-ELM
framework which are based on our proposed three basic algo-
rithms, hidden weight vectors βi,...,m of all autoencoder layers
and βm+1 of the original ELM layer are calculated. These hid-
den weight vectors are stored in Flink’s distributed memory
system as DST objects. They can be also written into HDFS.

During the prediction process, the label of the data to be
predicted is calculated by the hidden weight vectors βi,...,m+1
and the randomly generated hidden node parameters in a
forward way.

C. Implementation Details of Basic Parallel Algorithms

1) Adaptive Partition Scheme and Storage Formats:
Minimizing the volume of data exchanged between nodes is
important to design efficient distributed algorithms. Generally
speaking, there are two basic types of strategies for partition-
ing a matrix, which are based on submatrices and rows. A
row may be split into different blocks using the strategies
based on submatrices, leading to the need for accumulating
computing results from different workers. Actually, the com-
munication and synchronization among nodes are costly in
the cluster computing environment. Therefor, partitioning the
matrices based on submatrices will bring high overhead so
that it is not appropriate in big data environment. On the con-
trary, a row does not need to be split into different blocks in
rows-based strategies. The accumulation of intermedia results
can be calculated locally in one worker so that there is no
need of shuffling the intermedia results across different nodes.
According to the above analysis, the best choice is to partition
the matrix based on rows so that the multiplication of every
row of the first matrix and the column of the second matrix
is executed as a whole to decrease the overhead caused by
shuffle phase. However, if the row of the first matrix is so

large (e.g., 5G and 20G), it should be partitioned into different
blocks.

According to the above analysis, we propose rows-based
format named as rows based DST (RDST) and columns-based
format named as CDST if the rows do not need to be split.
During RDST, the matrix is partitioned by rows, and each
row is expressed by the pair with row index as its key and a
vector as its value. While during CDST, the matrix is par-
titioned by columns and each column takes column index
as its key and a vector as its value. To further improve the
performance, we can combine several rows or columns into
a group, which are named as blocked RDST (BRDST) or
blocked CDST (BCDST). If the content of each row is too
large, it then needs to be split. Therefore, a split rows-based
format named as split rows based DST (SRDST) and a split
columns-based format named as SCDST are proposed. RDST,
BRDST, and SRDST are presented in Fig. 2. All these for-
mats are based on Flink’s abstract model DST to form the
distributed in-memory DSTs.

2) Cache-Based Parallel Hidden Layer Output Matrix:
In the calculation of the matrix H, the naive method is
to join matrix elements with parameters of the hidden
nodes in the Map and Shuffle stage, and then execute
G(ai, bi, x) in the Reduce stage. However, the Shuffle phase
of this method involves large-scale communication overhead.
Generally speaking, the parameters (wi, bi) of the hidden
nodes are small. CPHOM utilizes the fact that the small DST
can fit into a machine’s main memory, and can be distributed to
all the Mappers by the distributed cache functionality of Flink.
The advantage of the small DST being available in Mappers is
that, during the calculation of H, the execution of G(ai, bi, x)
can be done inside the Mappers, and the Shuffle phase can be
omitted, thus greatly improving the performance.

Algorithm 3 provides the pseudo code of calculating the
hidden layer output matrix. The input DST is stored in the
Flink’s distributed cache as a DST object M in a sequence
of <key, value> pairs, each of which represents a sample in
the DSTs, where key represents the index of the sample and
value represents the content of the sample. The hidden param-
eters (wi, bi) of the hidden nodes are generated and then are

2746 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 47, NO. 10, OCTOBER 2017

(a) (b)

Fig. 2. Proposed format. (a) RDST and BRDST. (b) SRDST.

Algorithm 3 CPHOM Algorithm
Input: A distributed DST object which contains a sequence of pairs

in the form of < index, sample > pair, where the the index is
the key which represents the index of the sample, sample is the
value which represents the content of the sample.

Output: < key, hValue >: key is the index of the content in the
hidden output matrix, hValue represents the content in the hidden
output matrix.

1: CPHOM(DataSet < index, sample > M) //main function
2: Randomly generate the hidden node parameters (ai, bi);
3: Create DST object P from (ai, bi);
4: Set P as a Broadcast Variable;
5: H← M.map(new CPHOMMap().withBroadcastSet(P)

.groupBy(0);
6: return H.
7:
8: CPHOMMap(< index, sample >) //map function
9: Init h

10: (x, t)← parse(sample)
11: for (i = 0; i ≤ l; i++) do
12: h← G(ai, bi, x);
13: if partition HT by rows then
14: return (i, h);
15: else
16: Get blockIndex from i;
17: key← blockIndex+′,′ +i;
18: return (key, h);
19: end if
20: end for

created as a DST object P. We define a Map function named
as CPHOMMap for DST M with P as its broadcast variable.
Therefore, the hidden parameters are distributed to the nodes
of the cluster by the distributed cache functionality of Flink.
In the CPHOMMap function, G(ai, bi, x) is executed for each
sample.

As discussed in Section IV-C1, to improve the performance
of the matrix multiplication, the best choice is to partition
the matrix HT by rows. That is to say, we need to parti-
tion the matrix H by columns. To partition the matrix HT

in RDST format, the output of the Map function will be
<colIndex, hValue>, where colIndex is the key which rep-
resents the column index, hValue represents one column. To
partition the matrix HT to BRDST format, the output of the

Map function will be <blockID+colIndex, hValue>. After the
Mapper, groupBy function is executed to partition the matrix
to the corresponding format.

3) Cache-Based Parallel β Matrix Multiplication: To cal-
culate the multiplication of a large matrix and the small matrix
β, such as Oi−1βi and Hmβm, a cache-based parallel β matrix
multiplication named as CPBMM algorithm is proposed. In
general, matrix-matrix multiplication is very expensive. A
standard, yet naive way of multiplying two matrices A and
B in MapReduce is to join the corresponding elements of A
and B together at first. And then the joined pair is multiplied
in Mappers. After that, a Shuffle phase and a Reduce phase
are executed to sum the intermediate results. This naive algo-
rithm is very inefficient since it generates huge communication
overhead and occupies huge storage spaces. Fortunately, when
one of the matrices is very small, we can distribute one matrix
using the distributed cache functionality provided by Flink.

As for the multiplication of a large matrix and small matrix
β as presented in Table I, the content of rows are generally
small. Therefore, we can partition the large matrix by rows in
the form of RDST or BRDST. Take RDST as a example, a Map
function is defined which takes the pair <rowIndex, vector>
as its input. The user-defined Map function is employed to the
RDST object. During each Mapper, the pair is multiplied by
all the columns of the β.

4) Adaptive Transpose Hidden Matrix Multiplication: In
terms of the large matrix, large matrix multiplication, such as
Hi

THi, Hi
TOi−1, Hm

THm, and Hm
TT as presented in Table I,

an adaptive algorithm is proposed. Let us take A × B as an
example. If one of these two matrices is smaller than a thresh-
old so that one matrix is appropriate to be stored in a single
computer node, CPBMM algorithm can be utilized. While,
if these two matrices are so large that it is inappropriate to
cache them in a single node, these two matrices are needed
to be partitioned. As discussed in Section IV-C1, the best
choice is to partition A by rows as the RDST format and
B by columns as the CDST format. To further improve the
performance, we can combine several rows of A into a group
(BRDST format), and combine several columns of B into a
group (BCDST format). Let us take RDST and CDST as an
example. First, each row of A is joined with all the columns of

CHEN et al.: GPU-ACCELERATED PARALLEL H-ELM ON FLINK FOR BIG DATA 2747

(a) (b)

Fig. 3. GFlink architecture. (a) Architecture of a work node. (b) Heterogeneous task management.

B. After that, the user-defined Mappers are invoked to multiply
the row vector of A and the column vector B.

However, if the width of A is so large that it is inappro-
priate to be processed in a single Mapper, we need to split
each row of A into blocks. SBDST and SCDST format can
be utilized to deal with this situation. First, the corresponding
splits of A and B are joined. Then, the user-defined Mappers
are used to conduct the vector multiplication. After that, an
extra Reduce phase is needed to sum up the intermediate
results.

V. GPU-ACCELERATED H-ELM FRAMEWORK

A. Combination of Flink and GPUs

As we know, CUDA kernels running on GPUs could only
be invoked by host applications or libraries programmed by
C/C++ or Python. However, the tasks of Flink are exe-
cuted in Java virtual machines (JVMs). Therefore, to integrate
GPUs into the existing architecture of Flink, the first problem
to be solved is to provide an efficient strategy for com-
munication between JVM and GPUs. A number of issues
complicate the efficient communication strategy. First, CPUs
and GPUs have separate memory spaces, requiring explicit
data transfers between CPU and GPU memory. What is worse,
during the classical implementations of CUDA programming
model, data transfers from the host to GPUs are in the
form of buffers. The native solution is to transform the JVM
objects to buffers manually, which decreases the performance
greatly.

1) Architecture: To overcome the challenges described
above, we designed the strategy for combining Flink and GPU
carefully. It is an extension of our previous work [16]. Our
architecture is based on Flink’s cluster computing environ-
ment, such as HDFS and job manager. Java native interface
(JNI) is utilized to communicate between JVM and GPUs and
invoke the CUDA kernels in work nodes.

Fig. 3(a) shows the architecture of a work node. Flink com-
municates with GPUs by calling JAVA interfaces. While, the
JAVA interfaces communicate with CUDA host which is pro-
grammed by C/C++ through JNI. CUDA host controls the
management of GPUs and invokes CUDA kernels to execute

operations on GPUs. Fig. 3(b) shows the heterogeneous task
management for hybrid CPUs and GPUs. During the pro-
gramming model of GPGPU, the CPU and GPU work in
master–slave mode, with the CPU as master and the GPU
as slave. Part of the task can be assigned and executed on the
CPU in parallel on the original task slots provided by Flink.
The rest of the task can be assigned and be executed on the
GPU in parallel with support from the CPU on the GPU task
slots.

2) Memory Mapping Scheme: A memory mapping scheme
is utilized to avoid manual transformation from JVM objects to
buffers, thus improving the performance. We use the fact that,
the Tuple objects in Flink are stored in the cache of JVM in
a sequential way. During our scheme, we transfer the buffers
in JVM in raw bytes to the device memory of GPUs by JNI
without any modifications. After that, a user-defined Struct
pointer according to the definition of Tuple can be utilized
to indicate the content of a Tuple as the code presented as
follows:
1 # pragma pack (1)
2 t y p e d e f s t r u c t P o i n t {
3 long x ;
4 double y ;
5 } ;
6

7 P o i n t ∗ p t r ;
8 long p o i n t _ x = p t r −>x ;
9 double p o i n t _ y = p t r −>y ;

B. Algorithm Design

CPUs and GPUs have different properties and should take
on computing tasks matching their abilities to obtain the max-
imum benefit. The CPU is good at complexity control and
lowering the latency of computing while the GPUs do well in
high throughput. In other words, various aspects of each task
should be assigned to the CPU and GPU based on their prop-
erties to achieve the effect of “one plus one is larger than two.”

To design efficient algorithms for H-ELM framework on
Flink and GPUs, we need to find out the parts which are
appropriate for being accelerated by GPUs at first. And then,
the corresponding CUDA kernels will be developed. After
that, we need to write programs about transferring the data
to be processed in Flink to GPUs, invoking the kernels by JNI

2748 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 47, NO. 10, OCTOBER 2017

(a) (b)

Fig. 4. Acceleration of CPBMM and ATHMM by GPUs. (a) GCPBMM. (b) GATHMM.

in an asynchronous model, and transferring the results from
GPUs to Flink. Through analyzing the parallel parts of H-ELM
Framework on Flink, we find that the parts which are time-
consuming and requires large-scale computing are those in
Mappers and Reducers. Therefore, these parts are accelerated
by GPUs to improve the performance. While other parts (e.g.,
join and group) are in need of large-scale complexity con-
trol and memory operations, thus making them inappropriate
for GPUs.

C. Implementation Details of Acceleration

1) Acceleration of CPHOM by GPUs: Through analyzing
the CPHOM algorithms, we find that the time-consuming sub-
process is to apply G(ai, bi, x) execution for each sample as
described in Algorithm 3. As GPUs can process many items
concurrently, the mapPartition function, which is similar to
Map function, but runs separately on each partition of the
DST, is utilized in our implementation.

The GPU-accelerated CPHOM algorithm is as shown in
Algorithm 4. First, we check if there is a free GPU or not. If
there are no appropriate GPUs, Map function is then adopted
to execute the operations on CPUs. If there are appropriate
GPUs, a GPU is selected and marked as busy. Then the buffers
to be processed are transferred to GPUs and the cuCPHOM
kernel is invoked. After the executions are finished, the con-
tents are transferred from GPUs to the main memory. Lastly,
the selected GPU is released.

2) Acceleration of CPBMM by GPUs: In terms of CPBMM
algorithm, we find that suboperation which is the most time-
consuming and appropriate for being accelerated by GPUs is
the multiplication of submatrices and hidden matrix β. The
procedure of accelerating CPBMM algorithm by GPUs is as
shown in Fig. 4. The large matrix is stored in RDST. First,
matrix β is broadcasted to all the work nodes in the cluster.
Then the map phase is invoked. During the map phase, map-
Partiton function provided by Flink is implemented, which is
similar to Map function. By this means, each partition is pro-
cessed together without the need of processing elements one
by one. The CUDA kernel utilized to multiply the submatrices
and β is cublasCgemm interface in cuBLAS [27].

As shown in Fig. 4(a), we take A×B as an example. where
A is a large matrix and B represents the matrix β. Suppose that

Algorithm 4 Accelerate CPHOM Algorithm by GPUs
Input: A distributed DataSet which contains a sequence of

pairs in the form of < index, sample > pair, where the
index is the key which represents the index of the sample,
sample is the value which represents the content of the
sample.
Distributed cache: parameters of the hidden nodes (ai, bi).

Output: < key, hValue >: hValue represents one value in the
hidden output matrix.

1: MapPartition (list(index, sample)) //map function
2: if There is no free GPU then
3: Call the Map function as described in Algorithm 3 for

all the elements in the list;
4: return ;
5: end if
6: Select an appropriate GPU; //need lock
7: Transfer the buffers in the list to the selected GPU;
8: Transfer the buffers of hidden nodes to the selected GPU;

9: Invoke cuCPHOM kernel to process the data by GPU;
10: Transfer the partial resulted vector valueList to main

memory;
11: Release the selected GPU; //need lock
12: Convert and insert valueList to pU;
13: return pU;

there are three workers in the cluster: 1) worker0 with 1 CPU
and 1 GPU; 2) worker1 with 1 CPU; and 3) worker2 with
1 CPU and 2 GPUs. First, we partition the sparse matrix to
RDST format. Suppose that there are six partitions (e.g., A0,
A1, A2, A3, A4, and A5). During the execution, the matrix B is
broadcasted to every worker in the cluster. Each partition alike
to a submatrix of the huge matrix is processed in mapPartiton
function by a task. In terms of our example, 2 tasks in worker0,
1 task in worker1, and 3 tasks in worker2 are invoked by
the master. As for the executions on GPUs, our implemented
kernel is invoked to execute matrix multiplication in one GPU.

3) Acceleration of ATHMM by GPUs: In terms of
ATHMM, if one row of the matrix is not very large, the first
matrix is partitioned by RDST format or BRDST format and

CHEN et al.: GPU-ACCELERATED PARALLEL H-ELM ON FLINK FOR BIG DATA 2749

TABLE II
SYMBOLS OF COST MODEL

the second matrix is partitioned by CDST or BCDST for-
mat. We take this format as an example and the work flow
is as described in Fig. 4(b). For A × B, suppose that A has
2 rows and B has 2 columns. Suppose that there are two
workers in the cluster: 1) worker0 with 1 CPU and 1 GPU
and 2) worker1 with 1 CPU and 1 GPU. Like acceleration of
CPBMM by GPUs (GCPBMM), to multiply two submatrices
in GPUs, cublasCgemm interface is adopted.

The rows in the first matrix with the same indexes as the
columns in the second matrix are joined together and are
grouped into four groups. Second, these groups are processed
in mapPartiton function. In terms of our example, 2 tasks in
worker0 and 1 task in worker1 are invoked by the master.
Then, A0 × B0 is executed in CPU0 in worker0, A0 × B1 in
GPU0 in worker0, A1×B0 in CPU0 in worker1, and A1×B1
in GPU0 in worker1, respectively. Then all the partial results
are shuffled across networks and accumulated together as a
new matrix by reduceByKey procedure.

VI. ALGORITHMS ANALYSIS

In this section, we build a brief time cost model to evaluate
our proposed algorithms. The symbols used in the cost model
are defined in Table II.

A. ATHMM Analysis

Suppose that the rows of the first matrix are divided into
r blocks, the columns of the first matrix are divided into s
blocks, and the columns of the second matrix are divided into
t blocks. We take Hi

THi as an example. As Fig. 4(b) shows,
the cost of the whole procedure of ATHMM algorithm can be
divided into four steps.

1) Partition Stage: During the partition stage, each block
in matrix Hi

T will be emitted t times, while each block
in matrix Hi will be emitted r times, thus the cost can be
denoted as IOM(((t+r))×|Hi|) = IOM((t+r)×N× li).

2) Join Stage: During the join stage, only one matrix (Hi) is
shuffled. through the network. The cost spending on the
network communication can be derived as Network(r×
|Hi|) = Network(r × N × li).

3) Map Stage: Once two related submatrices are gath-
ered together by fetching from the network and reading
locally, the matrix multiplication would be conducted
locally. It is clear that the computing cost of this step is
Compute(N × li × N).

4) Reduce Stage: Finally, during the Reduce stage, the
related submatrices are fetched through network, and
then s − 1 addition is performed. The cost is close to
Network(s× li × N).

The cost model of ATHMM algorithm is total cost of these
four steps

Cost(ATHMM) = IOM((t + r)× N × li)

+ Network(r × N × li)

+ Compute(N × li × N)

+ Network(s× li × N). (16)

B. CPHOM Analysis

The total execution time of CPHOM consists two parts:
1) broadcasting the hidden parameters (wi, bi) of the hidden
nodes and 2) the conducting G(ai, bi, x) execution in all the
nodes. The cost model of CPHOM algorithm can be derived as

Cost(CPHOM) = Network(2× n× li−1 × li)

+ Compute(N × li−1 × li) (17)

where l0 is equal to the dimension of samples d.

C. CPBMM Analysis

Like CPHOM, first, the matrix β is broadcasted to all the
computing nodes in the cluster. Then the submatrix of the
first large matrix is multiplied with β in the computing nodes
locally. As for the execution of Oβ and Hβ, it is clearly that
the computing cost of the second step is O(N× li× li+1). The
cost model of CPBMM algorithm can be derived as

Cost(CPBMM) = Network(n× li × li+1)

+ Compute(N × li × li+1). (18)

D. GPU Acceleration Analysis

During our scheme, GPU is only utilized to accelerate the
Compute stage. As for the GPU execution, the data is first
transferred from the main memory to the device memory of
GPUs before being processed in the GPUs. After that, the
results are transferred from GPUs to the main memory. The
execution time of a GPU can be denoted as

Tg = Tgm_data + Tgp + Tgm_result + Tgf (19)

where Tg represents the total execution time on a GPU,
Tgm_data refers to the moving data buffers between the CPU
and the GPU, Tgp represents the real execution time on a GPU,
Tgm_result represents the moving results from GPUs to the main
memory, while Tgf denotes the fixed time for invoking GPU.

E. Overall Analysis

When processing large-scale DSTs, N is much larger than
other parameters. Through analyzing these three basic algo-
rithms and suboperations, we can find that the bottleneck of
PH-ELM and GPH-ELM is ATHMM algorithm (including
Hi

THi, Hi
TOi−1, Hm

THm, and Hm
TT). The number of hid-

den nodes has an effect on the execution of Hi
THi, Hi

TOi−1,
and Hm

TT . From the cost model of ATHMM, the execution

2750 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 47, NO. 10, OCTOBER 2017

(a) (b) (c)

Fig. 5. Performance results overview. (a) Performance speedup of small DSTs. (b) Performance speedup of medium DSTs. (c) Average running time of
large-scale DSTs.

TABLE III
DSTS FROM THE UCI MACHINE LEARNING REPOSITORY

time of ATHMM is linearly with the number of hidden nodes
theoretically. The dimension of samples has an impact on the
execution of H and Hi

TOi−1. The influence of dimension is
smaller than that of the number of hidden nodes. However, the
dimension of labels merely affect the performance of Hm

TT .
Due to the fact that one row of matrix T only contains one
element, the dimension of labels has little influence on the
overall performance.

VII. EXPERIMENTS

In this section, some experiments are conducted to evaluate
the performance of PH-ELM and GPH-ELM. First, a series of
experiments are conducted to evaluate the execution efficiency
by comparing them with the original H-ELM framework in
terms of the average running time and speedup. Then, for
comparison, we also evaluate the performance of other PELM
algorithms. Lastly, the performance of our three basic parallel
algorithms, and the effects of the acceleration by GPUs are
evaluated in detail by comparing them with other distributed
matrix algorithms.

A. Experimental Setup

All the experiments are performed on a Flink cluster, in
which each test computer in the cluster is equipped with one
Intel Corei5-4590 CPU which contains four cores running at
3.30 GHz, 12 GB memory and 2 NVIDIA GeForce GTX 750
GPUs. Each GPU has 512 CUDA processor cores, working on
1020 MHz clock and 1 GB global memory with 128 bits bus.
As for the software, the test machine runs in the UBUNTU
14.04, NVIDIA CUDA toolkit 7.5 and Flink 0.10.1. The DSTs
used in the experiments are from the UCI machine learning
repository as shown in Table III.

B. Results Overview

This section presents the results of the overall perfor-
mance of our proposed PH-ELM and GPH-ELM algorithms.

The performance speedup on small DSTs is presented in
Fig. 5(a). For a clear observation of the results, three groups
of DST are utilized: 1) small data samples; 2) medium data
samples; and 3) large-scale data samples. Four sparse encoder
layers and the original ELM layer are utilized. The number of
hidden nodes of all layers is set as 1000.

During the experiment for small data samples, the number
of instances of all DSTs is 50 000 created by replicating the
original DSTs and the cluster contains ten computing nodes.
Both PH-ELM and GH-ELM do not get an ideal speedup. That
is because, in terms of small DSTs, the communication over-
head in PH-ELM and GH-ELM greatly affects the efficiency
of the parallelization. The running time of serial executions
in PH-ELM and GPH-ELM also occupies a large proportion.
Moreover, there also exists a fixed time for the application
submission and configuration, it is reasonable that the whole
speedup of processing small DSTs is small. Fig. 5(b) presents
the speedup of the medium DST with 400 000 instances. We
can see that the speedup of all these four DSTs is higher than
the speedup with small data samples. The speedup of PH-ELM
achieves almost 4×, while GPH-ELM achieves almost 9×.

Fig. 5(c) shows the average running time of large-scale
training samples with 2 000 000. H-ELM even fails to finish
because of limited memory. Therefore, we cannot show the
speedup of PH-ELM and GH-ELM. From this figure, we can
find that the average running time of GISETTE DST is longer
than that of other DSTs. That is because, the dimension of
GISETTE DST is the largest. However, the running time of
GISETTE DST is not much larger than that of other DSTs.
That is because, as discussed in Section VI, different dimen-
sions of samples just affect parts of the execution of one hidden
layer.

C. Results Under Different Circumstances

1) Results for Different Sizes of Records: Fig. 6(a) illus-
trates the average running time of MINST. The number of
samples is increased from 1 000 000 to 5 000 000 gradually.
Four sparse encoder layers and the original ELM layer are
utilized, and the number of hidden nodes of all layers is set
as 1000. H-ELM even fails to finish because of limited mem-
ory. From this figure, we can find that GPH-ELM has higher
speedup (about 3× to 4×) over PH-ELM than processing
small DSTs. As for PH-ELM and GPH-ELM, the running time
increases faster than the increase of the number of instances.

CHEN et al.: GPU-ACCELERATED PARALLEL H-ELM ON FLINK FOR BIG DATA 2751

(a) (b) (c)

Fig. 6. Performance results under different circumstances. Average running time under different: (a) data sizes, (b) numbers of slave nodes, and (c) numbers
of hidden nodes.

2) Results for Different Numbers of Slave Nodes: In this
case, the effects of our proposed PH-ELM and GPH-ELM
under different numbers of slave nodes are evaluated. The
number of data samples is 5 000 000, both the number of
the hidden nodes of the sparse autoencoder layers and the
original ELM layer are set as 1000. The number of slave
nodes is increased from 10 to 50. Fig. 6(b) illustrates the
average running time under different numbers of slave nodes.
From this figure, we can find that the average running time
of PH-ELM and GPH-ELM algorithm decreases basically in
a linear manner with the increase of the number of slave
nodes. It demonstrates that our proposed algorithms have good
scalability.

3) Results for Different Numbers of Hidden Nodes: In this
section, the effects of different numbers of the hidden nodes
on the test results are examined. The number of slave mode
computers is set as 10 and the size of records is 1 000 000.
The number of hidden nodes of all layers is increased from
1000 to 5000 gradually. For different numbers of the hidden
nodes, the time consumed by PH-ELM algorithm and GPH-
ELM algorithm are shown in Fig. 6(c). We can see that the
consumed time almost grows linearly along with the increase
of the number of the hidden nodes, which is in accord with
the analysis in Section VI.

4) Comparison Results for Other Parallel ELM Algorithms:
To the best of our knowledge, our proposed algorithm is
the first kind of distributed versions of H-ELM. Therefore,
in this section, we compare the performance of the original
ELM layer of our proposed PH-ELM and GPH-ELM with
other PELM algorithms, including PELM [20] and ELM* [22]
which are both built on top of Hadoop. The number of hidden
is 200, the cluster has ten slave mode computers and each DST
contains 1 000 000 samples. From the comparison results as
presented in Fig. 7, we can find that our proposed algorithms
outperform both PELM and ELM*. That is because, every
MapReduce in Hadoop needs to interact with other stages
through the HDFS, which costs much time for disk I/O oper-
ations. It can be estimated that the speedup of our proposed
approaches will increase as the number of MapReduce stage
increases. As we know, many MapReduce stages are required
in H-ELM. That is an important reason why we choose Flink
as the platform rather than Hadoop. Moreover, PELM and
ELM* cannot utilize the high computing power of GPUs in
the cluster.

Fig. 7. Performance comparison with PELM and ELM*.

Fig. 8. Performance comparison of CPBMM and GCPBMM.

D. Results for Basic Parallel Algorithms

In this section, we first evaluate the results of our CPBMM,
ATHMM, GCPBMM, and acceleration of ATHMM by GPUs
(GATHMM) on a Flink cluster with 20 computing nodes
by comparing them with other distributed matrix systems,
including SUMMA and HAMA. SUMMA is a popular MPI-
based matrix computation algorithm, while HAMA is a famous
matrix computation library based on Hadoop. MINST DST is
utilized. As for the CPBMM algorithm, Hmβm is taken as an
example, where the number of hidden nodes is set as 1000.
While in ATHMM algorithm, HTH is implemented, where
BRDST is utilized for HT and BCDST is utilized for H. The
number of records increases from 50 000 to 250 000, and the
number of the hidden nodes is 1000.

2752 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 47, NO. 10, OCTOBER 2017

Fig. 9. Performance comparison of ATHMM and GATHMM.

Fig. 10. Performance comparison of different GPUs.

Fig. 8 illustrates the comparison of CPBMM and GCPBMM
with SUMMA and HAMA, while Fig. 9 presents the com-
parison results of ATHMM and GATHMM. We find that the
performance of CPBMM and ATHMM are comparable to
SUMMA. Our GPU-accelerated algorithms GCPBMM and
GATHMM are much faster than SUMMA. It can also be
seen that the our proposed algorithms are much faster than
HAMA. That is because, compared with our proposed algo-
rithms, HAMA has many network synchronization operations
and I/O overhead.

Then, we evaluate the results of our ATHMM and
GATHMM algorithms on different GPUs (including NVIDIA
C2050, NVIDIA GeForce GTX 750, and NVIDIA K40) on a
single node. The number of hidden nodes is set as 1000, and
the number of records is 10 000. Fig. 10 shows that the execu-
tions on K40 has the highest speedup, while the performance
on C2050 and GTX 750 is almost the same. Therefore, our
GPU-accelerated algorithms will get a higher speedup if the
GTX 750 is replaced with K40.

VIII. CONCLUSION

The proposed H-ELM has adopted a novel MLP training
scheme based on the universal approximation capability of
the original ELM, which achieves high-level representation
with layerwise encoding, and outperforms the original ELM
in various simulations. However, the capability of utilizing H-
ELM to process large-scale DSTs is an urgent and challenging
issue confronting researchers. This paper has proposed an effi-
cient parallel algorithm based on Flink named as PH-ELM,

benefiting from the high performance, good reliability, and
expandability of in-memory cluster computing. During PH-
ELM, several optimizations have been adopted to improve the
efficiency and scalability of parallelism. To further improve
the performance, the existing high computing power of GPUs
is leveraged to accelerate the PH-ELM. Experiments have
demonstrated that our proposed PH-ELM and GPH-ELM are
able to process large-scale DSTs, with excellent performance
in speedup and scalability.

REFERENCES

[1] J. Kim and W. Lee, “Stochastic decision making for adaptive crowd-
sourcing in medical big-data platforms,” IEEE Trans. Syst., Man,
Cybern., Syst., vol. 45, no. 11, pp. 1471–1476, Nov. 2015.

[2] L. Liu and H. Jia, “Trust evaluation via large-scale complex service-
oriented online social networks,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 45, no. 11, pp. 1402–1412, Nov. 2015.

[3] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 42, no. 2, pp. 513–529, Apr. 2012.

[4] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
A new learning scheme of feedforward neural networks,” in Proc.
IEEE Int. Joint Conf. Neural Netw., vol. 2. Budapest, Hungary, 2004,
pp. 985–990.

[5] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: Theory and applications,” Neurocomputing, vol. 70, nos. 1–3,
pp. 489–501, 2006.

[6] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using
incremental constructive feedforward networks with random hidden
nodes,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 879–892, Jul. 2006.

[7] G.-B. Huang, M.-B. Li, L. Chen, and C.-K. Siew, “Incremental extreme
learning machine with fully complex hidden nodes,” Neurocomputing,
vol. 71, nos. 4–6, pp. 576–583, 2008.

[8] J. Tang, C. Deng, and G.-B. Huang, “Extreme learning machine for
multilayer perceptron,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 4, pp. 809–821, Apr. 2016.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[10] Y. Xun, J. Zhang, and X. Qin, “FiDoop: Parallel mining of frequent item-
sets using mapreduce,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 46,
no. 3, pp. 313–325, Mar. 2016.

[11] W.-P. Ding, C.-T. Lin, M. Prasad, S.-B. Chen, and Z.-J. Guan, “Attribute
equilibrium dominance reduction accelerator (DCCAEDR) based on dis-
tributed coevolutionary cloud and its application in medical records,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 46, no. 3, pp. 384–400,
Mar. 2016.

[12] (2016). Flink Programming Guide. Accessed on Jul. 1, 2016. [Online].
Available: http://flink.apache.org/

[13] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in Proc. 9th USENIX Conf. Netw.
Syst. Design Implement., San Jose, CA, USA, 2012, p. 2.

[14] (2016). Cudnn. Accessed on Jul. 1, 2016. [Online]. Available:
https://developer.nvidia.com/cudnn

[15] A. Coates et al., “Deep learning with COTS HPC systems,” in Proc.
Int. Conf. Mach. Learn., Atlanta, GA, USA, 2013, pp. 1337–1345.

[16] C. Chen, K. Li, A. Ouyang, Z. Tang, and K. Li, “Gflink: An in-memory
computing architecture on heterogeneous CPU-GPU clusters for big
data,” in Proc. Int. Conf. Parallel Process., Philadelphia, PA, USA, 2016,
pp. 542–551.

[17] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan,
“A fast and accurate online sequential learning algorithm for feedforward
networks,” IEEE Trans. Neural Netw., vol. 17, no. 6, pp. 1411–1423,
Nov. 2006.

[18] H.-J. Rong, G.-B. Huang, N. Sundararajan, and P. Saratchandran,
“Online sequential fuzzy extreme learning machine for function approxi-
mation and classification problems,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 39, no. 4, pp. 1067–1072, Aug. 2009.

[19] G. Huang, S. Song, J. N. D. Gupta, and C. Wu, “Semi-supervised and
unsupervised extreme learning machines,” IEEE Trans. Cybern., vol. 44,
no. 12, pp. 2405–2417, Dec. 2014.

[20] Q. He, T. Shang, F. Zhuang, and Z. Shi, “Parallel extreme learn-
ing machine for regression based on MapReduce,” Neurocomputing,
vol. 102, pp. 52–58, Feb. 2013.

CHEN et al.: GPU-ACCELERATED PARALLEL H-ELM ON FLINK FOR BIG DATA 2753

[21] B. Wang, S. Huang, J. Qiu, Y. Liu, and G. Wang, “Parallel online sequen-
tial extreme learning machine based on MapReduce,” Neurocomputing,
vol. 149, pp. 224–232, Feb. 2015.

[22] J. Xin et al., “Elm*: Distributed extreme learning machine with
MapReduce,” World Wide Web, vol. 17, no. 5, pp. 1189–1204, 2014.

[23] R. A. V. D. Geijn and J. Watts, “SUMMA: Scalable universal matrix
multiplication algorithm,” Concurrency Comput. Pract. Exp., vol. 9,
no. 4, p. 255–274, 1997.

[24] D. Schmidt, G. Ostrouchov, W.-C. Chen, and P. Patel, “Tight coupling
of R and distributed linear algebra for high-level programming with
big data,” in Proc. SC Companion High Perform. Comput. Netw. Stor.
Anal. (SCC), Salt Lake City, UT, USA, 2012, pp. 811–815.

[25] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, “ScaLAPACK:
A scalable linear algebra library for distributed memory concurrent com-
puters,” in Proc. 4th Symp. Front. Massively Parallel Comput., McLean,
VA, USA, 1992, pp. 120–127.

[26] S. Seo et al., “HAMA: An efficient matrix computation with the mapre-
duce framework,” in Proc. 2nd Int. Conf. Cloud Comput. CloudCom,
Indianapolis, IN, USA, Nov./Dec. 2010, pp. 721–726.

[27] (2016). Cublas Programming Guide. Accessed on Nov. 1, 2016.
[Online]. Available: http://docs.nvidia.com/cuda/cublas/index.html

[28] (2016). Cusparse Programming Guide. Accessed on Nov. 1, 2016.
[Online]. Available: http://docs.nvidia.com/cuda/cusparse/index.html

[29] K. Li, W. Yang, and K. Li, “Performance analysis and optimization
for SpMV on GPU using probabilistic modeling,” IEEE Trans. Parallel
Distrib. Syst., vol. 26, no. 1, pp. 196–205, Jan. 2015.

[30] W. Yang, K. Li, Z. Mo, and K. Li, “Performance optimization using
partitioned SpMV on GPUs and multicore CPUs,” IEEE Trans. Comput.,
vol. 64, no. 9, pp. 2623–2636, Sep. 2015.

[31] T. Poggio and F. Girosi, “Networks for approximation and learning,”
Proc. IEEE, vol. 78, no. 9, pp. 1481–1497, Sep. 1990.

[32] H. White, Artificial Neural Networks: Approximation and Learning
Theory. Cambridge, MA, USA: Blackwell, 1992.

[33] G.-B. Huang and L. Chen, “Convex incremental extreme learning
machine,” Neurocomputing, vol. 70, nos. 16–18, pp. 3056–3062, 2007.

[34] G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme learn-
ing machines: A review,” Neural Netw., vol. 61, pp. 32–48, Jan. 2015.

[35] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach.
Learn., vol. 2, no. 1, pp. 1–127, 2009.

[36] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[37] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

Cen Chen is currently pursuing the Ph.D. degree in
computer science with Hunan University, Changsha,
China.

He has published several research articles in
international conference and journals of machine
learning algorithms and parallel computing. His
current research interests include parallel and dis-
tributed computing systems and machine learning on
big data.

Kenli Li (SM’15) received the Ph.D. degree in
computer science from the Huazhong University of
Science and Technology, Wuhan, China, in 2003.

He was a Visiting Scholar with the University
of Illinois at Urbana–Champaign, Champaign, IL,
USA, from 2004 to 2005. He is currently a
Full Professor of Computer Science and Technology
with Hunan University, Changsha, China, and the
Deputy Director of the National Supercomputing
Center, Changsha. He has published over 130
research papers in international conferences and

journals, such as the IEEE TRANSACTIONS ON COMPUTERS, the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the Journal of
Parallel and Distributed Computing, ICPP, and CCGrid. His current research
interests include parallel computing, high-performance computing, and grid
and cloud computing.

Dr. Li serves on the editorial board of the IEEE TRANSACTIONS ON

COMPUTERS. He is an outstanding member of CCF.

Aijia Ouyang received the Ph.D. degree in computer
science from Hunan University, Changsha, China, in
2015.

He has published over 20 research papers in
international conference and journals of intelli-
gence algorithms and parallel computing. His current
research interests include parallel computing, cloud
computing, and big data.

Zhuo Tang received the Ph.D. degree in computer
science from the Huazhong University of Science
and Technology, Wuhan, China, in 2008.

He is currently an Associate Professor with
the College of Computer Science and Electronic
Engineering, Hunan University, where he is the
Sub-Dean of the Department of Computing Science.
His current research interests include distributed
computing system, cloud computing, and the parallel
process for big data.

Keqin Li (F’15) received the Ph.D. degree in
computer science from the University of Houston,
Houston, Texas, USA, in 1990.

He is a SUNY Distinguished Professor of
Computer Science. He has published over 470 jour-
nal articles, book chapters, and refereed conference
papers. His current research interests include parallel
computing and high-performance computing, dis-
tributed computing, energy-efficient computing and
communication, heterogeneous computing systems,
cloud computing, big data computing, CPU-GPU

hybrid and cooperative computing, multicore computing, storage and file sys-
tems, wireless communication networks, sensor networks, peer-to-peer file
sharing systems, mobile computing, service computing, Internet of Things,
and cyber-physical systems.

Dr. Li was a recipient of several best paper awards. He is currently
or has served on the editorial boards of the IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS ON

COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, the IEEE
TRANSACTIONS ON SERVICES COMPUTING, and the IEEE TRANSACTIONS

ON SUSTAINABLE COMPUTING.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

