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Abstract—Machine learning (ML) algorithms have been shown to be effective in classifying a broad range of applications in the

Internet traffic. In this paper, we propose algorithms and architectures to realize online traffic classification using flow level features.

First, we develop a traffic classifier based on C4.5 decision tree algorithm and Entropy-MDL (Minimum Description Length)

discretization algorithm. It achieves an overall accuracy of 97.92 percent for classifying eight major applications. Next we propose

approaches to accelerate the classifier on FPGA (Field Programmable Gate Array) and multicore platforms. We optimize the original

classifier by merging it with discretization. Our implementation of this optimized decision tree achieves 7500+ Million Classifications Per

Second (MCPS) on a state-of-the-art FPGA platform and 75-150 MCPS on two state-of-the-art multicore platforms. We also propose a

divide and conquer approach to handle imbalanced decision trees. Our implementation of the divide-and-conquer approach achieves

10,000+ MCPS on a state-of-the-art FPGA platform and 130-340 MCPS on two state-of-the-art multicore platforms. We conduct

extensive experiments on both platforms for various application scenarios to compare the two approaches.

Index Terms—Traffic classification, machine learning, decision tree, multicore, FPGA, high throughput
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1 INTRODUCTION

TRAFFIC classification [1], i.e., detecting the application of
TCP flows, serves as one of the major applications in

the network data plane. It benefits many value-added serv-
ices as well as network security. The rapid growth of the
Internet requires traffic classifiers to support extremely high
throughput of over hundreds of gigabits per second. How-
ever, most of the existing traffic classification engines only
support a few tens of gigabits per second throughput [2];
this makes traffic classification a performance bottleneck
when they are employed in high speed routers.

In general, existing traffic classification approaches can be
categorized into 4 classes: (1) port number based schemes clas-
sify traffic based on transport layer port numbers. Many
applications today assign port numbers dynamically; this
means the port number based approaches are no longer reli-
able. (2)Deep Packet Inspection (DPI) compares the traffic pay-
load with known signatures. Although the DPI based
techniques [3] can achieve the highest accuracy, they incur
long processing latency since the entire payload has to be
examined. (3) heuristic based techniques [4] classify traffic
based on heuristic patterns; compared to other techniques,

the classification accuracy of heuristic based techniques is
relatively low. (4)Machine Learning (ML) techniques, includ-
ing the well known C4.5 decision tree, examine the statistical
properties of the network traffic [5], [6]. ML based techniques
have demonstrated higher classification accuracy than other
approaches [5], [6]; however, extensive study is still required
to select the appropriate set of traffic features that is easy to
use and leads to very high classification accuracy.

FPGAs have been widely used to accelerate various types
of applications [7], [8], [9], [10], [11], [12]. Meanwhile, a new
trend in network applications is to use software accelerators
and virtual machines [13], [14], [15]. State-of-the-art multi-
core processors [16], [17] exploit caches and instruction level
parallelism (ILP) to improve the performance; this makes
multicore processors an attractive platform for high perfor-
mance network applications.

In this paper, we first present two algorithms for Internet
traffic classification based on carefully selected traffic
features. Then we compare the performance of these two
algorithms on FPGA and multicore processors. Our contri-
butions include the following:

� We identify a feature set that achieves high classifica-
tion accuracy through extensive experiments. Our
C4.5 decision tree based classifier built upon this
flow-level feature set can achieve an overall accuracy
of 97.92 percent in classifying eight major network
applications.

� We propose two algorithms to accelerate the pro-
posed traffic classifier. The first algorithm exploits
an optimized decision tree, while the second algo-
rithm exploits divide and conquer technique that
flattens the decision tree into multiple range trees.

� We prototype our approaches on both state-of-the-
art FPGA and AMD/Intel multicore platforms.
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Experimental results for the optimized decision trees
show 7500þ, MCPS throughput on FPGA, and 75-
150 MCPS throughput on multicore platforms.
Experimental results for the divide and conquer
approach show 10000þ, MCPS throughput on
FPGA, and 130-340 MCPS throughput on multicore
platforms.

� We conduct extensive experiments to compare our
proposed approaches for various application scenar-
ios on both FPGA and multicore platforms.

The rest of the paper is organized as follows: Section 2
introduces the related work. Section 3 defines the problem.
We introduce the training of our traffic classification
engines in Section 4. We present the algorithms and archi-
tectures for our classification engines on FPGA and multi-
core processors in Section 5. Section 6 evaluates the
performance and Section 7 concludes this paper.

2 BACKGROUND

In this section, we will introduce the prior work related to
the machine learning based traffic classification in
Section 2.1; we will present existing acceleration techniques
for traffic classification in Section 2.2.

2.1 ML Based Algorithms for Traffic Classification

ML based techniques [1], [5], [6] only explore the property
of the traffic flow reflected by the packet headers to make
decisions. These properties are referred to as features. A fea-
ture can be a packet level feature (a characteristic of a single
packet, e.g., packet size), or a flow level feature (a characteris-
tic of a packet flow by some definition, e.g., the average
packet size of the packet flow sharing the same 5-tuple
information). Some features are both packet level and flow
level, for example, IP addresses.

Many ML based algorithms have been proposed for high
performance traffic classification, including Naive Bayesian
[18], K-means [19], Support Vector Machine (SVM) [20], [21],
and comprehensive techniques combining both supervised
and unsupervised machine learning algorithms [22], [23].
Among these algorithms, C4.5 decision tree based algorithm
[5] has demonstrated the highest classification accuracy in
most of the experiments. The effectiveness of various ML
based algorithms for classifying encrypted network traffic is
studied in [5]. A set of algorithms including Naive Bayesian,
SVM, and C4.5 algorithm are evaluated. A total number of 22
features, including both the packet level features (e.g., packet
size) and the flow level features (e.g., packet inter arrival
time) are used to build theML based classifiers. Experimental
results show that, C4.5 algorithm gives the best accuracy (>
83 percent accuracy for SSH traffic and > 97.8 percent accu-
racy for Skype traffic) among all the considered techniques. In
[6], 9 flow level feature sets are evaluated; packet size, port
number and their related statistics are shown to achieve the
highest accuracy, regardless of the underlying algorithms
that have been used. A discretization process on the feature
values is also proposed to improve the accuracy of the classi-
fiers. In [22], 14 NetFlow attributes are used to classify 15
Internet applications. K-means clustering (unsupervised
learning) is used to further derive each application’s traffic
into sub-classes. C5.0 decision tree (supervised learning) is

used to build the classifier for the derived subclasses. Com-
bining the contributions from both K-means clustering and
the C5.0 decision tree, the classifier achieves an average accu-
racy of 96.67 percent. In [23], the authors target a situation in
which training data is insufficient to cover all the applications.
K-means clustering algorithm is used to group the training
data consisting of labeled and unknown flows according to
20 statistical features. Instead of being individually classified,
the traffic flows are classified in groups by majority voting.
The classifier achieves higher F-measure than the other five
state-of-the-art machine learning based traffic classification
techniques in their experiments.

2.2 Existing Traffic Classifiers

Many existing works have proposed accelerators for traffic
classification. In [2], an FPGA based architecture is presented
for the C4.5 algorithm; explicit range match is explored and
memory accesses are parallelized to improve the perfor-
mance of their architecture. They use the number of memory
accesses instead of throughput as a performance metric. No
post-place-and-route results are reported for their imple-
mentation on FPGA. In [7], an FPGA based architecture is
proposed for multimedia traffic classification. The classifier
is based on k-Nearest-Neighbor algorithm and packet level
features. Their classifier achieves high accuracy for large
training data sets. However, their approach is restricted to
classifiers with a small number of applications, and suscepti-
ble to noise in the training data. In [24], an SVM based traffic
classifier is proposed on NetFPGA platform. The SVM algo-
rithm is parallelized through loop unrolling leveraging the
parallelism of NetFPGA. The highest throughput the classi-
fier achieves is 28.6 Gbps. In [25], the decision tree based clas-
sifier is converted to a multi-column rule set table, then
accelerated by a two dimensional pipelined architecture. By
applying column striding and row clustering, the architec-
ture can achieve 588-770 million classifications per second
for various synthetic rule set tables. However, the perfor-
mance results based on real data sets are still missing. In [26],
an SVM based approach is explored on a dual Xeon PC; this
machine has a total number of 24 cores running at 2:6 GHz
and 48 GB RAM. An SVM based algorithm is also employed
in [27], targeting a dual Xeon PCwith 24GB RAM and a total
number of 24 cores each running at 2:6GHz. However, these
approaches can only achieve 7MCPS throughput.

3 PROBLEM DEFINITION

Since the C4.5 decision tree algorithmdemonstrates the high-
est classification accuracy in previous studies (as discussed
in Section 2.1), we focus our work on the C4.5 decision tree
based approach [5], [28]. Our goal is to build a flow level
online traffic classifier based on C4.5 decision tree that
achieves both high classification accuracy and high classifi-
cation throughput. Here, we define traffic flow as a series of
packets sharing the same 5-tuple information: transport
layer protocol, source and destination port numbers, source
and destination IP addresses. The input to the classifier is the
flow level feature values of the traffic flow (discussed in
detail in Section 4.2.4) and the output is the application of the
input flow. We assume that a preceding system computes
the flow level feature values and feeds them to the classifier.
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To achieve the goal, we target the following 2 problems
as illustrated in Fig. 1.

� Training: Given the traffic traces and a set of target
application class, construct a C4.5 decision tree that
most effectively distinguishes the target applications
from each other.

� Acceleration: Given the C4.5 decision tree, design the
algorithms and architectures for FPGA and multi-
core platforms to achieve high throughput.

Note that the goal of this work is to achieve an online
traffic classifier. The applications need to be detected and
reported right after the system receives the first few packets
of the incoming traffic flow. We introduce the details of the
training and acceleration in Sections 4 and 5 respectively.

4 MACHINE LEARNING BASED TRAINING

Given a machine learning algorithm, the main challenge in
building a highly accurate machine learning based traffic
classifier is to choose an appropriate set of features that are
effective in distinguishing the target applications. In this
section, we discuss the training data set and the methodol-
ogy for identifying the feature set.

As mentioned in Section 3, we build our traffic classifier
based on the C4.5 decision tree algorithm [29]. The reason is
that C4.5 based classifiers have demonstrated high classifi-
cation accuracy for various target applications, test traces,
and experiment setups [5], [30], [31].

We use WEKA [32], a well-known machine learning soft-
ware, to train our decision trees. We feed WEKA with dif-
ferent feature sets to train C4.5 decision trees. WEKA
outputs the decision trees along with the classification accu-
racy. The decision trees that achieve the highest overall
accuracy are used in our implementations.

4.1 Dataset

Our dataset is built from two sources: a general traffic trace
provided by a major network vendor, and a publicly avail-
able labeled traffic trace called Tstat [33]. Unlike many pre-
vious works targeting only one or two applications, our
dataset consists of eight applications as listed in Table 2.
These applications include Peer-to-peer (P2P) applications
and Instance Messaging (IM) applications, which cannot be
accurately classified using traditional port number or DPI
based classification schemes. Each application in the dataset
consists of 700 traffic flows. This dataset is used as both
training set and testing set in our experiments.

4.2 Feature Selection

4.2.1 Candidate Features

Unlike many previous works which focus only on accuracy,
we take the cost of computing into consideration. Specifi-
cally, we consider the following criteria when selecting the
candidate features for the classifier.

� High Accuracy: The overall accuracy is the weighted
average of true positive rate of all applications. True
positive rate is the fraction of traffic flows correctly
classified for an application.

� Early Classification: It is important to decide the
application of the traffic flow by looking at only the
first few initial packets. Therefore features character-
izing a complete flow, such as duration, are not
acceptable.

� Low Cost: The cost of calculating complex statistical
features are usually high. This limits the usage of
these features in online traffic classification. We con-
strain our selections to a set of low cost statistics of
traffic flows (such as avg/min/max/variance of
packet size).

In order to achieve high accuracy in classifying a traffic
trace consisting of a broad range of applications, our work
uses flow level features as opposed to packet level features
used in many other works. We first identify eight candidate
features which meet the above criteria. These features have
been shown to be the most effective features for machine
learning based traffic classification [1], [5], [6], [30], [34],
[35], [36]. They are

� Protocol: the transport layer protocol associated with
the flow.

� Src./Dst. Port Number: the source/destination port
number associated with the flow.

� Sizes of First N Packets: sizes of the first N packets in
the flow.

� Max./Min. Packet Size: maximum/minimum packet
size among the firstN packets in the flow.

� Avg./Var. of Packet Size: average/variance of sizes of
the first N packets in the flow.

We group the above features into six sets as shown in
Table 1. Each feature set in the table is a different combina-
tion of the above features. In this paper, we refer Protocol,
Src. Port Number and Dest. Port Number as classic features.
The classic features define end-to-end IP connections;
hence many applications have their own designated port
numbers (referred to as “well-known port numbers”, e.g.,
80 for HTTP). Because they are easy to extract from the
network traffic and are accurate for applications using des-
ignated port numbers, we use classic features in all the fea-
ture sets.

We refer Avg/Max/Min/Var Packet Size as statistical fea-
tures. In our experiments, those statistical features are com-
puted over the first N packets in the flow. Previous works
suggested to use the statistical features or the actual packet
size [1], [5], [6], [30], [34], [35], [36]. Hence in this paper, we
first show the experimental results on real life backbone
router traces to decide whether we should use actual packet
sizes, or their statistics in traffic classification, as well as the
best value ofN .

Fig. 1. Problem definition.

3048 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 11, NOVEMBER 2017



4.2.2 Methodology

Each feature set in Table 1 is evaluated using the same
machine learning Algorithm (C4.5 Algorithm) and dataset.
We apply the commonly used 10-fold cross validation tech-
nique [37] which breaks the dataset into 10 equally sized
sets. In this technique, we perform 10 iterations; during each
iteration, 9 sets are used as the training sets and 1 set is used
as the testing set. The training sets are used to build the clas-
sifier and the testing set is used to evaluate the accuracy of
the classifier. The overall accuracy of a feature set is com-
puted by taking the average accuracy over 10 such iterations.

4.2.3 Discretization

Discretization is the process of converting continuous feature
values into discrete feature values. In the discretization, the
value space of a feature is separated into a finite number of
ranges. A unique number is assigned to each range. Each
input feature value is assigned the number associated with
the range it falls into. Previous literature [38] has shown that
the discretization can improve the accuracy ofmachine learn-
ing for traffic classification. We adopt Entropy-MDL [39], the
most commonly used discretization algorithm, to separate
the feature values space into discrete ranges. The sets of
ranges for all the features are also used to discretize the input
feature values in the online traffic classification (discussed in
Section 4.3). All training and testing data are discretized.

4.2.4 Empirically Optimized Feature Set

We denote the feature set that achieves the highest overall
accuracy as the empirically optimized feature set (EOFS).
Note that, our methodology explores a limited design space
using the available training data. Fig. 2 shows the overall
accuracy achieved by each feature set. We observe that Fea-
ture Set C and Feature Set D achieve the highest accuracy

among all feature sets. Feature Set C and Feature Set D differ
only by the usage of packet size variance. Computing variance
requires more resources; therefore, Feature Set C is favored
over Feature Set D. Feature Set C achieves 97.92 percent over-
all accuracy, while Feature Set D achieves 98.02 percent. Not
using variance only costs 0.1 percent of the overall accuracy.

From Fig. 2 we observe that maximum overall accuracy is
achieved when using features from the first 4 packets in a
flow. Having fewer or more than 4 packets in the feature set
decreases the overall accuracy. This is because the P2P and
IM flows use the first few packets for initial connection
establishment. Thus the sizes and statistical properties of
the first few packets best distinguish the applications. Too
few packets cannot reveal this piece of information. Too
many packets may involve the user data transmissions that
are independent of the application. The user data transmis-
sion are usually “noise” to the classifiers, which reduces the
classification accuracy.

Therefore, we choose Feature Set C computed over the
first 4 packets in a traffic flow as our EOFS. All subsequent
discussion is based on this EOFS and the C4.5 decision tree
built using this EOFS.

4.2.5 Pitfalls of Classic Features

Our evaluation also demonstrates that the classic feature set
(i.e., Protocol, Src:PortNumber, and Dest:PortNumber) is
not sufficient in classifying a general traffic trace including
P2P flows. Although the overall accuracy achieved by the
classic feature set reaches 96.0 percent, it cannot distinguish
various P2P applications.

TABLE 2
Applications in Our Traffic Traces

Application Description

HTTP Hypertext Transfer Protocol
MSN MSNMessenger by Microsoft
P2PTV P2P live streaming applications
QQ_IM QQ Instant Messenger by Tencent
Skype Skype voice calls and video calls
Skype_IM Skype Instant Messenger
Thunder P2P service by Thunder Networks
Yahoo_IM Yahoo Instant Messenger

TABLE 1
Candidate Feature Sets

Feature set Classic Features Size of First N Pkts Packet size statistics

Prtl. Src. Port Dst. Port Avg. Pkt
Size (byte)

Max. Pkt
Size (byte)

Min. Pkt
Size (byte)

Var. of Pkt
Sizes

Set A � � �
Set B � � � �
Set C � � � � � �
Set D � � � � � � �
Set E � � � � � � �
Set F � � � � � � � �

Fig. 2. Overall accuracy of each feature set.

TONG ET AL.: ACCELERATING DECISION TREE BASED TRAFFIC CLASSIFICATION ON FPGA AND MULTICORE PLATFORMS 3049



Tables 3 and 4 show the confusion matrices of classic fea-
ture set and our EOFS. The confusion matrix shows the frac-
tion of traffic flows from an application that are classified as
other applications. Each row index represents the applica-
tion of incoming traffic; each column index represents the
predicted application. For example, in Table 1, 0.24 percent
of P2PTV traffic is classified as HTTP traffic.

It can be observed from Table 3 that the classic feature set
cannot distinguish P2P traffic from each other. For example,
8 percent of the Thunder traffic has been falsely classified as
Skype; 4.25 percent and 1.15 percent of the Skype traffic has
been falsely classified as Thunder and P2PTV respectively.
This causes the low overall accuracy of classic feature set
shown in Fig. 2.

On the other hand, our EOFS can classify both P2P and
non-P2P traffic with high accuracy. According to Table 4, in
the worst case, only 0.76 percent of Skype traffic is falsely
classified as Thunder traffic; only 1.60 percent of Thunder
traffic is falsely classified as Skype traffic.

4.3 C4.5 Decision Tree Using EOFS

As mentioned in the beginning of Section 4.2, WEKA takes
in the EOFS as the input and outputs the (binary) decision
tree. Fig. 3 shows an example of the decision tree generated
in our experiments and illustrates the process of online traf-
fic classification. As shown in the figure, the online traffic
classification has 2 phases: discretization and classification.
In the discretization phase, the raw feature values are dis-
cretized based on the sets of ranges generated in the training
process (discussed in Section 4.2.3); in the classification
phase, the application is determined based on the discre-
tized values. Let F ½i� denote the raw feature value of feature
type i. Using our proposed EOFS, the input traffic flow can
be represented by a set of M feature values F ½i�, where
i ¼ 0; 1; . . . ;M � 1. Let fD½i� : 0 � i < Mg denote output
for F ½i� after the discretization phase. In the discretization

phase, the features are assigned the discrete values associ-
ated with the ranges they fall into. In this example, we sup-
pose D½0� and D½1� have 3 and 2 possible values
respectively. fD½i� : 0 � i < Mg are used as inputs to the
classification phase. The classification phase involves a
binary search in the decision tree. Let Tc denote the binary
decision tree. Each non-leaf node of Tc corresponds to one
possible discretized value of one feature. Each leaf node cor-
responds to an application. During the decision tree search,
when a non-leaf node is reached, the input value for the
node’s feature are compared with the node’s value. The out-
come of each comparison can be either “Yes”, denoted as a
dashed green edge in Fig. 3, or “No”, denoted as a solid red
edge in Fig. 3. The classification terminates when a leaf
node is reached, where the traffic type can be reported. In
this example, we examine M ¼ 2 features (F ½0� and F ½1�)
collected from the input traffic flow. The output is QQ_IM.

TABLE 3
Confusion Matrix for Classic Feature Set

HTTP MSN P2PTV QQ_IM Skype Skype_IM Thunder Yahoo_IM

HTTP 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MSN 0.00 99.95 0.05 0.00 0.00 0.00 0.00 0.00
P2PTV 0.24 0.19 98.00 0.00 1.09 0.00 0.05 0.43
QQ_IM 0.39 0.00 0.00 99.59 0.00 0.00 0.03 0.00
Skype 0.00 0.00 1.15 0.00 94.55 0.05 4.25 0.00
Skype _IM 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00
Thunder 0.00 0.00 0.12 0.00 8.00 0.02 91.85 0.00
Yahoo _IM 0.00 0.07 0.00 0.00 0.00 0.00 0.00 99.93

TABLE 4
Confusion Matrix for EOFS

HTTP MSN P2PTV QQ_IM Skype Skype_IM Thunder Yahoo_IM

HTTP 99.90 0.00 0.10 0.00 0.00 0.00 0.00 0.00
MSN 0.02 99.93 0.00 0.00 0.00 0.00 0.00 0.05
P2PTV 0.28 0.00 99.19 0.02 0.40 0.00 0.09 0.00
QQ_IM 0.28 0.00 0.00 99.64 0.00 0.03 0.05 0.00
Skype 0.00 0.00 0.34 0.05 98.78 0.07 0.76 0.00
Skype _IM 0.00 0.00 0.00 0.02 0.05 99.93 0.00 0.00
Thunder 0.00 0.00 0.02 0.07 1.60 0.02 98.28 0.00
Yahoo _IM 0.00 0.09 0.00 0.00 0.00 0.00 0.00 99.91

Fig. 3. An example of C4.5 decision tree using EOFS & the process of
online traffic classification.
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5 ACCELERATION

Based on the decision trees trainedwith EOFS, in this section,
we present two algorithms for online traffic classification. In
Section 5.1, we present an algorithm that combines the dis-
cretization and the C4.5 decision tree together. In Section 5.2,
we present a divide and conquer algorithm by first translat-
ing the decision tree into multiple range trees. Then we
develop their corresponding acceleration architectures on
FPGA andmulticore platforms in Section 5.4 and Section 5.5.

5.1 Optimized Decision Tree (ODT)

In Fig. 3, we observe that:

� The total number of possible discretized values is
much larger than the total number of non-leaf nodes
in the decision tree.

� Different non-leaf node can contain the same discre-
tized value of the same feature.

The percentage of used discretized feature values in the
EOFS over all the decision trees are shown in Fig. 4. As
shown in these figures, the decision trees contain much
smaller number of discretized value compared with total
number of discretized value in the discretizer. Therefore,
the classification algorithm in Fig. 3 stores redundant discre-
tized values in the discretizer.

To address this issue, we combine the discretizers and Tc.
Instead of generating D½i�s and performing a decision tree
search, we substitute the discretized values in the non-leaf
nodes by the range boundaries associated with the discre-
tized values. In this way, at each non-leaf node we perform
comparisons with the 2 range boundaries to decide whether
to take the left or right branch to the next tree node. The key
idea is to eliminate the entire discretization phase by replac-
ing the single comparison in each non-leaf node in Tc with at
most 2 comparisons. In this way, all the redundant

discretized values and their associated ranges are removed
from the trees. We use Ts to denote this optimized decision
tree. The example in Fig. 5 combines the discretizer and the
decision tree in Fig. 3. Comparing the 2 figures, we can see
the advantage of Ts. Since the shape of the decision trees in
these two figures are the same, to arrive at QQ_IM in the
decision tree search, Ts needs only 1 additional comparison
at each non-leaf node comparedwith Tc. In total, Ts performs
2 additional comparisons than Tc. However Tc needs much
more comparisons to discretize the input feature values.
Therefore Ts not only reduces the memory usage but also
requires a smaller number of comparisons. Since the algo-
rithm to translate Tc into Ts is not complicated, we ignore fur-
ther discussion of this algorithm in this paper. Throughout
the rest of the paper, we use ODT to denote this approach.

5.2 Divide and Conquer (DQ)

Using the algorithm in Section 5.1, the worst case latency for
online traffic classification is determined by the number of
decision tree levels. Therefore for a given number of leaf
nodes, imbalanced trees have longer latency. Fig. 6 shows the
balance factor of the sub-trees in our decision tree trainedusing
EOFS. The balance factor is defined as the proportion of the
nodes that reside in the more populated branch of the sub-
tree root. For example, in Fig. 5, the root has a balance factor
of 5=6 ¼ 0:83, the lowest non-leaf node has a balance factor of
1=2 ¼ 0:5 (i.e., it is a balanced sub-tree). As shown in Fig. 6,
the size of the balanced sub-trees are very small and almost
all sub-trees that have considerable sizes have over 90 percent
of their nodes in one of its branches. Given that the sizes of the
decision tree are around 200 nodes, this means the decision
tree trained using EOFS is highly imbalanced. As a result, the
online traffic classification can have long latency.

Our goal is to find a parallel data structure that leverages
balanced binary trees. Essentially, we need to determine
which ranges theM input feature values belong to. Note that
the ranges wemention in this section is the ranges created by
the boundaries used in the Ts. The search process in Ts ends
at a leaf node where an application is found. At this point, all
the ranges for the input features have been determined. This
process can also be done by first separately determining the
range for each feature, then merging the searching results.
Since we have a known set of possible ranges from the train-
ing process, we can construct complete binary search trees to
determine the ranges for the features. We denote these trees
as R½i�, where i ¼ 0; 1; . . . ;M � 1. Throughout the rest of the
paper, we use range tree to refer to these trees.

Fig. 4. Percentage of the discretized feature values used during
classification.

Fig. 5. An optimized decision tree Ts integrated by two discretization
trees (T ½0�, T ½1�) and one decision tree (Tc).

Fig. 6. Number of sub-trees in each balance factor ranges.
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In Fig. 7, we show an example of our divide and conquer
approach. The two range trees are constructed from Ts in
Fig. 5. Each non-leaf node corresponds to a boundary of the
ranges. The search process proceeds based on the result of
the comparison between the input and the boundaries stored
in each non-leaf node. Each leaf node of a range tree stores a
Bit Vector (BV). Each bit in a BV corresponds to an application,
and indicates whether the input matches the corresponding
application. In this example, by comparing the discrete value
F ½0� ¼ 30 with two range boundaries, a BV (highlighted in
the figure) is selected as a partial result for this feature. Simi-
larly we also collect a BV for F ½1� ¼ 90. The final classification
result can be reported by performing a bitwise AND opera-
tion on the two selected BVs. In this example, the final BV
after the bitwiseANDoperation indicates the incoming traffic
type is “QQ_IM”. Throughout the rest of the paper, we use
DQ to denote this divide and conquer approach.

We show the algorithm to construct M range trees in
Algorithm 1. In this algorithm:

� Step 1: The boundary pool is a set of all the range
boundaries.

� Step 2: This is done by going through all the branches
of Ts.

5.3 Comparison Between ODT and DQ

Suppose we use complete binary range trees in DQ, and all
the range trees are searched in parallel, the time complexity
of DQ is OðmaxiðlogniÞ þM �KÞ, where ni is the number of
boundaries in the ith range tree. For our problem M and K
are both small, the time to bitwise-AND the M K-bit BVs is
negligible. Fig. 8 shows the number of levels of each deci-
sion tree trained using EOFS, and the total number of steps
to search each of the 42 range trees (generated using real life
traffic trace). As shown in the figure, the number of steps to
search the range trees is much smaller than the number of
tree levels. And it does not vary dramatically even as the
number of decision tree levels doubles.

The complexity of ODT is linearly proportional to the
number of levels of the decision tree. Therefore, considering
the imbalance of the decision trees, when M and K are
small, DQ has great advantage over ODT. However as dem-
onstrated in Section 6, whenM,K, and n vary, there are still
scenarios in which ODT outperforms DQ.

5.4 Acceleration on FPGA Platform

On FPGA, we propose pipelined architectures for both ODT
and DQ. Each clock cycle, the architecture consumes one
input and generates one output.

Algorithm 1. Constructing Range Trees

Input:M discretization trees and a Tc having N leaves.
Output: Range trees R½i�, i ¼ 0; 1; . . . ;M � 1; R½i� is a complete

binary tree where each non-leaf node stores a range
boundary, and each leaf node stores a BV denoted as

B½i; j� ¼ bi;j0 bi;j1 . . . bi;jK�1, where j ¼ 0; 1; . . . ; ni � 1. Let

ni denote the number of leaf nodes in R½i�; K is the

number of applications.
Initialization: Construct Ts according to Section 5.1. Set all the

BVs to all-zero vector.
1: for i ¼ 0 : M � 1 do
2: boundary pool ;
3: for each non-leaf node x0 of Ts do
4: if x0 checks F ½i� then
5: Add the two range boundaries stored in x0 into the

boundary pool
6: end if
7: end for
8: Construct a complete binary tree R½i� based on the

boundaries recorded in the boundary pool
9: for each leaf node of R½i� do
10: for k ¼ 0 : K � 1 do
11: if application k appears in the corresponding interval

in Ts then

12: bi;jk  1
13: else
14: bi;jk  0
15: end if
16: end for
17: end for
18: end for

5.4.1 Optimized Decision Tree

Fig. 9 shows our acceleration architecture on FPGA for ODT.
To achieve high throughput, we use a deeply pipelined archi-
tecture. Each level ismapped to a pipeline stage. The decision
tree nodes are stored as words in the Distributed RAM
(denoted as Dist. RAM). The memory layout for both the leaf
and non-leaf nodes are also shown in Fig. 9. In each stage, the
processing element (PE) retrieves the tree node from the Dist.
RAM, performs the comparisons, and determines the node
to access in the next stage. The input is forwarded to the next
stage alongwith the address of the target child node.

Fig. 7. Divide and conquer: using multiple range trees.

Fig. 8. Number of steps to search for all the features in DQ.
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5.4.2 Divide and Conquer

Fig. 10 shows our acceleration architecture on FPGA for DQ.
Each range tree is mapped to a separate pipeline; the out-
puts of the range trees are merged in a bitwise ANDmodule
to generate the final output. As discussed in Section 5.2, the
range trees are organized as complete binary search trees.
The mid-point of all the range boundaries is used as the
root. All the boundaries smaller (larger) than the mid-point
are mapped to the left (right) sub-trees. The left and right
sub-trees are recursively defined similarly. Each level of the
range tree is mapped to a pipeline stage. The nodes at each
level are stored in Dist. RAM. The PE compares the input
with the boundary values and generates the address to
access in the next stage. The leaf level of the range tree is
mapped onto the last stage of the pipeline.

5.5 Acceleration on Multicore Platform

For ODT, we use the classic implementation of trees: all the
nodes are accessed through pointers. The decision tree is
searched level by level. In each level two comparisons are
performed to decide which branch to take; the target nodes
are accessed through the pointers.

For DQ, the range trees are implemented as array based
binary search trees. The BVs are implemented using integer
type andmaintained in a separate array from the range trees;
they are accessed after the range trees have been searched.

The reasons we used different tree implementations for
DQ and ODT are:

� Ts has the same shape as Tc (very imbalanced); thus,
pointer based implementation saves memory.

� Range trees are complete binary search trees, using
arrays eliminates the use of pointers and speeds up
the search process

6 EXPERIMENTAL RESULTS

In this Section we show the performance of our algorithms
and architectures for the decision trees trained using EOFS,
and compare the performance of our classifier with other
techniques. We also compare the performance of ODT and
DQ. We generate 42 decision trees using real life network

traffic traces. All the statistics shown in this section are com-
puted over these 42 trees. In the experiments, the algorithms
and architectures are configured based on these statistics
unless otherwise stated.

6.1 Experimental Setup

6.1.1 Platforms

We evaluate our accelerator on both multicore and FPGA
platforms. For the multicore platforms, we use a 2� AMD
Opteron 6278 platform [16] and a 2� Intel Xeon E5-2470
platform [17]. The dual-socket AMD platform has 16 physi-
cal cores, each running at 2:4 GHz. Each core is integrated
with a 16 KB L1 data cache and a 2 MB L2 cache. A 6 MB L3
cache is shared among all 16 cores. The processor has access
to 64 GB DDR3-1600 main memory. The dual-socket Intel
platform also has 16 cores, each running at 2:3 GHz. Each
core has a 32 KB L1 data cache and a 256 KB L2 cache. All
16 cores share a 20MB L3 cache. The processor has access to
48 GB DDR3-1600 main memory. We implemented our clas-
sifiers in C++ on openSUSE 12.2 and boosted up the perfor-
mance using Pthread. For both ODT and DQ, each thread
carries a traffic classifier. There is no interaction among vari-
ous threads. The algorithms are implemented as normal
user space programs. No special tools or techniques are
used to bypass the operating system. The test flows are fed
to the classifier from memory and the classification results
are written back into the memory.

For the FPGA platform we use a state-of-the-art Xilinx
Virtex Ultrascale XCVU440-FLGA2892-3-E-ES2 FPGA. All
the results are post place-and-route results based on Xilinx
Vivado 2015.4. The implementation is in RTL; no high level
synthesis tool is used. The target device provides abundant
logic and storage resources, so we are able to map multiple
classifiers on a single FPGA device.

6.1.2 Performance Metrics

We use throughput as the performance metric. Throughput
is defined as the number of classifications completed per
unit time. We use Million Classifications Per Second
(MCPS) as the unit for throughput.

On the multicore platforms, the throughput is computed
by dividing the number of test flows with the time spent in

Fig. 9. Mapping ODT to FPGA.

Fig. 10. Mapping DQ to FPGA.
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classifying these flows. The time we recorded includes
thread control and co-ordination overhead.

On the FPGA platform, in each clock cycle the classifier
can take in one input and output one classification result.
Therefore, the clock rate is equal to the throughput of the clas-
sifier numerically. We also report the FPGA resource usage.
The resource usage is an important indication of the hard-
ware complexity of our design. The logic resources on Xilinx
FPGA devices are organized using slices containing LUTs
and registers. All the data structures are maintained using
on-chip Dist. RAM. Since Dist. RAM is built using LUTs we
further break the LUT usage to LUT as logic and LUT as Dist.
RAM. We report the usage in percentage. The device we use
has 2.5 M slice LUTs, and 5 M slice registers. Among the
2.5M slice LUTs, 0.46M can bemapped to Dist. RAM.

6.2 Performance for Real Decision Trees

6.2.1 FPGA Platform

We configure the architecture for ODT based on the statistics
of the decision trees. Fig. 11 shows the statistics of the num-
ber of nodes in each decision tree level. The maximum num-
ber of nodes per level is 14, so we assign Dist. RAM for 16
nodes in each pipeline stage tomake sure that all the decision
trees can fit. The number of features and the applications
are fixed to 6 and 8, respectively. So we use 3 bits for both of
them. The number of tree levels determines the number of
pipeline stages. From Fig. 8, we can observe that the number
of tree levels ranges from 39 to 64. In general, due to the
limited resources per unit area on the chip, higher resource
consumption forces components to be mapped farther away
from each other resulting in longer routing latency.

Therefore, given an architecture on FPGA, themore resource
a certain configuration uses, the lower the maximum clock
rate it can achieve. Since trees with more levels consume
more resources, they usually have lower clock rate. There-
fore we test the cases of 39 levels and 64 levels to show the
throughput for our architecture on FPGA, respectively.

For DQ, since there are 8 applications, we use 8 bits for
each BV. We have 6 pipelines, each for one feature. These
pipelines are configured to be able to accommodate the fea-
ture with the most number of boundaries (after processing
the decision tree using Algorithm 1). For our 42 decision
trees, the number of boundaries to support ranges from 31
to 49. Similar to ODT, more resource usage leads to lower
clock rate. Therefore we test the cases for 31 and 49 bound-
aries, to show the throughput of our architecture on FPGA.

Fig. 12 shows the result using a single pipeline. DQ
achieves much higher throughput than ODT with a much
lower resource consumption.

We also implement multiple pipelines on one FPGA
device to boost up the throughput. Fig. 13 shows the results
for 2, 8, and 16 pipelines. Using 16 pipelines the throughput

Fig. 11. Number of nodes at each decision tree level.

Fig. 12. Performance on FPGA: single pipeline. Fig. 13. Performance on FPGA: multiple pipelines.
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can be boosted to over 10,000 MCPS. Since the area com-
plexity does not change when we use multiple pipelines,
the resource usage is the product of the results in Fig. 12
and the number of pipelines.

6.2.2 Multicore Platform

We first test the performance on multicore platform using
real life traffic flows captured from ISP routers. They best
reflect the features of real life network traffic, such as the
distribution of applications and packet sizes. Since we do
not have enough real life flows to keep multiple threads
running at full speed concurrently, we use single classifier
thread in the experiments for real life network traffic. As
shown in Fig. 14, on the AMD platform, DQ achieves 12
MCPS, while ODT only achieves around 4 MCPS. For all
the decision trees, the throughput of DQ is 3-4 times higher
than ODT. Similar results can be observed on the Intel plat-
form as well, as shown in Fig. 15.

To test the highest throughput our algorithms can achieve
on our platforms, we accelerate them using multiple concur-
rent threads. We generate a large number of synthetic test
flows to feed the classifier threads to keep themworking con-
currently. Both of our platforms have 16 cores; each core can
support 2 threads to work concurrently. So we allocate 32
threads on both platforms. The results are shown in Figs. 16
and 17. On the AMD platform, DQ achieves 230+ MCPS and
ODT achieves 75+ MCPS. On the Intel platform, the perfor-
mance fluctuation of both algorithms are greater than on the
AMD platform. DQ achieves 130-350MCPS for various deci-
sion trees. ODT achieves 50-190 MCPS for various decision

trees. For most of the decision trees using EOFS, DQ achieves
much higher throughput than ODT on both platforms. For
some decision trees the performance advantage of DQ over
ODT is lower on the Intel platform.

We have noticed the performance fluctuations in Figs. 15
and 17; this is because the performance of our user-space
programs is adversely affected by random OS events.

6.2.3 Comparison with Other Techniques

Fig. 18 compares the throughput of our approaches with
state-of-the-art SVM based approaches [26], [27]. The
throughput values of our approaches in Fig. 18 are the mini-
mum values in Figs. 16 and 17. In [26], the performance was
achieved on a dual Xeon PC with 24 cores at 2.6 GHz with
48 GB of RAM. In [27] the performance was achieved on a a
dual Xeon PC with 12 cores at 2.6 GHz with 24 GB of RAM.

Fig. 14. Throughput on the AMD platform: real decision trees, tested with
real network flows, single classifier thread.

Fig. 15. Throughput on Intel platform: real decision trees, tested with real
network flows, single classifier thread.

Fig. 16. Throughput on the AMD platform: real decision trees, tested with
synthetic flows, 32 classifier threads.

Fig. 17. Throughput on the Intel platform: real decision trees, tested with
synthetic flows, 32 classifier threads.

Fig. 18. Throughput comparison of our proposed approaches with other
techniques in the research literature.

TONG ET AL.: ACCELERATING DECISION TREE BASED TRAFFIC CLASSIFICATION ON FPGA AND MULTICORE PLATFORMS 3055



Both of our approaches achieve great improvement com-
pared with the SVM based approaches.

6.3 Comparison Between ODT and DQ

As shown in Section 6.2, for all the decision trees using
EOFS, DQ achieves higher throughput on both platforms,
and consumes less resources on the FPGA than ODT. In this
section, we vary the configuration used in Section 6.2 to
study how various configurations impact our algorithms
and architectures.

6.3.1 FPGA Platform

On FPGA, the various parameters discussed in this section
(6.3.1) are set to be able to accommodate trees of up to 64
levels with up to 16 nodes on each level. This results in a
maximum number of 1024 nodes in total1.

The number of applications, K. In a binary decision tree of
1023 nodes, there are 512 leaf nodes (no matter what shape
the tree is because each non-leaf node must have two chil-
dren), so there can be up to 512 applications. Fig. 19 shows
the throughput and resource usage of ODT and DQ for up
to 512 applications. As shown in the figure, the throughput
of DQ decreases dramatically; the resource usage of DQ
increases dramatically. On the contrary the throughput and
resource usage of ODT varies little. The reason is as follows.
In ODT, the K applications can be represented using log 2 K
bits. In DQ, K applications need K-bit BVs. So when K gets
large, DQ needs much more storage for the applications
than ODT. Also, in DQ, for each additional bit, we need
additional LUT logic to perform the bitwise AND opera-
tions. Therefore, when the number of applications increases,
the resource consumption of DQ grows much faster than
ODT. Thus the throughput of DQ decreases much faster
than ODT as the number of applications increases.

The number of features, M, and the number of boundaries per
feature ni ði ¼ 0; 1; 2 . . .M � 1Þ: In our experiments, the
binary decision tree has 1024 nodes. There are 512 non-leaf
nodes. Since each non-leaf node has 2 boundaries, when all
boundaries are different, the total number of boundaries

PM�1
i¼0 ni ¼ 1024. Fig. 20 shows the experimental results for

variousM. As can be observed whenM grows, the resource
consumption grows rapidly, and the throughput first
increases and then decreases. The post-place-and-route
reports show that when M ¼ 2, the critical path resides in
the routing to the Dist. RAM, while for all the other cases
the critical path is in the PE. This explains why the through-
put first increases then decreases. When M ¼ 2, the Dist.
RAM blocks for the BVs are large. The long access latency to
the large Dist. RAM block is the bottleneck of the architec-
ture. When M increases, the size of the Dist. RAM blocks
shrinks and the increasing resource consumption forces the
components in the PEs to be mapped farther apart, which
becomes the new bottleneck. The increasing resource usage
is due to the increasing total number of pipelines stages for
all the features. According to the discussion in Section 5.4,
the total number of pipeline stages is

PM�1
i¼0 ðdlog 2 nie þ 1Þ.

When M increases, the total number of pipeline stages
increases. For example, we can split n0 into two parts n00
and n000 (n

0
0; n

00
0 > 0), while preserving the number of bound-

aries for the other features. In this case the number of fea-
tures increases by 1. The original number of pipeline stages
for feature 0 are log 2dðn00 þ n000Þe þ 1, this number is no less
than the number after the split, log 2dn00e þ log 2dn000e þ 2.

The performance of ODT for decision trees of up to 64
levels with up to 16 nodes on each level is shown in Fig. 20
(1024 nodes in total, regardless of M and ni). We can com-
pare it with the results of DQ in Fig. 12 to compare the per-
formance of ODT and DQ for decision trees of various M.
When M � 32, DQ does not have any advantage over ODT.
When M � 8, DQ either achieves higher throughput with
similar resource consumption or achieves similar through-
put with lower resource consumption than ODT.

6.3.2 Multicore Platform

On the two multicore platforms, we vary K, M, and n based
on the real decision trees.We also discuss the scenarioswhere
the decision tree searches in ODT finishes in few levels.

The number of applications, K. Fig. 21 shows the average
throughput of both approaches for the 42 real decision trees
with various number of applications. Since the decision
trees have no more than 256 nodes, they cannot have more
than 128 leaf nodes. So we use K � 128. As shown in the
figure, for 16, 32, 64 applications, when we can use built-in
data types such as short integer type, integer type, and long

Fig. 19. Comparison of the two algorithms on FPGA: large number of
applications.

Fig. 20. Throughput and resource usage of DQ for various number of
features.

1. The actual number of nodes is less than 1024, since the first 4 lev-
els from the root level have less than 16 nodes each. Without losing gen-
erality, we round it up to 1024 nodes to make the discussion easy to
follow. The numbers of leaf and non-leaf nodes are also rounded up
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integer type to store the BVs, the throughput of DQ is steady
and much higher than ODT. In these cases, merging the BVs
only needs M bitwise AND operations. Once the number of
applications exceeds the capacity of the built-in data types,
we need to use arrays of built-in date types to store the BVs
and iterations to merge the BVs. A larger number of applica-
tions requires more storage to store the BVs, and more itera-
tions to merge the BVs; this leads to a lower throughput.
Since K � 128 for our decision trees, we can use two 64-bit
long integers to store each BV. Thus, we only need up to 2M
bitwise AND operations and the throughput is not dramati-
cally affected. However, when the decision tree supports a
very large number of applications, ODT can have a higher
throughput than DQ.

The number of features, M, and the number of boundaries per
feature ni ði ¼ 0; 1; 2 . . .M � 1Þ: The analysis on M in Section
6.3.1 is also valid for multicore platform. On the multicore
platform,

PM�1
i¼0 ðdlog 2 nie þ 1Þ represents the number of

steps to search all the range trees. Fig. 22 shows the average
throughput over the decision trees of various synthetic M.
These decision trees are generated by modifying the fea-
tures and boundaries used in the decision trees generated in
the classifier training, while preserving their shapes. As
shown in the figure, as M increases the throughput of DQ
decreases. The results in the fig. complies with our analysis
in Section 6.3.1. Note that when M increases the amount of
memory to store the test flows also increases, this is why the
throughput of ODT also decreases asM increases.

Search in ODT finishes in few levels. The levels to search in
ODT can be reduced in the following scenarios: 1. given a
fixed number of nodes, the tree is balanced; 2. most of the
test flows target the leaf nodes close to the root. Fig. 23
shows the throughput comparison between the two
approaches for synthetic trees of various number of nodes
and various average balance factors over all the non-leaf
nodes. As can be observed, the throughput of ODT
decreases dramatically as the trees become more imbal-
anced and as the number of nodes increases. The

throughput of DQ varies little as the balance factor and the
number of nodes changes. Thus, ODT is good for the more
balanced decision trees with small number of nodes, while
the DQ approach is good for the imbalanced decision trees
with large number of nodes. Fig. 24 shows the result for the
real decision trees tested with flows targeting the leaf nodes
within a certain number of levels from the root. We can
observe that for all the decision trees trained using EOFS,
when all the test flows target the leaf nodes within 8 levels
from the root, ODT has higher throughput than DQ. Other-
wise DQ has higher throughput.

7 CONCLUSION

In this paper, we first selected a set of traffic features for accu-
rate classification; the empirically optimized feature set con-
sists of transport layer protocol, source port number,
destination port number, average packet size, maximum
packet size, andminimum packet size. Using this feature set,
we sustained a high classification accuracy of over
97 percent. Then we proposed two algorithms by optimizing
decision tree, or by a divide and conquer technique. We
designed architectures for these approaches on FPGA to
achieve high throughput. The DQ and ODT achieved
10000þ and 8000+MCPS throughput respectively on a state-
of-the-art FPGA. We also presented implementations on
multicore platforms. The DQ and ODT achieved 230+ and 80
+MCPS throughput on state-of-the-art multicore processors.
Through extensive experiments and analysis we demon-
strated that, for the decision trees trained using EOFS, DQ

Fig. 21. Average throughput on the AMD platform: real decision trees
with various synthetic number of applications, synthetic test flows.

Fig. 22. Average throughput on the AMD platform: real decision trees
with various synthetic number of features, synthetic test flows.

Fig. 23. Average throughput on the AMD platform: synthetic decision
trees of various balance factors and various number of nodes, synthetic
test flows.

Fig. 24. Average throughput on the AMD platform: real decision trees,
synthetic test flowswhose search endswithin various levels from the root.
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achieves higher throughput with lower resource con-
sumption than ODT. But in the scenarios where the
number of applications and number of features are large,
ODT achieves higher throughput on both multicore and
FPGAplatforms.

It will be interesting to explore heterogeneous platforms
for traffic classification. For example, the Zynq-7000 All Pro-
grammable System-on-Chip (APSoC) [40] is an attractive
platform; on such a platform both software and hardware
engines can be deployed.
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