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Abstract 
 

In real-time video mining applications it is 
desirable to extract information about human subjects, 
such as gender, ethnicity, and age, from grayscale 
frontal face images. Many algorithms have been 
developed in the Machine Learning, Statistical Data 
Mining, and Pattern Classification communities that 
perform such tasks with remarkable accuracy. Many of 
these algorithms, however, when implemented in 
software, suffer poor frame rates due to the amount 
and complexity of the computation involved. This 
paper presents an FPGA friendly implementation of a 
Gaussian Radial Basis SVM well suited to 
classification of grayscale images. We identify a novel 
optimization of the SVM formulation that dramatically 
reduces the computational inefficiency of the 
algorithm. The implementation achieves 88.6% 
detection accuracy in gender classification which is to 
the same degree of accuracy of software 
implementations using the same classification 
mechanism.  
 
1. SVM Classification 
 

The SVM classifier utilizing the Gaussian Kernel is 
given by equation 1.   
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Equation 1 
 
1.1. Input Representation 
 

In the case of gender classification we apply the 
SVM to a fixed 30x30 image window represented as a 
900 element pixel vector.  Each element in the vector is 
an 8-bit unsigned grayscale pixel value with magnitude 
ranging from 0 to 255.  Support vectors are defined 
equivalently.   

 
1.2. Kernel Optimization 
 

First we analyze the range of values that result from 
the element-wise difference of the input image vector 
and a support vector when calculating the Euclidean 
Norm.  Since the elements in the input and support 
vectors are 8-bit values, their difference is in the range 
of 255 to -255 which can be encoded as a 9-bit signed 
integer.  Note that in equation 1 we are interested in the 
squared differences. Thus we can neglect negative 
differences and encode the absolute differences as 8-bit 
magnitudes.    
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Equations 2-5 
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Equation 6 
 
Equations 2 through 5 describe the Gaussian kernel 

as the product of the Exponential function evaluated 
separately for each of the Si terms.  The kernel is now 
factored into a series of functions of the absolute 
difference of x and z. The resulting function is 
efficiently stored in a 256 entry lookup-table. 

To further reduce the complexity of the 
implementation we perform the series multiplication in 
the Signed Logarithm Number System, SLNS[3], 
which allows us to replace multiplication with addition 
as shown in Equation 6. The efficiency gained from 
operating in the SLNS, however, is almost always 
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outweighed by the cost in converting to and from the 
logarithm domain: evaluating Log(x) and AntiLog(x) 
respectively.  Our architecture circumvents the need to 
evaluate these functions by storing Signed-
Log(Gaussian(x)) in the kernel lookup table.  

 
2. System Architecture 
 

Figure 1 is a block diagram of our hardware 
efficient SVM utilizing lookup-tables for the Gaussian 
kernel evaluation and SLNS arithmetic units for 
backend computation.  The lookup-table outputs are 
delivered into the inputs of a cascade adder.  Prior to 
completion of kernel evaluation the primary adder, 
denoted with a P in figure 1, accumulates the four 
partial sums, adds the weight term, and adds an 
adjustment term to account for SLNS conversion. 

 Once kernel evaluation completes, the current 
positive weighted result is added to the accumulation 
of previous weighted kernel evaluations.  Because both 
the newly computed result is signed -as determined by 
the sign of the weight associated with the current 
iteration- and the current accumulation is signed -as 
determined by its sign bit -   it will be necessary to 
perform either sign-magnitude addition or subtraction 
in the SNLS domain.  
 
3. Experimental Results 
 

We have tested our implementation of the SVM 
algorithm for the problem of gender classification 
against a commercial database of 3,454 male/female 
annotated images.  The SVM contains 629 support 
vectors with each support vector containing 900 
elements.  Table 1 summarizes the results for double 
precision and fixed-precision of varying fractional bit-
widths.  

Table 1 
 Misclassifications Accuracy 
DP 393 88.6% 
FP 1.0.31 393 88.6% 
FP 1.0.15 399 88.4% 
FP 1.0.12 567 83.5% 

 
Table 2 

 DSP48s BlockRAMs Logic Slices 
1.0.31 11 11 592 
1.0.15 11 9 564 
1.0.12 11 9 540 

 
The SVM architecture can perform classification of 

1,100 30x30 images, each consisting of 629 support 
vectors in one second when operating at 100 MHz.  
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Figure 1 
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