
A Hardware Efficient Support Vector Machine Architecture for FPGA

Kevin M. Irick, Michael DeBole, Vijaykrishnan Narayanan, Aman Gayasen
Department of Computer Science and Engineering

The Pennsylvania State University, PA, USA
{irick,debole,vijay}@cse.psu.edu, aman.psu@gmail.com

Abstract

In real-time video mining applications it is
desirable to extract information about human subjects,
such as gender, ethnicity, and age, from grayscale
frontal face images. Many algorithms have been
developed in the Machine Learning, Statistical Data
Mining, and Pattern Classification communities that
perform such tasks with remarkable accuracy. Many of
these algorithms, however, when implemented in
software, suffer poor frame rates due to the amount
and complexity of the computation involved. This
paper presents an FPGA friendly implementation of a
Gaussian Radial Basis SVM well suited to
classification of grayscale images. We identify a novel
optimization of the SVM formulation that dramatically
reduces the computational inefficiency of the
algorithm. The implementation achieves 88.6%
detection accuracy in gender classification which is to
the same degree of accuracy of software
implementations using the same classification
mechanism.

1. SVM Classification

The SVM classifier utilizing the Gaussian Kernel is
given by equation 1.

() ()

∑
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −+−
− −−

=
SVNUM

i

o

zxzx

i

nini

eaxtionClassifica
_

0

2

...
2

2
1,1

2
0,0

)(

Equation 1

1.1. Input Representation

In the case of gender classification we apply the
SVM to a fixed 30x30 image window represented as a
900 element pixel vector. Each element in the vector is
an 8-bit unsigned grayscale pixel value with magnitude
ranging from 0 to 255. Support vectors are defined
equivalently.

1.2. Kernel Optimization

First we analyze the range of values that result from
the element-wise difference of the input image vector
and a support vector when calculating the Euclidean
Norm. Since the elements in the input and support
vectors are 8-bit values, their difference is in the range
of 255 to -255 which can be encoded as a 9-bit signed
integer. Note that in equation 1 we are interested in the
squared differences. Thus we can neglect negative
differences and encode the absolute differences as 8-bit
magnitudes.

()2),(iii zxzxD −=

()
22
,),(

o
zxDzxS i

i =

()

()

()∏∑

∏
−

=

−

=

−

=

−
−

=

=
∑

=

−

=

1

0

,
_

0

1

0

,
,

)(

),(

1

0

n

i

zxS
SVNUM

j
j

n

i

zxS
zxS

ji

i

n

i
i

eaxtionClassifica

eezxGaussian

Equations 2-5

()()⎟
⎠

⎞
⎜
⎝

⎛ += ∑
−

=

−
=

1

0

,
_,0)(

n

i

zxS
jSVNUMj

jieSLNSaLogSumxtionClassifica

Equation 6

Equations 2 through 5 describe the Gaussian kernel

as the product of the Exponential function evaluated
separately for each of the Si terms. The kernel is now
factored into a series of functions of the absolute
difference of x and z. The resulting function is
efficiently stored in a 256 entry lookup-table.

To further reduce the complexity of the
implementation we perform the series multiplication in
the Signed Logarithm Number System, SLNS[3],
which allows us to replace multiplication with addition
as shown in Equation 6. The efficiency gained from
operating in the SLNS, however, is almost always

16th International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-3307-0/08 $25.00 © 2008 IEEE

DOI 10.1109/FCCM.2008.40

304

outweighed by the cost in converting to and from the
logarithm domain: evaluating Log(x) and AntiLog(x)
respectively. Our architecture circumvents the need to
evaluate these functions by storing Signed-
Log(Gaussian(x)) in the kernel lookup table.

2. System Architecture

Figure 1 is a block diagram of our hardware
efficient SVM utilizing lookup-tables for the Gaussian
kernel evaluation and SLNS arithmetic units for
backend computation. The lookup-table outputs are
delivered into the inputs of a cascade adder. Prior to
completion of kernel evaluation the primary adder,
denoted with a P in figure 1, accumulates the four
partial sums, adds the weight term, and adds an
adjustment term to account for SLNS conversion.

 Once kernel evaluation completes, the current
positive weighted result is added to the accumulation
of previous weighted kernel evaluations. Because both
the newly computed result is signed -as determined by
the sign of the weight associated with the current
iteration- and the current accumulation is signed -as
determined by its sign bit - it will be necessary to
perform either sign-magnitude addition or subtraction
in the SNLS domain.

3. Experimental Results

We have tested our implementation of the SVM
algorithm for the problem of gender classification
against a commercial database of 3,454 male/female
annotated images. The SVM contains 629 support
vectors with each support vector containing 900
elements. Table 1 summarizes the results for double
precision and fixed-precision of varying fractional bit-
widths.

Table 1
 Misclassifications Accuracy
DP 393 88.6%
FP 1.0.31 393 88.6%
FP 1.0.15 399 88.4%
FP 1.0.12 567 83.5%

Table 2

 DSP48s BlockRAMs Logic Slices
1.0.31 11 11 592
1.0.15 11 9 564
1.0.12 11 9 540

The SVM architecture can perform classification of

1,100 30x30 images, each consisting of 629 support
vectors in one second when operating at 100 MHz.

4. References

[1] C.J.C. Burges, “A Tutorial on Support Vector Machines
for Pattern Recognition”, Data Mining and Knowledge
Discovery, 1998, pp. 121-167.

[2] J.E. Volder, “The CORDIC Trigonometric Computing
Technique”, IRE Trans. On Electronic Computers, Sept.
1959.

[3] E.E. Swartzlander, and A.G. Alexopoulos, “The
Sign/Logarithm Number System”, IEEE Trans. On
Computers, December 1975, pp. 1238-1242.

[4] D. Anguita,, A. Boni, and S. Ridella, “A Digital
Architecture for Support Vector Machines: Theory,
Algorithm, and FPGA Implementation”, IEEE Trans. on
Neural Networks, VOL. 14, 2003, pp. 993-1009.

[5] S.J. Melnikoff, and S.F. Quigley, “Implementing log-add
algorithm in hardware”, IEE Electronics Letters, VOL. 39, 31
March 2003, pp. 939-940.

Figure 1

305

