ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/5606749

A Digital Architecture for Support Vector Machines: Theory, Algorithm, and
FPGA Implementation

Article in IEEE Transactions on Neural Networks - February 2003

DOI: 10.1109/TNN.2003.816033 - Source: PubMed

CITATIONS READS
173 557

3authors, including:

Davide Anguita A. Boni

Universita degli Studi di Genova Universita degli Studi di Trento

246 PUBLICATIONS 3,220 CITATIONS 63 PUBLICATIONS 927 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Serious Games View project

ot Design Education View project

All content following this page was uploaded by Davide Anguita on 05 June 2014.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/5606749_A_Digital_Architecture_for_Support_Vector_Machines_Theory_Algorithm_and_FPGA_Implementation?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/5606749_A_Digital_Architecture_for_Support_Vector_Machines_Theory_Algorithm_and_FPGA_Implementation?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Serious-Games-4?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Design-Education?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide_Anguita?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide_Anguita?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Genova?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide_Anguita?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/A_Boni?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/A_Boni?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Trento?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/A_Boni?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide_Anguita?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_10&_esc=publicationCoverPdf

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003 993

A Digital Architecture for Support Vector Machines:
Theory, Algorithm, and FPGA Implementation

Davide Anguita Member, IEEEANndrea Boni, and Sandro Ridellslember, IEEE

Abstract—in this paper, we propose a digital architecture for designing special-purpose devices, as recalled before, and in

support vector machine (SVM) learning and discuss its implemen- some cases (e.g., embedded systems) a dedicated solution can
tation on a field programmable gate array (FPGA). We analyze be preferable [5].

briefly the quantization effects on the performance of the SVM in o K fits in this last f K
classification problems to show its robustness, in the feedforward ur work fits In this 1ast framework. We propose a new

phase, respect to fixed-point math implementations; then, we ad- algorithm for support vector machine (SVM) learning and
dress the problem of SVM learning. The architecture described a digital architecture that implements it. The SVM is a new
here .makes use qf anew algorithm for SVM Iearning which is less learning-by—example paradigm recently proposed by Vapnik
sensitive to quantization errors respect to the solution appeared so 4,4 pased on its statistical learning theory [6]. After the first
far in the literature. The algorithm is composed of two parts: the L . .
first one exploits a recurrent network for finding the parameters prellm]nary studies, SVMs havg shown .a_ remarka_p'? efficiency,
of the SVM; the second one uses a bisection process for computingespecially when compared with traditional artificial neural
the threshold. The architecture implementing the algorithm is de- networks (ANNS), like the multilayer perceptron. The main
scribed in detail and mapped on a real current-generation FPGA  advantage of SVM, with respect to ANNSs, consists in the struc-
(Xilinx Virtex 11). Its effectiveness is then tested on achannel equal- o of the learning algorithm, characterized by the resolution
ization problem, where real-time performances are of paramount ) . .
importance. of a constrained quadratic programming problem (CQP), where
Index Terms—Dbigital neuroprocessors, field programmable the c?rawb.ack of local minima is completely avoided. Our
gate arrays (FPGAs), quantization effects, ’support vector machine algorlthmllmproves on the propgsals appeargd sofar (e.g, [1.7]
(SVM). and consists of two parts: the first one, previously reported in
the literature, solves the CQP respect all the parameters of the
network, except the threshold, while the second one allows the
. INTRODUCTION computation of such threshold by using an iterative procedure.
HE hardware implementation of neural networks has The proposed algorithm can be easily mapped to a digital
recently attracted new interest from the neurocomputir@jchitecture: to assess the effectiveness of our approach,
community despite the skepticism generated by the devices?®d measure the actual performance of both the algorithm
the first generation, which appeared during the 1980s (see, &\ the architecture, we implement our solution on a field
example, [1] for a survey of these solutions). Nowadays, twR§ogrammable gate array (FPGA) and test it on a telecom-
research areas can be easily identified: the first one focugegnication application. Our choice is motivated by recent
on biological inspired devices and builds on Mead'’s semin@flvances in the FPGA-based technology, which allows easy
work [2]. In this case, the physical behavior of microelectronig€Programmability, fast development times and reduced efforts
devices is exploited to realize complex information processiifgth respect to full-custom very large-scale integration (VLSI)
with very low requirements in terms of area and power coflesign. At the same time, the advances in the microelectronics
sumption [3]. process technology allow the design of FPGA-based digital
The second area addresses the hardware implementatiofYstems having performances very close to the ones obtained
algorithms, which are inspired by the neurocomputing fram@y @ manual full-custom layout (see, for example, [25], which
work but not necessarily justified form a biological point ofletails an efficientimplementation of a neural processor).
view. Its main target is the design of dedicated analog or digital In Section I, we revise briefly the SVM. Section Il addresses
hardware with improved characteristics (e.g., performance, $fte hardware implementation of SVMs when targeting digital
icon area, power Consumption, etc_) respect to a software imm@lutions. New results on the robustness of this Iearning ma-
mentation on a general-purpose microprocessor. This appro&Bie, respect to quantization errors, are presented, and, after
has been the most criticized in the past [4], mainly because diéveying the state of the art of SVM learning algorithms, tar-
of the main targets of the research has been the raw comp@@ted to VLSI implementations, our new proposal is detailed.
tational power. There are, howe\/er, many other ad\/antages—rﬁfﬁ dlglta' architecture is described in Section IV and its FPGA
implementation, along with the experiments on a telecommuni-
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basis of the set of measurés;,y;}™ ,, wherez; € X C %! TABLE |
is an input pattern, ang, € Y = {—1,+1} the corresponding ALGORITHM 1: DSVM WITH FixED Bias
target.

To allow for nonlinear classification functions, the training Step Description
points are mapped from the input spaketo afeature space
Z C RL, with L > [, through a nonlinear mapping X — Z;
then, a simple linear hyperplane is used for separating the poit _ )
in the feature space. By using clever mathematical properti - Set7 = (r—yb); 1=
of nonlinear mappings, SVMs avoid explicitly working in the v
feature space, so that the advantages of the linear approach 3.  setendrun=false; k=0
retained even though a nonlinear separating function is four )

(see [6]-[8] for more details) 4. while not endrun do
The function® is given by

—

input: Q, b, a’;

5. g= (—Qak + i-)
O(x)=w-p(x)+b (D] 6. M1 = of 4 g
wherew is the normal vector of the separating hyperplane. k1 (k41 ,
Among all possible hyperplanes, SVMs find the one that col 7. of ™! = max (0, min (z£*!,C)) ,Vi=1,...,m
responds to a fu_nctlodr havmg a maximal margin or, in other 3. Vi (afﬂ _ af) < ¢ then
words, the maximum distance from the points of each clas

Since itis not common that all the points can be correctly cla: g endrun=true
sified, even if mapped in the high-dimensional feature spgace
the SVM allows for some errors but penalizes their cardinality 1q, else k=k+1
Formally, this description leads to a CQP, by requiring us t
find 11.  enddo
. 1 2 S 12.  output: o' = a**!
mitip, [5||w|| +O) 5] e
subject to which allows us to writeb using the dual variables
wweplm)+h) 21 =& Vi=l...m @) b(x) =Y cumip () - p(x) + b @)
i=1

This is usually referred as tiirimal (P) CQP. The function to o _
be minimized is composed by two parts: the first one forces t@ere are several advantages in using the dual formulation: the
hyperp'ane to have a maximal margin, while the second tefﬁﬁin one is that there is no need to know eXpI|C|t|y the function
penalizes the presence of misclassified points. The constant but only the inner product between two points in the feature
simply sets the tradeoff between the two terms. space. This is the well-knowkernel trickthat allows to deal
One of the reason of the SVM success is the fact that thfgplicitly with nonlinear mappings through the use of kernel
approach can be used to control the complexity of the learnifgictions
machine, namely through the structural risk minimization prin- bz 3.) — . . )
ciple [6]. This principle can provide a method for controlling the (@i,3)) = @ () - ¢ ()
complexity of the learning machine and define upper bounds ofysjng the above notation, tHe-CQP can be rewritten in a
its generalization ability, albeit in a statistical framework.  compact form, as follows:
The aboveP—CQP is usually rewritten in dual forigD), by

using the Lagrange multiplier theory [6] H},i,n [e" Qo —1"a
min 5 Z aiogyiyie (2:) - ¢ (T5) — Z @; (4) a’y=0 (9)
ij=1 i=1

_ whereg;; = y;y,k (z;,z;) andr is a vector of all ones.
subject to Since the seminal works on kernel functions, many kernels
of the form given by (8) have been found; among them are the

m Osm<C linear, the Gaussian, and the polynomial kernels
Z ay; =0 (5) i (36,3;) =3 - 3
. k(z;i,zj) —olITi—%,11%/207)
where k(zi,x;) =1 +z; ;)" (10)

w— ZOMWP (z) 6 Another advantage_(_)f using_the_ k_ernel functions lies in the
Pt fact that they are positive semidefinite functionals. Therefore,
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TABLE I
ALGORITHM 2: FBS

Step Description

1. biow=b=-1; a®=0; b,=+1; endFibs=false
2. a' = A4,(Q,b,a); s=sgn (yTa’>; a’=dao

3. if s < 0 then

4. while s < 0 do

5. bup =b;, b=2b;  biow = 2biow

6. o' = A(Q,b,a%); s=sgn (yTa’>; a’=a
7. enddo

8. else if s > 0 then

9. b= by

10. a' = A,(Q,b,a%); s=sgn (yTa’>; a’ = o
11. if s > 0 then

12. while s > 0 do

13. biow =b; b=2b; byp = 2byy

14. o' = A(Q,b,a°); s=sgn (yTa’); a®=a
15. enddo

16.  else endFibs = true

17.  while not endFibs do

18. b= (biow + bup) /2

19. o' = A,(Q,b,a%; s=sgn (yTa’>; a’=ao
20. if s =0 or (bjow — bup) < € then endFibs=true

21. elseif s < 0 then b,, = b

22. else bjow = b

23.  enddo

995

As a final remark, note that the threshéldloes not appear
in the dual formulation, but it can be found by using the
Karush—Khun—Tucker (KKT) conditions at optimality. Let
SV ={i:a; € (0,C)} be the set ofrue support vectorghen
the following equality holds:

> ajyik (i) + b=y (11)
j=1

thus,b can be found by

1
=

Yi — Z Oéjyjk (:L‘Z', :L‘j) . (12)
€SV j=1

Actually, this approach is correct as long$E # (); otherwise

one can use a more robust method, suggested in [10] (see also
[9]), where the threshold is computed using the KKT conditions,
but without resorting to support vectors.

I1l. HARDWARE IMPLEMENTATION OF SVMS
A. New VLSI-Friendly Algorithm for SVM Learning

Optimization problems like©O—CQP are well known to the
scientific community, as usually faced when solving several
real-world tasks. As a consequence, they have been deeply
studied by researchers, and several methods have been pro-
posed for their resolution. Among others, methods that can be
easily implemented in hardware are particularly appealing: we
refer to them as VLSI-friendly algorithms. The leading idea of
these methods is to map the problem on a dynamical system
described by a differential equation

v="Fa(v) (13)

with v = [a”,b] and whose stable point, for— oo, coin-
cides with the solution of the optimization problem.

Equation (13) can be seen as a recurrent neural network and,
from an electronic point of view, can be implemented, on analog
hardware, with simple electronic devices [14], [15].

A digital architecture can be targeted in a similar way by
defining a recurrent relation of the form

vV = Fp (VF). (14)

A simple way to obtain (14) from (13) is to use the Euler’s
method for integration, and to obtain

vl =k 4 nky (Vk) (15)

wheren is the integration step. Unfortunately, finding a suitable

using this property and the fact that the constraints of the abayewhich guarantees the convergence/btoward the solution
optimization problem are affine, any local minima is also whenk — oo, is not a trivial task.

global one and algorithms exist which, given a fixed tolerance, Recently, a useful convergence result has been presented for a
find the solution in a finite number of steps [9]. Furthermore, iietwork that solves a CQP with inequality constraints [16]. As
the kernel is strictly positive definite, which is always the casghown in [17], this algorithm (digital SVM or DSVM) can be
except for pathological situations, the solution is also uniquapplied effectively to SVM learning when a Gaussian kernel is
These properties overcome many typical drawbacks of tradhosen. The underlying idea is to exploit the fact that a Gaussian
tional neural-network approaches, such as the determinati@rnel maps the data to an infinite feature space, so the effect of
of a suitable minimum, the choice of the starting point, theemoving one of the parameters of the SVM from the learning
optimal stopping criteria, etc.

process can be negligible. In particular, if we bet= 0, we
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s-block
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Fig. 1. SVMblock.
force the separating hyperplane to pass through the originin- ence

feature space and the equality constraint disappears from cc-counter

dual formulation of the CQP. Then, the DSVM can be used fi rsctlckc
solving the resulting problem toc
nﬂna[aTQa——rTa]
0<a<C. (16)
u/d
The core of DSVM is very simple encc
—rgg) rc-counter sels
z" =a" +ng (7) clk — i
o*t! =max (0./ min (zk C)) (18) e :
whereg = —Qa + r. The convergence of the above recurrer > I
relation is guaranteed, provided thaK 2/m. addressBUS | seln

Even if several experiments on real-world data sets halig- 2. counters—block.
demonstrated the effectiveness of this method, it is greatly
penalized by two facts: the generalization of a SVM with plements a procedure for updating the valué itéelf, in order
constant threshold does not fit the usual theoretical framewot&,reach iteratively the optimal threshold valife
and it is not easily applicable to other kernels (e.g., the linearlf we consider theP problem of SVM learning, it is easy
one). to deduce that, whenever the threshblid considered as aa
Here, we suggest a new approach, which allows the use of th@ri known parameter, then the dual formulation becomes
DSVM algorithm and the computation of the threshold as well. 1
This resultis based on a recent work on parametric optimization Hgn [iaTQa - fTa}
[18]: the main idea is to design a learning algorithm composed 0<a<C (19)
by two parts, working iteratively. The first part addresses the - =
resolution of a CQP with fixed, whereas the second one imwherer = (r — yb).



ANGUITA et al: A DIGITAL ARCHITECTURE FOR SUPPORT VECTOR MACHINES 997

< > A

sell— ) addr| din addressBUS sg&ga\\\\ addr |din b
T Jes1 ¥ 1 '
10 - A 150 JCM  RaMm
LA
1
ctrlRAM [>

we

G0 R [ S ] &

PE1 PEm

! XS
% >

snge3ep

rst
en akpl akply
clk

aki akn

'—>
comp, comp
v
endrunblk
endrun

Fig. 3. dsvm—Dblock.

Such a problem can be solved by a slightly modified versianthreshold, and a starting valua®, the algorithm solves the
of DSVM, listed in Table I. Given the input kernel matrix, CQP of (19) by providing an intermediate solutiah
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As our aim is to solve the CQP with the equality constrain
it is possible to deduce, from the term= sgn (y"a’), the
range of variation of*. In fact, being* the optimal value of the
threshold to be find antla tentative value at a given stepsik
0 thend* < b, otherwise ifs > 0 thenb* > b: in other words,  shidb1 shldbu
s is a nonlinear function of that crosses zero only once, wher . ] -
b = b*, thereforep lies in aranggbio., bup| for whichsio,, >0 oot b low e | b up
ands,, < 0[18]. Consequently, a simple bisection procedur 1k - clk -
can be derived for finding*, that is the only point where = 0.
Our proposal, calledFixed b Svn(Fibs), is listed in Table Il
it has been designed with the goal of an implementation on
digital architecture, but, as will be clear subsequently, it can | %
implemented on a general-purpose floating-point platform ctrib | \
well.

Its functionality is based on the search of a range of valu nidb
[biow, bup) to which the thresholt* belongs. Then, at each step. T 1
it proceeds according to a simple bisection process by findin¢ :z;b b
tentative valué = (b + bup) /2, and by updating;,,, and clk
b.p 0N the basis of the value of It terminates when the range
[biow bup] beCcOomes smaller than a given tolerangeNote that,
when the algorithm starts, both.., andb,, are not known, l l————
therefore, a first search of the feasible range must be perform
We found experimentally thé{,., = —1 andb,, = 1 are good comp
starting choices.

ctrlbl ctrlbu

endfibs2

B. Quantization Effects in SVMs
endfibs
(to dsvmBlock) (to FSMfibs)

To the best of our knowledge, no theoretical analysis of tt
guantization effects of the SVM parameters has appeared S0 icu
inthe Iit_erature. For this reason, we quantify here some of these = ... giock.
effects in order to prove that the feedforward phase of the SV
can be safely implemented in digital hardware.

We perform a worst-case ana]ysis based on the propertieg—he effect of quantization can be described by transforming
of interval arithmetic [13]’ [11] Other techniques can be us&ﬁCh variable involved in the Computation of the feedforward
as well (e.g., statistical methods [12]), but we believe th@hase in an interval
worst-case results, when applicable, can be of more interest,
when targeting digital architectures, because provide guaran- a; —[a; = Ao, i + Aa] (20)
teed bounds on the performance of the implementation. ki — [k — Ak, k; + AK] (22)
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shldsiso

. TABLE il
rstssiso MAIN CHARACTERISTICS OFFSMs
enssiso
clk
FSM States Transitions inputs outputs
din
7w sSISO 1l FSMload | 14 31 4 17
FSMout 5 11 3 9
FSMFibs | 14 34 5 12
dain FSMs 5 7 2 8
FSMdsvm 6 9 3 14
,7 777777 1
2compl m
g Zy’ [Oéiki — OézAk — k,Aoz
i=1
0 1 +AO&AI{I, ok + o Ak
kiAo + AaAK] + [b— Abb+ Ab  (25)
m
. C > yiciki + b+ AaAk
B i=1
®
il

xSy + Y wil-cilk — kida, +a; Ak + ki Aa]

\ i=1 i=1

+ [—Ab, Ab] (26)
Cd(z)+ (m* —m™) AaAk
+m [-CAk — Aa, CAE 4+ Aa] + [-Ab,Ab]  (27)

4R

rstaces wherem™ (m™) is the number of patterns with positive (neg-
enaccs aces ative) target andn™ 4+ m~ = m. In the above derivation, we
etk S have assumed, for simplicity, that < 1, as in Gaussian ker-

nels, but a similar result can be derived for other kernels as well.
Then, the bound on the quantization effect is given by

[-A®,+AQ] C (mt —m™) AaAk
endrunblk + (m (CAk + A(Z) + Ab) [—17 +1] . (28)

The above equation can be used to analyze the contribute to
the quantization error from each parameter of the SVM. As an
example of this analysis, let us assume that each parameter is
quantized with a similar stea = Ak = Ab = A. According
to SVM theory, any pattern lying outside the margin gives an
output|® (z) | > 1; therefore, a pattern can be misclassified if

s endfibs2 the total quantization error is greater than one and of opposite
_ sign respect to the correct target value. In other words, using
Fig. 6. s-block. (28), a necessary condition for a misclassification error is given
by
b—[b— Ab,b+ Ab] (22)

(mT—=m™)A?—mA(C+1)—A>-1. (29)
whereAa, Ak, andAb > 0 are no less than half of the quantiza; . ,
tion step. Note that, for simplifying the notatién = k (z, ). If the two classes are balancedt = m ™) the above equation

Using the properties of interval arithmetic [13] and the fa&!mpllfles to an intuitive relation between the maximum admis-

thata; > 0, itis possible to derive upper bounds of the quantlsiIble quantization step and SOTe parameters of the SVM

zation effects - -
A A As eI+t (30)
[‘1’ () — AD, (z) + A‘I’} (23)  Equation (30) shows that the quantization step cannot be
m greater than a quantity that depends on: 1) the number of the
= Z yi [ai — A, a; + Aq] patterns and 2) the size of the alphas. This is an intuitive result:
i=1 in fact, as the number of patterns grows, the summation on

X [ki — Ak, k; + Ak] + [b — Ab, b+ Ab] (24) them can suffer from the accumulation of quantization errors
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Fig. 7. Misclassification error due to quantization effects.

and, at the same time, larger values of the parameters can in its memory directly the negategd = —Q. The values

heavely affect the classification output. must be delivered by scanning the matrix row by row (or
column by column, thank to the simmetry properties of
IV. DIGITAL ARCHITECTURE Q), and following a typical handshake protocol. The acti-

vation of the asyncronous reset permits one to clean up all
registers and to start a new learning with the initial value
a = 0, otherwise the final value of the previous learning
is assumed as new starting point.

Learning PhaseAs soon as the loading is completed, the
SVMblock starts the learning phase, according toFhs
algorithm detailed in Section IlI; once it terminates, the
ready signal is activated in the output, and the block can
begin the output phase;

Output phase The SVMblock submits the results of

In Section Ill, we have detailed the Fibs algorithm and we
have shown that can it be applied to solve an SVM-based clas-
sification problem with any kind of kernel function. In this sec-
tion, we describe in detail an architecture that implements it, 2)
following a top-down approach. At first, we will show the main
signals and blocks that compose the design, then we will de-
tail each one of them. The architecture described in this paper
is just a first study on this topic, useful to understand its main
properties, such as number of clock cycles needed to reach )
feasible solution, clock frequency, device utilization, etc. With

this ai ¢ tteni the desi ¢ ot ¢ learning, that is the valués, of, ..., a},, to the output
IS aim, we focus our attention on the design of a prototype o using the same communication protocol of the loading
a RBF-SVM, but the same design can be easily extended to dif- phase

ferent kind of SVMs. These logical phases are implemented by the general archi-

tecture depicted in the block-scheme of Fig. 1. It is mainly
composed by four computing blocks, namely #winters,

The input—output interface of our design is represented @vsm, bias, ands-blocks, and three controllers for the loading,
Fig. 1. It is characterized by two data lines, nameé#tain, learning, and output phase, respectively. Whereas all the signals
used for input data, andataout, used for the output, of 16 to/from the controllers are connected on thentrolBUS
bits each. The lineseq andack act as handshake signals folvia a tristate-based connection, data are connected on the
the 1-0O. The signastart begins a learning session, while thelataBUs, while the information on theddressBUS indexes
ready signal reports both its termination and the fact that theach element of the kernel matrix, as detailed in the following.
entity can start to submit the parametém@snda to the output.

Finally,en, rst, c1k are the enable, the asynchronous reset, aR Structure of Each Block

A. Main Blocks and Signals

the clock signals, respectively. S In this section, we will describe the function of each basic
The functionality of theSVMblock can be subdivided in three pjock of Fig. 1, each of which implements a specific function
basic phases. expressed in algorithikibs: thedvsm—block contains both the

1) Loading PhaseWhen the SVMblock receivesstart, memory to store matri@ and all the digital components needed
transition0 — 1, it begins the loading of the target vectorto implement the algorithm of Table I; theunters-block pro-
y, and the kernel matrig). Actually, without loss of gen- vides all the counters and indexes needed to select either the en-
erality, we suppose that the SVMblock receives and stor&is of the kernel matrix and each alpha value during the flow of
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Fig. 8. Distribution of data for Models 1a (a) and 1b [B) = 2,02 = 0.2,m = 500(A), m = 32(B)].

the algorithm; thevias-block contains registers and combinawe callcc (column counter, used to index a column of the kernel
torial logic for the control the valu€g,.., b.p, andb. Finally, the matrix) andrc (row counter, used to index a row of the kernel
s-block contains a register where the target vegtos stored, matrix), respectively. Thec is also used to select a particular
and the logic components for the computation of the equaliBAM, during loading, inside th&AM-block of dvsm, and to se-
constraint, namely the value efin Table Il. As a final remark, lect a particular value of alpha, both during the computation of
let us note that all the connections to #entro1BUS and the s and during the output phase.
dataBUS, are realized via a tristate connection. The output ofrc is directly connected to theddressBUS.

1) Counters-Block: The structure of theounters—block Theccis an up-counter, while the: s counts both up and down,
is represented in Fig. 2. It mainly consists of two counters, thas detailed in Section 1V-B2.
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2) Dvsm-Block: We implemented the DSVM algorithm in At a given time-step k, eadPE; holds the component? in
a one-dimensional systolic array composedrybasic pro- the registetreg, and its role is to computg = Zj qijaf + 7
cessing element®E s), each of which has the task of updatinghe valuer; is knowna priori at eactPE;, when thelvsm-block
an element of the vectgr. As previously indicated, we supposés enabled to operate, and is deduced from the viglobtained
that matrixQ is precomputed and stored in a set of RAMs dffom thebias-block and from the value of the target, pro-
sizem x Ng bit; each RAM contains a row a@, as shown in vided bys.
Fig. 3. Ng is the length of the word used to code each elementAs a first step, the valug;;a* + 0 is computed and stored
gi;» while with N, we indicate the length of the words used tin acc; af is then delivered t®E;, |, whereasPE; receives
code eachy;. Fig. 4 shows the structure of a gendPiE;. af | from PE; ;. As a second stef’E; computes and stores
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TABLE IV TABLE VI
FLOATING AND FIXED-POINT EXPERIMENTS FORSONAR (LINEAR KERNEL) FLOATING AND FIXED-POINT EXPERIMENTS FORMODEL 1B
(62 = 0.5; C = 0.09)

nsv b eq. TR TS

nsv b eq. TR TS

FP(SMO) | 45 -16.8489 -22E-13 0 23
FP(SMO) | 23 -7.37E2 -69E-18 1 122
FP(FIBS) | 45 -16.8412 78E-4 0 23

FP(FIBS) | 23 -7.37E-2 -9.16E-5 1 122

16-11-9 | 60 -464 013 0 19
16-3-8 23 -74E-2 -195E-2 1 124
16-11-13 | 46 -1584 -1.83E3 0 23
16-3-13 |23 -7.36E-2 0.0 1 122
12-11-9 | 60 4.7 -17B-1 0 20
12-3-8 23 -74B-2 -156E-2 1 124
12-11-13 | 43 -156  -28E-2 0 24
12-3-13 |23 -7.35E-2 -48E4 1 122
8-11-9 48 -153.439 29E-2 19 30
8-3-8 23 -82B-2 195E2 1 125
8-11-13 | 48 -149.7  1.8E-3 18 30

8-3-13 23 -7.54E-2 3.6E-4 1 121

TABLE V 6-3-8 23 -6.6E-2 195E-2 1 120

FLOATING AND FIXED-POINT EXPERIMENTS FORMODEL 1A

(0 = 05: C = 0.05) 6-3-13 |23 -612E2 -3.6B4 1 118

v b eq TR TS TABLE VIl
FLOATING AND FIXED-POINT EXPERIMENTS FORMODEL 2A
FP(SMO) 271 13B-16 132E-16 17 88 (©* = 0.5;C = 0.02)
FP(FIBS) | 271 429E2 -2.17E-4 17 88
nsv b eq. TR TS
16-3-8 500 1I7E2 -39B3 19 90
FP(SMO) | 324 601E2 0.0 80 386

16-3-13 | 282 4.45E-2 -6.1E-5 18 89
FP(FIBS) | 324 6.01E-2 -3.6E-4 80 386

12-3-8 500 1.17E-2 -39E-3 19 90
16-3-8 500 43E-2 -7.8E-3 80 386

12-3-13 | 282 4.45E-2 24E-4 18 89
16-3-13 | 327 5.69E-2 1.83E-4 80 385

8-3-8 500 1.17E-2 0.0 19 91
12-3-8 500 43E-2 -7.8E-3 80 387

8-3-13 282 4.41E-2 12E-4 18 88
12-3-13 | 327 5.6E-2 3.6E-4 80 385

4-3-8 500 1.17E-2 -1.56E-2 18 88
8-3-8 500 43E-2 -7.8E-3 81 387

4-3-13 279 1.17E-2 6.1E-5 18 88

8-3-13 329 556BE-2 -42E4 79 383

. & S . 6-3-8 500 4.3E2 352E2 79 392
Gi(i—1)ai_1 + Giicy and so on. Finally, aftem steps, corre-

sponding t@ - m clock cycles, the final valug? is ready at the 6-3-13 | 328 5.76E-2 -3.05E2 83 388
ouput of eachPE;.

The storing ofQ inside therAM-block is the following: each
RAM; contains theth row on, that is the valugj;; (stored at the shift, we directly connect th¥, — p most significant wires
location 0),¢;;—1) (stored at location 1), and so on; finallyof eachy; to the less significant wires of the corresponding
i(i+1) is stored at locatiomn. In this way the corresponding adder, thus avoiding, in practice, an actual shift. The set of mul-
PE; has the valug;; ready for the computation, each time a newiplexers subsequent to the adder act as limiters, in order to con-
aj arrives. straint each alpha to lie inside the bfix C] and to compute

During learningRAV; is indexed by the address given by thex,f“, which is stored in the corresponding regisi&pl. As
counterrc, which counts in modap; instead, during loading, soon as the valu@,f-“rl is computed and stored #kpl, its pre-
the same counter, used to storeitherow, counts in modeown,  vious valuea? is stored inak: this further set of registers is
and begins its counting from the valueSuch an initial value useful in order to verify the termination of the algorithm, rep-
is provided by the external countet (see Fig. 2). Once eachresented by the activation of the sigraldrun. In particular,
component ofy is ready, as we suppose here to implement aach componeniomp is a simple binary comparator providing
RBF-SVM, and being for such machinesxg;; = 1, a shift “1”when the inputs are all equal and “0” otherwise. Finally, the

of p = [logym| — 1 positions must be executed. To performendrunblk-block, implements aanD operation of its inputs.
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If a further iteration must be executéemdrun = 0), another TABLE VIII
cycle begins after the storing of eagkp1 in the corresponding FLOATING AND F'?EE'iOBNI_EgPERBMgg)T S FORMODEL 28
reg of thePE. Rt

3) Bias-Block: The bias—block (see Fig. 5), is simply

composed by three left-shift registers, containing,, bup, wvoob e R TS
andb, an adder, two 2-to-1 multiplexers, a 3-to-1 multiplexer, FP(SMO) | 28 2.05E2 0.0 3 683
and a binary comparator, which detects the termination of the

learning phasg¢endfibs = 1) wheneveh = bjoy, Or b = by,. FP(FIBS) | 28 2.06E-2 -12E-4 3 683

Note that, agT o’ = 0 is a feasible condition for stopping the

. . . . ) 16-3- 29 273E2 -1.17E2 3 691
algorithm, thebias-block receives also the signahdfibs 6-3-8 ? o

from thes-block, which is equal to “1” whep” o/ = 0 and “0” 16-3-13 |28 2.07B2 -12E4 3 685
otherwise. Finally, the bisection procg$s= (biow + bup) /2)

is simply implemented without connecting the LSB of the 12-3-8 |29 27E2 .117E2 3 692
adder to the input of the multiplexer (such a connection is 12.3-13 |28 2.09E2 -3.6B-4 3 685
represented with a dashed line in Fig. 5), thus avoiding, as in

the case of the multiplication fardiscussed in Sections IV-B1 8-3-8 29 27E-2 -234E2 3 692

and IV-B2, an actual right-shift.

4) S-Block: The role of thes—block (see Fig. 6), is the
computation ofs, namely the sign of the quantity”o’. 4-3-8 28 273E2 -78B3 5 685
It is composed by a serial-input serial-output circular shift
register (sSIS0), containing the vectoy, a “2’s complement”
block, a 2-to-1 multiplexer, an adder and a regidtetcs)
acting as an accumulator. The valuas simply the MSB of
accs. The s-block works during the loading phase, whertataset (Sonar), and several datasets from a telecommunication
the labelsyy,...,yn are stored in thesSISO, and during problem, recently used for the application of SVMs to channel
the learning phase after the valeedrun = 1 is generated equalization purposes. In Section V-A, we also show how the
by the dvsm-block. The connection with theatabus is as theoretical results on the quantization effects (Section 111-B)
follows: the serial-inputdin of sSISO, read only when the relate to the actual misclassification of the SVM on the Sonar
input shidSISO is active high (load), is connected to the LSB 8ftaset. The second problem, described in Section V-B, is
dataBUS, while the vectodain is fully connected tdataBys. Particularly appealing because it is a typical case where a
In practice,dain contains, at a given time during learning, #ledicated hardware can be of great usefulness. The floating
valuea;, from the set of registerskpl. and the fixed-point experiments are discussed in Section V-C;

5) Controllers: As previously indicated, theSvMblock furthermore, in such section we report the comparison of our
is composed by three finite-state machines (FSMs), eagBProach with the well-known SMO algorithm [9], [19], [20]
one having the role of controlling a given phase of th®r SVM learning. Finally, in Section V-D, we discuss the
Fibs-algorithm; we indicate them @&SMload, FSMlearn and IMplementation on a FPGA.

FSMoutput, respectively. ActuallyFSMlearn is subdivided in
three different modules that we calSMfibs, FSMdsvm and A. Sonar Dataset
FSMs. FSMfibs is the actual supervisor of the architecture and The Sonar dataset is a well-known |inear|y Separab|e

manages all the transitions for the correct flow of a|gOfithrpr0b|em' extensive|y used for benchmarking purposes of
Fibs. In particular, it enableBSMdsvm to control the function- learning algorithms [21]: its popularity is mainly due to the
ality of thedsvm-block, during a part of learning, and, after thejifficulty of the classification task. As the computation of the
valueendrun = 1 is obtained, enables the submodBBs, thresholdb is fundamental for the determination of the sepa-
which supervises the-block. FSMf ibs receives all the control rating surface, it is particularly suitable to test the algorithm
SignaISendrun, s andendfibs, and decides the correct aCtiOI"proposed in this paper. The sonar data set is Composed by
according to their value, following the algorithm given inp08 samples of 60 features each, usually subdivided in 104
Table II. Table I1I, reports the main characteristics of the FSMgaining and 104 test patterns. It is known that a linear classifier
such as number of states, transitions, total inputs/outpuisisclassifies 23 test patterns, while a RBF-SVM misclassifies
The choice of subdividing the controller of the system in fiveix test patterns if the threshold is used, and eight test patterns
different sub-modules, is justified by the fact that, for synthesggtherwise [17].
purposes, it is better to have small modules working separatelyThe Sonar dataset has been used for testing the quality of the
as confirmed by the results discussed in Section V-D. quantization error bounds found in Section I1I-B. In particular,
we solved the problem using a Gaussian kernel with= 1
andC = 10: the solution consists ol» = 119 support vec-
V. EXPERIMENTAL RESULTS tors(m™ = 59, m~ = 60). Then, arandom perturbation of size
A has been applied to each parameter of the network and the
In order to test the proposed algorithm and the correspondiagerage, minimum, and maximum misclassification errors have
digital architecture, we chose a well-known benchmarkirigeen registered ot different trials.

8-3-13 28 197E-2 -3.05B-4 3 688

4-3-13 28 3.46E-2 -36E4 3 680
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TABLE X
HDL SYNTHESIS REPORT FORm = 8 AND m = 32
Block m Registers Counters Mux Tristates Decoders Add/Sub Comps
s 8 9 - 2 - - 2 -
counters | 8 4 1 - - 1 2 -
bias 8 48 - - 48 1 1 2
dsvm 8 32 - 40 1 - 40 8
s 32 33 - 2 - - 2 -
counters | 32 4 1 - - 1 2 -
bias 32 48 - - 48 1 1 2
dsvm 32 128 - 160 1 - 160 32
SVM 8 93 1 90 20 1 45 10
SVM 32 213 1 210 20 1 165 34

0.5 |

-1 1 1 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000 14000
Clock cycles

@

Fig. 10. Convergence dffor (a) m = 8.

The results are shown in Fig. 7, as a functionl@f,(A): The worst-case bound, instead, provides a safe value, which can
the worst-case bound given by (29), as expected, is quite ctie-easily computed.
servative and suggests that approximately ten bits are necessary
for avoiding any misclassification error, while the experiment
value is eight. However, it is worthwhile noting thea® trials
are an infinitesimal amount respect to an exhaustive search foiThe channel equalization problem is a typical application
misclassification errors, but require many CPU hours on a comhere a special-purpose device can be effectively used, on the
ventional PC. The actual number of possibilities of addiny receiver side, in order to estimate one between two symbols
to each parameter of the SVM 8™+, therefore, an exhaus-u,, € {41}, of an independent sequence emitted from a given
tive search is impossible to perform in practice and this apeurce. All the unknown nonlinear effects of the involved
proach could never provide enough confidence on the resglbmponents (transmitter, channel and receiver) are modeled

%. Channel Equalization Problem
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Fig. 10. (Continued)Convergence of for percentage of test errors during learning forib)= 32 and (c)m = 32.

as finite-impulse response (FIR) filters, plus a Gaussian diBhe classical theory, tackles this problem by finding an

tributed noise: with zero mean and variane€ optimal classifier (the Bayesian maximum —ikelihood
N detector), which provides an estimate(n — D) of
#(n) :thu(n —k) yn = wu(n — D) through the observation of ahdimen-
=0 sional vectorz,, = [z(n),z(n—1),...,z(n—1+1)]".
P Whereas these methods require the knowledge of the symbols
z(n) :Zcpip (n) probability, and the analytic structure of the model, neural
p=1 network-based approaches have been successfully applied [22],

z(n)=&(n)+e(n). (31) [23]to systems where such information are not known.
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TABLE X of training errors (TR), and, finally, the number of test errrors
POST-PLACE AND ROUTE SYNTHESIS REPORT FORDIFFERENT NUMBER OF (TS) As expected the ﬂoating-point (FP) version of our algo—
INPUT SAMPLES AND DIFFERENT OPTIMIZATION CRITERIA . ’ . ! . .
rithm obtains good results with respect to the SMO algorithm.
Note that we set = 10~ ande, = 10~4.

Table 1V shows both floating- and fixed-point results for dif-
32,area | 2950(6%) 4978(5%) 18.9 ferent register lengths. The results of the fixed-point experi-
ments are reported in the second part of the table, where, with
the notationwz — yy — 2z, the following information is indi-

m,criteria Slices LUTs Clock (MHz)

32,speed | 2919(6%) 4916(5%) 21.06

8area 849(1%)  1457(1%) 342 cated: the number of bits used to code e@ghiz), the number
of bits used to code the integ@yy), and the fractional paftz)
8,speed 865(1%) 1466(1%) 353 of eacho; andb.

From the observation of the results three main important
properties emerge: 1) Fibs requires a relatively low number
of bits, especially to code the kernel matrix; 2) the accuracy
obtained on the equality constraint is not very critical, but,
{(@p_i,u(n—D —i)}mst (32) above all; 3) the quantization effect of the kernel matrix is a

i=0 * i . . -
) ) ] ] benefit for the generalization capability. These results are also
Here, we consider the following two different nonlinear modelsynfirmed by the experiments on the models generated from the

In practice, a classifier is selected on the basisiqdrevious
samples, having the following structure:

of the channel, that, substantially, differ for the delay telecommunication problem, as reported in Tables V-VIII. In
* Model 1: D = 2. particular, the values reported in the tables clearly indicate that
* Model 2:D = 0. very few bits can be used to code eagh and that a coding

Furthermore, as our aim is to test the behavior of the algoenfiguration, which outperforms the FP solution, can often be
rithm and, above all, to study its actual hardware implement@und. Note that we used a RBF-SVM wittt = 0.5 for both
tion, we consider different number of training patterns. In pamodels and” = 0.05 (for Model 1a),C = 0.9 (for Model
ticular, we choosen® = 500, as in [23], andn® = 32: this 1b),C' = 0.2 (for Model 2a) and”' = 0.8 (for Model 2b). To
last choice guarantees a good tradeoff between the final ger@mmplete our analysis, we compared our results with the ones
alization ability of the learned model and its device utilizatiorreported in [23]. The results of our algorithm outperform the
We call Model 1a, 1b, 2a, 2b, the corresponding distributiongnes reported there, obtained with polynomial kernels, even
Finally, in order to estimate the generalization error of the oby using only 32 samples. In fact, whereas [23] reaches an
tained SVM, we use a separate test set composed'by 2400 accuracy of 4.2% on the test of Model 1a, we reached 3.6%
andm? = 2900 samples, respectively. With reference to (31) waith Model 1a and 4.2% with Model 1b. Similar results are
consider the following channel: obtained with Model 2: case 2a improves on [23] with an
. . 3 accuracy of 16%; case 2b, instead, is worse, as we measured an
#(n) =& (n) — 0.92° (n)

) accuracy of 23.5%.
z(n)=u(n)+ zu(n—1) (33) _ ) _ )
2 D. FPGA Implementation, Functional Simulations, and

that assumes an ISI equal to 2. We chobse2 ando? = 0.2.  Synthesis Analysis
Figs. 8 and 9 show the distribution of data obtained by (33) with The digital architectures described here have been imple-
the given parameters. mented and tested on one of the most powerful Xilinx FPGAs,
the Virtex—Il, particularly suited to embed high-performance
digital signal processors [24]. We chose, as target device, the
When designing a digital architecture one of the most impax€2v8000, characterized by 8M system gates, an array of
tant aspects that must be considered is the length of the waid® x 104 configuration logic blocks (CLBs) providing 46 592
that represents the information inside the design. This para8lices (1 CLB = 4 Slices) and a maximum of 1456 Kbits dis-
eter has a crucial role because it influences both the lengthtibuted RAM. Furthermore, it provides 168 %818 multiplier
the registers and, as a consequence, the device utilization hltmtks and 168 18-Kbit selected-RAM blocks for an amount of
the performance of the digital learning system. 3024 Kbits RAM. Note that the device is very large for current
When we faced the design of Fibs and the design of the catandards and, as detailed in the rest of this paper, only a small
responding architecture in particular, we needed to understaadhount of hardware is actually used by our architecture.
1) its behavior when using a floating-point math with respect In order to study the main properties of our design, such as
to standard SVM learning algorithms, like the SMO; 2) the réhe device utilization, we performed several experiments, at first
quired number of bits. To obtain these answers, we desigrt®d choosing a small number of patterfia = 8), and then
several experiments, both on the Sonar dataset, using a lingacchoosing a more realistic size, thatris = 32, discussed
kernel, and on models 1a, 1b, 2a, and 2b. also, from the generalization point of view, in Section V-C. By
The results of our first experiment on the Sonar dataset argeing a VHDL description, we could parameterize our design
reported in Table IV. In this table we report, for every kind of arand change the size from = 8 to m = 32 without any partic-
chitecture, the number of support vectors (nsv), the value of thkar effort, thus allowing an efficient study of the implementa-
threshold(b), the value of the quantity” o’ (eq.), the number tion properties for different training set sizes.

C. Floating-and Fixed-Point Experiments
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Table IX shows the synthesis report, that is, the number of iof a general-purpose processing unit and a learning coprocessor
stantiated components for each block and for the whole desigmodule.
The functional simulations are summarized in Fig. 10. In par-
tlcu_lar, it shows the convergence of the thresH_otdward the ACKNOWLEDGMENT
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