
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/5606749

A Digital Architecture for Support Vector Machines: Theory, Algorithm, and

FPGA Implementation

Article in IEEE Transactions on Neural Networks · February 2003

DOI: 10.1109/TNN.2003.816033 · Source: PubMed

CITATIONS

173
READS

557

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Serious Games View project

Design Education View project

Davide Anguita

Università degli Studi di Genova

246 PUBLICATIONS 3,220 CITATIONS

SEE PROFILE

A. Boni

Università degli Studi di Trento

63 PUBLICATIONS 927 CITATIONS

SEE PROFILE

All content following this page was uploaded by Davide Anguita on 05 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/5606749_A_Digital_Architecture_for_Support_Vector_Machines_Theory_Algorithm_and_FPGA_Implementation?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/5606749_A_Digital_Architecture_for_Support_Vector_Machines_Theory_Algorithm_and_FPGA_Implementation?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Serious-Games-4?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Design-Education?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide_Anguita?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide_Anguita?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Genova?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide_Anguita?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/A_Boni?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/A_Boni?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_degli_Studi_di_Trento?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/A_Boni?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davide_Anguita?enrichId=rgreq-a6d7d8b51caddb60a6a693fe15ef69c5-XXX&enrichSource=Y292ZXJQYWdlOzU2MDY3NDk7QVM6MTA0NTk1ODk2NDA2MDE3QDE0MDE5NDkwMTMwNTQ%3D&el=1_x_10&_esc=publicationCoverPdf

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003 993

A Digital Architecture for Support Vector Machines:
Theory, Algorithm, and FPGA Implementation

Davide Anguita, Member, IEEE, Andrea Boni, and Sandro Ridella, Member, IEEE

Abstract—In this paper, we propose a digital architecture for
support vector machine (SVM) learning and discuss its implemen-
tation on a field programmable gate array (FPGA). We analyze
briefly the quantization effects on the performance of the SVM in
classification problems to show its robustness, in the feedforward
phase, respect to fixed-point math implementations; then, we ad-
dress the problem of SVM learning. The architecture described
here makes use of a new algorithm for SVM learning which is less
sensitive to quantization errors respect to the solution appeared so
far in the literature. The algorithm is composed of two parts: the
first one exploits a recurrent network for finding the parameters
of the SVM; the second one uses a bisection process for computing
the threshold. The architecture implementing the algorithm is de-
scribed in detail and mapped on a real current-generation FPGA
(Xilinx Virtex II). Its effectiveness is then tested on a channel equal-
ization problem, where real-time performances are of paramount
importance.

Index Terms—Digital neuroprocessors, field programmable
gate arrays (FPGAs), quantization effects, support vector machine
(SVM).

I. INTRODUCTION

T HE hardware implementation of neural networks has
recently attracted new interest from the neurocomputing

community despite the skepticism generated by the devices of
the first generation, which appeared during the 1980s (see, for
example, [1] for a survey of these solutions). Nowadays, two
research areas can be easily identified: the first one focuses
on biological inspired devices and builds on Mead’s seminal
work [2]. In this case, the physical behavior of microelectronic
devices is exploited to realize complex information processing
with very low requirements in terms of area and power con-
sumption [3].

The second area addresses the hardware implementation of
algorithms, which are inspired by the neurocomputing frame-
work but not necessarily justified form a biological point of
view. Its main target is the design of dedicated analog or digital
hardware with improved characteristics (e.g., performance, sil-
icon area, power consumption, etc.) respect to a software imple-
mentation on a general-purpose microprocessor. This approach
has been the most criticized in the past [4], mainly because one
of the main targets of the research has been the raw compu-
tational power. There are, however, many other advantages in

Manuscript received September 15, 2002.
D. Anguita and S. Ridella are with the Department of Biophysical and

Electronic Engineering, University of Genova, 16145 Genoa, Italy (e-mail:
anguita@dibe.unige.it; ridella@dibe.unige.it)

A. Boni is with the Department of Information and Communication Tech-
nologies, University of Trento, Trento, Italy (e-mail: andrea.boni@ing.unitn.it)

Digital Object Identifier 10.1109/TNN.2003.816033

designing special-purpose devices, as recalled before, and in
some cases (e.g., embedded systems) a dedicated solution can
be preferable [5].

Our work fits in this last framework: we propose a new
algorithm for support vector machine (SVM) learning and
a digital architecture that implements it. The SVM is a new
learning-by–example paradigm recently proposed by Vapnik
and based on its statistical learning theory [6]. After the first
preliminary studies, SVMs have shown a remarkable efficiency,
especially when compared with traditional artificial neural
networks (ANNs), like the multilayer perceptron. The main
advantage of SVM, with respect to ANNs, consists in the struc-
ture of the learning algorithm, characterized by the resolution
of a constrained quadratic programming problem (CQP), where
the drawback of local minima is completely avoided. Our
algorithm improves on the proposals appeared so far (e.g., [17]
and consists of two parts: the first one, previously reported in
the literature, solves the CQP respect all the parameters of the
network, except the threshold, while the second one allows the
computation of such threshold by using an iterative procedure.

The proposed algorithm can be easily mapped to a digital
architecture: to assess the effectiveness of our approach,
and measure the actual performance of both the algorithm
and the architecture, we implement our solution on a field
programmable gate array (FPGA) and test it on a telecom-
munication application. Our choice is motivated by recent
advances in the FPGA-based technology, which allows easy
reprogrammability, fast development times and reduced efforts
with respect to full-custom very large-scale integration (VLSI)
design. At the same time, the advances in the microelectronics
process technology allow the design of FPGA-based digital
systems having performances very close to the ones obtained
by a manual full-custom layout (see, for example, [25], which
details an efficient implementation of a neural processor).

In Section II, we revise briefly the SVM. Section III addresses
the hardware implementation of SVMs when targeting digital
solutions. New results on the robustness of this learning ma-
chine, respect to quantization errors, are presented, and, after
surveying the state of the art of SVM learning algorithms, tar-
geted to VLSI implementations, our new proposal is detailed.
The digital architecture is described in Section IV and its FPGA
implementation, along with the experiments on a telecommuni-
cation application, is described in Section V.

II. SVM

The objective of SVM learning is finding a classification
function that approximates the unknown, on the

1045-9227/03$17.00 © 2003 IEEE

994 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

basis of the set of measures , where
is an input pattern, and the corresponding
target.

To allow for nonlinear classification functions, the training
points are mapped from the input spaceto a feature space

, with , through a nonlinear mapping ;
then, a simple linear hyperplane is used for separating the points
in the feature space. By using clever mathematical properties
of nonlinear mappings, SVMs avoid explicitly working in the
feature space, so that the advantages of the linear approach are
retained even though a nonlinear separating function is found
(see [6]–[8] for more details)

The function is given by

(1)

where is the normal vector of the separating hyperplane.
Among all possible hyperplanes, SVMs find the one that cor-

responds to a function having a maximal margin or, in other
words, the maximum distance from the points of each class.
Since it is not common that all the points can be correctly clas-
sified, even if mapped in the high-dimensional feature space,
the SVM allows for some errors but penalizes their cardinality.

Formally, this description leads to a CQP, by requiring us to
find

(2)

subject to

(3)

This is usually referred as thePrimal CQP. The function to
be minimized is composed by two parts: the first one forces the
hyperplane to have a maximal margin, while the second term
penalizes the presence of misclassified points. The constant
simply sets the tradeoff between the two terms.

One of the reason of the SVM success is the fact that this
approach can be used to control the complexity of the learning
machine, namely through the structural risk minimization prin-
ciple [6]. This principle can provide a method for controlling the
complexity of the learning machine and define upper bounds of
its generalization ability, albeit in a statistical framework.

The above —CQP is usually rewritten in dual form , by
using the Lagrange multiplier theory [6]

(4)

subject to

(5)

where

(6)

TABLE I
ALGORITHM 1: DSVM WITH FIXED BIAS

which allows us to write using the dual variables

(7)

There are several advantages in using the dual formulation: the
main one is that there is no need to know explicitly the function

, but only the inner product between two points in the feature
space. This is the well-knownkernel trick that allows to deal
implicitly with nonlinear mappings through the use of kernel
functions

(8)

Using the above notation, the-CQP can be rewritten in a
compact form, as follows:

(9)

where and is a vector of all ones.
Since the seminal works on kernel functions, many kernels

of the form given by (8) have been found; among them are the
linear, the Gaussian, and the polynomial kernels

(10)

Another advantage of using the kernel functions lies in the
fact that they are positive semidefinite functionals. Therefore,

ANGUITA et al.: A DIGITAL ARCHITECTURE FOR SUPPORT VECTOR MACHINES 995

TABLE II
ALGORITHM 2: FIBS

using this property and the fact that the constraints of the above
optimization problem are affine, any local minima is also a
global one and algorithms exist which, given a fixed tolerance,
find the solution in a finite number of steps [9]. Furthermore, if
the kernel is strictly positive definite, which is always the case
except for pathological situations, the solution is also unique.
These properties overcome many typical drawbacks of tradi-
tional neural-network approaches, such as the determination
of a suitable minimum, the choice of the starting point, the
optimal stopping criteria, etc.

As a final remark, note that the thresholddoes not appear
in the dual formulation, but it can be found by using the
Karush–Khun–Tucker (KKT) conditions at optimality. Let

be the set oftrue support vectors, then
the following equality holds:

(11)

thus, can be found by

(12)

Actually, this approach is correct as long as ; otherwise
one can use a more robust method, suggested in [10] (see also
[9]), where the threshold is computed using the KKT conditions,
but without resorting to support vectors.

III. H ARDWARE IMPLEMENTATION OF SVMS

A. New VLSI-Friendly Algorithm for SVM Learning

Optimization problems like —CQP are well known to the
scientific community, as usually faced when solving several
real-world tasks. As a consequence, they have been deeply
studied by researchers, and several methods have been pro-
posed for their resolution. Among others, methods that can be
easily implemented in hardware are particularly appealing: we
refer to them as VLSI-friendly algorithms. The leading idea of
these methods is to map the problem on a dynamical system
described by a differential equation

(13)

with and whose stable point, for , coin-
cides with the solution of the optimization problem.

Equation (13) can be seen as a recurrent neural network and,
from an electronic point of view, can be implemented, on analog
hardware, with simple electronic devices [14], [15].

A digital architecture can be targeted in a similar way by
defining a recurrent relation of the form

(14)

A simple way to obtain (14) from (13) is to use the Euler’s
method for integration, and to obtain

(15)

where is the integration step. Unfortunately, finding a suitable
, which guarantees the convergence oftoward the solution

when , is not a trivial task.
Recently, a useful convergence result has been presented for a

network that solves a CQP with inequality constraints [16]. As
shown in [17], this algorithm (digital SVM or DSVM) can be
applied effectively to SVM learning when a Gaussian kernel is
chosen. The underlying idea is to exploit the fact that a Gaussian
kernel maps the data to an infinite feature space, so the effect of
removing one of the parameters of the SVM from the learning
process can be negligible. In particular, if we let , we

996 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Fig. 1. SVMblock.

force the separating hyperplane to pass through the origin in the
feature space and the equality constraint disappears from the
dual formulation of the CQP. Then, the DSVM can be used for
solving the resulting problem

(16)

The core of DSVM is very simple

(17)

(18)

where . The convergence of the above recurrent
relation is guaranteed, provided that .

Even if several experiments on real-world data sets have
demonstrated the effectiveness of this method, it is greatly
penalized by two facts: the generalization of a SVM with a
constant threshold does not fit the usual theoretical framework,
and it is not easily applicable to other kernels (e.g., the linear
one).

Here, we suggest a new approach, which allows the use of the
DSVM algorithm and the computation of the threshold as well.
This result is based on a recent work on parametric optimization
[18]: the main idea is to design a learning algorithm composed
by two parts, working iteratively. The first part addresses the
resolution of a CQP with fixed, whereas the second one im-

Fig. 2. counters—block.

plements a procedure for updating the value ofitself, in order
to reach iteratively the optimal threshold value.

If we consider the problem of SVM learning, it is easy
to deduce that, whenever the thresholdis considered as ana
priori known parameter, then the dual formulation becomes

(19)

where .

ANGUITA et al.: A DIGITAL ARCHITECTURE FOR SUPPORT VECTOR MACHINES 997

Fig. 3. dsvm—block.

Such a problem can be solved by a slightly modified version
of DSVM, listed in Table I. Given the input kernel matrix,

a threshold , and a starting value , the algorithm solves the
CQP of (19) by providing an intermediate solution.

998 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Fig. 4. GenericPE.

As our aim is to solve the CQP with the equality constraint,
it is possible to deduce, from the term , the
range of variation of . In fact, being the optimal value of the
threshold to be find anda tentative value at a given step, if

then , otherwise if then : in other words,
is a nonlinear function of that crosses zero only once, when

, therefore, lies in a range for which
and [18]. Consequently, a simple bisection procedure
can be derived for finding , that is the only point where .
Our proposal, calledFIxed b Svm(Fibs), is listed in Table II:
it has been designed with the goal of an implementation on a
digital architecture, but, as will be clear subsequently, it can be
implemented on a general-purpose floating-point platform as
well.

Its functionality is based on the search of a range of values
to which the threshold belongs. Then, at each step,

it proceeds according to a simple bisection process by finding a
tentative value , and by updating and

on the basis of the value of. It terminates when the range
becomes smaller than a given tolerance. Note that,

when the algorithm starts, both and are not known,
therefore, a first search of the feasible range must be performed.
We found experimentally that and are good
starting choices.

B. Quantization Effects in SVMs

To the best of our knowledge, no theoretical analysis of the
quantization effects of the SVM parameters has appeared so far
in the literature. For this reason, we quantify here some of these
effects in order to prove that the feedforward phase of the SVM
can be safely implemented in digital hardware.

We perform a worst-case analysis based on the properties
of interval arithmetic [13], [11]. Other techniques can be used
as well (e.g., statistical methods [12]), but we believe that
worst-case results, when applicable, can be of more interest,
when targeting digital architectures, because provide guaran-
teed bounds on the performance of the implementation.

Fig. 5. bias–Block.

The effect of quantization can be described by transforming
each variable involved in the computation of the feedforward
phase in an interval

(20)

(21)

ANGUITA et al.: A DIGITAL ARCHITECTURE FOR SUPPORT VECTOR MACHINES 999

Fig. 6. s-block.

(22)

where , , and are no less than half of the quantiza-
tion step. Note that, for simplifying the notation .

Using the properties of interval arithmetic [13] and the fact
that , it is possible to derive upper bounds of the quanti-
zation effects

(23)

(24)

TABLE III
MAIN CHARACTERISTICS OFFSMS

(25)

(26)

(27)

where is the number of patterns with positive (neg-
ative) target and . In the above derivation, we
have assumed, for simplicity, that , as in Gaussian ker-
nels, but a similar result can be derived for other kernels as well.

Then, the bound on the quantization effect is given by

(28)

The above equation can be used to analyze the contribute to
the quantization error from each parameter of the SVM. As an
example of this analysis, let us assume that each parameter is
quantized with a similar step . According
to SVM theory, any pattern lying outside the margin gives an
output ; therefore, a pattern can be misclassified if
the total quantization error is greater than one and of opposite
sign respect to the correct target value. In other words, using
(28), a necessary condition for a misclassification error is given
by

(29)

If the two classes are balanced the above equation
simplifies to an intuitive relation between the maximum admis-
sible quantization step and some parameters of the SVM

(30)

Equation (30) shows that the quantization step cannot be
greater than a quantity that depends on: 1) the number of the
patterns and 2) the size of the alphas. This is an intuitive result:
in fact, as the number of patterns grows, the summation on
them can suffer from the accumulation of quantization errors

1000 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Fig. 7. Misclassification error due to quantization effects.

and, at the same time, larger values of the parameters can
heavely affect the classification output.

IV. DIGITAL ARCHITECTURE

In Section III, we have detailed the Fibs algorithm and we
have shown that can it be applied to solve an SVM-based clas-
sification problem with any kind of kernel function. In this sec-
tion, we describe in detail an architecture that implements it,
following a top-down approach. At first, we will show the main
signals and blocks that compose the design, then we will de-
tail each one of them. The architecture described in this paper
is just a first study on this topic, useful to understand its main
properties, such as number of clock cycles needed to reach a
feasible solution, clock frequency, device utilization, etc. With
this aim, we focus our attention on the design of a prototype of
a RBF-SVM, but the same design can be easily extended to dif-
ferent kind of SVMs.

A. Main Blocks and Signals

The input–output interface of our design is represented in
Fig. 1. It is characterized by two data lines, namely ,
used for input data, and , used for the output, of 16
bits each. The lines and act as handshake signals for
the I–O. The signal begins a learning session, while the

signal reports both its termination and the fact that the
entity can start to submit the parametersand to the output.
Finally, , , are the enable, the asynchronous reset, and
the clock signals, respectively.

The functionality of the can be subdivided in three
basic phases.

1) Loading Phase: When the SVMblock receives a ,
transition , it begins the loading of the target vector

, and the kernel matrix . Actually, without loss of gen-
erality, we suppose that the SVMblock receives and stores

in its memory directly the negated . The values
must be delivered by scanning the matrix row by row (or
column by column, thank to the simmetry properties of

), and following a typical handshake protocol. The acti-
vation of the asyncronous reset permits one to clean up all
registers and to start a new learning with the initial value

, otherwise the final value of the previous learning
is assumed as new starting point.

2) Learning Phase: As soon as the loading is completed, the
starts the learning phase, according to theFibs

algorithm detailed in Section III; once it terminates, the
ready signal is activated in the output, and the block can
begin the output phase;

3) Output phase: The submits the results of
learning, that is the values , , to the output
using the same communication protocol of the loading
phase.

These logical phases are implemented by the general archi-
tecture depicted in the block-scheme of Fig. 1. It is mainly
composed by four computing blocks, namely the ,

, , and -blocks, and three controllers for the loading,
learning, and output phase, respectively. Whereas all the signals
to/from the controllers are connected on the
via a tristate-based connection, data are connected on the

, while the information on the indexes
each element of the kernel matrix, as detailed in the following.

B. Structure of Each Block

In this section, we will describe the function of each basic
block of Fig. 1, each of which implements a specific function
expressed in algorithmFibs: the —block contains both the
memory to store matrix and all the digital components needed
to implement the algorithm of Table I; the -block pro-
vides all the counters and indexes needed to select either the en-
tries of the kernel matrix and each alpha value during the flow of

ANGUITA et al.: A DIGITAL ARCHITECTURE FOR SUPPORT VECTOR MACHINES 1001

(a)

(b)

Fig. 8. Distribution of data for Models 1a (a) and 1b (b)[D = 2; � = 0:2;m = 500(A);m = 32(B)].

the algorithm; the -block contains registers and combina-
torial logic for the control the values , , and . Finally, the
-block contains a register where the target vectoris stored,

and the logic components for the computation of the equality
constraint, namely the value ofin Table II. As a final remark,
let us note that all the connections to the and the

, are realized via a tristate connection.
1) -Block: The structure of the –block

is represented in Fig. 2. It mainly consists of two counters, that

we call (column counter, used to index a column of the kernel
matrix) and (row counter, used to index a row of the kernel
matrix), respectively. The is also used to select a particular
RAM, during loading, inside the -block of , and to se-
lect a particular value of alpha, both during the computation of

and during the output phase.
The output of is directly connected to the .

The is an up-counter, while the s counts both up and down,
as detailed in Section IV-B2.

1002 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

(a)

(b)

Fig. 9. Distribution of data for Models 2a (a) and 2b (b)[D = 0; � = 0:2;m = 500(A);m = 32(B)].

2) -Block: We implemented the DSVM algorithm in
a one-dimensional systolic array composed bybasic pro-
cessing elements (s), each of which has the task of updating
an element of the vector. As previously indicated, we suppose
that matrix is precomputed and stored in a set of RAMs of
size bit; each RAM contains a row of , as shown in
Fig. 3. is the length of the word used to code each element

, while with we indicate the length of the words used to
code each . Fig. 4 shows the structure of a generic .

At a given time-step k, each holds the component in
the register , and its role is to compute ;
the value is knowna priori at each , when the -block
is enabled to operate, and is deduced from the value, obtained
from the -block and from the value of the target, pro-
vided by .

As a first step, the value is computed and stored
in ; is then delivered to , whereas receives

from . As a second step, computes and stores

ANGUITA et al.: A DIGITAL ARCHITECTURE FOR SUPPORT VECTOR MACHINES 1003

TABLE IV
FLOATING AND FIXED-POINT EXPERIMENTS FORSONAR (LINEAR KERNEL)

TABLE V
FLOATING AND FIXED-POINT EXPERIMENTS FORMODEL 1A

(� = 0:5; C = 0:05)

and so on. Finally, after steps, corre-
sponding to clock cycles, the final value is ready at the
ouput of each .

The storing of inside the -block is the following: each
contains theth row of , that is the value (stored at

location 0), (stored at location 1), and so on; finally
is stored at location . In this way the corresponding

has the value ready for the computation, each time a new
arrives.
During learning, is indexed by the address given by the

counter , which counts in mode ; instead, during loading,
the same counter, used to store theth row, counts in mode ,
and begins its counting from the value. Such an initial value
is provided by the external counter (see Fig. 2). Once each
component of is ready, as we suppose here to implement an
RBF-SVM, and being for such machines , a shift
of positions must be executed. To perform

TABLE VI
FLOATING AND FIXED-POINT EXPERIMENTS FORMODEL 1B

(� = 0:5; C = 0:09)

TABLE VII
FLOATING AND FIXED-POINT EXPERIMENTS FORMODEL 2A

(� = 0:5; C = 0:02)

the shift, we directly connect the most significant wires
of each to the less significant wires of the corresponding
adder, thus avoiding, in practice, an actual shift. The set of mul-
tiplexers subsequent to the adder act as limiters, in order to con-
straint each alpha to lie inside the box and to compute

, which is stored in the corresponding register . As
soon as the value is computed and stored in , its pre-
vious value is stored in : this further set of registers is
useful in order to verify the termination of the algorithm, rep-
resented by the activation of the signal . In particular,
each component is a simple binary comparator providing
“1” when the inputs are all equal and “0” otherwise. Finally, the

-block, implements anAND operation of its inputs.

1004 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

If a further iteration must be executed , another
cycle begins after the storing of each in the corresponding

of the .
3) Bias-Block: The —block (see Fig. 5), is simply

composed by three left-shift registers, containing , ,
and , an adder, two 2-to-1 multiplexers, a 3-to-1 multiplexer,
and a binary comparator, which detects the termination of the
learning phase whenever or .
Note that, as is a feasible condition for stopping the
algorithm, the -block receives also the signal
from the -block, which is equal to “1” when and “0”
otherwise. Finally, the bisection process
is simply implemented without connecting the LSB of the
adder to the input of the multiplexer (such a connection is
represented with a dashed line in Fig. 5), thus avoiding, as in
the case of the multiplication fordiscussed in Sections IV-B1
and IV-B2, an actual right-shift.

4) -Block: The role of the –block (see Fig. 6), is the
computation of , namely the sign of the quantity .
It is composed by a serial-input serial-output circular shift
register (), containing the vector, a “2’s complement”
block, a 2-to-1 multiplexer, an adder and a register
acting as an accumulator. The valueis simply the MSB of

. The -block works during the loading phase, when
the labels are stored in the , and during
the learning phase after the value is generated
by the -block. The connection with the is as
follows: the serial-input of , read only when the
input shldSISO is active high (load), is connected to the LSB of

, while the vector is fully connected to .
In practice, contains, at a given time during learning, a
value , from the set of registers .

5) Controllers: As previously indicated, the
is composed by three finite-state machines (FSMs), each
one having the role of controlling a given phase of the
Fibs-algorithm; we indicate them as , and

, respectively. Actually, is subdivided in
three different modules that we call , and

. is the actual supervisor of the architecture and
manages all the transitions for the correct flow of algorithm
Fibs. In particular, it enables to control the function-
ality of the -block, during a part of learning, and, after the
value is obtained, enables the submodule ,
which supervises the-block. receives all the control
signals , and , and decides the correct action
according to their value, following the algorithm given in
Table II. Table III, reports the main characteristics of the FSMs,
such as number of states, transitions, total inputs/outputs.
The choice of subdividing the controller of the system in five
different sub-modules, is justified by the fact that, for synthesis
purposes, it is better to have small modules working separately,
as confirmed by the results discussed in Section V-D.

V. EXPERIMENTAL RESULTS

In order to test the proposed algorithm and the corresponding
digital architecture, we chose a well-known benchmarking

TABLE VIII
FLOATING AND FIXED-POINT EXPERIMENTS FORMODEL 2B

(� = 0:5; C = 0:08)

dataset (Sonar), and several datasets from a telecommunication
problem, recently used for the application of SVMs to channel
equalization purposes. In Section V-A, we also show how the
theoretical results on the quantization effects (Section III-B)
relate to the actual misclassification of the SVM on the Sonar
dataset. The second problem, described in Section V-B, is
particularly appealing because it is a typical case where a
dedicated hardware can be of great usefulness. The floating
and the fixed-point experiments are discussed in Section V-C;
furthermore, in such section we report the comparison of our
approach with the well-known SMO algorithm [9], [19], [20]
for SVM learning. Finally, in Section V-D, we discuss the
implementation on a FPGA.

A. Sonar Dataset

The Sonar dataset is a well-known linearly separable
problem, extensively used for benchmarking purposes of
learning algorithms [21]: its popularity is mainly due to the
difficulty of the classification task. As the computation of the
threshold is fundamental for the determination of the sepa-
rating surface, it is particularly suitable to test the algorithm
proposed in this paper. The sonar data set is composed by
208 samples of 60 features each, usually subdivided in 104
training and 104 test patterns. It is known that a linear classifier
misclassifies 23 test patterns, while a RBF-SVM misclassifies
six test patterns if the threshold is used, and eight test patterns
otherwise [17].

The Sonar dataset has been used for testing the quality of the
quantization error bounds found in Section III-B. In particular,
we solved the problem using a Gaussian kernel with
and : the solution consists of support vec-
tors . Then, a random perturbation of size

has been applied to each parameter of the network and the
average, minimum, and maximum misclassification errors have
been registered on different trials.

ANGUITA et al.: A DIGITAL ARCHITECTURE FOR SUPPORT VECTOR MACHINES 1005

TABLE IX
HDL SYNTHESIS REPORT FORm = 8 AND m = 32

(a)

Fig. 10. Convergence ofb for (a)m = 8.

The results are shown in Fig. 7, as a function of :
the worst-case bound given by (29), as expected, is quite con-
servative and suggests that approximately ten bits are necessary
for avoiding any misclassification error, while the experimental
value is eight. However, it is worthwhile noting that trials
are an infinitesimal amount respect to an exhaustive search for
misclassification errors, but require many CPU hours on a con-
ventional PC. The actual number of possibilities of adding
to each parameter of the SVM is , therefore, an exhaus-
tive search is impossible to perform in practice and this ap-
proach could never provide enough confidence on the result.

The worst-case bound, instead, provides a safe value, which can
be easily computed.

B. Channel Equalization Problem

The channel equalization problem is a typical application
where a special-purpose device can be effectively used, on the
receiver side, in order to estimate one between two symbols

, of an independent sequence emitted from a given
source. All the unknown nonlinear effects of the involved
components (transmitter, channel and receiver) are modeled

1006 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

(b)

(c)

Fig. 10. (Continued)Convergence ofb for percentage of test errors during learning for (b)m = 32 and (c)m = 32.

as finite-impulse response (FIR) filters, plus a Gaussian dis-
tributed noise with zero mean and variance

(31)

The classical theory, tackles this problem by finding an
optimal classifier (the Bayesian maximum —ikelihood
detector), which provides an estimate of

through the observation of an-dimen-
sional vector .
Whereas these methods require the knowledge of the symbols
probability, and the analytic structure of the model, neural
network-based approaches have been successfully applied [22],
[23] to systems where such information are not known.

ANGUITA et al.: A DIGITAL ARCHITECTURE FOR SUPPORT VECTOR MACHINES 1007

TABLE X
POST-PLACE AND ROUTE SYNTHESIS REPORT FORDIFFERENTNUMBER OF

INPUT SAMPLES AND DIFFERENTOPTIMIZATION CRITERIA

In practice, a classifier is selected on the basis ofprevious
samples, having the following structure:

(32)

Here, we consider the following two different nonlinear models
of the channel, that, substantially, differ for the delay.

• Model 1: .
• Model 2: .

Furthermore, as our aim is to test the behavior of the algo-
rithm and, above all, to study its actual hardware implementa-
tion, we consider different number of training patterns. In par-
ticular, we choose , as in [23], and : this
last choice guarantees a good tradeoff between the final gener-
alization ability of the learned model and its device utilization.
We call Model 1a, 1b, 2a, 2b, the corresponding distributions.
Finally, in order to estimate the generalization error of the ob-
tained SVM, we use a separate test set composed by
and samples, respectively. With reference to (31) we
consider the following channel:

(33)

that assumes an ISI equal to 2. We choose and .
Figs. 8 and 9 show the distribution of data obtained by (33) with
the given parameters.

C. Floating-and Fixed-Point Experiments

When designing a digital architecture one of the most impor-
tant aspects that must be considered is the length of the word
that represents the information inside the design. This param-
eter has a crucial role because it influences both the length of
the registers and, as a consequence, the device utilization and
the performance of the digital learning system.

When we faced the design of Fibs and the design of the cor-
responding architecture in particular, we needed to understand:
1) its behavior when using a floating-point math with respect
to standard SVM learning algorithms, like the SMO; 2) the re-
quired number of bits. To obtain these answers, we designed
several experiments, both on the Sonar dataset, using a linear
kernel, and on models 1a, 1b, 2a, and 2b.

The results of our first experiment on the Sonar dataset are
reported in Table IV. In this table we report, for every kind of ar-
chitecture, the number of support vectors (nsv), the value of the
threshold , the value of the quantity (eq.), the number

of training errors (TR), and, finally, the number of test errrors
(TS). As expected, the floating-point (FP) version of our algo-
rithm obtains good results with respect to the SMO algorithm.
Note that we set and .

Table IV shows both floating- and fixed-point results for dif-
ferent register lengths. The results of the fixed-point experi-
ments are reported in the second part of the table, where, with
the notation , the following information is indi-
cated: the number of bits used to code each , the number
of bits used to code the integer , and the fractional part
of each and .

From the observation of the results three main important
properties emerge: 1) Fibs requires a relatively low number
of bits, especially to code the kernel matrix; 2) the accuracy
obtained on the equality constraint is not very critical, but,
above all; 3) the quantization effect of the kernel matrix is a
benefit for the generalization capability. These results are also
confirmed by the experiments on the models generated from the
telecommunication problem, as reported in Tables V–VIII. In
particular, the values reported in the tables clearly indicate that
very few bits can be used to code each, and that a coding
configuration, which outperforms the FP solution, can often be
found. Note that we used a RBF-SVM with for both
models and (for Model 1a), (for Model
1b), (for Model 2a) and (for Model 2b). To
complete our analysis, we compared our results with the ones
reported in [23]. The results of our algorithm outperform the
ones reported there, obtained with polynomial kernels, even
by using only 32 samples. In fact, whereas [23] reaches an
accuracy of 4.2% on the test of Model 1a, we reached 3.6%
with Model 1a and 4.2% with Model 1b. Similar results are
obtained with Model 2: case 2a improves on [23] with an
accuracy of 16%; case 2b, instead, is worse, as we measured an
accuracy of 23.5%.

D. FPGA Implementation, Functional Simulations, and
Synthesis Analysis

The digital architectures described here have been imple-
mented and tested on one of the most powerful Xilinx FPGAs,
the Virtex–II, particularly suited to embed high-performance
digital signal processors [24]. We chose, as target device, the

, characterized by 8M system gates, an array of
112 104 configuration logic blocks (CLBs) providing 46 592
Slices (1 CLB = 4 Slices) and a maximum of 1456 Kbits dis-
tibuted RAM. Furthermore, it provides 168 1818 multiplier
blocks and 168 18-Kbit selected-RAM blocks for an amount of
3024 Kbits RAM. Note that the device is very large for current
standards and, as detailed in the rest of this paper, only a small
amount of hardware is actually used by our architecture.

In order to study the main properties of our design, such as
the device utilization, we performed several experiments, at first
by choosing a small number of patterns , and then
by choosing a more realistic size, that is , discussed
also, from the generalization point of view, in Section V-C. By
using a VHDL description, we could parameterize our design
and change the size from to without any partic-
ular effort, thus allowing an efficient study of the implementa-
tion properties for different training set sizes.

1008 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 5, SEPTEMBER 2003

Table IX shows the synthesis report, that is, the number of in-
stantiated components for each block and for the whole design.

The functional simulations are summarized in Fig. 10. In par-
ticular, it shows the convergence of the thresholdtoward the
optimum for different number of clock cycles, in both
(A) and (B) cases. Each learning phase terminates after
14 000 (A) and 140 000 (B) cycles, while each loading phase
terminates after 290 (A) and 4226 (B) cycles. Fig. 10(a) and
(b) indicates that a feasiblecan be reached quite soon during
learning: this suggests an acceptable rate of classification can be
obtained well before the end of the learning process. In order to
validate this assertion, we measured the percentage of test error
during learning. Fig. 10(c) shows the value of test errors for dif-
ferent clock cycles for . As one can easily verify, after
only 90 000 clock cycles (50 000 before the termination of the
learning), the obtained performances are quite stable around the
value obtained at the end of the algorithm.

The Xilinx synthesis tool reports an indicative clock fre-
quency, whose final estimated value is known only after
the place and route procedure, which physically assigns the
resources of the device, such as Slices and connections among
them. Table X lists the characteristics of the architecture after
the Place and Route phases and shows the device utilization,
expressed in number of slices and number of lookup tables, and
the clock frequency, for different architectures and optimization
criteria. As expected, our approach is particularly efficient
from the device utilization point of view. This is a remarkable
property because several other modules, such as CPU cores,
can be designed on the same device, thus allowing the building
of stand-alone intelligent systems on chip.

From the observation of Table X, an interesting and unusual
behavior emerges. In fact, in the case , using the speed
as optimization criteria, the synthesis tool provides better per-
formances than the area case both in clock frequency and de-
vice utilization. An explanation of this could derive from the
fact that, when changing the optimization criteria, different syn-
thesis and Place and Route algorithms are applied.

VI. CONCLUSION

In this paper, we have discussed the implementation of an
SVM-based learning approach on a digital architecture and a
case-study of its realization on an FPGA device. To the best of
our knowledge, this is the first work on this subject, and sev-
eral issues need to be studied in more detail. First of all, the ob-
tained performances could be greatly improved. In particular,
the whole architecture appears to be quite independent from
the target device, therefore, it is likely that slightly modified
versions exists, which originate mapped-circuits working with
higher clock frequencies.

The main point, however, is that an efficient digital architec-
ture can be adopted to solve real-world problems with SVMs,
where a specialized hardware for on-line learning is of para-
mount importance, and it can be easily embedded as a part of a
larger system on chip (SoC).

Future work will address this issue, in the spirit of previous
neural processors [25], with the integration on the same chip

of a general-purpose processing unit and a learning coprocessor
module.

ACKNOWLEDGMENT

The authors wish to thank two anonymous reviewers for
helping to improve both the structure and the content of the
paper and pointing out some imprecision in the first draft of
this work.

REFERENCES

[1] C. S. Lindsey,Neural Networks in Hardware: Architectures, Products
and Applications. Stockolm, Sweden: Roy. Inst. Technol. On-Line
Lectures, 1998.

[2] C. Mead,Analog VLSI and Neural Systems. Reading, MA: Addison-
Wesley, 1989.

[3] R. Sarpeshkar, “Analog vs. digital: Extrapolations from electronics to
neurobiology,”Neural Comput., vol. 10, pp. 1601–1638, 1998.

[4] A. R. Omondi, “Neurocomputers: A dead end?,”Int. J. Neural Syst., vol.
10, no. 6, pp. 475–482, 2000.

[5] U. Rückert, “ULSI architectures for artificial neural networks,”IEEE
Micro Mag., pp. 10–19, May–June 2002.

[6] V. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[7] N. Cristianini and J. Shawe-Taylor,An Introduction to Support Vector

Machines. Cambridge, U.K.: Cambridge Univ. Press, 2000.
[8] B. Schölkopf and A. Smola,Learning With Kernels. Cambridge, MA:

MIT Press, 2002.
[9] C.-J. Lin, “Asymptotic convergence of an SMO algorithm without any

assumption,”IEEE Trans. Neural Networks, vol. 13, pp. 248–250, Jan.
2002.

[10] P. Laskov, “Feasible direction decomposition algorithms for training
support vector machines,”Machine Learning, vol. 46, pp. 315–350,
2002.

[11] D. Anguita, S. Ridella, and S. Rovetta, “Worst case analysis of weight
inaccuracy effects in multilayer perceptrons,”IEEE Trans. Neural Net-
works, vol. 10, pp. 415–418, Mar. 1999.

[12] Y. Xie and M. A. Jabri, “Analysis of the effects of quantization in mul-
tilayer neural networks using a statistical model,”IEEE Trans. Neural
Networks, vol. 3, pp. 334–338, Mar. 1992.

[13] G. Alefeld and J. Herzberger,Introduction to Interval Computa-
tion. Reading, MA: Addison-Wesley, 1986.

[14] D. Anguita, S. Ridella, and S. Rovetta, “Circuital implementation of sup-
port vector machines,”Electron. Lett., vol. 34, no. 16, pp. 1596–1597,
1998.

[15] D. Anguita and A. Boni, “Improved neural network for SVM learning,”
IEEE Trans. Neural Networks, vol. 13, pp. 1243–1244, Sept. 2002.

[16] M. J. Perez-Ilzarbe, “Convergence analysis of a discrete-time recurrent
neural network to perform quadratic real optimization with bound con-
straints,” IEEE Trans. Neural Networks, vol. 9, pp. 1344–1351, Nov.
1998.

[17] D. Anguita, A. Boni, and S. Ridella, “Learning algorithm for nonlinear
support vector machines suited for digital VLSI,”Electron. Lett., vol.
35, no. 16, 1999.

[18] S. Fine and K. Scheinberg, “Incremental learning and selective sam-
pling via parametric optimization framework for SVM ,” inAdvances in
Neural Information Processing Systems 14, T. G. Dietterich, S. Becker,
and Z. Ghahramani, Eds. Cambridge, MA: MIT Press, 2002.

[19] J. Platt, “Fast training of support vector machines using sequential min-
imal optimization ,” inAdvances in Kernel Methods—Support Vector
Learning, B. Schölkopf, C. Burges, and A. Smola, Eds. Cambridge,
MA: MIT Press, 1999.

[20] S. S. Keerthi and E. G. Gilbert, “Convergence of a generalized SMO
algorithm for SVM classifier design,”Machine Learning, vol. 46, pp.
351–360, 2002.

[21] J. M. Torres-Moreno and M. B. Gordon, “Characterization of the sonar
signals benchmark,”Neural Processing Lett., vol. 7, pp. 1–4, 1998.

[22] S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant, “Adaptive equal-
ization of finite nonlinear channels using multilayer perceptrons, signal
processing,”Signal Processing, vol. 20, no. 2, pp. 107–119, 1990.

[23] D. J. Sebald and J. A. Bucklew, “Support vector machine techniques
for nonlinear equalization,”IEEE Trans. Signal Processing, vol. 48, pp.
3217–3226, Nov. 2000.

[24] Virtex II Platform FPGA Handbook (ver. 1.3), Xilinx.

ANGUITA et al.: A DIGITAL ARCHITECTURE FOR SUPPORT VECTOR MACHINES 1009

[25] S. McBader, L. Clementel, A. Sartori, A. Boni, and P. Lee, “Softtotem:
An FPGA implementation of the totem parallel processor,” presented
at the 12th Int. Conf. Field Programmable Logic Application, France,
2002.

Davide Anguita (S’93–M’93) received the Laurea
degree in electronic engineering in 1989 and the
Ph.D. degree in computer science and electronic
engineering from the University of Genova, Genoa,
Italy, in 1993.

After working as a Research Associate at the Inter-
national Computer Science Institute, Berkeley, CA,
on special-purpose processors for neurocomputing,
he joined the Department of Biophysical and Elec-
tronic Engineering, University of Genova, where he
teaches digital electronics, programmable logic de-

vices, and smart electronic systems. His current research focuses on industrial
applications of artificial neural networks and kernel methods and their imple-
mentation on electronic devices.

Andrea Boni received the Laurea degree in elec-
tronic engineering in 1996 and the Ph.D. degree in
computer science and electronic engineering from
the University of Genova, Genoa, Italy, in 2000.

After working as a Research Consultant with
the Department of Biophysical and Electronic
Engineering, University of Genova, he joined the
Department of Information and Communication
Technologies, University of Trento, Trento, Italy,
where he teaches digital electronics and adaptive
electronic systems. His main scientific interests

focus on the study and development of digital circuits for advanced information
processing.

Sandro Ridella (M’93) received the Laurea degree
in electronic engineering from the University of
Genova, Genoa, Italy, in 1966.

He is a Full Professor in the Department of Bio-
physical and Electronic Engineering, University of
Genova, Italy, where he teaches inductive learning
and statistics and optimization methods. In the last
ten years, his scientific activity has been mainly fo-
cused in the field of neural networks.

View publication statsView publication stats

https://www.researchgate.net/publication/5606749

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

