
Scalable Inference of Decision Tree Ensembles:
Flexible Design for CPU-FPGA Platforms

Muhsen Owaida, Hantian Zhang, Ce Zhang, Gustavo Alonso
Systems Group, Department of Computer Science, ETH Zurich

{firstname.lastname}@inf.ethz.ch

Abstract—Decision tree ensembles are commonly used in a
wide range of applications and becoming the de facto algorithm
for decision tree based classifiers. Different trees in an ensemble
can be processed in parallel during tree inference, making
them a suitable use case for FPGAs. Large tree ensembles,
however, require careful mapping of trees to on-chip memory
and management of memory accesses. As a result, existing FPGA
solutions suffer from the inability to scale beyond tens of trees
and lack the flexibility to support different tree ensembles.
In this paper we present an FPGA tree ensemble classifier
together with a software driver to efficiently manage the FPGA’s
memory resources. The classifier architecture efficiently utilizes
the FPGA’s resources to fit half a million tree nodes in on-chip
memory, delivering up to 20x speedup over a 10-threaded CPU
implementation when fully processing the tree ensemble on the
FPGA. It can also combine the CPU and FPGA to scale to
tree ensembles that do not fit in on-chip memory, achieving up
to an order of magnitude speedup compared to a pure CPU
implementation. In addition, the classifier architecture can be
programmed at runtime to process varying tree ensemble sizes.

I. INTRODUCTION

Decision tree ensembles such as Random Forest and XG-
Boost [5], [6] deliver higher accuracy than classifiers based
on a very deep, single tree. XGBoost is used in half of
the winning solutions in the Kaggle 2015 competition [4].
However, the sequential evaluation of tree levels, the increase
in cache misses due to random memory accesses, and the
limited number of CPU cores processing trees in parallel
significantly degrade performance for large decision tree en-
sembles. As a result, existing CPU based solutions may not
be adequate for applications with high data rates, such as
particle classification in high energy physics. For example,
the LHC collider produces approximately 1011 collisions per
hour [2]. A decision tree ensemble classifier used to identify
the Higgs boson would need to be able to process roughly
27.8 × 106 particles per second. In 2014, a winning solution
in the Kaggle’s HiggsML challenge used gradient boosting
decision trees [19]. For this type of application, an FPGA is a
strong candidate to deliver the required throughput because it
is better suited to exploit parallelism in large tree ensembles.

Current FPGA implementations of decision trees [8], [3],
[18], [13], use either a pipeline of compute elements each
processing one tree level or allocate a compute element for
every tree node. Both approaches are not scalable to tree
ensembles beyond tens of trees as they quickly run out of
on-chip memory and logic resources. Thus, many existing
solutions demonstrate speedup only for small tree ensembles

(of 3 to 16 trees) [8], [13]. Moreover, most current FPGA
implementations are designed for fixed size tree ensembles.
Decision tree ensembles differ between data sets and they
often change as data sizes grow and new features arise. Hence,
FPGA architectures implementing a single tree ensemble are
hard to use in practice.

While FPGAs are strong candidates to parallelize the pro-
cessing of independent trees and data samples, scarce on-
chip memory requires proper consideration when mapping
trees to memory blocks on the FPGA. Hybrid processing of
tree ensembles using both the CPU and FPGA is a potential
approach to scale to very large ensembles and deep trees. It
also provides flexibility to adapt to changing structure of the
ensembles.

Based on this, in this paper we introduce a hybrid classifi-
cation engine for XGBoost on a CPU+FPGA shared memory
platform (Intel’s Xeon+FPGA platform [14]). The classifi-
cation engine implements the inference of tree ensembles
generated by XGBoost, using aggregation to produce the final
classification result for each data point. The engine can be
extended with a different voting technique, if necessary, as it
decouples trees evaluation and voting.

In developing the hybrid classification engine we have
three objectives: 1) scalability to large tree ensembles with
deep trees through hybrid execution on CPU and FPGA; 2)
Programmability at run time with tree ensembles of different
sizes; 3) Efficient FPGA resources management to achieve
maximum performance.

In addition to the FPGA architecture, the classification
engine is accompanied by a software driver abstracting the
classification process as a function call. The driver uses the
tree ensemble’s structure (i.e., number of trees and tree depth)
to determine the proper mapping of tree nodes to the FPGA’s
memory resources. If the tree ensemble does not fit in the
FPGA’s on-chip memory, it resorts to hybrid CPU+FPGA
processing.

Experimental evaluation demonstrates that the designed
classifier delivers up to 20x speedup over 10-threaded CPU
only implementation when processing the complete tree en-
semble on the FPGA. For tree ensembles that do not fit in the
FPGA’s on-chip memory, the hybrid CPU+FPGA processing
delivers an order of magnitude speedup over 10-threaded CPU-
only implementation.



x1 > 2.0
Node 0

x0 > 0.0
Node 1

x0 > 4.0
Node 2

1.0
Node 3

0.2
Node 4

-0.8
Node 5

-2.0
Node 6

Y N

Y YN N

-1.7 0.9

Input Example x

Inference Result = -2.0

Fig. 1: An example of decision tree. Nodes 0-2 are decision
nodes and nodes 3-6 are end nodes.

II. BACKGROUND

A. Machine Learning: A Simplified Data Model

We present a simplified data model for machine learning to
set up the terminology for the rest of the paper. We focus on
inference, a process taking as input an example and outputting
a label. An example x is a d-dimensional vector: x ∈ Rd

and each dimension xi is called a feature. A machine learning
model M specifies a function fM : Rd 7→ R, and we call
fM (x) the inference result of the example x.

An ensemble method is a family of algorithms that com-
bines multiple machine learning models. We focus on gradient
boosting which has a simple inference procedure: let M1, ...,
Mk be k machine learning models, the inference result of the
ensembled model is f(x) =

∑
i fMi

(x). That is, we first run
inference for each model Mi and then sum up all the results.

B. Decision Tree

Decision trees [7] are one of the most popular machine
learning models and have been widely used for a range of
machine learning tasks such as classification [7] and regres-
sion [9]. Figure 1 illustrates a binary decision tree model. Each
non-leaf node is called a decision node and each leaf node is
called an end node. Each decision node contains criteria for
choosing either the left or right node in the next level, and
each end node contains the classification or regression result
(i.e., label). During inference, an example traverses from the
root to an end node according to the criteria of decision nodes.
In this paper, we focus on non-oblique trees, in which each
decision node only compares a single feature.

C. Decision Tree Ensembles and XGBoost

A Gradient Boosting Decision Tree (GBDT) is an ensemble
algorithm based on gradient boosting and uses decision trees
as its base classifier. XGBoost [6] is a popular and efficient
implementation of GBDT. A model in XGBoost contains K
decision trees M1, ... MK . To run inference, it first runs
inference over all K decision trees, and it then sums up the
inference results.

III. CLASSIFIER ENGINE OVERVIEW

We have developed the classifier engine on HARP v1, the
Intel’s Xeon+FPGA platform1. Figure 2 shows the classifier’s
FPGA architecture.

The classifier’s FPGA architecture is accompanied with a
software driver on the CPU side. The driver exposes the
inference of a decision tree ensemble as a function call
abstracting low level CPU-FPGA communication away from
the application level. In a simplified syntax, it exposes the
following function for the application developer:

Result = classify(Model, TestData)

The user passes a pointer to the test data, and a data structure
describing the tree ensemble model including parameters such
as the number of trees, the tree depth, and all the decision
and leaf nodes. The driver then uses the model parameters
to make a few decisions regarding the inference of the tree
ensemble such as whether the model fits in the FPGA’s
memory, how to perform the CPU-FPGA hybrid processing,
how to map the trees to the FPGA’s memory, and how to
schedule the processing of different data examples on the
parallel processing elements of the FPGA architecture. In
section V we discuss in more details the driver’s operation.

Once all the above decisions are made, the driver composes
a classification request and writes it to a designated shared
memory location monitored by the classifier I/O Unit on the
FPGA. This request includes the above parameters passed by
the user, in addition to a few parameters with the decisions
made by the driver. The classifier I/O Unit then retrieves this
request, loads the tree model, starts reading test data, and
writing back inference results.

The classifier FPGA architecture consists of 8 Compute
Units, each includes 8 decision tree processing elements
(DT-PE) as Figure 2 shows. A DT-PE unit is programmed
dynamically to evaluate one or more decision trees per data
example. A DT-PE unit outputs a leaf value for each tree
evaluated. The Reducer unit is a tree of floating point adders.
It sums up the leaf values from all 8 DT-PE units in the
same Compute Unit. A single Compute Unit processes the
whole tree ensemble if it fits in it’s local memory. Multiple
Compute Units are combined to process larger tree ensembles.
The actual number is determined by the software driver using
the tree ensemble’s size.

The Scheduler executes the software driver’s decisions on
how to distribute the ensemble trees to the Compute Units and
how to parallelize the processing of different data examples.
The Combiner consists of a single floating point adder and
iteratively accumulates partial results generated by the Com-
pute Units to produce the final result per data example. When
initially triggered, the I/O Unit loads the tree ensemble and
stores it in the Compute Units’ local memory. Then, it reads the
data examples and writes back the classification results. Since

1Results in this publication were generated using pre-production hardware
and software donated to us by Intel, and may not reflect the performance of
production or future systems.



Fig. 2: (Left) Classifier FPGA Architecture. (Middle) Decision Tree Processing Element, DT-PE. (Right) Tree memory layout.

the FPGA has coherent memory access to the same address
space as the CPU, no CPU effort is required in moving data
in or out of the FPGA.

The classifier architecture operates in two processing
modes: full FPGA processing when the whole tree ensemble
fits in the Compute Units’ combined local memories; and hy-
brid CPU-FPGA processing, otherwise. Section V-B discusses
in more detail how hybrid processing is performed.

IV. DECISION TREE PROCESSING ELEMENT (DT-PE)

The architecture of the DT-PE unit is depicted in Figure 2.
The DT-PE unit consists of two types of components: local
memories store the tree ensemble and the data example’s
features, and a datapath evaluates a tree node for input data
examples.

A. DT-PE Memory Layout

There are two types of local memories in the DT-PE unit:
tree memory, and data memory. The tree memory either stores
one big tree up to 8192 nodes (decision and leaf nodes), or
multiple trees sharing equally overall memory capacity. The
tree nodes are stored as a one dimensional array (Figure 2).
The storage scheme assumes a full binary tree with no missing
nodes and every node stored at a dedicated location. Each tree
consumes a memory footprint equaling 2MAX TREE DEPTH .
If a tree node is pruned, its dedicated memory location stays
empty and is not used by another tree node. Such a storage
layout allows the calculation of the child node pointer using
the parent pointer as follows:

child pointer = (parent pointer << 1)+1+GO RIGHT

where GO RIGHT either equals 1 or 0, based on the
comparison result of the parent node threshold and the cor-
responding feature values. An alternative memory layout is to
avoid holes in the data structure and only allocate as much
memory space as the tree has nodes. Because of the random
nature of tree pruning, it is difficult to calculate the child
pointer. Hence, every tree node has to store a pointer for its
left child, thereby increasing the memory space requirement
per tree. If the trees are highly sparse, the latter memory layout

will be more efficient than the former one. Moreover, the latter
memory layout might end up with an unbalanced mapping
of trees to DT-PE units as the tree sizes will be different.
Our memory layout captures the worst case scenario with full
binary trees for large tree ensembles. We leave the design for
ensembles with highly sparse trees to future work.

The data memory stores incoming data examples and has a
capacity of 4096 features (floating point). The data memory
has one write and one read port, allowing prefetching the
next data examples while available data examples are being
processed.

The data memory is designed to saturate the QPI bandwidth
(6 GB/s). Operating at 200 MHz, the data memory has to
deliver 32 Bytes per cycle to saturate the QPI bandwidth.
Hence the data memory has a data line width of 256-bits (i.e.
32 bytes) which requires stitching together 7 Block RAMs
(BRAMs). Since each BRAM has 512 entries and the size of
a feature is 4 bytes, we compute the maximum capacity of the
data memory to be equal to 4096 features.

The size of the tree memory is selected as a trade-off
between allocating as many DT-PE units as possible to par-
allelize the evaluation of trees, and the tree depth that can
be fitted in the DT-PE tree memory. We selected 13 levels
as the maximum tree depth (or 213 = 8192 nodes), which
we considered relatively deep enough for XGBoost generated
trees. Given that we need 6 Bytes to store a tree node, a total
of 48 KB is needed for the tree memory, or 19 BRAMs. Given
these BRAM resources requirements for a single DT-PE, we
allocated 64 DT-PE units consuming nearly 70% of the FPGA
memory resources. These numbers can be easily adjusted for
other FPGA platforms.

B. DT-PE Datapath

The DT-PE’s datapath pipeline consists of four operations:
reading a tree node from the tree memory; reading the
corresponding data example feature from the data memory;
comparing the tree node threshold to the feature value; and
either computing the next decision node pointer or reading the
leaf node. These are the operations required to evaluate one
tree level for the input data example. To evaluate all the tree



levels, the next decision node pointer is fed back to the first
operation to continue processing subsequent levels. These four
operations are iterated until a leaf node is reached, or the last
tree level stored in the tree memory is reached in the hybrid
processing mode. The datapath pipeline is 8 clock cycles deep.
Hence, it requires 8 ∗N cycles to process a tree of N levels.

Once all the features of a data example are stored in the
data memory, the DT-PE Controller pushes a command into
the Tree CMD FIFO for each tree stored in the DT-PE unit
(Figure 2). Since the operation of the Controller is independent
from the datapath pipeline, the Controller will push a new set
of commands in the Tree CMD FIFO for a subsequent data
example once it arrives to the data memory. This overlaps
and pipelines the processing of two or more data examples.
A command specifies to the datapath which tree to evaluate
on which data example. The Tree CMD FIFO allows us to
order the processing of different data examples such that all
trees stored in the DT-PE unit are evaluated for the same data
example before proceeding to the next data example.

The Fetch Unit reads tree commands from the Tree CMD
FIFO until the datapath pipeline is full, then it feeds the
datapath with commands to evaluate subsequent levels for the
trees currently processed in the pipeline. When there is no
subsequent levels to evaluate for a tree in the pipeline, the
Fetch Unit resumes reading commands from the Tree CMD
FIFO. Since the datapath pipeline is 8 cycles deep, it pipelines
the processing of up to 8 trees which can be either different
trees evaluated for the same data example or one or more trees
evaluated for different data examples.

V. CLASSIFIER SOFTWARE DRIVER

A. Mapping Trees on FPGA Memory

The classifier software driver is designed to maximize the
processing throughput in data examples per second. The driver
considers the following architectural features: the number of
DT-PE units (64), the pipeline depth of the DT-PE datapath (8
cycles), and the Combiner processing rate. Since the Combiner
does not parallelize the aggregation of partial results, the driver
avoids spreading the tree ensemble across all Compute Unites
and exploits pipeline parallelism in the datapath. We try to
pack and fit the whole tree ensemble in 1, 2, 4, or 8 Compute
Units. We select these numbers so we can have multiple clones
of the tree ensemble, each occupying the same number of
Compute Units. Multiple clones of the tree ensemble can
then be used to parallelize the processing of different data
examples.

Given a tree ensemble, the driver maps it to the DT-PEs
as follows: initially, it spreads the tree ensemble over all
Compute Units. Then, it packs trees in half the number of the
Compute Units if the DT-PE tree memory can accommodate
the additional trees. It repeats the packing step until the DT-
PE memory is full or if at least 8 trees are packed in the DT-
PE tree memory, since 8 trees saturates the DT-PE datapath
pipeline. The outcome of the mapping process is two numbers:
the number of trees mapped to the DT-PE’s tree memory (N )

and the number of Compute Units (NC) required to store the
whole tree ensemble.

The Scheduler uses NC to determine how to distribute
trees and data examples to Compute Units. For example, if
NC equals 1, this means the tree ensemble will be replicated
to all Compute Units. Then each Compute Unit processes a
subset of the input data examples in parallel. The Scheduler
iterates over the Compute Units and their DT-PE units in a
round robin fashion, storing one tree at a time until all the
ensemble trees are stored in the DT-PE units. The use of a
round-robin distribution scheme balances the distribution of
the tree ensemble across the DT-PE units. The Combiner uses
NC to determine from how many Compute Units it should
aggregate partial results.

B. Hybrid CPU-FPGA Processing

We resort to hybrid CPU-FPGA processing in two cases:
the tree ensemble size is more than half a million nodes (i.e.,
the maximum capacity of the FPGA architecture) but trees are
not deeper than 13 levels, and when the trees in the ensemble
are deeper than 13 levels (i.e., a full binary tree has more
than 8192 nodes, the maximum capacity of the DT-PE tree
memory).

For the first case, we partition the ensemble into smaller
sub-ensembles (i.e., a smaller number of trees) that fit in
the FPGA’s memory. Then each partition of the ensemble is
processed independently on the FPGA and the partial results
from each partition are accumulated at the end by the CPU.

For the second case, the first 13 levels of a single tree
consume all the DT-PE’s tree memory capacity. Hence, 64
trees can be processed and stored in the FPGA architecture at
the same time. If the tree ensemble is larger than 64 trees, we
partition it into ensembles of size 64 trees. Then each partition
is processed on the FPGA independently producing pointers
to decision nodes in the subsequent level (i.e., level 14). The
Combiner unit then collects all these pointers and writes them
back to the shared memory. Then, the resulting pointers from
all partitions are processed on the CPU, evaluating levels from
depth 14 onward and aggregating leaf values.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

We implement our decision tree ensemble classifier on
Intel’s HARP v1. It is a two-socket machine with a 10-core
Intel Xeon E5-2680 v2 CPU (clocked at 2.8 GHz) in one
socket and an Altera Stratix V 5SGXEA in the other. The two
sockets are connected through QPI. On the CPU socket, 96 GB
of main memory are installed, accessible to the FPGA through
the QPI link. No DDR memory is attached to the FPGA socket.
Memory access from the FPGA is bound by the bandwidth
of the QPI link which we measured to peak at 6 GB/s. In
contrast, the CPU sees up to 25 GB/s memory bandwidth.
The FPGA design is configured with 64 DT-PE units and
clocked at 200 MHz. The FPGA is programmed once and
the same design is used for all the experiments with different
tree ensemble structures. Loading a new tree ensemble into



Fig. 3: Performance scalability with increasing tree depth for
data with 32 features. FPGA (above), and CPU (below).

the FPGA local memory takes nearly 400 µs for large tree
ensembles consuming the whole tree memory capacity. In the
experiments we use the throughput of processed data examples
(Million data examples per second) as the performance metric.
We compute this metric, by dividing the total number of
processed data examples over the end-to-end time from calling
the Classify() function until the FPGA writes the last result.
This measurement includes, time taken by the driver to make
its decisions and communicate the classification request to the
FPGA, loading trees to the FPGA memory and processing the
data examples.

B. Scalability Evaluation

In this section we study the scalability of the FPGA archi-
tecture with varying properties of the tree ensemble such as
the number of trees, the tree depth, and the number of features
per data example. We run the experiments on 1 million data
examples in all configurations. We used the Scikit-learn [16]
machine learning package in Python to generate data sets for
our experiments. We generated a training data set of 100K
examples, and a testing data set of 1 M examples for different
number of features (16, 32, 64, 128, 256, and 512 features). As
a baseline, we used XGBoost to train the models and perform
inference. In the training we did not enable tree pruning to
evaluate the performance requirements for full binary trees.
For CPU performance, we run XGBoost with 10 threads on
the HARP’s 10 core Xeon CPU.

Scaling throughput with tree depth. Figure 3 shows the
FPGA and CPU throughputs for varying tree depth and dif-
ferent number of trees. We run this experiment for 32-feature
data examples. All the tree ensemble configurations shown in
the figure fit in the FPGA’s memory and are processed fully
on the FPGA.

From the results we can draw a few conclusions. The
FPGA throughput drops linearly with increasing tree depth
and number of trees. Similarly, increasing tree depth and the
number of trees also degrade the CPU performance. Increasing
either tree depth or number of trees increases the number
of compute units required to store the whole tree ensemble.
Meaning, evaluating the whole tree ensemble per data example
reduces the available parallelism in the FPGA as the ensemble
size increases, which reduces the overall throughput of the
FPGA. In the CPU implementation, the data examples are
partitioned equally between the 10 threads. However, because
of the random access to the tree ensemble and its dependency
on the data, the thread which suffers from the most cache
misses will be the slowest and the CPU execution time equals
the slowest thread execution time. As a result, the trend in
CPU performance is not consistent for small tree ensembles
(e.g., 64 trees) as they are more sensitive to cache misses. For
larger tree ensembles, all the CPU threads suffer from cache
misses and read more often from the L3 cache. From Figure 3,
the FPGA reaches a 15 to 25 speedup over a 10-threaded CPU.

Scaling throughput with data features. We have also
studied the behavior of the FPGA performance for varying
number of data features. Figure 4 shows the results for
different data example sizes at tree depth of 10. In the FPGA
throughput plots we can distinguish two trends. First, the
FPGA performance stays the same and represents the maxi-
mum compute capacity of the FPGA for the specific number of
trees. Second, the FPGA performance starts decreasing when
it becomes bound by the QPI bandwidth. Figure 5 shows the
maximum achievable FPGA throughput considering the QPI
bandwidth on the HARP v1 machine (future version of the
HARP machine will have more memory bandwidth). The CPU
sees a higher bandwidth to main memory. As a result, the
CPU performance is not affected by the number of features.
For small tree ensembles, the L1/L2 cache misses lead to a
small inconsistency in the CPU performance. For large number
of features, the DT-PE unit starves for data, waiting for the
complete data example to be loaded into the data memory
before processing it. Although the DT-PE overlaps prefetching
and processing of the data examples, prefetching a large data
example takes much longer than processing. Figure 6 shows
how the FPGA loses its advantage as the number of features
increases. For ensembles with 512 trees, the FPGA speed
up does not drop even for 512 features, because the FPGA
benefits from high parallelism and bandwidth to its local
memory compared to the 10-threaded CPU.

The conclusions we draw from the scalability analysis are
the following. Our scheduling methods efficiently exploit the
parallelism in the FPGA architecture. For large tree ensembles,
we parallelize the processing of up to 512 different trees per



Fig. 4: Performance scalability with the number of features
per data example for 10-levels trees. FPGA (above), and CPU
(below).

cycle per data example. As a result, the FPGA sustains a fixed
throughput until the data examples are large enough (more than
512 features), such that the throughput is bound by the QPI
bandwidth. For small tree ensembles, the FPGA architecture
parallelism is used to parallelize the processing of different
data examples. This is why the FPGA throughput becomes
more sensitive to the QPI bandwidth. The FPGA advantage
comes from the high parallel processing power, up to 1.28
billion 10-levels deep trees per second. In addition, the DT-
PE units reach nearly 119 GB/s aggregate throughput from
local memory.

C. Hybrid Mode Evaluation

In this section we study the scalability of the hybrid CPU-
FPGA processing mode. We experimented with an ensemble

Fig. 5: QPI bound on maximum achievable FPGA throughput.

Fig. 6: FPGA speedup over 10-threaded CPU.

of 512 trees for 256 features per data example. We chose this
number of features because it is hard to grow trees beyond 11
levels for less features.

Figure 7 shows the CPU and FPGA throughput for a wide
spectrum of tree depths. From the figure we notice two phases:
up to tree depth 10, the ensemble is fully processed on the
FPGA. For deeper trees, we use CPU-FPGA processing to
evaluate the whole ensemble as described in section VI-C.
The CPU part is multi-threaded using 10 threads.

We notice that the FPGA throughput declines rapidly with
increasing tree depth in the CPU-FPGA processing mode
(Figure 7). When the tree ensemble does not fit in the FPGA’s
memory, the driver partitions the tree ensemble into smaller
sub-ensembles that fit in the FPGA’s memory. For the 512 and
11-levels deep trees, the driver creates two partitions each of
size 256 trees. When the tree depth increases by 1, the number
of partitions doubles, and the number of trees per partition
is halved. Smaller number of trees per partition means more
data examples can be pipelined and processed in parallel in
the DT-PE’s datapath. However, because of limited memory
bandwidth, data examples of size 256 features do not arrive
fast enough to exploit the pipeline parallelism in the DT-PE’s
datapath. Yet, doubling the number of partitions, and repeated
traversal of the data, almost doubles the FPGA processing
time. We expect this limited main memory bandwidth of

Fig. 7: Performance scalability for deep trees using hybrid
CPU-FPGA processing.



TABLE I: Real data sets used in experiments.

Dataset #Examples #Features #Trees Tree Depth
HiggsML [19] 1,000,000 28 512 7
Physics [12] 855,819 74 200 10

Schizophrenia [10] 119,748 410 200 4

HARP v1 will disappear in the future version of the HARP
machine (HARP v2) and the FPGA will have a memory
bandwidth similar to the CPU.

From 14-levels depth on, a single tree is larger than the
capacity of the DT-PE’s tree memory, which accommodates
up to 13-levels deep trees. From this depth onward, the driver
stops partitioning the tree ensemble further, and it processes
the extra levels on the CPU. Now, in addition to accumulating
leaf values, the CPU implementation also evaluates internal
tree levels. The hybrid processing performance continues to
decline as more tree levels are moved to CPU processing.

D. Real World Workloads

We experimented with three real data sets from physics and
psychology. Table I describes the properties of the data sets
and the used tree ensembles. We used 5-fold cross validation
on the training set to determine the best tree ensemble’s
parameters (i.e., number of trees and tree depth) for each data
set. The final chosen tree ensemble produced the best results
for each data sets.

For all three data sets, the generated tree ensemble fits in the
FPGA’s on-chip memory. The results in Figure 8 is consistent
with what we observed in the scalability study. The result
for the Schizophrenia data set is particularly interesting. The
shallow trees of the ensemble (maximum depth equals 4) lead
to a good CPU performance since the whole tree ensemble
fits in the L1 cache. However, the large number of features
(410 features) and limited QPI bandwidth affect the FPGA
throughput, hence resulting in only a 1.4X speedup.

The tree ensemble generated for the Physics data set is
highly pruned, leading to a better CPU performance than
expected for the given tree ensemble parameters. On the other
hand, the DT-PE is designed to handle a worst case scenario

Fig. 8: FPGA vs. CPU performance on 3 real data sets.

TABLE II: Consumed FPGA resources by the classifier.

Module ALMs M20k
Tree Memory 0 0% 19 0.75%
Data Memory 0 0% 7 0.27%
DT-PE 899 0.4% 28 1.1%
Reducer 2,995 1.2% 1 0%
Compute Unit 9,953 4.2% 226 8.8%
Engine (total) 81,472 34.7% 1844 72%

of non pruned trees, and it does not benefit from pruning.
Hence, the achieved overall speed up is less than observed in
the scalability study, yet it is an order of magnitude higher
compared with the CPU result.

The HiggsML data set is a typical case similar to what we
observed in Figure 3, as the tree ensemble is not highly pruned.

E. Resources Utilization

Table II lists the amount of resources consumed by the
different components (single instance) of the classifier engine
in addition to the total FPGA resources consumed. Nearly 66%
of the engine memory resources are devoted to storing the tree
ensemble aggregating nearly 3 MB of storage capacity. 24%
of the engine memory blocks are used to store data examples
while being processed. This amount of memory was required
to support up to 4096 features per example and to operate at
line rate exploiting the maximum QPI bandwidth.

VII. RELATED WORK

The use of FPGAs to accelerate decision tree based classi-
fiers has been extensively studied. Amato et al. [1] proposed
an FPGA architecture where every tree node is allocated
its own processing unit which generates a local decision,
a boolean network of AND operations then consumes the
individual decisions to generate the final class for the input
data example. This approach is not scalable to large trees.
Barbareschi et al. [3] presented an FPGA classifier based
on decision tree ensembles using majority voting and the
decision tree design from Amato et al. The tree ensembles
which they discussed were limited to up to 50 trees, and an
upper bound of roughly 3400 nodes. Struharik [18] suggested
a hardware architecture for a decision tree that uses less re-
sources than Amato et al. The proposed architecture pipelines
the processing of tree levels, and allocates a memory block
per level to store the level’s nodes and data example features.
While this architecture reduces the amount of required logic
resources, it is not flexible enough to build large tree forests,
and not easily programmable with trees of varying depths.
Fareena et al. [20] used a similar pipelined architecture but
they instantiated multiple pipelines (8 pipelines) to parallelize
the processing of incoming data examples. Kulaga et al. [11]
uses Vivado HLS to generate accelerators for decision tree
ensembles. They tuned Vivado HLS parameters to pipeline the
computations of tree levels and parallelize the processing of
multiple trees, achieving competitive throughput to ARM and
Intel cores. However, their results where limited to 64 trees of
depth 10. The resulting design is fixed for this tree ensemble



size. Different tree ensemble size requires a different tuning
of Vivado HLS and generating a new design.

The work of Essen et al. [8] is the closest to our design.
They proposed an FPGA architecture to accelerate random
forests using pipelined processing of tree levels in a similar
architecture to Struharik. The proposed architecture consists
of multiple pipelines each can accommodate one or more
trees. To mitigate the inefficiency of using BRAMs for early
tree levels, they used only BRAMs for levels with 32 nodes
or more, and flip flops for levels with less than 32 nodes.
However, this design still does not manage on chip memory
efficiently. For large forests with hundreds of trees, it will
suffer from large logic resource usage and cannot scale to
many parallel pipelines. Essen et al. use multiple FPGA
devices demonstrating an order of magnitude speedup over
multicore CPU solution for a random forest of 234 trees.
In our design we pack all tree levels in a single processing
element to efficiently use on-chip memory, which allow us to
provide highly parallel architecture processing up to 512 trees
in parallel.

Yun et al. [17] designed a dynamically programmable archi-
tecture supporting different decision trees of a similar depth.
Tracy et al. [22] explored the use the Automata Processor (AP)
from Micron to parallelize the inference of random forests.
They map every path in the tree from the root to a leaf node
on a chain automaton. In their experiments, they demonstrate
that as the tree number grows and trees become deeper, the
AP performance matches the CPU based solution similar to
our conclusions in section VI-C. However, their AP solution
did not scale beyond tree ensembles of 20 trees deeper than
12 levels. Oberg et al. [13] presented an FPGA classification
system for Microsoft Kinect depth image pixels. The forest
considered in their design consist of 3 20-level deep trees.
Since the used trees are very large and cannot fit on the FPGA
memory, they stored the forest trees in off-chip DDR and used
the on-chip memory to store the relatively small depth image
(19000 pixels). To minimize off-chip memory traffic while
traversing the trees, they devised a special memory layout
for storing trees and used sorting techniques when processing
pixels such that pixels using the same tree nodes are processed
in parallel. Their design reached up to a 30x speedup compared
to a single core Intel’s Atom processor. Their approach is
interesting for data sets where ensembles of very deep decision
trees provide the best results.

The different architectures proposed in previous research are
fixed for a number of trees with specific depth. They lack flex-
ibility and programmability at runtime. In our work, our main
objective is to provide higher flexibility and a programmable
decision-tree based classifier with no restrictions on the num-
ber and size of the tree ensemble through runtime management
of resources and coordinated CPU-FPGA processing.

VIII. CONCLUSION

In this paper we have presented a scalable and flexible
inference system for decision tree ensembles on CPU-FPGA
platforms. The design employs two fundamental features of

FPGA devices. The high bandwidth of distributed memory
blocks (i.e., BRAMs) and the distributed logic resource,
configured into many parallel processing elements around
BRAMs. These two features provide an advantage over CPU
based solutions for applications with frequent random memory
accesses. We plan in the future to integrate the developed
inference engine as a machine learning database operator
similar to our previous effort in growing a library of database
accelerated operators [21], [15].

ACKNOWLEDGMENT

We would like to thank Intel for the generous donation of
the hardware platform as part of the Hardware Accelerator
Research Program.

REFERENCES

[1] F. Amato, M. Barbareschi, V. Casola, and A. Mazzeo. An FPGA-based
smart classifier for decision support systems. In IDC’14.

[2] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles
in high-energy physics with deep learning. Nature Communications,
5(4308), July 2014.

[3] M. Barbareschi, S. Del Prete, F. Gargiulo, A. Mazzeo, and C. Sansone.
Decision tree-based multiple classifier systems: An FPGA perspective.
In MCS’15.

[4] R. Bekkerman. The present and the future of the KDD cup competition,
2015. http://www.kdnuggets.com/2015/08/kdd-cup-present-future.html.

[5] L. Breiman. Random forests. Machine Learning, 45(1), Oct. 2001.
[6] T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system.

In KDD’16.
[7] T. G. Dietterich. Ensemble methods in machine learning. In MSC’00.
[8] B. V. Essen, C. Macaraeg, M. Gokhale, and R. Prenger. Accelerating a

random forest classifier: Multi-core, GP-GPU, or FPGA? In FCCM’12.
[9] J. H. Friedman and J. J. Meulman. Multiple additive regression trees

with application in epidemiology. Statistics in Medicine, 22(9), Apr.
2003.

[10] Kaggle. MLSP 2014 schizophrenia classification challenge, 2014. https:
//www.kaggle.com/c/mlsp-2014-mri.

[11] R. Kulaga and M. Gorgon. FPGA implementation of decision trees
and tree ensembles for character recognition in VIVADO HLS. Image
Processing and Communication, 19(2), Mar. 2015.

[12] LHCb Collaboration. Search for the lepton flavour violating decay
τ− → µ−µ+µ−. High Energy Physics, 2015(121), Feb. 2015.

[13] J. Oberg, K. Eguro, and R. Bittner. Random decision tree body part
recognition using FPGAs. In FPL’12.

[14] N. Oliver, R. Sharma, S. Chang, et al. A reconfigurable computing
system based on a cache-coherent fabric. In ReConFig’11.

[15] M. Owaida, D. Sidler, K. Kara, and G. Alonso. Centaur: A framework
for hybrid cpu-fpga databases. In FCCM’17.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, et al. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research,
12, 2011.

[17] Y. R. Qu and V. K. Prasanna. Scalable and dynamically updatable lookup
engine for decision-trees on FPGA. In HPEC’14.

[18] S. R. Decision tree ensemble hardware accelerators for embedded
applications. In SISY’15.

[19] T. Salimans. HiggsML, 2014. https://github.com/TimSalimans/
HiggsML.

[20] F. Saqib, A. Dutta, and J. Plusquellic. Pipelined decision tree classifi-
cation accelerator implementation in FPGA (DT-CAIF). IEEE Transac-
tions on Computers, 64(1), Jan. 2015.

[21] D. Sidler, Z. István, M. Owaida, and G. Alonso. Accelerating pattern
matching queries in hybrid cpu-fpga architectures. In SIGMOD’17.

[22] T. Tracy, Y. Fu, I. Roy, E. Jonas, and P. Glendenning. Towards machine
learning on the automata processor. In ISC’16.


