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Logistic  regression  as  implemented  in PLINK  is a powerful  and  commonly  used  framework  for  assessing
gene-gene  interactions.  However,  fitting  regression  models  for each  pair  of markers  in a genome-wide
dataset  is a computationally  intensive  task,  for which  reason  pre-filtering  techniques  and  fast  epistasis
screenings  are  applied  to  reduce  the  computational  burden.

We  demonstrate  that  employing  a combination  of  a Xilinx  UltraScale  FPGA  with  an Nvidia  Tesla  GPU
leads  to runtimes  of only minutes  for logistic  regression  tests  on  a genome-wide  scale,  resulting  in a
eywords:
enome-wide association study (GWAS)
ene-gene (G × G) interaction
PGA GPU hardware accelerator
ybrid computing
eterogeneous architecture

speedup  of  more  than  1000  up  to  1600  when  compared  to multi-threaded  PLINK  on a  server-grade
computing  platform.

This  article  is  an extended  version  of  our conference  paper  [1].
©  2018  Elsevier  B.V.  All  rights  reserved.
. Introduction

Gene–gene (G × G) interactions (epistasis) are believed to be
 significant source of unexplained genetic variation causing
omplex chronic diseases. Several studies provided evidence for
tatistical G × G interaction between the top disease-associated sin-
le nucleotide polymorphisms (SNPs) of complex chronic diseases,
ncluding ankylosing spondylitis [2], Behç et’s disease [3], type 2
iabetes [4], and psoriasis [5]. Particularly, in psoriasis a signifi-
ant interaction (p = 6.95 × 10−6) as measured by logistic regression
as been detected between the genes ERAP1 (rs27524) and HLA-C
rs10484554). The biological consequence of this interaction is that
he ERAP1 SNP only has an effect in individuals carrying at least one
opy of the risk allele at the HLA-C SNP.

In general, detection of G × G interactions poses a great chal-
enge for genome-wide association studies (GWAS) due to the
omputational burden of testing billions of pairs of SNPs (as a result
f the number of tests being quadratic in the number of SNPs).

raditional logistic regression analysis is still the gold-standard
o detect statistical G × G interactions in case/control studies, but
oo slow in practice to screen for G × G interactions on a genome-
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URL: http://www.ikmb.uni-kiel.de (L. Wienbrandt).
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wide scale. Thus, numerous approximate methods for epistasis
screening have been proposed applying a variety of heuristic and
filtering techniques to conduct genome-wide interaction studies
(GWIS) in a reasonable amount of time. Well-established meth-
ods include the Kirkwood Superposition Approximation (KSA)
of the Kullback–Leibler divergence implemented in BOOST [6]
as well as the joint effects test introduced by Ueki et al. [7].
Another exhaustive interaction method, called GWIS [8], employs
a permutation-based approach to calibrate test statistics. Simi-
larly, MBMDR  [9] uses permutations to adjust the p-value of the
significance test. However, it is able to reduce the dimensional-
ity of any problem into one dimension categorizing into high-risk,
low-risk and no evidence groups before calculating a chi-squared
test statistic. Other tools defining different test statistics include
BiForce [10], iLOCi [11] and EDCF [12]. The latter uses a clus-
tering approach in order to reduce the computational burden.
Recently, entropy-based measures for G × G interaction detec-
tion gained increasing attention. A well-written overview can be
found in [13].

However, no convincing G × G loci have been identified exclu-
sively from GWIS using these approaches. Many of the methods
derive an upper bound on the test statistic in order to prune the

search space and conduct follow-up model-fitting analysis using
logistic regression on a pre-filtered subset of pairs [14]. Further-
more, the computational load for preliminary epistasis screenings
is not negligible. Accordingly, several tools emerged to speedup this
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rocess employing hardware accelerators, such as graphics pro-
essing units (GPUs) in GBOOST [15] or SHEsisEpi [16]. Another
ay to reduce the computational burden is to reduce the number

f SNPs in advance by pre-filtering for linkage disequilibrium (LD),
lthough it can be shown that SNPs supposed to be in LD may  also
eveal an interaction effect [17,18].

An attempt to reduce the computational load for logistic
egression tests is made in [19] by using GLIDE [20]. To our knowl-
dge, GLIDE is the fastest currently available GPU implementation
f the logistic regression G × G interaction test. More recently,
ARAT-GxG [21] emerged. It also offers linear regression includ-

ng covariate analysis on GPUs, but provides a poor performance
hen compared to GLIDE (12 days for a dataset containing 500,000

NPs and not more than 1000 samples using CARAT-GxG with 32
vidia Tesla M2070 GPUs vs. 6 hours using GLIDE on 12 Nvidia GTX
80 GPUs).

In this article, we show that we are able to perform an exhaustive
enome-wide logistic regression analysis for SNP-SNP interactions
n datasets consisting of hundreds of thousands of SNPs and tens
f thousands of samples in minutes, thus eliminating the needs
or epistasis screening or LD-filtering as a preprocessing step. If
equired, LD-filtering can directly be applied as a postprocessing
tep, thanks to on-the-fly calculation of r2. Furthermore, we  per-
orm our calculations in double-precision floating point format in
rder to overcome precision problems that may  occur during float-
ng point accumulations.

As the PLINK software is well established and considered the
old-standard in the GWAS community, we run our benchmark
gainst PLINK v1.9 using 32 threads on a computing system with
wo Intel Xeon E5-2667v4 eight-core CPUs. We  achieve perfor-

ance improvements in two steps. Firstly, we gain a 10–15-fold
peedup by software modification alone. In particular, we sacrifice
he support for sample covariates (re-enabling it in our method
s still under development) and adapt the logistic regression test
o be based on contingency tables. This reduces the computa-
ional complexity from O(NT)  to O(N + T) (with N indicating the
umber of samples and T the number of iterations required for a
ingle test).

Secondly, by employing a combination of only two hardware
ccelerators, namely a Xilinx Kintex UltraScale KU115 Field Pro-
rammable Gate Array (FPGA) and an Nvidia Tesla P100 Graphics
rocessing Unit (GPU), we gain another 100-fold speedup resulting
n a total speedup factor of >1,600 compared to multi-threaded
LINK on a server-grade platform. Exemplary, for analyzing a
eal-life dataset consisting of 130 k SNPs and 48 k samples our
ethod requires only 7.25 min  while PLINK running with 32

hreads requires 5.5 days. An imputed dataset with 1.2 M SNPs and
6 k samples requires only 3.75 h in contrast to 246 days runtime
equired by PLINK.

For a more detailed comparison, we developed and evaluated an
lternative GPU-only approach that uses a single Nvidia Tesla P100
PU accelerator. The GPU is able to accelerate the host-only version
y a factor of 5 resulting in a 50–80-fold speedup when compared to
LINK. In particular, above mentioned datasets require 2.5 h and 3.3
ays, respectively. Furthermore, it is revealed that combining the
trengths of different accelerator techniques, namely FPGAs and
PUs, leads to a disproportionally high speedup when compared

o using a single technique alone. In this case, combining a Kintex
U115 FPGA and a Tesla P100 GPU is around 20 times faster than
sing the GPU alone.

In order to analyse the effect on the runtime of varying input
haracteristics, we prepared several datasets based on real data

ith a varying number of samples and SNPs and ran a benchmark

n all of them with PLINK and our host-only, GPU-only and hybrid
mplementations.
tional Science 30 (2019) 183–193

2. Pairwise epistasis testing

2.1. Logistic regression test

In this article we address the efficient implementation of a
genotype-based statistical test for binary traits. Let Y be a ran-
dom variable correlated with the trait. Correspondingly, for the
trait being a disease, we  define the two possible outcomes of Y as
Y = 1 if the sample is a case affected by the disease, and Y = 0 if the
samples is a control unaffected by the disease. Furthermore, for a
pairwise test, we  define XA and XB as random variables correlated
with the observation of genotypes at SNPs A and B, respectively.
The possible outcomes of XA/B are gA/B ∈ {0, 1, 2} representing the
observed genotype (0 = homozygous reference, 1 = heterozygous,
2 = homozygous variant). PLINK [22,23] uses the following multi-
plicative logistic regression affection model with ˇ3 indicating the
interaction effect of SNPs A and B:

ln
P(Y = 1|XA = gA, XB = gB)
P(Y = 0|XA = gA, XB = gB)

= ˇ0 + ˇ1gA + ˇ2gB + ˇ3gAgB. (1)

PLINK employs Newton’s method to iteratively obtain maxi-
mum  likelihood (ML) estimates of the model parameters. It firstly
generates a covariate matrix C with entries Cij whereby i indicates
a sample of the input dataset and j ∈ 0, 1, 2, 3 indicates a column
for each ˇj. The matrix is defined as follows:

Ci0 = 1, Ci1 = giA, Ci2 = giB and Ci3 = giAgiB. (2)

In detail, for a variable number of iterations t = 0, . . .,  T − 1, fitting
the vector  ̌ is performed in a stepwise manner. ˇ(0) is initialized
with ˇ(0)

j
= 0 ∀j for the first iteration t = 0.

1. For each sample i, compute intermediate variables

p(t)
i
= p̄(t)

i
− yi and v(t)

i
= p̄(t)

i

(
1 − p̄(t)

i

)
(3)

where

p̄(t)
i
=

⎛
⎜⎜⎝1 + e

−
∑

j

ˇ(t)
j

Cij

⎞
⎟⎟⎠
−1

(4)

2. Compute gradient

∇(t) =
(
∇(t)

j

)3

j=0
with ∇(t)

j
=
∑

i

Cijp
(t)
i

(5)

3. Compute symmetric Hessian matrix

H(t) =
(

h(t)
jk

)3

j,k=0
with h(t)

jk
=
∑

i

CijCikv(t)
i

(6)

4. Compute �ˇ(t) =
(

�ˇ(t)
j

)3

j=0
by efficiently solving the linear

system

L(t)L(t)T �ˇ(t) = ∇(t) (7)

using the Cholesky decomposition L(t) =
(

l(t)
jk

)3

j,k=0
of H(t) with

(t)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
0 if k > j√√√√h(t)

jj
−

j−1∑
l2js if k = j
l
jk
=⎪⎪⎪⎪⎪⎪⎪⎩

s=1

1
lkk

(
h(t)

jk
−

k−1∑
s=1

ljslks

)
if k < j

(8)
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. Update model parameters

ˇ(t+1) ←− ˇ(t) − �ˇ(t) (9)

If
∑

j�ˇ(t)
j

approaches zero, i.e. there is no more significant

hange, the process stops with ˇ(t+1) as the current result. Oth-
rwise, the next iteration is started with step 1. However, if the
hange does not converge to zero, the process stops after a fixed
umber of iterations. PLINK uses at maximum 16 iterations and a
lose-to-zero threshold of 0.0001. Additional tests for convergence
ailure are implemented but omitted here for the sake of brevity.

The result of the logistic regression test in PLINK is composed
f three components, namely the test statistic, its approximate p-
alue and the odds-ratio. The test statistic �2 is calculated as

2 = ˇ3

ε2
. (10)

 is the standard error for the gAgB-term in (1). It can directly be
etermined by solving the linear system H(t)e = (0, 0, 0, 1) and defin-

ng ε2 = e3.
Accordingly, it follows

2 = 1(
l(t)
33

)2
. (11)

The test statistic is assumed to follow a chi-squared distribu-
ion �2

1 with one degree of freedom. Accordingly, the p-value can
irectly be approximated from the respective cumulative distribu-
ion function (CDF).

Finally, the odds-ratio is defined as

R = eˇ3 . (12)

Obviously, steps 1–3 in each iteration have linear complexity in
, i.e. O(N) whereby N is the number of samples. Let T be the number
f iterations, then O(NT)  is the total complexity for a single test. In
ections 2.2 and 2.3, we show how to generate a contingency table
y performing a linear precomputing step and how to apply the
ontingency table in the logistic regression test, which results in a
onstant computation complexity for each iteration.

.2. Contingency tables

For any SNP pair (A, B) a contingency table represents the
umber of samples in a dataset that carry a specific genotype

nformation. In particular, an entry nij represents the number of
amples that carry the information gA = i at SNP A and gB = j at SNP
. Thus, a contingency table for pairwise genotypic tests contains

 × 3 entries. Since we are focusing on binary traits, we  require a
ontingency table for each state, w.l.o.g. one for the case and one
or the control group, respectively, and denote their entries by ncase

ij

nd nctrl

ij
(see Fig. 1).

For a given SNP pair generating the contingency tables is clearly
inear in the number of samples. In the next section (Section 2.3)

e show how to incorporate contingency tables into logistic regres-
ion.

.3. Logistic regression with contingency tables
The information stored in the contingency tables can be used to
implify steps 1–3 in Section 2.1. Steps 4 and 5 as well as the cal-
ulation of the test statistic, the odds-ratio and the p-value remain
he same.
tional Science 30 (2019) 183–193 185

1. From a given contingency table we  compute the following inter-
mediate variables:

p(t)
ij
=
(

1 + e
−
(

ˇ(t)
0
+iˇ(t)

1
+jˇ(t)

2
+ijˇ(t)

3

))−1

(13)

p(t),ctrl

ij
= p(t)

ij
, p(t),case

ij
= p(t)

ij
− 1, v(t)

ij
= p(t)

ij

(
1 − p(t)

ij

)
(

ncase

ij
+ nctrl

ij

)
(14)

2. The gradient ∇ (t) from (5) can now be computed as

∇(t) =

⎛
⎝∑

ij

N(t)
ij

,
∑

ij

iN(t)
ij

,
∑

ij

jN(t)
ij

,
∑

ij

ijN(t)
ij

⎞
⎠ (15)

where

N(t)
ij
=
(

ncase

ij
p(t),case

ij
+ nctrl

ij
p(t),ctrl

ij

)
(16)

3. The symmetric Hessian matrix H(t) from (6) evaluates to

H(t) =
(

h(t)
pq

)3

p,q=0

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
v(t)

ij
· · ·

∑
iv(t)

ij

∑
i2v(t)

ij

...∑
jv(t)

ij

∑
ijv(t)

ij

∑
j2v(t)

ij∑
ijv(t)

ij

∑
i2jv(t)

ij

∑
ij2v(t)

ij

∑
i2j2v(t)

ij

⎞
⎟⎟⎟⎟⎟⎟⎠

(17)

where each sum is evaluated over all indexes i and j
4. Solve H(t)�ˇ(t) = ∇ (t) as in (7) and (8)
5. Update model parameters ˇ(t+1)←− ˇ(t)− �ˇ(t) as in (9)

Obviously, the complexity of each iteration step is now constant,
i.e. O(1). As in Section 2.1, let N be the total number of samples
and T the number of iterations. We  recall the complexity of the
method used by PLINK with O(NT).  Our proposed method improves
this complexity to O(N + T) which can directly be observed in a
significant increase in computation speed (see Section 4).

2.4. Linkage disequilibrium

Our ultimate aim is the exhaustive testing of all SNP pairs on a
genome-wide scale without pre-filtering with regard to linkage dis-
equilibrium (LD). However, to be able to apply posthoc LD-filtering
we compute the r2-score on-the-fly. r2 is a measure of similarity
between two SNPs. It is defined as

r2 = D2

pA(1 − pA)pB(1 − pB)
with D = pAB − pApB. (18)

D is the distance between the observed allele frequency pAB at loci
A and B and the expected allele frequency pApB assuming statistical
independence. Thus, r2 is a normalized measure for D which can be
used for comparison of different SNP pairs. The allele frequencies
pA and pB can directly be determined as

pA =
2n00 + 2n10 + 2n20 + n01 + n11 + n21 (19)
2N

and

pB =
2n00 + 2n01 + 2n02 + n10 + n11 + n12

2N
, (20)
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Fig. 1. Contingency tables for cases and controls. nij reflect the number of o

espectively, where nij = ncase

ij
+ nctrl

ij
for all i, j. Unfortunately, the

etermination of the allele frequency pAB from genotypic data is not
rivial. This is due to the unknown phase when two  heterozygous
enotypes face each other in a SNP pair. Basically, it can be defined
s

AB =
2n00 + n01 + n10 + x

2N
(21)

ith x meeting x ≤ n11. x has to satisfy the following equation whose
olution is omitted here for simplicity:

f00 + x)(f11 + x)(n11 − x) = (f01 + n11 − x)(f10 + n11 − x)x (22)

here fij is the number of allele combinations ij we  know for sure,
.g. f00 = 2n00 + n01 + n10 and f11 = 2n22 + n21 + n12.

PLINK does not compute the r2-score jointly with the logistic
egression test. However, one can create a table of r2 scores explic-
tly for all pairs of a given range (–r2 switch), or compute the
2-score for a single pair (–ld switch). The process of determining
he respective allele frequencies is of linear complexity in the num-
er of samples for each pair of SNPs. In contrast, we are using the

nformation of the precomputed contingency table which allows
s to calculate the r2-score in constant time. Thus, we do not need
o scan through the samples again.

.5. Result filtering with min–max heap

We  use a fixed-sized min–max fine heap [24] for result collection.
he min–max heap can be efficiently implemented as an array-
acked implicit data structure with direct access in constant time
i.e. O(1)) to its minimum and maximum values [25]. Insertion and
eletion of elements has logarithmic complexity, i.e. O(log t) with

 being the current number of elements in the heap.
The min-max heap allows us a quick solution for storing only the

est k results in sorted order. The decision whether an element has
o be inserted into the heap is made in constant time, and in that
ase, the insertion is inexpensive, i.e. logarithmic in k. Given a large
umber n of test results with n � k, the heap insertion overhead
ecomes negligible as the chance of finding a randomly distributed
core larger than the heap’s current maximum approaches zero.
hus, the amortized overall runtime of result processing becomes
(n).
In contrast, PLINK does not sort the results at all. It is only able to

lter on-the-fly by a given significance threshold, but the results are
enerated and stored in the order of their calculation. However, to
e compliant to PLINK, we  allow a joint application of a significance
hreshold and the min-max heap.

. Implementation
We  implemented three versions of our G × G interaction detec-
ion application, a host-only version in order to measure the effect
f using contingency tables, and a GPU-only and a hybrid FPGA-
ences for the corresponding genotype combination in a given pair of SNPs.

GPU version to measure the effects of the different accelerator
techniques.

The input dataset for all versions is assumed to be in binary
PLINK format (i.e. provided as .bed, .bim, .fam files). We  parse and
store the data internally in accordance to the .bed file format, i.e.
in a packed 2-bit representation of a single genotype, organized in
SNPs as rows and samples as columns. We  apply padding encoded
as unknown genotypes to ensure the SNPs to be word aligned in
the local RAM. For hybrid runs padding ensures that a minimum
number of samples is present as it is required by the FPGA pipeline.

The output is in plain text format containing two header lines
with call options and column names, followed by one line for each
result with the information on the respective SNP pair (name and
ID), �2 test statistic, odds-ratio, approximate p-value and r2-score.

3.1. Heterogeneous FPGA-GPU computing architecture

Our implementation targets a heterogeneous computing archi-
tecture with Field Programmable Gate Array (FPGA) and Graphics
Processing Unit (GPU) accelerators. We  improved our architecture
proposed in [26] by employing high-end off-the-shelf compo-
nents, namely a server-grade mainboard hosting two Intel Xeon
E5-2667v4 8-core CPUs @ 3.2 GHz and 256 GB of RAM, an NVIDIA
Tesla P100 GPU, and an Alpha Data ADM-PCIE-8K5 FPGA accelerator
card.

The GPU accelerator is equipped with 16 GB of graphics memory
and is connected via PCI Express Gen3 x16. The FPGA accelera-
tor hosts a recent Xilinx Kintex UltraScale KU115 FPGA with two
attached 8 GB SODIMM memory modules. It is connected via PCI
Express Gen3 x8 allowing high-speed communication with the host
and the GPU. The system is being run by a Linux operating system
(currently Ubuntu 18.04 with Kernel version 4.15). Due to driver
restrictions, it is currently not possible to perform direct peer trans-
fers, i.e. moving data directly from an FPGA accelerator to a GPU or
vice-versa. Therefore, data transfer is redirected via the host mem-
ory and both devices are placed in slots that are served by the same
CPU to reduce transmission overhead as described in [25].

According to the PCIe specifications, the net transmission rate
between FPGA and GPU is about 7.3 GB/s. This absolutely fits regu-
lar application demands, such that the transmission interface does
not become a bottleneck (see Section 3.2 for more details on trans-
mission speed).

3.2. Task distribution for the hybrid and GPU-only solutions

Similar to our method for testing third-order SNP interactions
based on information gain [26], we  split the hybrid version into
three main subtasks. Firstly, the creation of pairwise contingency

tables (see Section 2.2) is done by the FPGA module. Secondly, all
computations required for the logistic regression test based on the
contingency tables are performed by the GPU. And thirdly, the host
collects and filters the results created by the GPU.
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For our GPU-only solution, the FPGA accelerator is skipped and
he contingency tables are created directly on the GPU before the
ogistic regression test is performed. The host-only version uses no
ccelerator modules at all but performs each of the three subtasks
n the CPU.

As before, data transmission between the modules is performed
y Direct Memory Access (DMA) transfers via PCI Express (except
or the host-only version where no data transmissions are required
etween hardware components), and since there is no direct con-
ection between the FPGA and the GPU module, the transmission
f the contingency tables is redirected via the host memory in our
ybrid version.

.2.1. Contingency table creation on the FPGA
The FPGA pipeline for contingency table generation is based on

ur previous work for pairwise [27,28] and third-order interactions
26].

Shortly summarized, the pipeline consists of a chain of 480 pro-
ess elements (PEs) divided into two subchains with 240 PEs each.
fter a short initialization phase, the chain produces 480 contin-
ency tables in parallel while the genotype data of one SNP is
treamed through the pipeline at a speed of 266 MHz  and 8 geno-
ypes/cycle. This sums up to a peak performance of about 20.4

illion contingency table pairs per second for a dataset contain-
ng about 50,000 samples or 63.8 million contingency table pairs
er second for a dataset containing about 16,000 samples, as both
sed in our performance evaluation in Section 4.

In detail, each PE in a chain is organized into a memory buffer
o store the genotypes of all samples at a single SNP position,
mplemented in local block RAM (BRAM), and a counter file for the
ontingency table entries (see Fig. 2). The PE is able to receive a
tream of genotype data from a previous PE and to send it to the
ext PE. The buffers are filled with the first incoming SNP data, i.e.
he data for the first SNP is only stored in the local memory and not
orwarded to the next PE. Subsequent SNPs are then forwarded and
imultaneously used to form genotype pairs with the data stored
n the local memory. Dependent on the current pair, the corre-
ponding counter of the contingency table has to be incremented.
y streaming eight genotypes at once for each SNP of the pair, i.e.

ncrementing the corresponding counters of eight genotype com-
inations at the same time, we could achieve a high throughput of
NP data in each PE.

Streaming is organized by sending the genotypes of the case
amples at the current SNP position first, followed by the genotypes
f the control samples. Thus, the contingency tables for cases and
ontrols are alternately generated using the same logic resources
n the PE. Currently, our design supports a maximum of 65,536
amples, implying 16 bit counters for the entries of the contingency
able and block RAM (BRAM) resources for the memory buffer of
ize 128 kbit.

The contingency tables are retrieved from the PEs again via the
E chain. After all genotypes from either the cases or the controls
ere streamed, the table is provided to the next PE in one clock

ycle. Each PE hands over incoming tables to the next PE first before
t sends its own table. All tables are collected at the end of the chain
n a separate buffer before transmission to the GPU (via the host).
hus, the collection of tables requires as many clock cycles as there
re PEs in the chain implying that the minimum number of either
ases or controls for the most efficient utilization of the chain is
xactly eight times the number of PEs in the chain. In order to pre-
ent delays resulting from collecting the contingency tables, we
ivided the complete chain into subchains with continuous geno-

ype streaming but separate table collection units.

The limiting factor for the number of processing elements was
he amount of available block RAM on the Xilinx Kintex KU115
PGA. By utilizing the complete FPGAs resources, we  managed to
tional Science 30 (2019) 183–193 187

implement 480 PEs in total divided into two subchains with 240 PEs
each, as already mentioned above. Therefore, the minimum num-
ber of cases or controls for maximum efficiency is 8 × 240 = 1920.
If a dataset contains a smaller number of samples for either group,
the software automatically applies a padding with unknown geno-
types.

In previous publications, we  used a sparse contingency table
representation lacking support for unknown genotypes. The dis-
advantage of such a design is, that datasets containing unknown
genotypes could not be supported because the assumption that
the sum of all entries stays the same over all tables is disproved in
the presence of unknowns. In order to remove this limitation, we
now transfer complete tables from the FPGA to the GPU. Unfortu-
nately, this increases the transmission rate significantly. Therefore,
we encode each table entry into a 16-bit integer, i.e. 9 × 2B = 18 B
per table. For each pair of corresponding case and control tables two
32-bit integers = 8 B for the pair ID are added, which accumulates to
44 B per table pair. Hence, the peak transmission rate for the exam-
ples above are about 900 MB/s for 50 k samples and about 2.8 GB/s
for 16 k samples, compared to 490 MB/s and 1.5 GB/s, respectively,
that would be required for the sparse representation.

These transmission rates are well below the capability of the
architecture with about 7.3 GB/s theoretically, which allows us to
process datasets down to 6150 samples without the transmission
link becoming the bottleneck. In fact, we  already observed a perfor-
mance drop in the analysis of datasets with around 10,000 samples
and less, indicating the actual transmission speed must be around
5 GB/s for our application (see Section 4).

3.2.2. Contingency table creation on the GPU
The GPU-only implementation requires the contingency tables

to be created directly on the accelerator. The host loads the geno-
type database in the GPU local memory beforehand. Afterwards,
the host provides a continuous flow of buffers to the GPU that con-
tain index pairs indicating which SNP pairings are to be analysed
next. For each buffer a number of CUDA threads is launched, each
thread processing one SNP pair.

Each thread firstly creates the contingency table by reading the
required SNP data from local GPU memory and then, continues the
calculation of the test statistic in the same way as with an attached
FPGA accelerator (see Section 3.2.3). There is no need to store the
contingency table anywhere other than in the local thread memory.
Thus, we only create warp divergence while reading the individual
SNP data for each thread, but due to the packed SNP-wise data for-
mat  with a 2-bit encoding per genotype, each thread only requires
a few kilobytes which can be processed almost immediately. Fur-
thermore, in most cases, the SNP pairs in the current warp share
the first SNP and the second SNPs in the pairs are in consecutive
order. Together with the word-aligned SNP data, this is an optimal
scenario for fast access to the local GPU memory.

3.2.3. Processing contingency tables on the GPU
In the hybrid solution, the buffers from the FPGA containing

contingency tables are transferred to local GPU memory. We use
a transmission buffer size of 256 MB which may  hold up to 6.7
million table pairs. The computation process follows a simple par-
allelization scheme over GPU threads. By setting the block size to
the maximum supported block size and the grid size to evenly
distribute the contingency tables over the blocks, each thread pro-
cesses exactly one contingency table pair, and only one kernel call
per buffer is required. Besides the distribution of the contingency

table data and the writeback of the results no calls to local GPU
memory are required from a GPU thread. For the GPU-only imple-
mentation, the contingency tables are created and kept in local
thread memory as described above in Section 3.2.2.



188 L. Wienbrandt et al. / Journal of Computational Science 30 (2019) 183–193

ntex KU115 FPGA contains 480 PEs divided into two  subchains with 240 PEs each.
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Fig. 3. Workflow on our heterogeneous system. (1) Genotypic data is sent to the
FPGA. (2) For each pair of SNPs the FPGA creates a contingency table. (3) The con-
tingency tables are sent to the GPU employing a memory buffer on the host. (4) The
GPU calculates the logistic regression test and linkage disequilibrium. (5) Results (p-
value, odds-ratio and LD-score) are transferred back to host. (6) Results are filtered
using a min–max heap on the host.
Fig. 2. Chain of processing elements (PEs) on the FPGA. Our design for the Ki

Logistic regression and LD computation have been implemented
s described in Sections 2.3 and 2.4. However, in contrast to PLINK,
e use the double precision floating point format in all our compu-

ations. The output is written into a result buffer. We  provide one
esult buffer for each table transmission buffer, which is transferred
o the host as soon as processing a table buffer has finished.

By evenly distributing the contingency tables over the blocks,
e most likely introduce an unequal load resulting from a vary-

ng number of Newton iterations per thread. However, the average
umber of iterations per block remains virtually constant.

.2.4. Transmission buffer management and result collection on
he host

We use a similar transmission buffer management as presented
n [26], but introduced some improvements. In order to reduce
ransmission overhead, we apply different adapted buffer sizes for
ontingency table transmission between FPGA and GPU, and result
ransmission from GPU to host. Exemplary, the default transmis-
ion buffer size of 256 MB  for contingency tables leads to 230.4 MB
or results (reserving space for one result per contingency table
air). As before, the buffers are page-locked to ensure a fast trans-
ission without delay, and the number of buffers allocated for each

onnection is equal (eight per default).
Multiple threads on the host system perform the collection of

esults by filtering by a given significance threshold and finally pro-
iding them sorted with regard to the test statistic. For this purpose,
he min–max fine heap data structure [24,25] is employed. Each
hread keeps its own instance of a min–max heap to avoid lock
onditions and inserts a result only if the test statistic exceeds the
hreshold. Then, the output file is composed by iteratively extract-
ng the single best result over all heaps until the heaps are drained
r the number of requested results is reached, whichever occurs
rst.

The complete workflow on our heterogeneous FPGA-GPU-based
rchitecture is illustrated in Fig. 3, the GPU-only approach in Fig. 4.

. Performance evaluation

.1. Datasets

For performance evaluation on real data we prepared eight
atasets based on in-house cohorts. Dataset “A” is a very small
ataset regarding the number of SNPs, but with a large number
f samples. It contains 19,085 cases of an autoimmune disease and
4,213 healthy controls typed at only 282 SNPs in the HLA region

n chromosome 6. Dataset “B” is typed genome-wide at 185,239
NPs, but contains only 373 cases and 590 controls. Datasets “C1”,
C2” and “C3” share the same 1913 cases of another autoimmune
isease and 14,295 healthy controls. “C2” corresponds to the orig-
inal genome-wide dataset typed at 144,238 SNPs. “C1” is based
on the same set with the SNPs being filtered according to a maxi-
mum allele frequency (MAF) threshold of 5%, and “C3” is imputed
to 1,245,184 markers. Datasets “D1”, “D2” and “D3” share 14,513
cases of an autoimmune disease and the same 34,213 healthy con-
trols as in dataset “A”. Dataset “D3” is the original genome-wide
set with 130,052 markers while “D2” is filtered for linkage disequi-
librium based on an r2-score threshold of 0.2. “D1”, in turn, is the
same as “D2” but reduced to markers at chromosomes 5 and 6. An
overview of these datasets can be found in Table 1.

Additionally, we analysed the effect of varying numbers of sam-
ples and varying numbers of SNPs on the runtime. For this purpose,
we draw 3500, 7000, 10,500, 14,000, 17,500, 21,000, 28,000 and
35,000 random samples (approximately preserving the original
case-control ratio of 2:5) as well as 5000, 15,000, 30,000, 60,000
and 100,000 random SNPs from “D3”. Then, for each combination
(also including the original number of 48,736 samples and 130,052
SNPs), we generated a new dataset resulting in 54 datasets with a
varying number of samples and SNPs. For the samples, we kept the
approximate case-control ratio of the original set with 2:5.
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Table  1
Overview of datasets.

Dataset # SNPs # cases # controls # samples Description

A 282 19,085 34,213 53,298 Disease A, only HLA region
B  185,239 373 590 963 Disease B, complete
C1  20,096 1,913 14,295 16,208 Disease C, 5% MAF-filtered
C2  144,238 1,913 14,295 16,208 Disease C, complete
C3  1,245,184 1,913 14,295 16,208 Disease C, imputed
D1  5,725 14,513 34,213 

D2  37,358 14,513 34,213 

D3  130,052 14,513 34,213 

Fig. 4. Workflow for our alternative GPU-only solution. Contingency table creation
moved from the FPGA to the GPU. *(1) Genotypic data is sent to the GPU. (2) For
each pair of SNPs the GPU creates a contingency table. 3. Each contingency table is
directly used to calculate the logistic regression test and linkage disequilibrium. 4.
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double-precision floating point format and calculated the r2-score
esults (p-value, odds-ratio and LD-score) are transferred back to host. 5. Results
re  filtered using a min-max heap on the host.

.2. Software-only evaluation

Our target system for all software and hardware accelerated
uns was the architecture described in Section 3.1, equipped with
wo Intel Xeon E5-2667v4 eight-core CPUs @ 3.2 GHz and 256 GB
f RAM. We  compiled the host-only version with GCC 7.3.0. For
omparison to PLINK, we used the to date most recent 64-bit PLINK
1.9 built published on January 9, 2018 [29]. We  compiled the PLINK
ode with the provided Makefile.

We ran PLINK on all eight real datasets. We  computed the stan-
ard logistic regression tests with flags –epistasis –epi1 5e-8
hich filters the results by a genome-wide significance threshold

f 5 × 10−8 according to the approximate p-value. The runs used all
vailable 32 threads (–threads 32)  on our described system.

For the benchmark datasets, we decided against running PLINK
n all these datasets since we already encountered long runtimes
specially for the datasets “D2” and “D3”. Instead, we generated
nother set of 54 datasets exactly as described above in Section 4.1
ut with only 10% of the SNPs, and ran PLINK on these datasets with
he same parameters as before.

We ran our host-only implementation on the same system as

ell with 32 threads. We  emphasize that in contrast to PLINK,

ur implementation performs all calculations in double-precision
oating point format, while PLINK only uses single-precision. Fur-
48,726 Disease D, LD-filtered, chr. 5+6
48,726 Disease D, LD-filtered
48,726 Disease D, complete

thermore, we calculated the r2-score in order to test for linkage
disequilibrium on all SNP pairs, which PLINK does not.

We verified the correctness of our implementation by com-
paring our results to the PLINK results. At first, we encountered
differences in the score and also in the order. Thus, we modified
the source code of PLINK to perform the calculations in double-
precision as well. This modification increased the runtime of PLINK
by a factor of about 5.7, but the results were virtually equal now,
indicating that the inconsistencies were caused by the different
precisions. We  believe the remaining deviations resulted from
numerical instabilities in PLINK when accumulating small floating-
point values over all samples in steps 2 and 3 of computing the
logistic regression test (see (5) and (6) in Section 2.1). Table 2 exem-
plarily shows the differences we encountered between single and
double precision calculations in dataset “D1”.

All wall-clock runtimes were measured with the GNU time com-
mand. Measurements were averaged over multiple runs with very
low variance in runtimes (<1%). The results for the logistic regres-
sion tests on the eight real datasets are listed together with the
results using the hardware accelerators in Table 3. The measures
demonstrate that by applying our method that employs contin-
gency tables, we gain a 10–15-fold speedup due to the reduced
runtime complexity.

For the runtimes of all 54 benchmark datasets (together with
the benchmarks from the hardware accelerated runs) Fig. 5 illus-
trates the expected quadratic relationship between runtime and
number of SNPs as well as the linear relationship between runtime
and number of samples.

However, Table 3 also reveals, that the speedup with our solu-
tion on smaller datasets with shorter runtimes is lower than for
larger datasets. For a more detailed analysis, we  created a graphi-
cal representation of the speedups against PLINK on our benchmark
datasets in Fig. 6. Since PLINK has been applied to smaller datasets
only, runtimes required to estimate the speedups were extrapo-
lated based on a linear model.

What was  to be expected and clearly can be seen is that the
speedups are almost unaffected by the number of SNPs, but the
positive effect from changing the runtime complexity of the logis-
tic regression test (see Section 2.3) is visible not before a certain
number of samples.

4.3. Evaluation of hardware acceleration

Our hardware-accelerated implementations were compiled
with GCC 7.3.0 again and CUDA 9.0.176. The FPGA code was  writ-
ten in VHDL and compiled with Xilinx Vivado 2017.3. We  tested
our implementation with a hybrid build, i.e. using both accelerators
(Xilinx Kintex UltraScale KU115 FPGA and Nvidia Tesla P100 GPU),
and a GPU-only build, solely using the Nvidia Tesla P100 GPU accel-
erator. As for the host-only runs, we  performed all calculations in
in order to test for linkage disequilibrium on all SNP pairs. Fur-
thermore, we applied a faster epistasis screening test on the eight
real datasets with the BOOST [6] method (included in PLINK) with



190 L. Wienbrandt et al. / Journal of Computational Science 30 (2019) 183–193

Table 2
Differences in precision exemplary on the first 10 results of dataset “D1”. “sp.” is the value calculated by PLINK in single precision and “dp.” is the value calculated by our
implementation in double precision. (Depicted variants are for demonstration purposes only and do not guarantee nor imply proven statistical interaction.)

SNP pair �2-score p-Value

sp. dp. sp. dp.

chr6:2205110 chr6:32682207 260.627 260.642 1.324e−58 1.313e−58
chr6:32682207 chr6:32732937 238.125 238.176 1.061e−53 1.034e−53
chr6:32171683 chr6:32427748 205.669 205.735 1.265e−46 1.223e−46
chr6:32373312 chr6:32658079 193.223 193.222 6.562e−44 6.565e−44
chr6:32377284 chr6:32658079 183.571 183.565 8.376e−42 8.4e−42
chr6:32235384 chr6:32377284 175.345 175.345 5.227e−40 5.226e−40
chr6:31431874 chr6:31575276 174.612 174.616 7.557e−40 7.542e−40
chr6:32289594 chr6:32377284 166.193 166.192 5.203e−38 5.204e−38
chr6:32377284 chr6:32430729 165.754 165.750 6.489e−38 6.5e−38
chr6:31575276 chr6:32373312 162.932 162.932 2.681e−37 2.681e−37

Table 3
Wall-clock runtimes and speedups of the hybrid FPGA-GPU logistic regression test compared to PLINK [29] logistic regression (–epistasis), our GPU-only implementation
and  our host-only implementation. PLINK and our host-only version use all available 32 threads on two  Intel Xeon E5-2667v4 processors. The host-only, GPU-only and hybrid
implementations additionally calculate the r2-score (LD) and do all computations in double-precision format (vs. single-precision without r2 in PLINK).

Data Runtime Speedup vs. PLINK

PLINK Host-only GPU-only Hybrid Host-only GPU-only Hybrid

A 2.3 s 1.5 s 1 s 5 s 1.53 2.30 0.46
B  3 h 55 m 2 h 56 m 11 m 11 s 4 m 39 s 1.34 21.04 50.60

C1  1 h 39 m 6 m 26 s 1 m 29 s 14 s 15.40 66.78 424.50
C2  3 d 13 h 5 h 32 m 1 h 04 m 3 m 19 s 15.39 79.81 1,538.48
C3  264 d 02 h 17 d 10 h 3 d 08 h 3 h 47 m 15.16 79.06 1,674.62

D1  15 m 48 s 1 m 32 s 24 s 7 s 10.30 39.50 135.43
D2  11 h 10 m 1 h 04 m 13 m 58 s 46 s 10.40 47.95 873.43
D3  5 d 14 h 13 h 13 m 2 h 38 m 

Bold values indicate the speedups exceeding 1,000×.

Table 4
Wall-clock runtimes and speedups of the hybrid FPGA-GPU logistic regression test
compared to the heuristic screening test in PLINK BOOST [29,6] (–fast-epistasis

boost)  using all available 32 threads on two Intel Xeon E5-2667v4 processors.
Our hybrid implementation additionally calculates the r2-score (LD) and does all
computations in double-precision format (vs. single-precision without r2 in PLINK
BOOST).

Data Runtime Speedup vs.

PLINK BOOST Hybrid PLINK BOOST

A 0.2 s 5 s 0.04
B  8 m 16 s 4 m 39 s 1.78
C1  22 s 14 s 1.57
C2  17 m 30 s 3 m 19 s 5.28
C3  21 h 44 m 3 h 47 m 5.74
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D1  7 s 7 s 1.00
D2  4 m 04 s 46 s 5.30
D3  49 m 17 s 7 m 18 s 6.75

he same threshold flag, but replacing –epistasis with –fast-
pistasis boost.  Table 3 shows all runtime measures for the

ogistic regression tests on the eight real datasets, and the PLINK
OOST results in comparison to our hybrid solution are listed in
able 4.

We observe that on top of the 10–15-fold speedup from the host-
nly solution, the GPU-only implementation adds a 4–5-fold speed
ncrease, resulting in a total speedup of 40 to 80 against PLINK. With

 single additional FPGA hardware accelerator we  gain another 20-
old speedup over the GPU-only implementation, resulting in a total
omputation speed that is more than 1100–1600 times faster than
hat of PLINK when executed on our high-performance evaluation
ystem. The performance is underlined by the additional burden on

ur implementation, which is a higher calculation precision and the
dditional on-the-fly r2-score computation not performed by the
LINK software. We  exemplarily measured the overhead which is
aused by the LD-computation on some of our datasets. The host-
7 m 18 s 10.15 51.09 1,102.19

only implementation generates a runtime overhead of less than
1.5% with LD-computation compared to the same runs without LD-
computation. The overhead for the GPU-only implementation was
less than 0.4%, and for the hybrid solution no overhead was mea-
surable. Furthermore, our full logistic regression test is still almost
7 times faster than the quick but imprecise pre-scanning method
BOOST [6].

As in the software-only evaluation, the graphical representa-
tion of the hardware accelerated runtimes of all 54 benchmark
datasets in Fig. 5 shows the expected quadratic correlation of the
runtime to the number of SNPs and the linear correlation of the run-
time to the number of samples as well. And again, the speedup on
smaller datasets is lower than for larger datasets. The representa-
tion of our speedups against PLINK in Fig. 6 reveals that this effect
is stronger for the GPU-only runs and even more conspicious for
the hybrid runs. We  explain this with a larger constant overhead
for buffer allocation, GPU kernel launches and additional commu-
nication. Thus, short runs, i.e. especially runs with a small number
of SNPs, result in a lower speedup. The same effect is stronger in
our hybrid solution because runtimes are still low even for larger
datasets and a larger constant overhead is produced due to FPGA-
GPU communication buffer allocation and device initialization.

Another clearly visible effect in the runtime plot for the hybrid
implementation is that the runtimes are almost equal for samples
below around 14,000 and a fixed number of SNPs. This has at least
two reasons. Firstly, a dataset containing less than the minimum
number of cases or controls, which is 1920 for either group here
(see Section 3.2.1), is padded and then treated as a larger dataset.
Secondly, a smaller number of samples indicates a faster creation
of contingency tables on the FPGA and thus, a larger data transmis-

sion speed required for transferring the tables from the FPGA to
the GPU. Since the transfer rate is limited, the communication link
becomes the bottleneck and the whole process is stalled resulting
in a measurable drop of performance.
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Fig. 5. Wall-clock runtimes (s) of PLINK and our host-only, GPU-only and hybrid implementations with varying numbers of SNPs and samples. Runtime as a function of SNPs
a untim
T  Note 

t

c
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nd  samples has been modeled by quadratic and linear functions respectively. The r
he  resulting interpolated runtimes have been added to the plot as coloured lines.
he  benchmark datasets for our implementations.

Please note that this article does not have a medical or biologi-

al focus. We  explicitly do not give details to the analysed diseases
either interpret our results against a medical or biological back-
round.
e of the hybrid system as a function of samples has been modeled by cubic splines.
that PLINK was  benchmarked with datasets containing only 10% of the SNPs from

5. Conclusions and future work
In this article, we presented two  ways of improving perfor-
mance of PLINK’s logistic regression epistasis test [22,23]. Firstly,
we reduced the computational complexity from O(NT)  to O(N + T)
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ig. 6. Speedups of our host-only, GPU-only and hybrid implementations compar
peedup-axis is in logarithmic scale.

or a single test by introducing contingency tables (see Sect. 2). This
lready led to a speedup of more than 10 to 15 for our example
atasets, although even calculating in double-precision.

The second improvement was made by applying a two-step
ardware acceleration pipeline (see Section 3). By generating con-
ingency tables on a Kintex UltraScale KU115 FPGA and computing
he logistic regression based on the tables on an Nvidia Tesla P100
PU, we gained a total speedup of more than 1100 to 1600 when
ompared to the original PLINK v1.9 software executed with 32
hreads on a server-grade two processor (Intel Xeon E5-2667v4)
ystem. Our GPU-only approach exposed that a single GPU is able
o speed up the process by a factor of 40–80. This demonstrates
hat combining the advantages of two different kinds of accelerator
rchitectures, namely FPGA and GPU, leads to a disproportionally
igh speedup than using the GPU alone. In numbers, adding the
PGA resulted in another speedup factor of 20 when compared to
he GPU-only implementation. Furthermore, we demonstrated that
y employing contingency tables, the r2-score for tests for linkage
isequilibrium (LD) can be computed on-the-fly. In combination,
his provides a powerful tool for epistasis analysis on large datasets,

aking LD-filtering deprecated as a pre-processing step.
Consequently, we are able to calculate a full logistic regression

est in double-precision format on all pairs of hundreds of thou-
ands of SNPs with tens of thousands of samples in a few minutes
nd allow to filter the results by score and/or by LD in the post-
rocessing stage.

Currently, our method does not support the use of a covariate
atrix as additional user input. However, we are currently working
n a solution based on weighted contingency tables in order to be
ble to incorporate covariate information.

In order to make the system available for the scientific com-
unity, we are currently working on a much more powerful
PLINK with varying numbers of SNPs and samples. For a better comparability the

successor by enhancing it with three additional Xilinx UltraScale
FPGAs, upgrading the Nvidia Tesla P100 to four Tesla V100 boards
and optimizing the remaining hardware to the specific workloads.
Additionally, we  are planning a sophisticated web interface for
public use to allow scientists to perform genome-wide epistasis
analyses on our new system. We  aim to provide a user experi-
ence similar to other widely known services, such as the Sanger
Imputation Server [30], and also offer a scripting interface for easier
integration in existing workflows and infrastructure.
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