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ABSTRACT
In recent years, graph processing attracts lots of attention due to its
broad applicability in solving real-world problems. With the flexibil-
ity and programmability, FPGA platforms provide the opportunity
of processing the graph data with high efficiency. On FPGA-DRAM
platforms, the state-of-art solution of graph processing (i.e., Fore-
Graph) attaches each pipeline with local vertex buffers to cache the
source and destination vertices during processing. Such one-level
vertex caching mechanism, however, results in excessive amounts
of vertex data transmissions that consume the precious DRAM
bandwidth, and frequent pipeline stalls that waste the processing
power of the FPGA.

In this paper, we propose a two-level vertex caching mechanism
to improve the performance of graph processing on FPGA-DRAM
platforms by reducing the amounts of vertex data transmissions and
pipeline stalls during the execution of graph algorithms. We build
a system, named as FabGraph, to implement such two-level vertex
caching mechanism by using available on-chip storage resources,
including BRAM and UltraRAM. Experimental results show that:
FabGraph achieves up to 3.1x and 2.5x speedups over ForeGraph for
BFS and PageRank respectively, on the FPGA board with relatively
large BRAM; and up to 3.1x and 3.0x speedups over ForeGraph
for BFS and PageRank respectively, on the FPGA board with small
BRAM but large UltraRAM. Our experience in this paper suggests
that the two-level vertex caching design is effective in improving
the performance of graph processing on FPGA-DRAM platforms.

CCS CONCEPTS
• Hardware → Reconfigurable logic and FPGAs; Hardware acceler-
ators; • Theory of computation → Graph algorithms analysis;
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1 INTRODUCTION
Graph data structure is widely used to organize the data in many
scientific research and industry fields, including social networking
[16], bio-informatics [1], etc. Solutions to the real-world problems
in these fields (e.g., discovering communities in social networks,
finding interesting patterns in DNAs) are obtained by conducting
graph algorithms in collected graph data. The executions of graph
algorithms in the graph data (i.e., graph processing), however, incur
high volumes of irregular and random memory accesses, especially
when the graph under processing is large. Researches [3, 8] show
that general purpose processors (i.e., CPUs) are not well suited for
such workloads due to architecture reasons, such as high Last Level
Cache (LLC) miss rates, severe contentions in Reorder-Buffer (RoB).
Under such background, FPGA-based graph processing becomes a
promising solution, due to its flexibility and programmability, by
which customized processing logics can be built.

In the past several years, lots of FPGA based graph processing
solutions and systems are proposed, including GraphGen [14], [25],
FPGP [5], ForeGraph [6], and those based on the Hybrid Memory
Cube (HMC) [11, 23, 24]. ForeGraph [6] is the state-of-art system
that works on the FPGA-DRAM platform. Its idea is to represent
the graph data under processing as a 2-Dimensional (2D)Q ×Q grid
[4, 26], and store both the vertex and edge data of the graph in the
off-chip DRAM. During processing, ForeGraph processes a portion
of the graph at a time, and repeats the process until the entire graph
is processed. ForeGraph builds multiple pipelines in the FPGA to
exploit its massively parallel processing power and configures each
of the pipelines with two vertex buffers in the on-chip Block RAM
(BRAM). During processing, the source and destination vertices of
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the graph portion to be processed are first loaded from the DRAM
and stored in the vertex buffers attached to the pipelines, and then
the edges are transferred to the pipelines and processed in a stream
fashion. When processing switches from one portion of the graph
to another, the vertex data residing in the pipeline-attached vertex
buffers will be replaced by writing the intermediate results back to,
and reading new vertex data from the off-chip DRAM.

Nevertheless, such design of ForeGraph results in excessive
amounts of vertex data transmissions via the DRAM bus during
graph processing. Even worse, as the pipelines in ForeGraph cannot
begin to process the edges until all the vertex data of the graph
portion under processing are fully loaded in their buffers, they stall
during the vertex data transmission, which wastes the processing
power of FPGA. Our insight to this excessive vertex data transmission
problem in ForeGraph is that the design of pipeline-attached vertex
buffers is, in essence, an one-level cache architecture, with which the
contents of these buffers have to be replaced according to the pro-
cessing logic during graph processing, even when the BRAM is large
enough to store all the vertex data of the graph under processing.

In this paper, we propose a two-level vertex caching mechanism
by using the on-chip storage resources (i.e., BRAM and UltraRAM)
to address the limitations of ForeGraph: the L1 cache is the ver-
tex buffers attached to the pipelines, and the L2 cache is a shared
vertex buffer that temporarily stores the vertex data of the graph
portion under processing. During processing, the L2 cache com-
municates with the DRAM to read/write the vertex data, while
the L1 cache communicates with the L2 cache (not the DRAM) to
save DRAM bandwidth. We build a system named as FabGraph to
implement such two-level vertex caching mechanism. FabGraph
designs dual-set pipelines, to minimize the pipeline stalls incurred
by the vertex data transmission by overlapping the computation
of one pipeline set with the communication of the other. By lever-
aging the symmetric nature of the 2D grid graph representation,
FabGraph employs an L2 cache replacement algorithm that uses
Hilbert order-like scheduling to reduce the amount of vertex data
replaced when switching from one graph portion to another.

This paper makes the following contributions:
• proposes a two-level vertex caching mechanism, and its accom-

panying replacement and computation/communication overlapping
techniques, for graph processing on FPGA-DRAM platforms.
• gives the performance model of our proposed two-level vertex

caching mechanism by considering various possible configurations.
• builds FabGraph that efficiently uses the on-chip storage re-

sources, including both BRAM and UltraRAM, to implement the
two-level vertex cache mechanism.
• extensively evaluates FabGraph to demonstrate the power of

the two-level vertex cache mechanism on improving the perfor-
mance of graph processing on FPGA-DRAM platforms.

The rest of this paper is organized as follows: Section 2 presents
the background and related works of this paper. Section 3 gives
an overview of FabGraph. Section 4 and 5 elaborate the vertex
data replacement and computation-communication overlapping
mechanisms of FabGraph. Section 6 gives the performance model
of FabGraph. Section 7 evaluates the performance of FabGraph
by conducting graph algorithms in the chosen real-world graphs.
Section 8 concludes the paper and discusses the future works.

2 BACKGROUND AND RELATED WORKS
In this section, we first review the existing approaches for graph
processing on FPGA-DRAM platforms and give a discussion after
analyzing the design choices of the state-of-art approach.

2.1 Graph Processing on FPGA-DRAM
Platform

A graph, denoted asG =< V ,E >, consists of a finite set of vertices
V , and a set of edges E, where E = {(v,u) |v,u ∈ V }. Each edge
connects exactly two endpoint vertices and is said to be “directed”
if one of its endpoints is the source and the other is the destination,
or “undirected” if there is no difference in its endpoints. A graph
is directed if it contains only directed edges, or undirected if all
its edges are undirected. In order to simplify our discussion in this
paper, we consider the processing of directed graphs, as undirected
graphs can be converted into directed ones by considering each its
edge as two directed edges with opposite directions.

Generally, processing a graph means to conduct various graph
algorithms in the given graph to obtain useful results. Two funda-
mental graph algorithms are Breadth First Search (BFS) that com-
putes the distance of the vertices in the graph from a given root
vertex, and PageRank that computes the ranking of web pages (ver-
tices) according to their connections (edges). Most graph algorithms
are iterative: computations are conducted repeatedly in the input
graph by changing the values of the vertices (i.e., the results) till
convergence (results do not change further) or for a predefined
amount of iterations. As each edge connects two arbitrary vertices
in V , conducting graph algorithms generally incurs high volumes
of random memory accesses.

In an FPGA-DRAM platform, there are two kinds of storage me-
dia: the on-chip BRAM (or UltraRAM) and the off-chip DRAM. The
on-chip BRAM (or UltraRAM) is expensive and has small storage
capacity, but can handle random accesses with much higher per-
formance than the off-chip DRAM. On the contrary, the off-chip
DRAM is relatively cheaper, has much larger storage capacity, but
favors only sequential or predictable access patterns. Conducting
graph algorithms on such platform needs to take into account these
differences in these two types of memories.

There are two widely used graph processing models: the vertex-
centric model [13] that conducts graph algorithms by iterating
along the vertices, and the edge-centric model [18] that performs
graph algorithms by iterating along the edges. FPGA-based ap-
proaches that adopt the vertex-centric model, such as GraphStep
[7] and GraphGen [14], incur large volume of random accesses to
the DRAM, which leads to unpredictable performance. [25] adopts
edge-centric processing model, and stores the intermediate results
generated while processing the edges in the DRAM before applying
them to the vertices. This mechanism, however, introduces extra
overheads by reading/writing the intermediate results from/to the
DRAM. GraphOps [15] introduces a modular approach of construct-
ing graph accelerators in FPGA.

2.2 State-of-Art Approach
The state-of-art practice on graph processing in the FPGA-DRAM
platform (i.e., ForeGraph) represents the graph under processing
as a 2D grid, that divides the vertex ID space into multiple (Q)
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Figure 1: An example graph and its grid representation

equal-length intervals, and catalogs all edges of the graph into the
Q2 edge blocks according to the intervals, to which their source
and destination vertices belong respectively. Figure 1 shows an
example graph and its grid representation. Graph algorithms are
then conducted on the graph by iterating along the edge blocks
of the grid. Algorithm 1 and 2 list the pseudo codes of conducting
BFS and PageRank in a graph with grid representation. In these
algorithms, Bi, j denotes the edge block at the ith row and the jth
column of the grid, and is “active” if at least one of the vertices in
its source vertex interval has message to be sent to other vertices.

Algorithm 1: Conduct BFS in graph G =< V ,E >.
Input :grid dimension Q ; root vertex r ; interval length |I |.
Output :values associated with the vertices in V .

1 foreach i ∈ [0, |V | − 1] do
2 V [i].value ← ∞
3 V [r ]← 0;
4 foreach j ∈ [0,Q − 1] do
5 Activate Br / |I |, j
6 Updated ← Ture;
7 whileUpdated do
8 Updated ← False;
9 foreach i ∈ [0,Q − 1] do

10 foreach j ∈ [0,Q − 1] do
11 if Bi, j is active then
12 foreach e ∈ Bi, j do
13 if V [e .dst].value > V [e .src].value + 1

then
14 V [e .dst].value ← V [e .src].value + 1;
15 foreach k ∈ [0,Q − 1] do
16 Activate Bj,k
17 Updated ← True

From Algorithm 1 and 2, we can observe that there are two kinds
of iterators: the block iterator and the edge iterator. The block itera-
tor (Line 9-11 in Algorithm 1 and Line 5-6 in Algorithm 2) chooses
the edge blocks, in which the computation will be conducted, while

Algorithm 2: Conduct PageRank in graph G =< V ,E > (d is
the damping factor, generally equals to 0.85).
Input :grid dimension Q ; iteration count Iter .
Output :values associated with the vertices in V .

1 foreach i ∈ [0, |V | − 1] do
2 V [i].value ← 1
3 i ← 0;
4 while i < Iter do
5 foreach i ∈ [0,Q − 1] do
6 foreach j ∈ [0,Q − 1] do
7 foreach e ∈ Bi, j do
8 V [e .dst].value ←

V [e .dst].value + (1 − d ) /V [e .dst].deд +
d ×V [e .src].value/V [e .src].deд;

9 i++;

K

Q

Figure 2: The sliding window mechanism in ForeGraph (as-
sume Q = 8, K = 4). Dashed arrow denotes the sliding di-
rection of Source First Replacement (SFR) algorithm. Solid
arrow denotes that of Destination First Replacement (DFR)
algorithm. ForeGraph chooses DFR when K > 2)

the edge iterator (Line 12-17 in Algorithm 1 and Line 7-8 in Algo-
rithm 2) browses all edges of a chosen block, and conducts compu-
tation according to the values associated with the endpoint vertices
of each edge. Note that in the edge iterator, although edge browsing
is sequential, the computation incurs random accesses against the
vertices in the block’s corresponding intervals.

ForeGraph designs multiple (K) pipelines, and configures each
of the pipelines with two vertex buffers by using the BRAM to store
the source and destination vertices of an edge block. During pro-
cessing, the vertex intervals associated with an edge block are first
loaded into the vertex buffers, and then, the edges of the block are
loaded from the off-chip DRAM to the pipelines in a stream fashion.
ForeGraph uses a sliding window (whose size is K × 1) mechanism,
as illustrated in Figure 2, to implement the block iterator. With the
Source First Replacement (SFR) or the Destination First Replacement
(DFR) algorithm, when graph processing switches from one win-
dow to another, the contents of the pipeline-attached vertex buffers
that store source or destination vertices, have to be replaced by
writing the results to the DRAM, reading new source vertices of
the new window from the DRAM, or both.
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2.3 Discussion
The design of ForeGraph, however, leads to excessive amounts of
vertex data transmissions during graph processing. Such problem
manifests itself obviously when the BRAM has enough storage
space to store all the vertex data of a graph under processing: in such
case, at each step of window sliding, the vertex data (source if using
SFR, or destination if using DFR) still need to be transferred between
DRAM and BRAM. Besides, the design of ForeGraph suffers from
the edge inflation problem: as the pipelines are assigned to process
the edge blocks falling in the same window in parallel, to balance
loads of the pipelines, the edge blocks in the same window need to
be normalized to the one with the maximal size by adding empty
edges to the blocks with less edges, which leads to an 11% to 34%
inflation on the sizes of the edge blocks according to [6].

A two-level vertex caching mechanism can hopefully solve these
problems: the vertex data of the graph portion under processing
can be stored in a large L2 cache (to reduce the vertex data trans-
missions between FPGA and DRAM), such that during processing,
the vertex data to be used by the pipelines can be transferred be-
tween these two cache levels. At the same time, such two-level
vertex caching mechanism can effectively use the on-chip storage
resources, especially the emerging UltraRAM [21], which is not
suitable to be used as the L1 cache due to its coarser granularity
(e.g., severe waste will be result, if it were used as the L1 cache),
but ideal to be used as the L2 cache with its large storage capacity.

We thus develop FabGraph to implement the two-level vertex
caching mechanism, and evaluate its effectiveness in graph process-
ing on FPGA-DRAM platforms in the following sections.

3 SYSTEM OVERVIEW
The on-chip processing logics of FabGraph are shown in Figure 3.
FabGraph stores the graph under processing in the off-chip DRAM,
and organizes the on-chip storage spaces (BRAM and UltrRAM) into
two parts: the local stores (i.e., Source Vertex Store and Destination
Vertex Store in Figure 3) that attached to the pipelines (i.e.,Algorithm
Kernel Pipeline in Figure 3), and the Shared Vertex Buffer (SVB for
short). The pipeline-attached local stores work as the L1 cache, and
the SVB works as the L2 cache. During processing, the SVB first
communicates with the off-chip DRAM via the DRAM Controller
to obtain the vertex data of the graph portion to be processed. The
Shared Vertex Buffer Controller then transfers the vertex data, chosen
by the Scheduler, from the SVB to the local stores of the pipelines.
Finally, the edges of the selected block are streamed in from the
DRAM to the pipelines by the Edge Dispatcher.

With this two-level vertex caching design, the vertex data ex-
changed during graph processing are conducted by transferring the
vertex data between the local stores and the SVB. When processing
switches from one graph portion to another, the contents of the
SVB (i.e., the L2 cache) will be (partially) replaced. In Section 4,
we will elaborate on the vertex data replacement mechanism of
the SVB. Moreover, FabGraph designs two pipeline sets (PSes), i.e.,
Pipeline Set1 and Pipeline Set2 as shown in Figure 3, to mask the
pipeline stalls by overlapping the computation of one PS with the
vertex data transmission of the other PS. We will elaborate on this
mechanism in Section 5.

Figure 3: On-chip processing logic of FabGraph

3.1 Graph Representation
Similar as ForeGraph, FabGraph also represents the graph under
processing as a grid as shown in Figure 1, and stores the graph
data (both vertices and edges) in the off-chip DRAM. FabGraph
adopts the techniques that are proven to be successful in Fore-
Graph to compress the graph representation. There are two kinds
of compressions:
• Vertex ID Compression. As the grid representation parti-

tions the graph under processing into Q2 blocks, considering the
alignment factor, the ideal choice for vertex indexing after com-
pression is 16 bits for an interval. FabGraph thus represents each
edge by using 32 bits (4 Bytes), i.e., each of its endpoint vertex IDs
occupies 16 bits. In the following discussions, we take the storage
size of an edge, denoted as Se , as 32 bits (4Bytes), and each vertex
interval has 216 vertices.
• Vertex Value Compression. The values of the vertices are

the computing results of a graph algorithm. According to the char-
acteristics of a graph algorithm, such results can also be compressed
to reduce the storage sizes of the vertex values. For example, for
BFS, we can use only 8 bits (1 Byte) to store the vertex value if we
know in advance that the diameter, the maximal distance from one
vertex to another vertex, of the graph is below 28 − 1. We use this
observation to compress the values of the vertices, and in the fol-
lowing discussions, regard the storage size of each vertex, denoted
as Sv , as 8 bits when conducting BFS, and as 32 bits when conduct-
ing PageRank in the graphs listed in Table 2. The storage size of a
vertex interval, denoted as Sinterval , which is an important unit of
measurement in this paper, is computed as Sinterval = 216 · Sv .
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Fbram Fpipe Fbram Fpipe

Figure 4: Pipeline enhancing

3.2 Block Cascading and Pipeline Enhancing
FabGraph relies on the communication between the pipeline-attached
local stores (i.e., the L1 cache) and the SVB (i.e., the L2 cache) to
transfer the vertex data during graph processing. To achieve a high
bandwidth between these two cache levels, the blocks of BRAM or
UltraRAM that form the local stores or SVB are cascaded in parallel.

Generally, the on-chip BRAM or UltraRAM consists of multi-
ple blocks of fixed sizes and configurable output data wires, and
when multiple blocks are cascaded in parallel, the resulting cir-
cuit will have a large bit-width for communication. For example,
when cascading 57 blocks of the BRAM, each of which has 36Kb
storage space and is configured with a port width of 512 × 72
bits, in parallel, we have a memory region of 256KB with the
width of 4096 bits (aligned to integer power of 2). When the fre-
quency of BRAM (denoted as Fbram ) is 200MHz, the theoreti-
cal communication bandwidth of these cascaded blocks will be:
BWblocks = 4096bits × 200MHz = 100GB/s , which is much higher
than the bandwidth (typically from 17GB/s to 25.6GB/s) of the
off-chip DDR4 RAM. More importantly, transferring vertex data
between a pipeline-attached local store and the SVB does not con-
sume DRAM bandwidth and does not incur pipeline stalls if it is
overlapped with the computation conducted in other pipelines.

The dual pipeline-set design of FabGraph may consume a lot
of BRAM space. Based on the observation that with the complex
processing logic, the frequency of the pipelines (denoted as Fpipe )
is generally low (typically around 150MHz to 200MHz) , we can
raise the frequency of the BRAM (denoted as Fbram ) such that
Fbram = 2 · Fpipe to “enhance” a pipeline, such that it can process
two edges within one clock cycle. Figure 4 illustrates this technique.
With doubled Fbram , an enhanced pipeline can read a pair (source
and destination) of vertex data from, or write one result back to
its local store, at both the rising (posedge) and falling (negedge)
edges of its own clock cycle, and thus can processes two edges of
the graph in one clock cycle.

4 VERTEX DATA REPLACEMENT IN SVB
FabGraph employs a sliding windowmechanism as shown in Figure
5 to choose the blocks during computation (i.e., block iterator) and
govern the data replacement in the SVB (i.e., L2 cache). Different
from the K × 1 rectangular window mechanism in ForeGraph, the
window in FabGraph is square.

One obvious advantage of the square window over the rectangu-
lar window in ForeGraph is that when the source and destination

Figure 5: Sliding window mechanism in FabGraph

vertex intervals are loaded to the SVB, the window can cover not
only the edge blocks within it, but also the symmetrical edge blocks,
and the diagonal edge blocks of the grid. For example, in Figure
5, the solid-line deep-blue window that covers the edge blocks of
B20, B21, B30, B31, also covers the other three dash-line deep-blue
windows, as the source and destination vertex intervals (i.e., I0,
I1, I2, and I3) are loaded in the SVB. For the same reason, when
the solid-line light-orange window is scheduled, the vertex data
loaded in the SVB also cover the areas that are marked by dash-
line light-orange windows. Note that the edge blocks within the
diagonal windows are scheduled (covered) twice. In practice, we
use a register to track the scheduling sequences of edge blocks and
schedule the diagonal windows only once.

With the advantage of the square window, FabGraph only needs
to slide the window to cover the upper-triangular part or lower-
triangular part of the grid. FabGraph chooses to slide the window
in the lower-triangular part, and uses a Hilbert order [10, 12] like
algorithm as shown in Figure 5 to guide the window sliding. Such
algorithm minimizes the vertex data replacement in the SVB. For
example, when the window slides from the 2 × 2 area marked by
1⃝ to the area marked by 2⃝, only vertex intervals I2 and I3 need to
be replaced with I4 and I5, while I0 and I1 remain in the SVB.

Denote the size of the SVB as SL2 (in the unit of vertex intervals),
the size (height or width) of a window in FabGraph is thus SL2/2.
We call the vertex intervals that are loaded together into the SVB
during window-sliding as batched intervals (e.g., I0 + I1, or I2 + I3,
in Figure 5). When sliding in a grid with the dimension of Q , there
will be 2 · Q/SL2 sets of such batched intervals. As each window
contains two (i.e., source and destination) such batched intervals,
there will be C22·Q/SL2

possible combinations, which is also the
number of square windows required to cover the whole grid. For
example, in Figure 5, we haveQ = 8 and SL2 = 4, and therefore, we
need C24 = 6 square windows to cover the whole grid.

Consider an all-active graph algorithm with multiple iterations
(e.g., PageRank), when SL2 ≥ Q , i.e., the SVB is big enough to
store all vertex intervals, if precluding the data read during the
beginning stage and written at the ending stage, there will be no
need to replace any vertex data in the SVB during computation.

Session 9: Memory FPGA ’19, February 24–26, 2019, Seaside, CA, USA

324



When SL2 < Q , as the content of SVB needs to be fully replaced at
the beginning of the window sliding, and only half of the vertex
data in SVB will be replaced at the window-slidings afterward, the
amount of vertex intervals read from or written to the DRAM to
cover the whole grid is thus C22·Q/SL2

·SL2/2+SL2/2 = Q2/SL2−(Q−

SL2)/2. Therefore, the amount of vertex data transferred during one
algorithm iteration in FabGraph can be computed by the following
conditional equation:

Read =Write =



0, SL2 ≥ Q

Q2/SL2 − (Q − SL2)/2, SL2 < Q
(1)

We can observe from the above conditional equation that the
amount of vertex data read from orwritten to the DRAM is inversely
proportional to the size of the SVB. That is, the bigger the SVB is,
the smaller amount of vertex data transmissions will result. Table 1
compares the amount of vertex data (in the unit of vertex intervals)
transferred via the DRAM bus in ForeGraph and FabGraph.
Table 1: The amounts of vertex data (in unit of vertex inter-
vals) transmitted via DRAM bus during one algorithm itera-
tion in ForeGraph and FabGraph (K denotes the number of
pipelines in ForeGraph and SL2 denote the size, in unit of
vertex intervals, of the SVB in FabGraph)

ForeGraph (DFR)
FabGraph

SL2 < Q SL2 ≥ Q

Read Q +Q2/K Q2/SL2 − (Q − SL2)/2 0
Write Q2/K Q2/SL2 − (Q − SL2)/2 0

From Table 1, we can observe that increasing the size of SVB
(i.e., SL2) in FabGraph has similar effects as increasing the number
of pipelines (i.e., K ) in ForeGraph. However, when SL2 exceeds the
breakpoint ofQ , there will be no need to transfer vertex data during
graph processing. On the contrary, ForeGraph still needs to read
2 ·Q and write Q vertex intervals (totally, 3 ·Q), when K ≥ Q .

5 OVERLAPPING COMPUTATION AND
COMMUNICATION

FabGraph processes the edge blocks in a chosen window sequen-
tially: suppose there are multiple edge blocks to be processed in
the current window, the system will first load the vertex intervals
of these edge blocks into the SVB, and then process the edge blocks
one after another. The advantage of the sequential processing is that
it disassociates the correlations between the edge blocks, and thus
solves the edge inflation problem, that is incurred by processing
K edge blocks of the same window in parallel as in ForeGraph.
Nevertheless, such sequential processing mechanism leads to an
amount ofW 2 vertex interval data transmissions, as there areW 2

edge blocks in aW ×W window.
FabGraph uses the two pipeline sets as shown in Figure 3, to

overlap the vertex data transmission (communication) between the
local stores and the SVB at one PS, with the processing of streamed
edges (i.e., computation) at the other PS. Figure 6 illustrates this
idea. We classify the situations of overlapping into two types: per-
fect overlapping and imperfect overlapping. In the case of perfect
overlapping, the time spent on vertex data transmission at one

Figure 6: Overlapping the communication of one PSwith the
computation of the other PS

PS is less than or equals to that spent on the streamed edge pro-
cessing that happens simultaneously at the other PS. In such case,
the speed of graph processing is determined by the speed of edge
streaming via the DRAM bus, and thus achieves the highest theo-
retical performance (as with its relatively low bandwidth, DRAM
bus is generally considered as the bottleneck of graph processing).
On the other hand, in the case of imperfect overlapping, the time
spent on vertex data transmission at one PS is larger than that spent
on the streamed edge processing conducted simultaneously at the
other PS, which consequently leads to pipeline stalls, and prevents
the system from reaching the theoretical performance. In order to
achieve perfect overlapping, FabGraph needs to 1) reduce the time
spent on vertex data transmission, and 2) balance the edge blocks
to make them have (approximately) identical sizes.

FabGraph employs two techniques to reduce the time spent on
vertex data transmission: a) schedule the edge blocks in a window
with the Source First Replacement (SFR) algorithm as shown in Fig-
ure 2, and b) improve the communication bandwidth between the L1
and L2 cache. By SFR, the blocks of the same column are scheduled
sequentially before switching from one column to another, which
results in only one replacement of the (source) vertex interval in
most cases. Moreover, FabGraph cascades multiple blocks of the
BRAM in parallel to achieve large bit-width to improve the commu-
nication bandwidth between the L1 and L2 cache, and doubles the
frequency of BRAM (discussed in subsection 3.2) when necessary.

With the power-law degree distribution [9], real-world graphs
are hard to be partitioned into equal-sized subgraphs [2]. When
representing a graph as aQ ×Q grid, the vertex set of the graph can
be considered as being partitioned into Q partitions. We study the
Cumulative Distribution Functions (CDFs) of the edge block sizes
by two widely used partitioning methods: range-based partitioning
and hash-based partitioning. Since there are 216 vertices in a vertex
interval, the range-based partitioning method group the vertices
whose IDs fall in range [i × 216,(i + 1) × 216] to the ith partition,
while the hash-based partitioning method groups two vertices into
the same partition when the remainders are the same when their
IDs are divided by a given number. Figure 7 compares the CDFs of
the edge block sizes of LiveJournal listed in Table 2.

From Figure 7, we can observe that compared with the range-
based partitioning, the size distribution of the edge blocks by us-
ing hash-based partitioning is much evener. FabGraph thus uses
hash-based partitioning to construct the grid representations of the
graphs under processing.

To describe and measure the effectiveness of the overlapping
mechanism, we define a term named overlapping factor, denoted as
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Figure 7: Size (in number of edges) distribution of the edge
blocks of LiveJournal when represented as a 74 × 74 grid by
range and hash partitioning methods

α , that is computed by α = Tactual /Ttheory , where Tactual is the
time actual paid on processing a set of edge blocks in FabGraph,
and Ttheory is the time paid on processing the edges within the
edge blocks. Denote the set of edge blocks as E = {E1,E2, ...,EL ,
where L > 1}, the number of edges in Ei as |Ei |, Ttheory is thus:
Ttheory = ΣL1 |Ei | · Se/BWdram , where Se is the storage size of an
edge, and BWdram is the DRAM bandwidth.

Consider conducting an all-active graph algorithm in Graph G
with Q2 edge blocks, use AVG ( |ei |) to denote the average size (in
number of edges) of the edge blocks ofG , and denote the bandwidth
of communication between L1 and L2 cache as BWL1−L2, the over-
lapping factor can be computed approximately by using following
equation:

α ≈
max(Sinterval /BWL1−L2,AVG ( |ei |) · Se/BWdram ))

AVG ( |ei |) · Se/BWdram
(2)

From Equation 2, we can observe that if BWL1−L2 is big enough
(and thus Sinterval /BWL1−L2 is small enough), the system will
“perfectly” overlap the communication and the computation, such
that α = 1. Nevertheless, when the graph under processing is
extremely sparse, and thus AVG ( |ei |) is extremely small, such that
Sinterval /BWL1−L2 > AVG ( |ei |) ·Se/BWdram , the overlappingwill
be “imperfect”, i.e., α > 1.

6 PERFORMANCE MODEL
Consider conducting an iteration of all-active graph algorithm in
graph G, the graph processing time in FabGraph consists of two
parts: the time paid on vertex transmission between DRAM and
SVB, and that paid on processing the streamed edges. Denote the
former as Tver tex_transmission , and latter as Tedдe_str eam , the
time of conducting an all-active algorithm in graph G with Fab-
Graph (denoted as T ) can thus be computed as:

T = Tver tex_transmission + α ·Tedдe_str eam (3)

whereTver tex_transmission can be computed using following con-
ditional equation (derived from Equation 1):

Tver tex_transmission =




0, SL2 ≥ Q

2 ·Q2/SL2 − (Q − SL2)

BWdram
, SL2 < Q

(4)
Denote the number of pipelines of one PS as P , the number

of edges in graph under processing as |E |, Tedдe_str eam can be

0.0
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Figure 8: Theoretical execution times of PageRank in Fab-
Graph when varying SL2 by assuming Q = 74,Mbram =

64, |E | = 69M,α = 1, β = 2,BWdram = 19.2GB/s, Fpipe =
150MHz

computed by using the following equation:
Tedдe_str eam = max( |E | · Se/BWdram , |E |/(P · Fpipe )) (5)

When there is enough BRAM space for the local stores (L1
cache) of the pipelines and logic resources in FPGA, we have
P = BWdram/Se , and thus Tedдe_str eam = |E | · Se/BWdram . How-
ever, when there is not enough BRAM space (e.g., the board has
only limited BRAM resource, or part of the BRAM space is occupied
by the SVB), we have P = SL1/4, where SL1 denotes the L1 cache
size in unit of vertex intervals if the pipelines are not enhanced,
and P = SL1/2 when using enhanced pipelines. Therefore, we have:

Tedдe_str eam =

{
|E | · Se/BWdram , SL1 ≥ β · BWdram/Se

β · |E |/(SL1 · Fpipe ), SL1 < β · BWdram/Se
(6)

where β = 4 if the pipelines are not enhanced, and β = 2 if the
pipelines are enhanced. Use THL1 to denote the threshold of β ·
BWdram/Se , i.e.,THL1 = β ·BWdram/Se , we can further transform
Equation 3 into the following conditional equation:

T = Tver tex_transmission + α ·Tedдe_str eam =




α · |E | · Se
BWdram

, SL1 ≥ THL1, SL2 ≥ Q

α · |E | · Se
BWdram

+
2Q2/SL2 − (Q − SL2)

BWdram
, SL1 ≥ THL1, SL2 < Q

α · β · |E |

SL1 · Fpipe
, SL1 < THL1, SL2 ≥ Q

α · β · |E |

SL1 · Fpipe
+
2Q2/SL2 − (Q − SL2)

BWdram
, SL1 < THL1, SL2 < Q

(7)
One of the interesting cases in Equation 7 is when both L1 and

L2 cache share the same BRAM (i.e., SL1 + SL2 ≤ Mbram , where
Mbram is the storage size of BRAM in the unit of vertex intervals),
and there is no enough BRAM space for these two cache levels, i.e.,
SL1 < THL1 and SL2 < Q . Assume the BRAM resource is efficiently
used (i.e., SL1 ≈ Mbram − SL2), for this case, we have:

T =
α · β · |E |

(Mbram − SL2) · Fpipe
+
2Q2/SL2 − (Q − SL2)

BWdram
(8)

Assume conducting PageRank algorithm in a graph with Q = 74
and |E | = 69million (i.e., LiveJournal in Table 2), on an FPGA board
with 16.61MB BRAM (i.e., Mbram = 64, the VCU110 board to be
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Figure 9: Smallest theoretical execution times of PageR-
ank in FabGraph and ForeGraph, when varying the size of
BRAM by assuming Q = 74, |E | = 69M,α = 1, β = 2,BWdram =

19.2GB/s, and Fpipe = 150MHz

used in Section 7), α = 1, β = 2 (enhanced pipelines), Fpipe =
150MHz,BWdram = 19.2GB/s , and varies SL2 from 1 to 60 (in unit
of vertex intervals), the theoretical execution times of PageRank in
FabGraph varies accordingly (governed by Equation 8) as shown in
Figure 8. From Figure 8, we can observe that the smallest T (i.e.,
0.0292s) appears when SL2 = 17. Therefore, by compute the choice
of SL2 that produces the smallest T in Equation 8, we have the
optimal configurations, that achieve best performance for PageRank
in a given graph, for the L1 and L2 cache, when allocating the
storage space from a given BRAM.

We further predict the performance of FabGraph with above
settings by varying the storage capacity of BRAM, and compare the
best performances (the theoretical smallest execution times) that
can be achieved in FabGraph when conducing PageRank, with the
theoretical performances (execution times) of ForeGraph in Figure
9. From Figure 9, we can observe that with a small BRAM (below
48 vertex intervals, approximately 12MB), ForeGraph outperforms
FabGraph, as FabGraph cannot have large L2 cache with such small
BRAM. However, when the size of BRAM exceeds this breakpoint
(i.e., 48 vertex intervals), PageRank achieves better performance
with FabGraph than with ForeGraph, and the performance gains
due to the enlarged BRAMs increase with a much faster speed (Fab-
Graph’s curve has larger slope) in FabGraph than ForeGraph. When
Mbram is greater than 124 vertex intervals, FabGraph achieves the
best theoretical performance for PageRank (only edges are trans-
mitted during computation).

7 EVALUATIONS
We choose two graph algorithms, i.e., BFS and PageRank, and four
real-world graphs taken from [19] and listed in Table 2 to evaluate
the performance of FabGraph.

Table 2: Real-world graph data-sets

Graphs #Vertices #Edges Q

com-Youtube (YT) 1.13 million 2.99 million 18
soc-Pokec (PK) 1.63 million 30.62 million 26
wiki-Talk (WK) 2.39 million 5.02 million 38

soc-LiveJournal (LJ) 4.85 million 68.99 million 74

We use two FPGA boards to evaluate FabGraph:
• VCU110: Xilinx Virtex UltraScale VCU110 Development Kit,

configured with an XCVU190-2FLGC2104E FPGA chip, 16.61MB

(3780 × 36Kb) on-chip BRAM, 1.07 million LUT (Look-Up-Table)
slices and 2.15 million FFs (Flip-Flop).
• VCU118: Xilinx Virtex UltraScale+ VCU118 Development Kit,

configured with an XCVU9P-L2FLGA2104E FPGA chip, 9.48MB
(2160 × 36Kb) on-chip BRAM, 33.75MB (960 × 288Kb) UltraRAM ,
1.18 million LUTs and 2.36 million FFs.

VCU110 has much larger BRAM storage space than VCU118,
and it is the same board used by ForeGraph in [6]. Compared with
VCU110, VCU118 has much smaller (about half of) BRAM storage
space, but large UltraRAM. With about half tag price [22], VCU118
is much cheaper than VCU110.

We use Xilinx Vivado 2017.4 to conduct simulations by imple-
menting FabGraph on these two boards, use Block Memory Gen-
erator v8.3 [20] to control BRAM cascading, and use DRAMSim2
[17] to simulate the off-chip data accesses against a 2GB DDR4
Micron MTA8ATF51264HZ-2G3 SDRAM, which runs at 1.2GHz
and provides a peak bandwidth of 19.2GB/s . We use Sv = 8 bits for
BFS, Sv = 32 bits for PageRank, and compute the storage size of an
interval as Sinterval = 216 · Sv during the following experiments.
The storage size of an edge is fixed to Se = 32 bits.

7.1 On VCU110
As VCU110 has only BRAM resource, FabGraph allocates both the
L1 cache (i.e., the pipeline-attached local stores) and the L2 cache
(i.e., the SVB) in its BRAM.

7.1.1 Resource Utilization and Performance. Table 3 reports the
on-chip resource utilization and performances of BFS and PageRank
conducted in the chosen graphs with FabGraph on VCU110.

We cascade 29 and 57 blocks of BRAM in parallel to build the
individual pipeline-attached local store for BFS and PageRank re-
spectively. The reason of using 29 blocks of BRAM (its storage
space is 29 · 36Kb ≈ 130KB) to build a local store is that we want
a pipeline-attached local store to have the width of 2048 bits, to
promote the communication bandwidth between it and the SVB.
However, as the vertex interval in BFS consumes only 64KB, nearly
half of its space is wasted (we trade space for time here).

When conducting BFS, FabGraph configures enough pipeline
resources, i.e., 48 pipelines for first three small graphs listed in
Table 2, and 32 enhanced pipelines for LiveJournal, to handle all the
incoming stream edges (24 edges when Fpipe = 200MHz, and 32
edges when Fpipe = 150MHz. Remember, FabGraph has two sets
of pipelines) at each clock cycle. At the same time, FabGraph leaves
enough BRAM resources to store all the vertex data of these graphs
during the algorithm’s execution. The first condition of Equation 7
(i.e., SL1 ≥ THL1 and SL2 ≥ Q) thus applies, and there is no need to
transfer any vertex data during the algorithm’s execution, except
for the transmissions at the beginning and ending stages.

When conducting PageRank, due to the large storage require-
ments of the vertex intervals (57 blocks of BRAM for each), the
BRAM resource of VCU110 is not enough to configure enough
pipelines to handle all incoming edges at each clock cycle, and
leaves enough space to store all the vertex data at the same time
for even the smallest graph in Table 2. The fourth condition of
Equation 7 (i.e., SL1 < THL1 and SL2 < Q) thus applies. We use
the best solutions of Equation 8 to configure both SL1 and SL2 to
achieve the best performances of PageRank in FabGraph.
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Table 3: Resource utilization and performances of graph algorithms in FabGraph on VCU110 (α stands for the Overlapping
Factor discussed in Section 5)

Algorithm Graph BRAM SL1
(MB)

SL2
(MB) #Pipelines LUT FF Fpipe

(MHz)
Fbram
(MHz)

Runtimes
(Seconds) MTEPS

Speed up
over

ForeGraph
α

BFS

YT
88.6% 12 3.25 48 34.71% 19.19% 200 200

0.0032 2801 3.1x 1.0
PK 0.0253 2768 - 1.0
WK 0.0154 1628 1.2x 1.80
LJ 77.4% 8.1 4.77 32 (enhanced) 23.87% 12.79%

150 300

0.168 2840 2.7x 1.0

PR

YT 93.4% 11.02 4.53 22 (enhanced) 28.42% 25.45% 0.0116 2565 2.5x 1.28
PK 90.48% 12.02 3.01 24 (enhanced) 31.02% 27.67% 0.0971 3150 - 1.0
WK 86.5% 8.01 6.5 16 (enhanced) 31.02% 27.67% 0.0515 976 1.0x 2.41
LJ 93.4% 11.02 4.53 22 (enhanced) 28.42% 25.45% 0.276 2494 2.1x 1.0

From Table 3, we can observe that with the two-level vertex
caching mechanism, the performances of both BFS and PageRank
in FabGraph exceed those of ForeGraph. In the case of BFS, the
speedups of FabGraph over ForeGraph are from 1.2x to 3.1x, while
in the case of PageRank, the speedups of FabGraph over ForeGraph
are from 1.0x to 2.5x. The performances of BFS and PageRank in
wiki-Talk are not optimal as the graph is extremely sparse (with an
edge factor about only 2), which incurs high overlapping rates and
thus brings down the performance in FabGraph.

7.1.2 Data Transmission Amounts. To demonstrate the effective-
ness on reducing the amounts of data transmissions with the two-
level vertex cachingmechanism of FabGraph, we collect the amounts
of both vertex and edge data transmissions when conducting PageR-
ank in Figure 10, and compare themwith the data amounts in theory
(take into account the edge inflations) of ForeGraph.

0

1

2

3

4

5 FabGraph (vertex)

FabGraph (edge)

YT WK LJ PK

ForeGraph (vertex)

ForeGraph (edge)

Figure 10: The amounts of data transmissions (all figures
are normalized to |E | · Se for each graph ) when conducting
PageRank on VCU110

From Figure 10, we can observe that the two-level vertex caching
mechanism of FabGraph effectively reduces the amounts of data
(especially the vertex data) transmissions during graph processing.
However, the ratio of reduction on vertex data transmissions cannot
be directly translated to performance improvements. For example,
compared with ForeGraph, the amount of vertex data transmissions
reduces about 50% when conducting PageRank in LiveJournal with
FabGraph, but the speedup is 2.1x over ForeGraph. The reason
is that compared with the DRAM-to-BRAM communication in
ForeGraph, the efficiency of communications between the L1 and L2
cache is more efficient. On the other hand, inwiki-Talk, although the
data transmission amounts reduce by 2x when comparing FabGraph

and ForeGraph, the performance of PageRank with FabGraph is
almost the same as that of ForeGraph, due to its high overlapping
factor (2.41), resulted by the sparsity nature of the graph.

7.2 On VCU118
VCU118 is configured with both on-chip BRAM and UltraRAM
resources. We use the BRAM as the pipeline-attached local stores
(L1 cache), and the UltraRAM as the SVB (L2 cache).

7.2.1 Resource Utilization. The resource utilization rates are listed
in Table 4. As the UltraRAM is big enough to store all the vertex
data of graphs listed in Table 2, we have a large L2 cache on this
FPGA board, i.e., SL2 > Q .

As on VCU110, FabGraph cascades 29 and 57 blocks of the BRAM
in parallel to build individual pipeline-attached local store for BFS
and PageRank respectively on VCU118. The BRAM of VCU118 thus
offers 72 or 36 cascaded blocks, each of which can store a vertex
interval, for BFS or PageRank respectively (i.e., SL1 = 72 for BFS,
and SL1 = 36 for PageRank). With these cascaded blocks, FabGraph
can build 36 or 18 pipelines for BFS or PageRank (remember, each
pipeline consumes two local stores).

Table 4: Resource utilization in FabGraph on VCU118

Resource BFS PageRank
kernels 32 (enhanced) 18 (enhanced)
LUT 22.85% 12.72%
FF 15.48% 14.10%

BRAM 85.92% 95.00%
UltraRAM 11.88% 59.38%
Fpipe 150 MHz 150MHz
Fbram 300MHz 300MHz

Considering the DRAM bandwidth and the frequency of the
pipelines, the FPGA will accept 24 edges when Fpipe = 200MHz,
and 32 edges when Fpipe = 150MHz. When Fpipe = 200MHz,
FabGraph needs to build 48 (24 × 2) pipelines to handle all in-
coming edges, as the system divides the pipelines into two sets
with identical number of pipelines. Obviously, in such case, the
cascaded blocks offered by the BRAM of VCU118 are not enough.
We thus use 32 and 18 enhanced pipelines for BFS and PageRank
respectively. With these enhanced pipelines, we have SL1 ≥ THL1,
where THL1 = 2 × 32 = 64 for BFS, and SL1 < THL1, where
THL1 = 2 × 28 = 56 for PageRank.
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Table 5: Performance of FabGraph on VCU118 (α stands for
the Overlapping Factor discussed in Section 5)

Algorithm Graph Runtimes
(Seconds) MTEPS

Speed up
over

ForeGraph
α

Speed up
over

VCU110

BFS

YT 0.0032 2801 3.1x 1.0 1.0x
PK 0.0253 2768 - 1.0 1.0x
WK 0.0205 1088 1.7x 2.41 0.66x
LJ 0.168 2840 2.7x 1.0 1.0x

PR

YT 0.0101 2958 3.0x 1.064 1.2x
PK 0.0972 3150 - 1.0 1.0x
WK 0.0434 1157 1.2x 2.71 1.2x
LJ 0.219 3150 2.6x 1.0 1.3x

7.2.2 Performance. The performances of the algorithms conducted
in the graphs are listed in Table 5. From Table 5, we can observe
that BFS achieves identical performances like those on VCU110 in
most of the graphs in Table 2, except for wiki-Talk. The reason is
that the UltraRAM works at 150MHz as the pipelines, and thus has
lower L1-to-L2 communication bandwidth than that on VCU110.
This exacerbates the overlapping problem (2.41 > 1.80) due to
the extreme sparsity of the graph. Whereas, such degradation of
communication bandwidth does not affect the performance in the
other three graphs as they are much denser than wiki-Talk.

On the other hand, PageRank achieves even better performances
in all chosen graphs than those conducted on VCU110. The reason is
that with a large UltraRAM, the L2 cache (SVB) stores all the vertex
data of these graphs during the executions, and thus effectively
reduces the vertex data transmissions from the off-chip DRAM, and
avoids the pipeline stalls. These experimental results imply that the
two-level vertex caching mechanism performs well with large L2
caches, and can even help some of the graph algorithms to achieve
better performances on FPGA boards with small BRAM but large
UltraRAM than on more expensive FPGA boards with large BRAM.

8 CONCLUSIONS AND FUTURE WORKS
In this paper, we proposed a two-level vertex caching mechanism
to improve the performance of graph processing on FPGA-DRAM
platforms. By building a system based on this idea, and evaluating
it on two typical DRAM-based FPGA boards, we demonstrated
the effectiveness of the two-level vertex caching mechanism on
graph processing. The future works of this paper include further
tuning of FabGraphwith the objective of decreasing the overlapping
factor when processing sparse graphs, and extending the system to
distributed (multi-board) settings.
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