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ABSTRACT

Graph traversal is a core primitive for graph analytics and a basis for
many higher-level graph analysis methods. However, irregularities
in the structure of scale-free graphs (e.g., social network) limit
our ability to analyze these important and growing datasets. A
key challenge is the redundant graph computations caused by the
presence of high-degree vertices which not only increase the total
amount of computations but also incur unnecessary random data
access.

In this paper, we present a graph processing system on an FPGA-
HMC platform, based on software/hardware co-design and co- opti-
mization. For the first time, we leverage the inherent graph property
i.e. vertex degree to co-optimize algorithm and hardware architec-
ture. In particular, we first develop two algorithm optimization
techniques: degree-aware adjacency list reordering and degree-aware
vertex index sorting. The former can reduce the number of redundant
graph computations, while the latter can create a strong correlation
between vertex index and data access frequency, which can be effec-
tively applied to guide the hardware design. We further implement
the optimized hybrid graph traversal algorithm on an FPGA-HMC
platform. By leveraging the strong correlation between vertex index
and data access frequency made by degree-aware vertex index sort-
ing, we develop two platform-dependent hardware optimization
techniques, namely degree-aware data placement and degree-aware
adjacency list compression. These two techniques together substan-
tially reduce the amount of access to external memory. Finally,
we conduct extensive experiments on an FPGA-HMC platform to
verify the effectiveness of the proposed techniques. To the best of
our knowledge, our implementation achieves the highest perfor-
mance (45.8 billion traversed edges per second) among existing
FPGA-based graph processing systems.
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1 INTRODUCTION

In response to the increasingly larger and more diverse graphs in
social science[21], machine learning[8], search engine[11], and the
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critical need of analyzing them, graph analytics, an essential class
of big data analysis, has emerged as a new fundamental computing
methodology to explore the comprehensive relationship among a
vast collection of interconnected entities. Among all graph primi-
tives in graph analytics, graph traversal has served as a basis for
many higher-level graph analysis algorithms.

Unfortunately, graph traversal is notoriously inefficient due to
the low computational intensity and irregular data access [2]. The
problem is further aggravated in processing scale-free graphs —
an essential class of real-world graphs where the distribution of
vertex degrees (the number of edge connections per vertex) asymp-
totically follows a power law distribution. Scale-free graphs have
been widely used in a number of important application domains
including social science, computer network, finance, and biology.
However, despite of their popularity, the unique topology of scale-
free graphs creates additional challenges in processing. The reason
is that the presence of high-degree vertices in scale-free graphs can
cause a large number of redundant edge checks during the traversal,
as reported by a number of prior work [2, 3, 14, 22]. The redundant
edge checks not only increase the total number of graph computa-
tions but also incur unnecessary random data access, becoming the
key performance bottleneck of existing graph processing systems.

To tackle such challenge, several existing work focus on algo-
rithm optimization on conventional CPU- or GPU-based systems.
For instance, Beamer et al. [3] proposes a bottom-up method, which
takes an opposite direction of visiting the adjacency list of each
vertex, compared to the traditional top-down approach. Experiment
results confirm its effectiveness in reducing the number of redun-
dant edge checks and achieving high throughput on large scale-free
graphs on CPU-based systems. Gunrock et al [14, 22] further ap-
plies directional optimization to derive a hybrid graph traversal
method by combining the best advantages of both top-down and
bottom-up approaches. In their hybrid method, traversal direction
(either top-down or bottom-up) can be optimally selected at each
step during the traversal. The implementation on GPU-based sys-
tems with GPU specific optimizations has shown that the hybrid
method is more effective than either of the prior methods (bottom-
up or top-down) in reducing redundant graph computations and
thus achieves better performance.

Although algorithm optimization has been demonstrated as an
important approach to improve the efficiency of graph traversal,
high-performance graph processing system could further bene-
fit from careful optimization of the underlying hardware archi-
tectures, as often times the performance bottleneck of existing
graph processing systems has shown to be bounded by the external
memory [5]. Several recent works propose that customizing the
hardware using FPGA can effectively alleviate the memory bottle-
neck [6, 10, 12, 26]. However, despite different system architectures,
most of these works [6, 10, 12] are based on one common scheme: By
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placing hot data, which is used for synchronization between parallel
kernels, on the on-chip block ram (BRAM) to alleviate the pressure
on accessing external DRAM, the efficiency of processing scale-free
graphs can be significantly improved. In addition to conventional
DRAM-based FPGA graph processing systems, Zhang et al [25]
propose to leverage the exceptional random access performance
of the emerging hybrid memory cube (HMC) to further improve
the external memory access. However, this body of research all
implements the conventional top-down graph traversal algorithm
and does not leverage the state-of-the-art direction optimization
techniques, resulting in limited performance gain.

In this work, we leverage the inherent graph property i.e. ver-
tex degree to co-optimize algorithm and hardware architecture to
achieve a workload-optimized graph processing system. We will
show that vertex degree contains rich information of graph topology
in scale-free graphs and thus provides another key dimension in
optimization space in both algorithm and hardware. To the best
of our knowledge, we are the first to leverage the degree informa-
tion to optimize graph traversal algorithm to reduce the redundant
graph computation and thus improve memory access. Our work
also differs from prior work on hardware customization, as we
not only implement the state-of-the-art hybrid graph traversal but
also optimize the system design by leveraging the essential graph
property.

Specifically, we made the following contributions.

e We performed a comprehensive study on the properties of
real-world scale-free graphs and found that the degree distri-
bution of the graph is highly non-uniform. This non-uniform
degree distribution forms the basis of the various optimiza-
tion techniques in this paper.

e Based on these insights from graph analysis, we developed
two algorithm optimization techniques: degree-aware adja-
cency list reordering and degree-aware vertex index sorting.
The former can reduce the number of redundant edge checks
in the bottom-up method, while the latter can create a strong
correlation between vertex index and data access frequency,
which can be effectively applied to guide the hardware de-
sign.

e We developed a new graph processing system to imple-
ment the optimized hybrid graph traversal algorithm on
an FPGA-HMC platform. By leveraging the strong correla-
tion between vertex index and data access frequency made
by degree-aware vertex index sorting, we further developed
two platform-dependent hardware optimization techniques,
namely degree-aware data placement and degree-aware adja-
cency list compression. These two techniques together sub-
stantially reduce the amount of access to external memory.

e We conducted extensive experiments on an FPGA-HMC plat-
form to verify the effectiveness of the proposed techniques.
To the best of our knowledge, our implementation achieves
the highest performance (45.8 billion traversed edges per
second) among existing FPGA-based graph processing sys-
tems.

The rest of the paper is organized as follows. In section 2, we
present the background of hybrid graph traversal algorithm and
the FPGA-based graph processing system. In section 3, we present
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the insights gained on analyzing the scale-free graphs followed
by two algorithm optimization techniques, namely degree-aware
adjacency list reordering and degree-aware vertex index sorting.
In section 5, we present the software/hardware implementations
including the key data structure, system architecture and two
platform-dependent hardware optimization techniques, namely
degree-aware data placement and degree-aware pointer compres-
sion. In section 6, we present the evaluation methodology and
experimental results. In section 7, we conclude the paper.

2 BACKGROUND

In this section, we will first introduce the state-of-the-art hybrid
graph traversal algorithm. Specifically, we will discuss the top-
down method, the bottom-up method and the inter-step direction
switching. Then, we will review existing work on the FPGA-based
graph traversal system.

2.1 Hybrid graph traversal

Graph traversal is one of the most important kernels of many graph
applications, and it is typically used to test the connectivity or to
find the single-source shortest paths. As shown in figure 1, graph
traversal starts from one source vertex, and the frontier expands
to the neighbors of the source vertices during each step. All of
the vertices at the same depth will be visited before visiting any
vertices at a greater depth. The major portion of the computation in
graph traversal is to find the unvisited neighbors of the frontier. The
process ends when all vertices are visited, and yields a spanning
tree, which contains all the connected source vertices. The number
of edges in the spanning tree indicates the theoretical minimum
number of edge check in a graph traversal. In the best case, if the
spanning tree is known, we can achieve this minimum number.
Here, we define the redundant edge check: the edge check which
does not add an edge to the final spanning tree.

The conventional top-down method (figure 1) starts from the
frontier, each vertex in the frontier checks all of its neighbors to see
if any of them are unvisited. Each unvisited neighbor is marked as
visited, added to the frontier of next step. The total number of edge
checks with the top-down method is equal to the number of edges
in the connected component containing the source vertex, as in
each step every edge in the frontier is checked. When the number
of edges to be checked from frontier is large, the top-down method
becomes inefficient, as it checks all the edge connect to the same
vertices from different vertices in the frontier, and only one check
will update the final spanning tree. As a result, it performs a large
number of redundant edge check.

To address this issue Beamer [3] proposes the bottom-up method
for implementing the graph traversal algorithm. In this method,
instead of iterating through the frontier, it iterate through the un-
visited vertices array. For each, we test to see if any of its neighbors
is in the frontier. When a neighbor is found in the frontier, bottom-
up method terminates the edge check earilier, mark the vertex as
visited and add it to the frontier of next step (figure 1(c)). Therefore,
the bottom-up method can reduce the number of redundant edge
check. This technique is advantageous when the frontier size is
large, and disadvantageous when the frontier is small.
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The top-down and bottom-up algorithms are complementary,
since the bottom-up method performs well, when the frontier size is
large, whereas the top-down method performs worse, and vice versa.
To determine the graph traversal direction, Beamer et al. further
introduce the Hybrid traversal algorithm. Figure 2 presents the flow
of hybrid graph traversal. The hybrid graph traversal always starts
from using fop-down method as the frontier size is 1. As in figure 2,
two thresholds( and f) are used to control the direction switching,
my, represents the unexplored edge count, my is the number of
edges to be checked from the frontier, and a determines when the
number of edges to be checked fro the frontier is large enough
to switch from top-down to bottom-up; n represents the number of
vertices in the graph and ny is the number of vertices in the frontier,
and f determines when the frontier is small enough to use top-down
method. Both of the two thresholds are heuristically determined.
In this paper, we will show that there is still substantial to further
improve the performance of hybrid graph traversal, and building
an efficient hybrid graph traversal system on FPGA-HMC system
will require a number of optimizations, including both platform-
independent and platform-dependent techniques.

2.2 FPGA-based Graph Processing framework

There are several existing works on implementing graph accelera-
tors using FPGAs. GRAPHGEN(18] proposed an FPGA-based graph
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processing system using a vertex-centric model. However, it stores
the whole graph in the on-board DDR DRAM, which severely limits
the performance due to the bandwidth bottleneck of the memory.
Also, the design does not provide any platform-aware software
and hardware optimizations for implementing BFS. TorusBFS [13]
proposed a 2-D message passing structure to reduce the latency
between parallel BFS kernels, but its performance is also limited by
the poor random access performance of DRAM and the available
on-chip resources. FPGP [6] employed an interval-shared structure
to maximize off-chip memory bandwidth and to exploit the paral-
lelism of graph processing fully. However, its performance is still
bounded by the capacity and bandwidth of FPGA’s on-chip memory.
ForeGraph([7] proposes to improve the scalability on multi-FPGA
architectures. [25] implements the push method of graph traver-
sal algorithms on an FPGA-HMC platform. All of these works are
proposing new algorithms, data structures and hardware architec-
tures to increase locality and utilization of memory bandwidth.
However, none of these framework attempt to reduce the num-
ber of computations (number of edge checks). To the best of our
knowledge, we are the first work to provide architectural support
on FPGA for the hybrid graph traversal to reduce the number of
computations.

3 ALGORITHM OPTIMIZATION

In this section, we will first present our observation on the non-
uniform degree distribution of scale-free graphs. Then, we will
propose two optimization techniques to reduce the redundancy in
hybrid graph traversal based on the degree information. In partic-
ular, we effectively leverage the degree information of scale-free
graphs to reduce the redundancy in the algorithm and provide
insights to its data access frequency.

3.1 Non-uniform degree distribution in
scale-free graphs

The performance of graph traversal is not only determined by the
algorithm, but also by the topology of the graphs. In this work, we
focus on the scale-free graph, which is one of the most important
categories of the large-scale graph. A few examples of scale-free
graphs include social networks, computer networks, financial net-
works, and protein-protein interaction networks. In a scale-free
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Table 1: Comparisons of the number of edge checks with different method using bottom-up method. We also list the number

of using top-down for reference

Step Top-down | Bottom-up(Random) | Bottom-up(Desc) | Bottom-up(Asec)
2 346918235(25%) 52677691(3.9%) 13455687(1%) | 91365756(6.79%)
3| 1727195615(195%) 10568751(1.19%) 8820854(1x) | 11065150(1.25%)
4 29557400(286x) 153245(1.48x) 103184(1x) 203844(1.97x)
5 82357(3.83x) 21467(1x) 21467(1x) 21467(1x)
Total | 2103753607 (92.3x) 63421157 (2.79x) 22701186(1x) | 102656217(4.52x)
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graph, most vertices have only a small number of neighbors, and can
reach others with a small number of hops. A scale-free graph typi-
cally has a degree distribution which follows a power-law, at least
asymptotically [1, 24]. To show such power-law distribution, we
plot the cumulative distribution of vertex degree of a Kronecker gen-
erated graph, which is a scale-free graph, as defined in GRAPH500
benchmark suite [16]. We can clearly see that 0.002% vertices with
the largest degree contribute more than 97 % of the total edge
connections.

Such a non-uniform degree distribution of scale-free graph is
the basis of our optimizations. The degree distribution provides
important information about the graph topology on which vertices
have more connection to others. The more connection a vertex has,
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it is more likely that its status will be checked during the graph
traversal. Moreover, it is trivial to obtain the degree information. For
that, we can subtract the two nearby elements of the vertex indices
list, which is the data structure to store the edge information and
will be shown in section 4. Leveraging the degree information, we
can reduce the redundant calculation, as well as the memory access.
In section 3.2, we show the degree-aware adjacency list reordering
technique, which can reduce redundant edge checks by terminating
the bottom-up edge checks at an earlier stage. In section 3.3, we
show the strong correlation between access frequency and degree
of vertices, which can be used to guide the data placement in the
hardware design (section 5).

3.2 Degree-aware adjacency list reordering

In this section, we propose to sort the adjacency list based on
the vertices degree in the bottom-up method to further reduce the
number of the redundant edge checks. As discussed in section 2.1,
the bottom-up method scans the neighbors of all unvisited vertices
and terminates earlier when one neighbor is found in the frontier.
The timing of the early termination, which indicates how many
edge checks it can save, is determined by the order of checking the
status of neighbors (order in the adjacency list). In the best case,
for all unvisited vertices scanned in the bottom-up method, the
first neighbor to check is in the frontier. In this case, there are no
redundant edge checks, as it checks only one edge and skips all the
others. However, it is non-trivial to obtain the optimal order for the
adjacency list. The reason is that we need to run the graph traversal
first to get the vertices in the frontier in each step. Moreover, the
optimal order may not be the same for different source vertices, as
the frontier in each step is different. Instead of finding the optimal
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order of the adjacency list , we propose a heuristic method, which
sorts the adjacency list of each vertex based on the degree.

In table 1, we compare the number of checked edges for each
step in both top-down and the bottom-up method using three differ-
ent orders: Descending order, Ascending order and Random
order. The table 1 shows that descending order can reduce the total
number of edge checks and saves the most edge checks in step 2,
which contributes most of edge checks. The reason is that veritices
with higher degree tend to be visited in the first step in the bottom-
up method. For example, as shown in figure 6, the average degree
of the frontier of the step 2 is substantially larger than other steps.
By sorting the adjacency list in the descending order, vertices in
the frontier of the step 2, which have larger degree, are checked
earlier than other vertices with lower degree. Though the number
of reduced edge checks by using the descending compared to the
random and the ascending order in other steps is not as large as
the step 2, the adjacency list sorting still can reduce a substantial
number of redundant edge checks, as the step 2 claims the most
vertices.

3.3 Sorting Vertex Indices by degree

The locality in the scale-free graphs is considered weak due to its
nature of sparsity and randomness[3]. In this section, we identify
the relationship between degree and access frequency, which can
be used to guide our hardware design.

More specifically, by sorting the vertex indices based on the
degree in the descending order. We assign lower indices to vertices
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with high-degree and vice versa. To check how the vertices sorting
affects the locality, we plot the relationship between vertex indices
and access frequency on the unsorted graph and sorted graph in
figure 3 (a) and (b) separately. We can see figure 3(b) shows the
correlation clearly. We further plot the correlation between vertex
degree and the access frequency in (figure 3 (c)). By sorting the
graph, it is possible to know the degree of vertices without counting
its neighbor. Moreover, we can find a strong correlation between
vertex degree (indices) and access frequency, which could be used to
guide the data placement. Such strong correlation is very useful to
us, as it connects a run-time determined statistic (access frequency)
to an off-line known property (degree distribution). Therefore, we
can predict the access frequency before running the program. We
can place data with different access frequency to different types
of memories to maximize the memory access efficiency. We will
discuss such software-hardware co-optimization in section 5.2 and
section 5.3.

4 SOFTWARE IMPLEMENTATION

3

[o]3]a]6]s]

Vertex Index List

Adjacency List |1]2]3]o]o]3]o]2]

Figure 7: Illustration of adjacency list

As discussed in section 2.1, the top-down method needs to scan
the frontier, read neighbor indices from the adjacency list ,and check
the status of vertices. The bottom-up method follows the opposite
order, which scans the status of vertices, reads the neighbor indices
from the adjacency list and checks the frontier.

We first show the data structure for the frontier and the status of
vertices. The key difference between scanning and checking is that
the scanning reads the whole data structure sequentially and the
checking reads the data structure randomly based on the indices
reads from the adjacency list. The checking is considered costly, as
random memory accesses have small granularities (sometimes 1
bit).

In this work, we use bitmaps, for bookkeeping both the fron-
tier and the status of vertices, as [25] has already shown that the
bitmap is a compact data structure for the frontier and can speed
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up the scanning. Figure5 (a) illustrates the idea of bitmap. Each bit
in the bitmap indicates whether the corresponding vertices is in
the frontier or has been already visited. Different from [25], which
only accelerates the scanning, this work also leverage the bitmap
to accelerate the checking for both the frontier and status of ver-
tices. Between these two types of bitmap check, the frontier bitmap
check is more critical to the performance. The reason is that the
hybrid algorithm tends to have more edges checked in the bottom-
up method compared to the top-down method, as listed in table 1.
Hence, we choose to reduce the cost of the frontier bitmap reading
in the bottom-up step by leveraging the correlation between vertex
degree and access frequency (section 2.3). We will provide more
details in section 5.2.

The other data structure used in the hybrid graph traversal is
the adjacency list (figure 7), which stores all the edge information.
Reading the adjacency list is also costly, as it has a large size and
can only be stored off-chip. The reason is that each element in the
adjacency list is an vertex index, as shown in figure5, and typically
has 32 bits or 64 bits. In the hybrid graph traversal, both the top-
down and bottom-up method needs to read each element of the
adjacency list only once. Therefore, it is impossible to reuse the
data to reduce the external memory traffic. Instead, we try to reduce
the size of each element. In section 5.3, we present our technique
of compressing the the vertex indices.

5 HARDWARE IMPLEMENTATION

In this section, we will first introduce the implementation of the
hybrid graph traversal on the FPGA-HMC platform. Then, we will
provide two degree-aware optimization techniques: degree-aware
data placement and degree-aware pointer compression to further
accelerate the graph traversal based on the degree information.

5.1 Hybrid graph traversal algorithm on
FPGA-HMC platform

In this subsection, we will present details of our architecture for the
optimized hybrid graph traversal. We show the architectural dia-
gram of the proposed implementation of the hybrid graph traversal
in figure 11. In contrast to the system architecture described in [25],
which implements only top-down graph method, we add/modify
several hardware components to adapt to the hybrid graph tra-
versal algorithm. Particularly, we add a new pipeline to support
the bottom-up method, as well as statistic counters and direction
switching logic to support the optimized direction switching. To
accelerate the scanning of vertex status bitmap in the bottom-up
method, we adopt the two-level bitmap design to reduce the traffic
to the external memory. Moreover, we introduce a new organiza—
tion of the frontier bitmap, as the bottom-up method have massive
random access to the frontier bitmap. Finally, we modify the top-
down pipeline to adopt all the architectural changes above. The only
component, which is from [25] is the interface design for reordering
HMC requests. The details of each design component are described
below:

e Pipeline for bottom-up method: We design a new pipeline
for the bottom-up method, as it has a different data flow com-
pared to the top-down method. As shown in figure 9(b), it first
scans the vertices bitmap to find all the unvisited vertices.
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Then it reads the adjacency list from HMC to get the indices
of neighbors to check. Finally, it checks all its neighbors
to see if any of them is in the frontier. If so, the bottom-up
pipeline marked the vertices as visited,and add it to the fron-
tier of next step. As the bottom-up method only allows the
child to update the visited flag by itself, the visited bitmap
update doesn’t need to be atomic.

Statistic counters: We implement three counters to col-
lect the statistics needed to support the direction switch-
ing: number of edges to check from the frontier(my), the
size of the frontier(ns) and the unexplored number of edges
(my,). These three statistics are calculated sequentially af-
ter each step in the CPU implementation[3] and the GPU
implementation[22]. By taking advantage of the flexibility of
FPGA, we implement three counters, which run in parallel to
other components. These counters are updated when vertices
are added to the frontier of next step. Therefore, we do not
need an extra scan of the frontier after each step, which can
take up to 20% of the total runtime in CPU implementation[2].
More specifically, the my and ny are calculated by accumu-
lating the degrees and the number of vertices when a vertex
is added to the frontier of next step. The (m,,) is calculated
by subtracting the sum of degrees of all visited vertices from
the total number of edges.

Direction decision logic: We implement a direction de-
cision logic to support the optimized direction-switching.
The direction decision logic compares the three statistics we
collected from the last layer with the heuristic thresholds to
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determine whether top-down or bottom-up method should be
invoked. We set these two thresholds to ¢ = 15 and § = 20,
as in [3].

Bitmap of the status of vertices: We use a two-level bitmap
to store the unvisited vertices array instead of a single-level
off-chip flag array (stores the parent of each vertices), as
in Zhang et al [25]. As shown in Table 1, the number of
unvisited vertices is relatively small, which makes the un-
visited list very sparse. For every step using the bottom-up
method, we need to scan the whole vertices status array to
find all unvisited vertices. The sparsity of unvisited vertices
leads a considerable amount of unnecessary external mem-
ory accesses. As discussed in Zhang et al [25], a two-level
bitmap can accelerate the scanning of the frontier bitmap,
which is also sparse in some steps. In this work, we adapt the
two-level bitmap in [25] to the vertices status array. More
particularly, as shown in figure 5 (b), the on-chip bitmap is
initialized to all 0’s at the beginning of the first bottom-up
step. we first scan the on-chip bitmap to find the non-zero
bits, which indicates there is at least 1 unvisited vertex in
the corresponding vertices group. If the bottom-up method
marks all of the vertices in this group visited, we set the
on-chip bitmap to 1. During the top-down method, we do not
check or update the on-chip bitmap. Checking whether all
vertices in one group are visited in the top-down method has
extra costs, as scanning the off-chip vertices status bitmap is
not an essential step of top-down method. The vertices status
bitmap is also used in the top-down method while checking
whether a neighbor of the vertex in the frontier is visited or
not.
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o Frontier bitmap: In this work, we introduce a new hetero-
geneous bitmap organization, which can adapt to the access
pattern of bottom-up method. Compared to the top-down
method, which only needs to scan the frontier sequentially
to find all the vertices to be checked, the bottom-up method
access the frontier in a random parallel manner, as several
unvisited vertices could have the same parent. As the two-
level bitmap can only improve the efficiency of sequential
bitmap scan during the top-down method, which only con-
tributes a small portion of the total runtime, we choose to
optimize the memory access in the bottom-up method. We
use a heterogeneous bitmap to store the frontier, which can
provide different random access performance. In the next
subsection, we will further discuss the data-placement pol-
icy based on the relationship between degree and access
frequency (section 3.3).

o Top-down pipeline: We also modify the top-down pipeline,
as the memory organization of both visited veritices bitmap
and the frontier bitmap has changed. Particularly, we first
scan the heterogeneous bitmap to find the vertices that need
to be checked. Then, we read the adjacency list from external
memory and check whether neighbors are visited by reading
the off-chip vertices status array. The unvisited vertices are
marked through atomic updates to both the on-chip and
HMC vertices status bitmaps as shown in figure 9a.
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5.2 Degree-aware data placement

As discussed in section 4.1, the most performance critical operation
is reading the frontier bitmap in the bottom-up method. In this sec-
tion, we will show how to leverage the strong relationship between
degree and access frequency (section 3.3) to guide the design of the
frontier bitmap.

To take advantage of the correlation between vertex degree
and access frequency, we introduce three types of bitmap to store
the status of the vertices: register file, BRAMs and external HMC.
The register file is bit addressable and is used to store the vertices
with the highest degree. In our implementation, the size of the
bitmap register is 4096 bits and has 64 read ports to support multiple
simultaneous reads in one cycle. The second type of bitmap storage
is stored in the on-chip BRAM, which stores the sorted vertices
with indices from 2049 to 65536. From figure 3, we can see that the
first 256 (0.002%) vertices contribute more than 97% of the edge
checks in the rgg_s24_e16 graph. The rest of the visited vertices
bitmap, which mainly consists of the vertices whose degrees are
smaller than 4 (in the rmat graph dataset), can be stored off-chip.

FRiegister File HMCHMC

=E
==

256 bits addressable
32-way parallel access

1 bit addressable
Full parallel access

32 bits addressable
1024-way parallel access

Flattened frontier buffer

Figure 10: Flattened frontier buffer

5.3 Degree-aware adjacency list compression

To further leverage from non-uniform degree distribution, we pro-
pose to apply the coding technique to compress the adjacency list
and reduce the runtime of neighbor accesses. The adjacency list
stores the edge information on the external HMC, and will be ac-
cessed in both top-down and bottom-up method. Each element in
the adjacency list is the index of a neighbor vertices. Vertices with
higher degree will occurs more frequently in the adjacency list, and
vice versa. For example , as shown in figure 7, vertex 0 occurs three
time, and vertex 1 only occurs one time. However, prior works treat
these vertices equally and use the same data format (e.g. uint32
or uint64), which is a waste of the storage and external memory
bandwidth.

In this works, we apply a coding scheme to compress the adja-
cency list. By sorting vertices based on the degree in the descending
order, as discussed in section 3.3, the vertices with lower indices
have higher access frequency. In this case, Exp-Golomb coding [9],
which is widely used in video compression [17] , can effectively
compress the adjacency list to reduce the data access to the external
memory. More specifically, It has been shown that Exp-Golomb cod-
ing has compression efficiency close to the more complex arithmetic
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coding, and comparable to Huffman coding, if the input integer
follows the assumption below: the larger the integer, the lower
its probability of occurrence[9], which is exactly the the vertices
list after sorting. Also, we choose the Exp-Golomb coding as its
complexity is much lower than Huffman coding as it does not need
to construct and store the Huffman tree.

In our design, we enable Exp-Golomb for a scale-free graph, such
as indochina and rmat. As a uniformly generated graph, such as rgg,
does not have enough variation of access frequency, the coding will
essentially increase the length of the adjacency list. Our hardware
implementation follows the parallel GR decoder design in [15].

6 PERFORMANCE EVALUATION

In this section, we will first present our evaluation methodology,
which includes the experimental platform setup and the choice
of dataset. Then, we will present the experimental results of the
proposed design and compare it with the baseline design. Finally,
we will project the performance with full HMC bandwidth and
compare with the latest GPU implementation.

6.1 Hardware Platform

User | User | User | User | User
AGE Logic | Logic | Logic | Logic | Logic
HMC
= 5 HMC user ports|
e B
12c I
Implermented
HMC Controller mplermenk
Xilin
KCUDBD HMC 1.1
FPGA .
- compliant
interface:
ra) I (b) HMC
Host

Figure 11: Diagram of experimental platform

We implement the proposed graph processor on an AC-510[20]
and AC-520 FPGA-HMC platform from Micron. As shown in fig-
ure 11, the AC-510 platform has a Xilinx KCU060 FPGA and an
8GB HMC module. The HMC uses two half-width (8 lanes) 15G
high-speed serial links, which provide a two-way bandwidth of
30GB/s, to communicate with the FPGA. The AC-520 platform has
an Intel Arria 10 GX 1150 FPGA and a 4GB HMC module. The
HMC interfaces with FPGA with four half-width links, which pro-
vide a two-way bandwidth of 60GB/s. The AC-520 also exposes the
interface for power consumption measurement.

We implement our graph processing architecture using the Pi-
coFramework, which provides an abstraction layer of the low level
data transfer protocol. The kernel logic is driven by a 125 MHz
clock, and on-chip memories are working at 250MHz in double-
pump mode. The host machine is equipped with an Intel Xeon
E5-1630V3 CPU and one DDR4 memory channel with a 16GB ca-
pacity. We use Ubuntu 14.04 as the host operating system and
compile our CPU implementation using gcc with flags "-Ofast" and
"-march=native" The GPU benchmark is running with a GTX Titan
X graphics card with 12GB of GDDR5X VRAM. We summarize the
resource utilization statistics in table 2. The high BRAM usage is
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Table 2: FPGA resource utilization

Hybrid-CPU 7 Hybrid-FPGA
Available Proposed Percentage £ Eg
Resources © Z
- ] 40 %
Logic 1506k 437k 64 g 39 Z 7
BRAM 2713 2062 76 £ 50 : % Z %
5 % 4 4 G 7
DSP 1518 64 4 S 10 Z 7 Z Z 7
20 . % N XY N sen
because we hope to absorb as much off-chip memory access as
. . . . S Ny g e A N > &
possible by using a larger hierarchical frontier bitmap. & & 2 ¢ e o/ N
& & P P P e &
6.1.1 Datasets. We summarize the datasets used in our evalua- \bO é\,bv é@“’ {{(5‘/ &
tions in table 3. Soc-orkut is a social graph; indochina-04 is a crawled ¢ ¢ ¢
hyperlink graph from indochina web domains; rmat_s22_e64, rmat_s23_e32,
and rmat_s24_e16 are three generated R-MAT graphs with similar Figure 12: Performance gain comparison of CPU+DRAM
vertex counts. All five datasets are scale-free graphs with diameters and proposed FPGA+HMC implementation of hybrid graph
less than 30 and unevenly distributed node degrees (80 traversal system
Both rgg_n_24 and roadnet_usa datasets have large diameters
with small and evenly distributed node degrees (most nodes have de-
7 Degree-aware Adj. List Reorder Degree aware data placement

gree less than 12). soc-ork is from the Stanford Network Repository;
Indochina-04 and roadnet are from the UF Sparse Matrix Collec-
tion; rmat_s22_e64 rmat_s23_e32, rmat_s24_el6, and rgg_n_24 are

B Pointer compression

8
R-MAT and random geometric graphs we generated. For R-MAT, 6
we use 16 as the edge factor, and the initiator parameters for the ‘2‘ 7
Kronecker graph generator are: a = 0.57, b = 0.19, ¢ = 0.19, d = 0.05, o ZNm ZNE o/NH 7NE ZNE 0m  zom
which follows the Graph 500 Benchmark. For random geometric & & m%@“ N & Wy %2 s
graphs, we set the threshold parameter to 0.000548. s A G S &
& & & & €
Table 3: Test dataset (all directed graphs have been converted
to un-directed graphs) Figure 13: 8 Performance gain for degree-aware adjacency
list reordering, degree-aware index sorting and degree-
Dataset Vertices Edges Max Diame- pointer compression
Degree ter
soc-orkut 3M 212.7M 27,466 9
indochina-04 7.4M 302M | 256425 26 1000 N Baseline 7 Hybrid _# Overall
rmat_s22_e64 4.2M 483M 451607 5 &
rmat_s23_e32 8.4M 505.6M | 440396 6 & 00
rmat_s24_el6 16.8M 519.7M 432152 6 %
rgg_n_24 168M | 265.1M 40 2622 £ L
roadnet_USA 23.9M 577.1M 9 6809 g
6.2 Experimental Results 3,
We first compare the performance gain of the CPU-DRAM hybrid 2

graph traversal algorithm and the FPGA+HMC based implemen- 01
tation in figure 12. The throughput gain of the proposed FPGA-
HMC system is higher than the CPU-DRAM system[3] on the five
scale-free graph datasets since the proposed FPGA-HMC system is
optimized for the multiple random accesses of the frontier bitmap
in the bottom-up graph traversal. Also, the five scale-free graphs
with lower diameter have a large frontier size, which leads to more

Figure 14: Graph traversal performance comparison

bottom-up method than top-down during the graph traversal and index sorting, and degree-aware pointer compression. We find that
can benefit more from our optimization to the bottom-up method. the degree-aware data-placement contributes to the major portion

On the contrary, the performance gain difference on the scaled of the performance gain since the random access to the frontier
graph is relatively low, since nearly all steps use top-down method, bitmap is the most costly memory access in the bottom-up operation.
which is hard for parallelization. We should note that most of the Similar to the result in figure 10, the degree-aware data-placement
emerging graph analytics workloads, such as social networks, web, also has fewer benefits in the rgg and roadnet graph due to its
and communication networks are scale-free graphs([4]. degree distribution being nearly uniform.

In figure 13, we compare the performance gains of the three op- We summarize the overall graph traversal performance of the
timizations: degree-aware adjacency list reordering , degree aware proposed system in figure 14 and compare it with the hybrid-only
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Figure 15: BFS performance projection and comparison with

fr;l%?ementation and the baseline [3], which is the fastest existing
FPGA-based graph traversal system. The geometric mean over the
seven datasets is 45.8 GTEPS, which is significantly faster than the
baseline design and the native implementation of hybrid graph
traversal on an FPGA.

We further measure the graph traversal performance with 120GB/s
HMC bandwidth on AC-520 system. We can achieve 79.8 GTEPS,
which nearly doubles the performance compared to AC-510 plat-
form. The power consumption of AC-520 board is 43.6 watts, which
gives a power efficiency of 1.85 GTEPS per watt.

We further projects the performance on the system with the
largest FPGA devices, XCKU115[23] and the HMC module, which
can achieve the full two-way bandwidth of 240GB/s[19], and com-
pare it with best single-GPU graph traversal performance[22]. As
shown in figure 15, the proposed system achieves better perfor-
mance than GPU for scale-free performance. By using the larger
device with full HMC bandwidth, the proposed system can also
outperform GPU on scaled graphs.

7 CONCLUSION

In this work, we present a high-performance graph traversal frame-
work, which implements and optimizes the hybrid graph traversal
on an FPGA-HMC platform. In particular, we first identify the im-
provement space of state-of-the-art hybrid graph traversal and
provide two techniques to optimize the algorithm: degree-aware
adjacency list reordering and degree-aware vertices sorting. Then,
we introduce the implementation of the optimized hybrid traversal
algorithm on an FPGA-HMC platform and provides two hardware
optimization. Finally, we conduct experiments on eight different
datasets to verify the effectiveness of the proposed techniques and
provide a performance projection with higher HMC bandwidth. Our
implementation on the AC-510 development board from Micron
achieves 45 GTEPS, outperforming CPU and other FPGA-based
large-scale graph processors, and can be compared with the latest
GPU graph processing library.
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