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Abstract
Large graph processing has gained great attention in recent years
due to its broad applicability from machine learning to social sci-
ence. Large real-world graphs, however, are inherently difficult to
process efficiently, not only due to their large memory footprint,
but also that most graph algorithms entail memory access patterns
with poor locality and a low compute-to-memory access ratio. In
this work, we leverage the exceptional random access performance
of emerging Hybrid Memory Cube (HMC) technology that stacks
multiple DRAM dies on top of a logic layer, combined with the
flexibility and efficiency of FPGA to address these challenges.

To our best knowledge, this is the first work that implements
a graph processing system on a FPGA-HMC platform based on
software/hardware co-design and co-optimization. We first present
the modifications of algorithm and a platform-aware graph process-
ing architecture to perform level-synchronized breadth first search
(BFS) on FPGA-HMC platform. To gain better insights into the
potential bottlenecks of proposed implementation, we develop an
analytical performance model to quantitatively evaluate the HMC
access latency and corresponding BFS performance. Based on the
analysis, we propose a two-level bitmap scheme to further reduce
memory access and perform optimization on key design parameters
(e.g. memory access granularity). Finally, we evaluate the perfor-
mance of our BFS implementation using the AC-510 development
kit from Micron. We achieved 166 million edges traversed per sec-
ond (MTEPS) using GRAPH500 benchmark on a random graph
with a scale of 25 and an edge factor of 16, which significantly
outperforms CPU and other FPGA-based large graph processors.

1. INTRODUCTION
The explosion of data poses new challenges to emerging data-

intensive workloads ranging from social network analysis to bioin-
formatics and neural networks. Large sparse graph, which usually 
contains millions of vertices and billions of edges, is one common 
data representation in these applications. Among all graph algo-
rithms, breadth first search (BFS) is the most widely used one that 
serves as a basis of many other more complex algorithms. For in-
stance, BFS is a key kernel in GRAPH500 [1], which is a widely 
used benchmark suite to measure the performance of super 
computers for data-intensive applications.
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In traditional CPU-DRAM systems, efficient parallel large graph
processing is challenging. Due to the random and data-dependent
memory access pattern requirement of large graph workloads, it
is difficult to exploit spatial or temporal locality in on-chip cache.
As a result, the system performance is typically bounded by the
throughput of external DRAM. However, traditional DDR DRAM
suffers from poor random access performance due to the lack of
memory level parallelism [2]. To make the situation worse, the
high data transfer cost between DRAM and CPU makes it more
challenging to parallelize large graph workloads efficiently on such
systems, as the synchronization and locking between parallel ker-
nels have become key performance bottlenecks [3].

To address the issues in traditional systems, in recent years, FPGA
has been increasingly popular in accelerating graph workloads due
to its flexibility, high performance and energy efficiency. Many
existing works [4–6] have proposed different architectures to im-
plement BFS on FPGA but are all based on one common scheme.
By placing some key data – those used for synchronization between
parallel kernels – on the on-chip block ram (BRAM) to alleviate the
pressure on accessing external DRAM, the efficiency of processing
sparse graph can be significantly improved. However, this scheme
does not scale well with large graphs, as the on-chip storage capac-
ity of FPGA is still very limited. As a consequence, these solutions
unavoidably suffer from the DRAM bottleneck once the key data
of a graph is too large to be fit in the FPGA’s on-chip storage.

In this work, we propose a new scheme based on software/hard-
ware co-design and co-optimization, to address the inefficiency of
current BFS implementation on FPGA. It effectively combines the
emerging hybrid memory cube (HMC) technology, which stacks
multiple DRAM dies on top of a base logic layer, with FPGA to
effectively accelerate large scale parallel graph workloads. HMC
has much better random access performance than traditional DDR
DRAM, due to its higher memory-level parallelism [2]. The par-
allelism mainly comes from two-folds: 1) bank level parallelism:
It has a much smaller bank size compared to traditional DRAM,
and therefore can fit more banks in a single chip. 2) vault level
parallelism: The 3D stacking structure provides additional coarser-
grained parallelism at the vault level, as will be explained in section
2.1. Furthermore, HMC supports near-memory operations, such as
read-modify-write, locking, etc., on the base logic layer. With all
these properties, HMC provides a great opportunity for improving
the efficiency of parallel BFS implementation despite of the limita-
tion of FPGA’s on-chip BRAM capacity. To leverage HMC’s high
memory level parallelism and near-memory operation, we propose
an improved BFS implementation by taking full advantage of the
HMC-FPGA platform, which includes modifications to the BFS
algorithm and development of a platform-aware graph processing
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architecture. More specifically, we need to change the original BFS
execution flow and the data structure to enable the use of near mem-
ory operation, as will be explained in section 3.1. Also, by lever-
aging the parallel processing capability of FPGA-HMC platform,
we introduce a Map-Reduce-like framework and present its FPGA
implementation in section 3.2.

To achieve an optimal design, we further explore the design space
of the FPGA-HMC based graph processing system through theoret-
ical analysis and real hardware experiments. We use GRAPH500
[1] (i.e. BFS algorithm) as the benchmark to evaluate the perfor-
mance and develop an analytical model to help us identify the po-
tential performance bottlenecks as well as choosing the optimal de-
sign parameters. Based on the analysis results, we further propose
to use a two-level bitmap to reduce the unnecessary HMC access.
Finally, we perform both simulation and practical hardware imple-
mentation to validate our design choices.

The key contributions are summarized as follows:

• We develop a graph processing system based on software/hard-
ware co-design and co-optimization, which comprises soft-
ware modifications of level-synchronized BFS and a platform-
aware graph processing architecture, to fully exploit the po-
tential of FPGA and HMC.

• We propose an analytical performance model for our FPGA-
HMC based BFS implementation. We then apply the model
to perform an in-depth analysis on performance bottlenecks
of the design.

• To address the bottlenecks, we propose a two-level bitmap
scheme that effectively reduces the unnecessary HMC access
to achieve high performance. We further apply our analytical
model to perform efficient design space exploration for key
design parameter optimization.

• We conduct experiments to verify the effectiveness of pro-
posed techniques. Our implementation achieves 3× perfor-
mance improvement compared to CPU and outperforms other
FPGA based graph processing system.

The rest of the paper is organized as follows. Section 2 presents
the background of Hybrid Memory Cube (HMC) and Breadth First
Search (BFS). In Section 3, we present the software design and
the system architecture of our FPGA-HMC based graph processing
system. In Section 4, we present an analytical performance model
and apply it to analyze the performance bottlenecks. In Section 5,
we present the design, performance analysis and the implementa-
tion of proposed two-level bitmap. Section 6 presents the exper-
imental results and validates the proposed techniques. Section 6
concludes the paper.

2. BACKGROUND
In this section, we first provide an overview of the emerging Hy-

brid Memory Cube (HMC) technology. We analyze its structure
and unique properties compared with the traditional DRAM. Then
we present the background of breadth first search (BFS) and its
parallel implementation.

2.1 Hybrid Memory Cube
HMC is an emerging memory module that stacks multiple DRAM

dies on top of a CMOS layer to form a cube using through-silicon-
via (TSV) technology. The word "hybrid" describes the fact that
HMC combines both memory and logic dies into a single stack.

The architecture of HMC is optimized for parallel memory ac-
cess. Each DRAM layer is divided into multiple partitions, and
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Figure 1: Architecture of Hybrid Memory Cube (HMC) [7]

Figure 2: Example of FLIT with 32 Bytes payload
each partition comprises several memory banks. As shown in Fig-
ure 1, a vertically connected stack containing multiple partitions
from different DRAM layers is called a vault. Moreover, each
vault also contains a corresponding partition in the logic base layer,
which serves as a vault controller. The vault controller manages
the DRAM banks within the vault, and thus eliminates the need of
off-chip memory controller in traditional DRAM module. There-
fore, a HMC vault is analogous to the notion of a channel in tradi-
tional DRAM-based memory system, as it contains all components
of a DRAM channel: a memory controller, several memory ranks
(partition), and a bi-directional bus. We can therefore view HMC
as a device that integrates the traditional multi-channel DRAMs
into a single chip. In Table 1, we compare a 4 channel 8GB DDR
DRAM memory system with a 8GB HMC. From the comparison,
we show that HMC has highly fine-grained bank partitions which
can be used to serve a large number of concurrent memory requests.
Therefore, it offers much higher memory-level parallelism than tra-
ditional DRAM. More importantly, the page size of the HMC is
only 16B, making it very suitable for random access and alleviates
the over-fetch problem in traditional DRAM caused by large page
size (several KB) [2]. Moreover, HMC provides an out-of-order
memory access to fully exploit internal bank level and vault level
parallelism. In general, HMC is expected to provide higher perfor-
mance compared to traditional DRAM, especially for workloads
with a large number of random accesses.

Table 1: Comparison of 8GB DDR4-2133 memory and HMC
DDR4-2133 HMC

Total Capacity 8GB 8GB
No. of Vault (Rank) 2 32

No. Bank 256,128,64 512
Bank Capacity 32,64,128 MB 16 MB

Page size 1, 2 kB 16 B
Link Speed 19.2GB/s up to 240GB/s

As shown in Figure 1, vault memory controllers are connected
to a high-speed interface communicating with other HMCs or host
devices (e.g. CPU, GPU, FPGA) via a crossbar switch. The high-
speed interface consists of a serialized physical layer and a packe-
tized transaction layer. The physical layer has several links, which
can be used to connect to the different hosts. Each link consists of
several lanes with a data rate typically higher than 10Gbps per lane.
Different from the bi-directional bus of traditional DDR memory
interface, the high-speed serial lane transmits data in both direc-
tions, which makes the HMC links full-duplex. HMC also incor-
porates a packetized transaction layer that differs from traditional
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DDR interface but is similar to PCIe interface. Since the serial in-
terface does not separate data bus from address bus, HMC includes
the memory command, address and other information (e.g. tag) in
the packet header, called "FLIT" (FLow unIT). As shown in Figure
2, FLIT is the smallest unit of data transmission on the high-speed
interface. Each transaction may consist of several FLITs depend-
ing on the link granularity (ranging from 16 bytes to 128 bytes).
Choosing the size of data payload has significant impact on the
performance of HMC. In Section 4 , we will present the methodol-
ogy for choosing an optimal data payload size.

Ignored

33 32
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13

Bank[2:0] Vault[4:0] DRAM[0]=Byte[4] Byte[3:0]

31 12 10 9 5 4 43 0
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Figure 3: HMC address mapping scheme of 32B, 64B, 128B
memory address granularity

Besides link granularity, HMC also has a configurable memory
address granularity. As shown in Figure 3, the HMC uses an ad-
dress field of 34 bits for internal memory addressing, which con-
tains vault address, bank address, DRAM row and column address
(within a bank) and byte address. For different memory access pat-
terns, HMC provides four memory address modes with different
granularities (16 bytes, 32 bytes, 64 bytes, 128 bytes). We can ob-
tain different address mapping scheme by changing the size of byte
address, which is the maximum payload size for a link packet, as
each link packet can only access one vault. With the configurable
memory address granularity, we can achieve different trade-offs be-
tween latency and throughput by distributing the memory access to
different vaults or coalescing the memory access to one vault. In
section 4, we will show how to obtain the optimal memory address
granularity.

The base logic layer of HMC opens up opportunities for near-
data computing. The HMC standard defines several locking and
read-modify-write commands which are preferred to be executed
by logic units near memory instead of host CPU. Although the idea
of near data computing is not new, HMC is the first commercial
device to practically implement the concept. In section 3, we will
present software modifications to exploit near data operations to
improve performance.

2.2 Breadth First Search
Breadth First Search (BFS) is a widely used graph traversal al-

gorithm in broad applications ranging from data analysis in social
networks [8] to routing optimization in Electronic Design Automa-
tion [9]. In this section, we formally define the BFS problem and
its objective. These definitions will be referred to in later sections
to analyze and optimize its implementation.

Assuming an unweighted graph G with vertex set V and edge set
E, BFS finds a path from a source vertex vs ∈ V to all the other
vertices in the graph G. In the output, for each vertex v ∈ V , BFS
will produce a level value l, indicating its distance from vs (v can
be accessed from vs by traveling through l−1 edges), and its father
vertex id f ∈ V , indicating the vertex on the path to v which is the
direct ancestor of v (naturally (f, v) ∈ E).

BFS traverses a graph by processing all vertices with the same
distance from the source vertex iteratively. We define a frontier as
the set of vertices which have the same distance from the source.
We denote the latest known frontier as current frontier, and un-
known frontier that will be generated based on current frontier as

A detailed description of level-synchronized BFS has been de-
picted in Algorithm 1. The level and parent are arrays that store
the level and father information for all traversed vertices. Initially,
all values in level and father arrays are set to 0 and −1 respec-
tively. At the beginning of the algorithm (line 2-3), level[vs] and
father[vs] are set to 1 and NULL because vs is added to the cur-
rent frontier (line 4). Then, current_level, which holds the level
number currently being processed, is set to 1 (line 5). During the
iterative process (i.e. the while loop), at each level, for every vertex
v in the current frontier, all unvisited neighbors of v (n) are added
to next frontier (next frontier ← n). Whether a neighbor has been
visited or not is determined by checking if its level is non-zero (line
11). The level and father for these neighbor vertices are set to re-
sults calculated from current_level and the corresponding vertex
in current frontier, v (line 12, 13). At the end of the iteration, the
value of current_level is incremented, and current frontier and
next frontier are swapped. The algorithm will not be terminated if
the current frontier is not empty, which means there are still unvis-
ited vertices in the graph. In a multi-thread context, threads that fin-
ish the traversal of their portions of the current frontier first should
not further proceed until all threads finish the processing of the cur-
rent frontier for synchronization purpose. Therefore, this algorithm
is also called level-synchronized BFS.

Algorithm 1 Level-synchronized BFS
1: procedure BFS
2: level[vs] = 1
3: parent[vs] = NULL
4: current frontier← vs
5: current_level = 1
6: while current frontier not empty do
7: for v ∈ current frontier do
8: current frontier = current frontier− v
9: Ev = {n ∈ V |(v, n) ∈ E}

10: for n ∈ Ev do
11: if level[n] is 0 then
12: level[n] = current_level + 1
13: parent[n] = v
14: next frontier← n
15: current_level = current_level + 1
16: Swap currentfrontier with nextfrontier

3. BFS IMPLEMENTATION ON
HMC-FPGA PLATFORM

In this section, we present our BFS implementation tailored to
a system consisting of a FPGA and a HMC. We first describe the
software design of the level-synchronized BFS that leverages the
advantages of HMC. Then, we present the design details of our
FPGA implementation using a Map-Reduce-like framework. Note
that as there is no prior effort to implement BFS on FPGA-HMC
platform, we will use this implementation as a baseline and com-
pare it with an optimized design in Section 5.

3.1 Software Implementation
To best implement BFS on FPGA-HMC platform, it is impor-

tant to carefully choose a design that best matches algorithmic be-
haviors with the available hardware resources to maximize perfor-
mance and energy efficiency. Furthermore, the design needs to
be scalable to accommodate real-world graphs at extremely large
scales. Considering all these factors, we implement the following
data structures and software execution flow, based on the unique
characteristics of the BFS algorithm and hardware resources pro-
vided by our FPGA-HMC platform.

the next frontier in this iterative process.
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3.1.1 Data Structures
BFS requires different data structures for representing the graph,

maintaining the intermediate meta data for frontiers, and storing the
final results. Here, we describe these data structures, the reasons for
choosing them, and how our BFS implementation uses them.

There are generally three types of data structures that are re-
quired for BFS algorithm: 1) an adjacency list, which is used to
store the graph structure 2) two bitmaps that are used for book-
keeping the information of the current and the next frontiers 3) two
arrays, which are required to store the level and parent information
for all vertices. The adjacency list representation of a small graph
has been depicted in Figure 4. In this data structure, a large ad-
jacency array is allocated to store indices of neighboring vertices
for each vertex in the graph back to back. In the vertex array, each
slot stands for a vertex in the graph, and stores a pointer to the be-
ginning of its neighbors in the adjacency array. Through this data
structure, all neighbors of any random vertex can be easily accessed
with one level of indirection. Overall, in case of a directed (or an
undirected) graph with |V | vertices and |E|edges, adjacency list re-
quires storage of |V |+1 values in the pointers array and |E| (2|E|
in case of an undirected graph) values in the adjacency array. This
data structure provides a good balance between data compactness
and random access speed.

Figure 4: Adjacency list representation of a graph
Bitmaps are used to bookkeep the information for frontiers. A

bitmap is an array containing |V | bits, each of which indicates
whether the corresponding vertex has been visited or not. To add
a vertex to the frontier, we simply set its corresponding bit in the
bitmap to 1. As shown in Algorithm 1, we only allocate two ar-
rays to store the current frontier and the next frontier, respectively.
At the end of each BFS iteration, we clear all bits in the bitmap of
current frontier, and then use the bitmap of the next frontier as the
new current frontier to start a new iteration (i.e. the role of the two
bitmaps are swapped every time at the end of the iteration). We will
theoretically analyze the performance of this process in Section 4.

3.1.2 BFS Execution Flow
The adjacency list, bitmaps, and two result arrays are all stored in

the storage unit and are loaded into the processing unit for compu-
tation when needed. Based on the data structures defined, the data
flow of Algorithm 1 can be implemented in hardware, as depicted
in Figure 5. Within each iteration of the BFS algorithm (processing
of one frontier), part of the bitmap for current frontier is loaded into
the processing unit. For each marked vertex in the current frontier,
its corresponding neighbors are marked in the bitmap for the next
frontier.

Figure 5: Flow of one iteration (level) of BFS

During the execution, BFS frequently accesses scattered loca-
tions in compact arrays stored in the HMC. This is an ideal case for
us to fully exploit HMC’s low random access latency and high par-
allelism. In addition to the significantly improved random access
latency, HMC also provides native bit-level atomic updates, which
is especially useful when updating the bitmap for the next frontier.
Normally, updating the bitmap requires a reading of several bytes
from main memory, an operation of bit updates in the processing
element (set few bits to 1), and a writing back operation. Frequent
bitmap modifications not only induce more traffic on the memory
bus, but also are likely to result in frequent stalls when other pro-
cessing elements are accessing the same address. With HMC, these
unnecessary round-trip traffics can simply be avoided to save the
memory bandwidth. Furthermore, by offloading the atomic opera-
tion to the HMC, the chance of stalls are considerably reduced.

3.2 FPGA-HMC based Graph Processor
In this subsection, we first introduce a Map-Reduce-like Frame-

work to leverage the advantage of FPGA-HMC platform. Then, we
present the implementation detail of proposed FPGA-HMC graph
processor.

3.2.1 Map-Reduce-like Framework
Selecting a suitable execution framework is of great importance

for an efficient hardware implementation. For BFS, this execution
framework should be able to effectively manage irregular memory
access patterns without much penalty. Additionally, as each part
of the bitmap (frontier) can be processed independently in the level
synchronized BFS, the framework should also be efficient in han-
dling parallel tasks.

Based on the needs stated above, the Map-Reduce execution
model is one ideal choice that well fits these descriptions. In this
model, a task is divided into two phases – Mapping and Reduction.
Mappers process a partition of the input data independently through
a parallel streaming process. The output from mappers are then
passed to reducers that produce the final results. This framework
naturally offers a good degree of parallelism, making it possible
to exploit random access capability of HMC by generating enough
sporadic memory accesses.

Algorithm 2 depicts the Map-Reduce version of BFS. At the
mapping stage, each mapper reads a partition of the bitmap, ex-
tracts the current frontier, and reads the adjacency list for these
vertices. The reducers then read the level array for each neighbor,
update parent and level arrays for previously unvisited vertices, and
mark them by updating the bitmap for the next frontier. In the
next subsection, we will convert these mappers and reducers into
pipeline stages implemented on FPGA-HMC platform.

Algorithm 2 MapReduce BFS
1: procedure MAP(current_frontier[u:v])
2: for i = u : v do
3: if current_frontier[i] then
4: for j = vertices[v] : vertices[v + 1] do
5: Emit (i, neighbors[j])
6: procedure REDUCE((i, [n1, n2, ...]))
7: for j ∈ [n1, n2, ...] do
8: if level[j] is 0 then
9: level[j] = current_level + 1

10: parent[j] = i
11: next_frontier[j] = 1

3.2.2 Platform-aware BFS Implementation
As discussed in Section 3.2.1, we propose a Map-Reduce-like

Framework to leverage the capabilities of parallel execution and
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Figure 6: System diagram of FPGA-HMC based BFS imple-
mentation
the built-in atomic operation of HMC and the flexibility of FPGA.
In this subsection, we will present the FPGA-HMC based BFS im-
plementation that will be used as the basis of the analysis in Section
4. As shown in Figure 6, all mappers and reducers share the HMC
Controller and HMC link via an interconnect which comprises a
downstream queue, an upstream queue and a command buffer. The
HMC controller is used to convert the high speed HMC link traf-
fic into low speed user traffic. For example, a half-width HMC
link (x8) will have 5 corresponding user ports, each of which could
accept one downstream (to HMC) request packet and send one up-
stream (from HMC) response packet in one cycle. To fully utilize
the bandwidth of HMC, we replicate the mapper and reducer by
the same number of user ports to saturate the port resources. As
there are more kernels than user ports inside the HMC controller,
we add memory access queues between the BFS kernels and the
HMC controller to buffer the requests that can not be served imme-
diately. If the queue is full, the BFS kernels corresponding to the
queue are stalled. In addition to memory queues, we further add
a command buffer between the downstream queue and upstream
buffer to log the destination of each HMC request, which decou-
ples different kernel stages. For each HMC read request, the user
needs to assign a tag to each request, which is used to keep track
of the out-of-order HMC responses. The command buffer logs the
tags and destination kernels of the memory accesses when sending
HMC read requests, and forwards the HMC read responses to the
corresponding kernels based on returned tags.

At the beginning of executing BFS, the bitmap will be reset ex-
cept that the bit corresponding to the starting vertex will be set.
At each cycle, the interconnect will first push the HMC access re-
quest from the mappers and reducers into the downstream queue
and check 1) if HMC controller is ready to receive data, and 2) the
availability of tag for HMC read request. When both conditions
are satisfied, the TX interconnects will pass the memory requests
to the HMC controller and store the destination in the command
buffer using the tag as the effective address. Meanwhile, the in-
terconnects will also check if there are incoming HMC responses
generated at the HMC controller. If so, it will fetch the response
using the tag and forward the returned data to the next destination.
We will present more detailed design of mapper and reducer in sec-
tion 5.3.

4. DEEPER INSIGHTS FOR PARALLEL
BFS PERFORMANCE

Although we presented the data structures and execution flow of

BFS that can maximize the utilization of HMC in Section 3, there
are still numerous design parameters and detailed design choices
that cannot be easily determined by merely examining the general
characteristics of the hardware. To that end, we propose an ana-
lytical performance model and will use this model to analyze the
performance of our BFS design and identify optimization opportu-
nities.

4.1 Analytical Performance Model
As BFS is a memory-heavy algorithm (as opposed to computa-

tion -heavy), the performance of the system is generally determined
by memory performance. We thus first focus our attention on mod-
eling the memory system. In the process of developing the model,
our desire is to most accurately predict the performance of HMC by
capturing its unique characteristics while avoiding too much com-
plexity. Therefore, We derive the model based on a set of observa-
tions from the HMC architecture:

1. Packets are serialized through the IO. That means at each
time stamp, the IO link between the HMC and the processing
unit is occupied by only one packet. The duration for which
the link is occupied is proportional to the size of the packet
including the data being transferred, the header, and the tail.

2. The latency of processing a packet after it was received (the
internal delay) by the HMC comprises a constant delay of
processing the packet header in addition to internal data trans-
fer delay which is proportional to data size.

3. The internal delay when multiple packets are serially received
by the HMC, changes depending on whether these packets
access different vaults or the same vault. Naturally, parallel
access to different vaults result in less latency compared to
accesses with vault conflicts.

Based on these guidelines, we propose the following model for
processing a single access and then extend this model to encompass
more complicated situations. Equation 1 shows the latency for a
read and a write operation of g bytes. In this equation, g is the
packet data size,H is the packet overhead including header and tail,
b and B are internal and IO bandwidths in Bytes/s respectively,
and tC is the constant header processing delay. In case of a read
operation, we need to account for both a request packet as well as
a response packet. The request consists of only a header and a tail
which takes an additional delay of H

B
to travel through the link,

resulting in a difference between read and write latencies.

tr =
g

b
+
g + 2H

B
+ tC , tw =

g

b
+
g +H

B
+ tC (1)

To model multiple accesses, we first consider two cases for n
consecutive accesses with completely different access patterns. In
the first case, all accesses are directed to the same vault. The re-
sulting vault conflicts produce proportionally longer internal data
transfer delay. On the other hand, the constant delay is hidden by
overlapping processing requests. As a result, the read delay can be
represented by:

tr = n
g

b
+ n

g + 2H

B
+ tC (2)

On the other end of the spectrum, all n accesses are directed to
different vaults. In this case, packets are processed in parallel inside
the HMC. Therefore, the read latency would be:

tr =
g

b
+ n

g + 2H

B
+ tC (3)

Based on these equations, we can now present the latency for
a general case where vault conflict happens but, at the same time,
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some accesses can be processed in parallel as well. The read and
write latencies with such access pattern would be:

tr = α
g

b
+ n

g + 2H

B
+ tC , tw = α

g

b
+ n

g +H

B
+ tC (4)

where α (1 ≤ α ≤ n) represents the maximum number of vault
conflicts and is inversely proportional to the number of parallel ac-
cesses.

4.2 Performance Analysis
In this section, we analyze performance of BFS by estimating

its execution latency using the HMC model we developed in the
previous section. Note that although we only apply it to BFS in this
work, the model is generically applicable to other algorithms.

Since BFS is memory bound, we can safely assume the total
latency to be that of read and write operations of HMC. For this
analysis, we only derive the results for bitmap operations (scanning
current bitmap and updating next bitmap). A similar approach can
be used to derive estimations for other portions of runtime, but re-
sults from bitmap operations accurately represent the scaling trends
of the runtime and effectively help us identify performance bottle-
necks and make design decisions.

Table 2 presents the terminology used in this analysis. As this
table shows, these terms are closely related. More specifically, for
a connected graph, the following equations hold.

L∑
l=1

Ql = V,

V∑
i=1

qil = Ql+1,

V∑
i=1

Sil = Ql (5)

Table 2: Analysis terminology
Term Definition
V Number of vertices
L Maximum number of levels for which BFS operates
Ql Number of set bits in currFront at the beginig of level l
qil Number of neighbors vertex i visits in level l
Sil Whether vertex i was visited in level l − 1. Sil : {0, 1}

For convenience, we assumeQV+1 = 0, which means
∑L
l=1Ql+1 =

V − 1 (since Q1 = 1). Also, for level 1 we have:

Sv,1 =

{
1, v = vs

0, Otherwise
(6)

We present our analysis in two parts. First, we analyze latency of
reading bitmap for current level (current bitmap) and estimate the
total amount of time spent on reading this array through the execu-
tion of BFS. Then, we do the same for updating the next frontier
(the next bitmap). Although it is likely that this method results in
overestimation of runtime by ignoring some overlappings of op-
erations, it simplifies our analysis and provides a better picture of
performance bottlenecks and improvement opportunities.

Reading Current Bitmap: Since the current bitmap is stored
in the HMC and, for large graphs, is too large to read all at once,
it has to be read in multiple partitions. We assume the number of
partitions to bem and reading each partition is done by issuing sev-
eral memory requests. Since we decide the order in which current
bitmap is scanned, we can guarantee that requests issued to read a
partition have maximum parallelism. We model this operation by k
sets of n completely parallel read requests (in total we issue mkn
read requests and readD = mkng bytes of data). With this model,
we can estimate the runtime for scanning current bitmap in level l
to be:

Tscanl = m(k
g

b
+ kn

g + 2H

B
+ tC)

= D
[ 1

nb
+

1

B
+

1

g

[2H
B

+
tC
kn

]] (7)

Here, D is determined by the graph size, n is determined by
the number of vaults, and k is determined by the available on-chip

BRAM. For a large graph, D is going to be large while n and k are
limited by available resources. Therefore, since the scan latency is
proportional to D, reading the bitmap is going to be a bottleneck
of the performance if the graph is large. We will later introduce the
two level bitmap to address this issue in Section 5.

We can also see from this analysis that larger values of k and g
(generating more read requests with larger granularity) can reduce
latency. In the case of read granularity, this is due to the read over-
head which is comparatively reduced for larger requests. Increasing
k reduces the execution time as well by increasing the overlap be-
tween handling requests and hiding the constant request processing
latency.

Writing to Next Bitmap: As shown in line 12 in Algorithm
1, when traversing edges from a visited vertex v, its newly visited
neighboring vertex n has its corresponding bit in the next bitmap
set. This operation is done for all neighbors using the native atomic
operation of HMC. Similar to a write request, the atomic opera-
tion does not require a response. We can estimate the latency for
updating bitmap for neighbors of v (Twbvl ), time spent on writing
to bitmap in level l (Twbl ), and the total time spent on writing to
bitmap as (Twb).

Twbvl = αSvl
g

b
+ qvl

g +H

B
+ SvltC

⇒Twbl =
V∑
v=1

Twbvl = αQl
g

b
+Ql+1

g +H

B
+Qltc

⇒Twb =
L∑
l=1

Twbl = αV
g

b
+ (V − 1)

g +H

B
+ V tc

(8)

This latency is dependent on g (the granularity of atomic writes),
α (the average amount of access parallelism when writing to the
bitmap), and V (the number of vertices). This result has a com-
plexity of O(V ), which matches our expectation that this opera-
tion dominates the overall performance, as BFS in general has a
complexity of O(V + E) and the complexity becomes O(V ) for
sparse graphs. In addition, since for atomic writes, g is fixed by the
HMC architecture and V is a constant, the latency of this step is
determined only by the amount of available write parallelism. Due
to the random and data-dependent nature of memory accesses in
BFS, the implementation can not adaptively change the amount of
parallelism based on memory access patterns. However, it can be
optimized using preprocessing with an intelligent strategy for stor-
ing the graph. We plan to investigate this optimization method in
future works.

Insights from the Analyses: Using this analytical performance
model, we identified the performance bottlenecks and improvement
opportunities for bit-level operations of BFS. We also applied the
same method to other operations performed in BFS and conducted
similar analysis which generally confirms the findings from ana-
lyzing the bitmap portion of BFS. Therefore, we only discuss the
results here without presenting more details.

The analysis shows how read and write granularity of accesses
affects the runtime. Best read performance for reading bitmap, ver-
tex, and adjacency analysis is achieved when larger read granularity
is used. Conversely, write operations favor smaller granularity of
accesses. That is because their low locality results in low access ef-
ficiency. The only exception happens when reading the level array
to check whether a vertex was previously visited. Since this read
also has low locality, it should be accessed with small granularity.

Another major bottleneck we identified is the scanning the bitmap
during the time when the whole bitmap is read from the HMC.
Usually in this data transfer process, as the graph is sparse, only a
small part of it contains useful information. This problem can be
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addressed by using prior knowledge about the parts of the bitmap
that will be used to look for the frontier information. In Section 5,
we will present a scheme to implement this optimization.

5. OPTIMIZATION SCHEME
As discussed in Section 4, the bitmap scanning becomes the bot-

tleneck of FPGA-HMC based BFS implementation. In this sec-
tion, we propose a two-level bitmap design to eliminate unneces-
sary HMC accesses by leveraging the sparsity of the graph. We
first present the idea of the two-level bitmap, and then find the opti-
mal bitmap granularity using the analytical model. Finally, we will
present the implementation of the two-level bitmap on the hard-
ware.

5.1 Two-level Bitmap

1 0…

1… … …0 0

All “0”At least one “1”

HMC
Bitmap

FPGA
Bitmap

…

G bits G bits

Figure 7: Illustration of two-level bitmap
In Section 4.2, it was shown that the scanning of the bitmap for

current frontier creates a bottleneck for our BFS implementation.
One important observation is that the bitmap is typically sparse
(with regards to the placement of 1’s in the whole array), resulting
in a considerable amount of unnecessary data movement. Based
on this observation, it is possible to take advantage of this sparsity
with one level of indirection.

As shown in Figure 7, we propose a two-level bitmap scheme
comprising a coarse-grained first level bitmap stored in the block
ram (BRAM) on FPGA in conjunction with the fine-grained second
level bitmap that we used in the baseline design. In this scheme, a
block of G adjacent bits in the second level bitmap, called a range,
are represented by one bit in the first level bitmap. A bit in the
first level bitmap is set as long as one of the bits in the correspond-
ing range of the second level bitmap is non-zero (each bit in the
first level bitmap is the logic OR of its corresponding range in the
second level bitmap). In this way, the first level bitmap can filter
out reads to the second level bitmap when the bit in the first level
bitmap is not set.

5.2 Bitmap Mapping Granularity
The performance of the two-level bitmap design depends on the

granularity of the first level bitmap as well as the structure of the
specific graph being analyzed. A more fine-grained first level bitmap
provides more information about the second level bitmap, but with
the trade-off of increased size. Therefore, it is important to find
the lower bound for the size of on-chip bitmap that is necessary to
deliver good performance. This lower bound depends on the ac-
tual structures of different graphs. A graph with fewer number of
levels (higher average edges per vertex) will have less sparsity in
its bitmap, resulting in a smaller lower bound. On the other hand,
for a graph with a larger number of vertices and a larger off-chip
bitmap, this bound should be larger. We will analytically deter-
mine this bound in a way that the performance of scanning bitmap
in the two-level design is, on average, sufficiently higher than the
single-level design.

To evaluate the performance improvement of the proposed two-
level bitmap, we can apply the same analytical method we used in
the previous section to this design. We assume the length of on-
chip and off-chip bitmaps to be L1 and L2 bits respectively. This
means that each bit in first level bitmap corresponds to G = L2

L1

adjacent bits in the second level bitmap. Each range, therefore,

requires k′ = L2
8g′L1

read operations, where g′ is the granularity of
reads in the two-level bitmap scheme.

To estimate the time spent on reading all required bitmap ranges
from the HMC in one iteration of BFS, we make two assumptions.
First, we have enough on-chip BRAM to store a complete off-chip
bitmap range. Second, in iteration l, there are Ml set bits in the
first level bitmap. In other words, Ml bitmap ranges need to be
read from the HMC. Based on these assumptions, Tscanl can be
estimated as follows.

Tscanl =Ml(k
′ g
′

b
+ k′

g′ + 2H

B
+ tC) (9)

This result is similar to the latency we estimated previously for
scanning the bitmap in the single-level scheme. The key differ-
ence is that the number of required steps to completely scan the
off-chip bitmap is reduced from m to Ml and during each step, k′

requests with g′ granularity are generated. Note that, when calcu-
lating Tscanl , we assume that all k′ accesses are serially processed
by the HMC (no vault-level parallelism). However, if G was large
enough, we could break ranges corresponding to each bit in the on-
chip bitmap and distribute them among multiple vaults. In this way,
the k′ accesses required to read one range could be parallelized to
reduce Tscanl .

Using this result, we can guarantee that performance is, on av-
erage, sufficiently high, with a judicious choice of L1. Next, we
present an optimization method of choosing L1 so that scanning
the bitmap in the two-level bitmap design would be on average β
times faster than in the single-level bitmap design. This ratio β
should not only be large enough to alleviate the bitmap update bot-
tleneck, but also result in a reasonable size of on-chip bitmap that
can fit within available on-chip resources. The following equations
present a condition in which the two-level design is β times faster.
Intuitively, we expect a large β to require a large first-level bitmap
that represents the second level bitmap in a fine-grained granularity.

βTscanl = βMl(k
′ g
′

b
+ k′

g′ + 2H

B
+ tC)

< βMlk
′(
g′

b
+
g′ + 2H

B
+ tC)

= βMlk
′T ′ < m(k

g

b
+ kn

g + 2H

B
+ tC) = T

⇒Mlk
′ <

T

βT ′

(10)

Here, T and T ′ are known values that can be calculated based
on architectural parameters of the HMC and available storage re-
sources of the chip (k, n, b, B, etc.). As described before, we
assume the number of set bits in the second level bitmap at the be-
ginning of the l-th iteration to be Ql. Therefore, we can find the
expected number of set bits in the first level bitmap Ml based on
Ql, using statistical analysis. To find this value, equivalently, we
can make an analogy to the problem where we have L1 boxes and
we randomly throw Ql balls into these boxes with multiple occu-
pancy allowed. To find the expected number of filled boxes at the
end of this experiment, we can use the probability theory to calcu-
late the value: Ml = E(Ql) = L1(1− (L1−1

L1
)Ql) [10].

Assuming Ql to be V
L

on average, we can use Equation 10 to
find a bound for L1.

Mlk
′ = E(

V

L
)
L2

8g′L1
= (1− (

L1 − 1

L1
)
V
L )

L2

8g′
<

T

βT ′
(11)

Simplifying Equation 11 gives us a lower bound for L1 as shown
below.

1

1− (1− 8g′T
L2βT ′ )

L
V

< L1 (12)
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As shown in the equation above, in addition to β, the lower
bound of L1 depends on graph characteristics and a number of
hardware dependent constants. We can not know the value of L
in advance, but methods of estimating this value for large graphs
have been proposed in previous works [11] and can be applied
here. In Equation 13 both T andL2 increase linearly with V . Thus,
8g′T
L2βT ′ is typically independent of the graph size and is only propor-
tional to 1

β
. Consequently, higher speedups require larger on-chip

bitmaps. This relationship confirms our intuition. The lower bound
also has a direct relationship with V and an inverse relationship
with L which follows our initial expectations of the relationship
between L1 and the graph structure.

Finally, recalling that G = L2
L1

, Equation 13 can be equivalently
expressed as an upper bound for G.

G < L2(1− (1− 8g′T

L2βT ′
)

L
V ) (13)

This equation indicates the trade-off between performance and
storage space. A higher speedup, requires the bound to be smaller,
resulting in a smaller G. This means that, to increase performance,
the on-chip first level bitmap should represent the off-chip second
level bitmap in a more fine-grained manner. Alternatively we can
say, as long asG is smaller than this bound, choosing a larger value
for G can achieve better space utilization without reducing perfor-
mance.

5.3 Implementation of Two-level Bitmap

HMC

HMC Controller

Downstream
Queue

Upstream
Queue

Get FPGA Bitmap BRAM

Command Buffer

Get HMC Bitmap

Get Neighbor List

Update Bitmap,
Father and Level

FPGAMapper

Reducer Atomic

Figure 8: Detailed implementation of proposed HMC-FPGA
based BFS processing system with two-level bitmap
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Figure 9: The implementation of atomic bitwise update opera-
tion using BRAM

To support the proposed two-level bitmap, we need to extend the
FPGA implementation based on single level bitmap presented in
section 3.2, which has a mapper design comprising two pipeline
stages: getting the bitmap from HMC and getting the neighbor
list from HMC. As shown in Figure 8, we add the following three
components to the baseline design described in section 3.2.2: 1)
BRAM for FPGA bitmap storage; 2) a third pipeline stage of map-
per for scanning the FPGA bitmap; 3) supporting atomic updates
for FPGA bitmap. In each BFS level, mappers first scan the FPGA

bitmap to find the asserted bit in the FPGA bitmap and read the
corresponding HMC bitmap. Reducers need to update both FPGA
bitmap and HMC bitmap atomically.

As shown in Figure 9, to support the atomic bitmap updates, we
need to first read the memory content, conduct a bit-wise "OR" op-
eration with the input, and then write it back to the BRAM. As the
atomic read-modify-write procedure requires two cycles, and our
kernel runs at a relatively low frequency, we use a double pump
BRAM to reduce the latency of atomic operations to one kernel
clock cycle. Since now the BRAMs and Map-Reduce BFS kernels
are in different clock domains, we further add a FIFO between the
kernel and the BRAM. The FIFO also buffers the atomic bitmap up-
date commands when BRAM conflicts happen. To provide enough
parallelism of the bitmap scan as well as to reduce the BRAM con-
flict of atomic bitmap update, we use 128 BRAM blocks to store
the the on-chip bitmap. We use lower bits of the bitmap address
as the byte address, and higher bits of the bitmap address as the
BRAM address.

6. EVALUATION
In this section, we first introduce the experimental setup. Then,

we present the simulation and experiment results to validate the
effectiveness of design choices using proposed techniques. Finally,
we show performance comparison between our results and prior
works.

6.1 Experimental Setup

x8
I2C

Xilinx
KCU060 
FPGA

4GB
HMC

Host

x8

User
Logic

User
Logic

User
Logic

User
Logic

User
Logic

HMC Controller

HMC

5 HMC user ports

Implemented 
in FPGA

HMC 1.1 
compliant 
interface

(a) (b)

Figure 10: (a) Micron AC-510 board with two half-width HMC
links [12] (b) HMC controller diagram [13]

We implement the proposed graph processor on an AC-510 FPGA
module from Micron. As shown in Figure 10, AC-510 consists
of a Xilinx KCU060 FPGA and a 4GB HMC chip. The AC510
board uses two half-width (8 lanes) 15G HMC links to connect
HMC and FPGA, and provides an overall two-way bandwidth of
60GB/s. We implement our graph processing architecture under the
PicoFramework, which provides communication between the host
and the FPGA kernel. We use the HMC controller IP core from Mi-
cron as the interfaces between the FPGA kernel and the HMC. The
host machine equips an Intel Xeon E5-1630V3 CPU and one DDR4
memory channel with 16GB capacity. We use Ubuntu 16.04.1 as
the host operating system and compile our CPU implementation
using gcc with flags "-Ofast" and "-march=native".

To accelerate the development process and facilitate evaluation
of optimization methods, we develop an event-based HMC sim-
ulator. Using this simulator, we can gain better insights into the
internal mechanisms of the HMC and avoid tedious trial-and-error
cycles. Here, we discuss the details of our simulator and present
simulation results for our experiments to show the improvements
we can achieve using our optimization methods.

The HMC simulator is developed based on the analytical model
presented in previous sections. Compared to those cycle-accurate
simulators, this simulator sacrifices accuracy for better simulation
speed and thus is more suitable for large workloads. Using this sim-
ulator, we can produce performance and event statistics for graphs
with millions of nodes.
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Figure 11: The ratio of HMC read request of bitmap scanning between two-level bitmap and single-level bitmap designs with
different graph scale and edge factors

 100

 120

 140

 160

 180

 200

 4  8  12  16

B
F

S
 P

e
rf

. 
(M

T
E

P
S

)

Edge Factor

SCALE=23

 100

 120

 140

 160

 180

 200

 4  8  12  16

B
F

S
 P

e
rf

. 
(M

T
E

P
S

)

Edge Factor

SCALE=24

 100

 120

 140

 160

 180

 200

 4  8  12  16

B
F

S
 P

e
rf

. 
(M

T
E

P
S

)

Edge Factor

SCALE=25

Figure 12: BFS performance of two-level bitmap design for different graph scales and edge factors
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Figure 13: BFS performance of single-level bitmap design with different graph scales and edge factors

We use a similar method as stated in Graph 500 [1] to generate
random graphs for testing our design. These graphs are generated
with two tunable parameters, a scale (the number of vertices) and
an edge factor (the ratio between total number of edges and total
number of vertices). In other words, edge factor determines the av-
erage number of neighbors each vertex possesses. A larger edge
factor results in a more connected graph. In the case of BFS, this
means the algorithm would have to run for fewer numbers of itera-
tions (L is smaller).

6.2 Results
We first use our event-driven simulator to verify the effective-

ness of our two-level bitmap. A series of large sparse graphs with
a scale of 23, 24, and 25 and different edge factors are generated.
We plot the ratio of the number of bitmap reads between the two-
level bitmap and the single-level bitmap scheme. As shown in Fig-
ure 11, the two-level bitmap scheme has consistently better perfor-
mance (less reads). The sparser the graph is, the more effective
this scheme can filter out unnecessary reads and the better the per-
formance becomes. This trend also holds as the graph becomes
larger. In Figure 13 and Figure 12, we further plot the BFS per-
formance comparison between the single-level and the two-level
bitmap schemes. It can be observed that the two-level bitmap leads
to greater BFS performance gain on a sparser and larger graph. In
contrast, due to the long off-chip latency and excessive reads gen-
erated in the single level bitmap scheme, the reference setup cannot
saturate FPGA kernel resources by wasting a large portion of run-
time waiting for the bitmap reads to be served.

We run a series of random access benchmarks from the Picoframe-
work to evaluate the HMC access performance. As shown in Fig-
ure 14, we plot the traffic for four different cases: 100% READ,
100 % Write, Read-Modify-Write and Atomic Write with different
payload sizes. If the size of the data payload is halved, the per-
formance of random access does not double due to the overhead
of packet head and tail. The results here confirmed our previous
assumption that using larger payload size is suitable if the larger
payload contains all useful data, which will be used by the kernels
. Then, we plot memory access performance of our BFS imple-
mentation in Figure 15. We can see that our BFS implementation

Table 3: Performance comparison with existing works
System Proposed FPGP [4] GRAPH

Gen [3]
Torous-
GRAPH
[14]

Graph
Type

Random Twitter
[15]

Twitter Random

Max.
Scale

26 25 26 22

Edge Fac-
tor

16 35 16 16

Runtime
(s)

3.851 121.992 148,577 76.134

MTEPS 166.2 12.0 9.9 19.2

Table 4: Runtime comparison between single level bitmap, two-
level bitmap and CPU (Scale=25, Edge Factor=16)

Two-Level
Bitmap

Single-level
Bitmap

CPU

Runtime (s) 3.851 30.976 13.84
MTEPS 166.2 20.6 46.2

Table 5: Resource utilization
FF BRAM DSP

Total 663360 2160 2760
Used 221894 580 64
Utilization 33% 27% 2%

could achieve the same memory access performance as the random
access performance, which indicates that we have nearly saturated
the HMC I/O.

In Figure 16, we further show that the BFS performance in the
unit of million traversed edges per second (MTEPS) with different
payload sizes. It can be seen that it has a similar trend as the ones
shown in Figure 14, which indicates that the performance of our
BFS implementation is largely determined by the random access
speed. As long as the memory bandwidth can be further increased
(i.e. a board with more high-bandwidth HMC links/lanes), we can
achieve better BFS performance.

We compare the runtime of a CPU (Xeon E5-1630v3) and the
proposed HMC-FPGA platform on a GRAPH500 graph with a scale
of 26 and an edge factor of 16. Table 4 shows that our implementa-
tion achieves 3× performance compared with CPU. The two-level
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Figure 14: Benchmark of random ac-
cess performance of HMC
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Figure 15: Memory access performance
of BFS
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Figure 16: BFS performance with dif-
ferent payload size

bitmap scheme considerably boosts the performance of the pro-
posed system by filtering out unnecessary reads and saving memory
bandwidth.

In Table 3, we further compare the results with existing works.
Due to the limited capacity of our HMC chip, we can only process
a sparser graph but with the similar scale as the Twitter Graph [15]
that is used in three prior works. Our implementation outperforms
the prior works by nearly one order of magnitude and proves the ef-
fectiveness of proposed FPGA-HMC based graph processing sys-
tem. Furthermore, as our previous analysis shows that our im-
plementation tends to have better BFS performance with denser
graphs, we expect to have much more performance gain (more than
one order of magnitude) if using exactly the same Twitter Graph as
the data input to the benchmark.

Finally, we show the resource utilization of our implementation
in Table 5. As we store the full bitmap on HMC instead of on-chip
BRAM, we only use 27% of the total 18Kb BRAM. This provides
enough room for expansion if we have a faster and wider HMC
link.

7. RELATED WORKS
There are several existing works on implementing graph accel-

erator using FPGA. GRAPHGEN [16] proposed an FPGA-based
graph processing system using vertex centric model. However, it
stores the whole graph in the on-board DDR DRAM, which severely
limits the performance due to the bandwidth bottleneck of the mem-
ory. Also, the design does not provide any platform-aware software
and/or hardware optimization for implementing BFS. TorusBFS [6]
proposed a 2-D message passing structure to reduce the latency be-
tween parallel BFS kernels, but its performance is also limited by
the poor random access performance of DRAM and the available
on-chip resources. FPGP [4] employed interval-shared structure to
maximize the the off-chip memory bandwidth and to fully exploit
the parallelism of graph processing. However, its performance is
in turn bounded by the capacity and bandwidth of FPGA’s on-chip
memory.

8. CONCLUSION
In this work, we present a graph processor design to fully exploit

the capability of FPGA and HMC through collaborative software
and hardware techniques. In particular, we first present the data
structure and algorithm modifications, followed by Map-Reduce
implementation of level synchronized BFS on FPGA-HMC plat-
form. To gain deeper insights into the performance bottlenecks, we
develop an analytical model for BFS runtime with respect to the
HMC parameters and the graph properties. We found that the num-
ber of bitmap reads contributes a significant portion of the memory
accesses and thus becomes the key performance limiting factor.
To address the problem, we further introduce a two-level bitmap
scheme, which leverages the sparsity of the bitmap and reduces the
number of HMC accesses significantly. Finally, we use both simu-
lation and experiment to verify the effectiveness of proposed tech-

niques. Our implementation on Micron AC-510 development board
achieves 166 MTEPS and outperforms CPU and other FPGA-based
large graph processors.
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