
GraphOps: A Dataflow Library for Graph Analytics
Acceleration

Tayo Oguntebi
Pervasive Parallelism Laboratory

Stanford University
tayo@stanford.edu

Kunle Olukotun
Pervasive Parallelism Laboratory

Stanford University
kunle@stanford.edu

ABSTRACT
Analytics and knowledge extraction on graph data struc-
tures have become areas of great interest. For frequently
executed algorithms, dedicated hardware accelerators are
an energy-efficient avenue to high performance. Unfortu-
nately, they are notoriously labor-intensive to design and
verify while meeting stringent time-to-market goals.

In this paper, we present GraphOps, a modular hardware
library for quickly and easily constructing energy-efficient
accelerators for graph analytics algorithms. GraphOps pro-
vide a hardware designer with a set of composable graph-
specific building blocks, broad enough to target a wide array
of graph analytics algorithms. The system is built upon a
dataflow execution platform and targets FPGAs, allowing
a vendor to use the same hardware to accelerate different
types of analytics computation. Low-level hardware imple-
mentation details such as flow control, input buffering, rate
throttling, and host/interrupt interaction are automatically
handled and built into the design of the GraphOps, greatly
reducing design time. As an enabling contribution, we also
present a novel locality-optimized graph data structure that
improves spatial locality and memory efficiency when access-
ing the graph in main memory.

Using the GraphOps system, we construct six different
hardware accelerators. Results show that the GraphOps-
based accelerators are able to operate close to the bandwidth
limit of the hardware platform, the limiting constraint in
graph analytics computation.

Keywords
FPGA, Graph analysis, Analytics, Dataflow, Accelerator

1. INTRODUCTION
Graph analytics problems have recently attracted signif-

icant interest from the research and commercial communi-
ties. A large number of important data sets can be usefully
expressed as graphs, which efficiently encode connections
between data elements. Analytics algorithms executed on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FPGA’16, February 21 - 23, 2016, Monterey, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3856-1/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2847263.2847337

these data sets can yield valuable insight otherwise diffi-
cult to extract from traditional data stores, e.g. relational
databases.

The ability of graphs to capture information about re-
lationships makes them easily amenable to a wide variety
of data analytics algorithms. The usefulness of these algo-
rithms has been amplified by the prevalence of large data
sets, now becoming commonplace in data centers operated
by large corporations and research labs. As graphs become a
more integral tool in processing unstructured network-based
data, the energy efficiency of the operations executed on
them begins to assume prime importance.

It is commonly known that the vast majority of large scale
efforts in data analytics utilize commodity hardware, for a
variety of reasons [6, 9]. Dedicated hardware accelerators
usually provide significant performance-per-energy benefits,
but are considered unwieldy and difficult to program [10].

In this context, we present GraphOps, a hardware library
for quickly and easily constructing energy-efficient acceler-
ators for graph analytics algorithms. GraphOps provide a
hardware designer with a set of composable graph-specific
building blocks necessary to implement a wide array of graph
analytics algorithms. The target user is a hardware designer
who can design her own logic but would benefit from a li-
brary of modular building blocks that are tailored to the do-
main of graph analytics. The system is built upon a dataflow
execution platform [17]. GraphOps-based accelerators are
defined as sets of blocks in which graph data are streamed
to/from memory and computation metadata are streamed
through the GraphOps blocks as inputs and outputs.

Most graph data structures are inherently sparse – in-
deed, they are usually represented on disk as sparse matri-
ces. This sparseness manifests itself as a dearth of spatial
locality when attempting to traverse a vertex’s edges to visit
its neighbors. We address this issue by using a modified
storage representation to increase spatial locality and en-
able element-wise parallelism within the GraphOps blocks.
GraphOps-based accelerators pre-process the graph on the
host machine and store it in the FPGA memory space us-
ing our modified storage format. Stubborn hardware imple-
mentation details such as flow control, input buffering, rate
throttling, and host/interrupt interaction are built into the
design of the GraphOps, greatly reducing design time.

The major contributions of this paper are:

• We present a library of flexible, modular hardware
modules that can be used to construct accelerators
for high-performance streaming graph analytics. We
enumerate a subset of the components in Section 5.

111

• We describe a novel graph representation that is op-
timized for coalesced access to the properties of the
graph elements. This data structure is used in all ac-
celerators and is described in Section 3.

• We illustrate how the GraphOps library can be used
to construct new accelerators. As a case study, we
construct a PageRank accelerator in Section 4.

• We prototype the hardware library on an FPGA plat-
form by implementing six different hardware acceler-
ators. We present evaluation results of the hardware
by comparing against two different types of software
systems in Section 6.

2. BACKGROUND
In this section, we provide the terms used in this paper as

well as give a short overview of key technologies used in this
work.

2.1 Graph Terminology
Research on graphs is extensive, spanning from mathe-

matics to computational science and beyond, and standard
terminology is not well established. Our terms are briefly
described here.

Graph data structures are built on primitives that natu-
rally mirror the real world: vertices (or nodes), edges (or
relationships) between them, and properties (or attributes)
associated with each. Properties can be arbitrary data mem-
bers of any type.

2.2 Dataflow Architectures
Dataflow architectures are a special type of computer ar-

chitecture in which there is no traditional program counter.
Instead, the execution of processing is determined by the
flow and availability of data inputs to instructions which are
manifested as kernel processors. Data flows from memory
to the kernels and also flows between the kernel processors.
The computational model is sometimes referred to as a ”spa-
tial processing” model. The architecture obviates the need
for functionality such as instruction decode, branch predic-
tion, or out-of-order logic. It has been successfully used in
applications such as digital signal processing, network rout-
ing, and graphics processing.

3. LOCALITY-OPTIMIZED GRAPH REPRE-
SENTATION

It has long been known that computational performance
of graph analytics codes is usually bound by memory band-
width [5]. The memory constraint is compounded by a
dearth of spatial locality due to the inherently sparse na-
ture of graph data structures.

Unfortunately, the memory controllers of FPGAs and other
accelerator systems are often optimized for throughput –
wide memory channels with coarse fetch granularities. Be-
cause the GraphOps library relies heavily on data paral-
lelism, naive executions of GraphOps on standard graph
data structures suffer heavily from this memory bottleneck.
To address this issue when using the FPGA memory system,
we propose a novel locality-optimized graph representation
that uses redundancy to trade off compactness for locality.

Figure 1: A simple graph and its associated data struc-
tures. The locality-optimized array redundantly coa-
lesces properties, making the accessing of a vertex’s
neighbors’ properties be possible with only level of in-
direction. In particular, the expensive second (random)
level of indirection is avoided.

3.1 Traditional Graph Representation
There is abundant prior research on data structures for

representing graphs in computer memory [4, 5]. Graph for-
mats are designed and optimized based on factors such as
the size of the graph, its connectivity, desired compactness,
the nature of the computations done on the graph, and the
mutability of the data in the graph. Common formats in-
clude compressed sparse row (CSR), coordinates list (COO),
and ELLPACK (ELL).

The compressed sparse row format is composed of a vertex
array (or node array) and an edge array. These arrays are
shown, along with their associated graph, in Figure 1. The
vertex array is indexed by the vertex ID (an integer). Data
elements in the vertex array act as indices into the edge
array, which stores the destination vertex of each edge.1

3.2 Locality-Optimized Graph Representation
The edge array is an efficient data structure for reading

lists of neighbors. However, when accessing associated prop-
erties for a neighbor set, the system must perform random
access into a property array. This scattering effect is vi-
sualized by the accesses to the property array in Figure 1.
Unfortunately, accessing neighbor properties is a common
paradigm in graph algorithms–many important computa-
tions are concerned with the data elements of a vertex’s
neighbor.

We propose adding a new data structure called the locality-
optimized array, also shown in the figure. Instead of an edge
list, this array stores the properties associated with those
neighbors. Reading neighbor properties now is achieved
without random access, significantly increasing spatial lo-
cality. Updates are still performed to the original property
array.

The new data structure achieves locality by replicating

1Compressed sparse row (CSR) also features heavily in the
domain of sparse matrix computation [1].

112

Figure 2: The locality-optimized array is generated and
updated offline on the host.

properties of vertices which serve as neighbors to multiple
other vertices. This array needs to be prepared and updated
offline. Figure 2 displays the scattering maintenance opera-
tion that is performed to prepare the array. This operation
is performed on the host machine in-between computation
iterations.

4. A MOTIVATING EXAMPLE
Before going into the details of the GraphOps blocks and

their architectures, let us first motivate the library and ex-
plain how these components are used to compose a practi-
cal application. We will focus on a well-known algorithm,
PageRank [15]. We assume that the accelerator is being run
in tandem with the main application on the host system.
We present the construction of the application in three cat-
egories: block selection, block parameterization, and block
composition.
Block Selection

We refer the reader to the reference [15] for a detailed
description of the algorithm. Through profiling or code
analysis, the designer would determine that the calculation
of new pagerank scores for each vertex dominates the run-
time of this algorithm. This is the core computation that a
GraphOps-based accelerator most naturally accelerates. For
every vertex, a reduction is performed using the neighbors of
that vertex. Fundamentally, a PageRank accelerator needs
to perform three functions:

1. Fetch the necessary sets of data properties (PageRank
scores of neighboring vertices, in this case) for each
vertex.

2. Perform the arithmetic reduction operation described
by the core algorithm.

3. Store the updated values by updating the data struc-
ture after each iteration.

The components in the GraphOps library were borne out
of necessity, as the authors implemented several prominent
graph analytics algorithms within the dataflow model. Pat-
terns emerged across these applications, and we encoded
these patterns in the library as GraphOps blocks. The final
set of GraphOps blocks result in: (i) natural coverage of a
wide, interesting set of graph analytics algorithms and (ii)
ease of use when compared with other flows, e.g. HDL and
HLS.

For PageRank, the high-level blocks used are ForAllPro-
pRdr, NbrPropRed, and ElemUpdate. The next section goes
into more detail about these blocks. The full library has
been open-sourced, and further details about the blocks are
available online [14].
Block Parameterization

Once a set of blocks has been selected, they must be prop-
erly configured to perform the specific computation on the

ForAllPropRdr NbrPropRed ElemUpdate

DRAM

Vertices
MemUnit MemUnit

Pagerank data

(replicated)

Updated

Pageranks

MemUnit

Stall Stall

Metadata Metadata

Figure 3: Composition of GraphOps blocks to form the
PageRank accelerator.

correct graph in memory. Parameters are implemented as
static inputs that are driven over the PCIe bus by the host
system. We detail the physical implementation of the sys-
tem in Section 6.

Every block requires a few local parameters, needed for
customization. There are also global accelerator-level pa-
rameters that can be modified. One common parameter
that is used by several different blocks is that of memory ad-
dresses for property arrays. Any block that issues a memory
request must have this base address from which to determine
the memory location of specific graph elements. Further de-
tails regarding parameterization are available in the library
documentation at the source repository [14].
Block Composition

The final step in constructing the accelerator is to compose
all blocks together to form a functioning system. Metadata
outputs from each block are routed to the accompanying
inputs on downstream blocks. Memory request signals are
routed through memory interface units. Figure 3 shows a
detailed block diagram of the blocks used in the PageRank
algorithm.

5. HARDWARE DESIGN
This section continues the PageRank example of the previ-

ous section by presenting the design details of the GraphOps
library components used in PageRank. We begin with brief
descriptions of each of the library components. Because of
space constraints, we will not fully characterize all of the
details and parameters involved in all components. We will
instead focus on one interesting component in detail, de-
scribing its architecture, internal structures, and operation.
Using the components presented, we explore other aspects
of the hardware design of GraphOps. We finish by providing
some of the graph-specific optimizations used to maximize
throughput.

We have open-sourced the entire GraphOps dataflow li-
brary under the MIT License as a Github repository [14].
The repository documentation contains additional documen-
tation that describes each of the blocks, parameterization
suggestions, and composition instructions.

5.1 Enumeration of PageRank GraphOps
The GraphOps library can be broken down into three cat-

egories: data blocks, control blocks, and utility blocks. We
enumerate blocks of each category used in PageRank.

5.1.1 Data-Handling Blocks
Data blocks are the primary GraphOps components. They

handle incoming data streams, perform arithmetic opera-
tions, and route outputs to memory or subsequent blocks:

(i) ForAllPropRdr issues memory requests for all neigh-

113

bor property sets in the graph. In order to do this, it
first reads all the row pointers in the graph. The in-
coming row pointer data are used to issue individual
memory requests for each set of neighbor properties.

(ii) NbrPropRed performs a reduction on a vertex’s neigh-
bor set. The unit receives the neighbor property data
as a data stream from memory. Each set of neigh-
bor properties is accompanied by a metadata packet
as an input to the kernel from a preceding block (e.g.
ForAllPropRdr).

(iii) ElemUpdate is used to update property values in the
graph data structure. The unit receives a vertex refer-
ence and an updated value as input. It issues memory
read requests for the requisite memory locations and
memory update requests for the updated values.

5.1.2 Control Blocks
In GraphOps, the majority of the logic is amenable to

dataflow. One key reason for this is that feedback control
is rare. There are situations, however, that call for more
intricate control difficult to express without state machines.
Key control blocks for the PageRank application are:

(i) QRdrPktCntSM handles control logic for input buffers
in the data blocks. A common use case occurs in the
following situation: A metadata input datum dictates
how many memory packets belong to a given neighbor
set. QRdrPktCntSM handles the counting of packets
on the memory data input and instructs the data block
when to move on to the next neighbor set.

(ii) UpdQueueSM handles control logic for updating a
graph property for all nodes. This unit assumes that
the properties are being updated sequentially and makes
use of heavy coalescing to minimize the number of up-
date requests sent to memory.

5.1.3 Utility Blocks
Additional logic is needed to properly interface with the

memory system and the host platform. These are realized
via the utility blocks:

(i) EndSignal monitors done signals for all data blocks
and issues a special interrupt request to halt execution
when all units are finished.

(ii) MemUnit provides a simplified memory interface to
the data blocks. It compiles memory profiling informa-
tion, watches for end-of-execution interrupt requests,
and includes control logic for handling very large mem-
ory requests.

5.2 NbrPropRed
We now specify the details of one representative block to

give the reader an illustration of the type of logic common in
data blocks. NbrPropRed is interesting because it interacts
with memory streams while performing computation that is
fundamental to an algorithm.

Figure 4 shows a detailed diagram of the NbrPropRed
block. As described in Section 5.1, this block is used to
perform a reduction on the properties of a vertex’s neighbor
set, a common operation for many analytics algorithms. In
the dataflow paradigm, this block would be placed after a

Pipelined
Logic

EdgeList Ptrs

Result

Pipelined
Logic

EdgeList Ptr1

ArrayCtrl

EdgeList Ptr0

Data Mask

DataArray

Red Red Red

Red

Red

Red

Red

Stall (Flow Control)
Done

Stall (Flow Control)

Pipelined
Logic

Figure 4: Detailed architecture of the NbrPropRed data
block.

block which has already issued memory requests for neighbor
properties.

The NbrPropRed has three primary inputs: the prop-
erty data stream from memory (DataArray and ArrayC-
trl), metadata from the previous requesting block (Edge-
List Ptrs), and a flow control signal to halt execution when
buffers are nearing capacity (Stall). There are three primary
outputs: the metadata output for this block is the reduction
results (Result). The other two outputs are common to all
data blocks. The Stall output is issued when this block has
halted, telling upstream blocks to also halt. The Done signal
is asserted when this block has finished its work.

For each memory request, the corresponding edge list point-
ers define a data mask that dictates which properties in the
data stream are a part of the neighbor set. Simple logic
operations are used to generate this mask. The data mask
filters the incoming data stream and allows only valid neigh-
bor properties to participate in the reduction tree. For very
large neighbor sets, many data packets are required to be
reduced. The reduction tree therefore uses accumulation
registers to handle these large sets. When the neighbor set
is finished processing (as dictated by the edge list point-
ers), the accumulation registers are cleared and the result is
emitted by the block (Result output).

6. EVALUATION
We prototyped the GraphOps architecture using a system

from Maxeler Technologies. The system FPGA is a Xilinx
Virtex-6 (XC6VSX475T). The chip has 475k logic cells and
1,064 36 Kb RAM blocks for a total of 4.67 MB of block
memory. For all graph accelerators, we clocked the FPGA
at 150 MHz. The FPGA is connected to 24 GB of DRAM
via a single 384-bit memory channel with a max frequency
of 400 MHz DDR. This means the peak line bandwidth is
38.4 GB/s. Note that the peak bandwidth is achievable
largely because of the relatively large width (384 bits) of
the memory channel.

The FPGA is connected via PCIe x8 to the host proces-
sor system. The host system has two 2.67 GHz Xeon 5650
multi-processors, each having six multi-threaded cores mak-

2BRAM usage is heavily dependent on the sizing of the nu-
merous FIFO buffers in the design. These FIFOs are often
larger than required.

114

Algorithm
Resource Usage (%) GraphOps Blocks
FF LUT BRAM2 # MemUnits Blocks Used

pagerank [15] 33.2 21.3 24.5 5 ForAllPropRed, NbrPropRed, ElemUpdate
bfs 32.1 18.8 36.6 6 NbrPropRdr, NbrPropFilter, ElemUpdate, SetWriter, SetReader
conduct [3] 25.7 16.0 20.6 4 AllNodePropRed, NbrPropRdr, NbrPropRed
spmv 33.0 20.6 24.5 5 ForAllPropRed, NbrPropRed, ElemUpdate
sssp 30.7 18.8 37.0 6 NbrPropRdr, NbrPropFilter, ElemUpdate, SetWriter, SetReader
vcover [16] 23.4 14.7 19.4 3 ForAllPropRed, GlobNbrRed

Table 1: Resource usage and enumeration of GraphOps blocks for each accelerator. The EndSignal block,
used in all accelerators, is not included.

ing a total hardware thread count of 24. Each of the two
processors has a peak line bandwidth of 32 GB/s and three
64-bit channels to memory.

The GraphOps blocks are implemented on top of a soft-
ware framework built by Maxeler [17]. The tools provide an
HDL and interfaces for accelerating development of dataflow
and streaming accelerators. The higher level language is
compiled to generate VHDL.

6.1 Applications
We use the GraphOps blocks to implement accelerators for

six analytics algorithms. Table 1 breaks down the resource
usage of each accelerator and lists the GraphOps compo-
nents used in their implementations. None of the accelera-
tors are bound by on-chip resources on our Xilinx Virtex-6
FPGA. However, BRAM resources can impose undue pres-
sure on the place-and-route tool if the designer is too lib-
eral with use of FIFO buffers. The throttling and flow con-
trol schemes described in Section 5.2 naturally reduce buffer
pressure and allow for more conservative sizing. Typical
buffer sizes in the GraphOps blocks range from about 2K to
8K elements, with typical element widths being about 32 to
64 bits.

6.2 Software Comparison
We present the performance of the GraphOps-based ac-

celerators by comparing computation done on the accelera-
tors with computation done via an optimized software imple-
mentation. The software implementations are C++ multi-
threaded (OpenMP) versions generated using the Green-
Marl graph compilation framework [11]. Software versions
are run using the Intel Xeon processors on the host system,
described at the beginning of this section. The GraphOps
accelerated versions use the run-times of the same appli-
cations in a C program with the ”inner loop” computation
accelerated using the FPGA, as described for PageRank in
Section 4. The time to transfer the graph data to/from the
host and the FPGA is not included.

Figure 5 compares performance throughput for selected
accelerators. The x-axis is the number of vertices in the
graph. The degree of the vertices of the graph follows a uni-
form distribution with the average being eight. This means
that the number of edges in each workload is 8*N. The y-
axis is millions of edges per second, or MEPS, a measure of
the number of edges ”processed”per second. Because the no-
tion of processed work for each algorithm is different, MEPS
should not be compared across accelerators, but rather used
as a relative scale for different systems within one accelera-
tor.

Referring to the legend, SW1 through SW8 are the num-
ber of threads used by each software version. GraphOps (150

MHz) is the standard FPGA-accelerated version. HW+Scatter
is the accelerated version which also takes into account the
time to pre-process the graph data structure on the host
system.

All of the graph analytics algorithms displayed are bound
by memory bandwidth. This is evident in Figure 5, as all of
the lines begin to roughly approach a steady state asymp-
tote with increasing graph size. For smaller graph sizes,
we see strong caching effects in the software versions. The
data sets fit partially or fully in the CPU cache, greatly
improving throughput. Note that both of these effects ap-
ply partially to the HW+Scatter version, because the graph
pre-processing workload is a normal software function and
therefore depends on the cache.

In contrast to the software versions, the GraphOps-based
implementations show no caching effects, as there is no sig-
nificant re-use happening on the FPGA. Therefore, we see
that the throughput is roughly constant for all three acceler-
ators. Comparing the performance of the software and hard-
ware versions, we see that the SpMV and Vertex Cover eight-
threaded software versions perform better than the FPGA
implementation, even for the largest graph size. As stated
earlier, the FPGA peak bandwidth is about 38 GB/s while
the CPU bandwidth is about 32 GB/s per socket. The eight
threads are co-located on the same socket. The reason for
the superior software performance is its access to three mem-
ory channels as compared with one channel on the FPGA.
Using calculations based on the number of data words re-
quested during FPGA execution runs, we determine that the
single memory channel causes some memory request queues
(and therefore the entire streaming system) to occasionally
stall. An ideal prototyping system for GraphOps-based ac-
celerators would have several memory channels, with the
most heavily-used memory interfaces having access to a ded-
icated memory channel.

6.3 Streaming Comparison
We continue the evaluation of the GraphOps library by

comparing against a graph processing framework called X-
Stream [18]. The X-Stream framework is an apt choice be-
cause, similarly to the locality-optimized storage representa-
tion used in GraphOps (Section 3), X-Stream is built around
maximizing sequential streaming of graph data while mini-
mizing random access. The underlying observation is that
sequential memory bandwidth is usually much higher than
random access bandwidth, particularly for graphs that do
not fit in main memory and require disk access. We refer
the reader to the X-Stream reference [18] for a more thor-
ough description of the X-Stream system.

Our locality-optimized storage representation is similar to

115

0

100

200

300

400

500

600

700

800

512K 1M 2M 4M 8M 16M

Th
ro

u
gh

p
u

t
(M

EP
S)

Graph Size (N)

SpMV

0

20

40

60

80

100

120

140

512K 1M 2M 4M 8M 16M

Th
ro

u
gh

p
u

t
(M

P
ES

)

Graph Size (N)

Pagerank

0

100

200

300

400

500

600

700

800

512K 1M 2M 4M 8M 16M

Th
ro

u
gh

p
u

t
(M

EP
S)

Graph Size (N)

Vertex Cover

GraphOps (150 MHz) SW 1

SW 2 SW 4

SW 8 HW+Scatter

Figure 5: Performance throughput for selected accelerators.

X-Stream primarily because of the shared emphasis on maxi-
mizing use of high-bandwidth architectures. LO-arrays gen-
erate locality through data replication, similarly avoiding
random access into the large edge/property data structure.

We chose a variety of different data sets from the Stan-
ford SNAP project [12] for use in this comparison study.
The data sets used are: amazon0601, cit-Patents, wiki-Talk,
web-BerkStan, and soc-Pokec. We refer the reader to the
reference for detailed characteristics about the data sets.

Figure 6 compares execution time of the GraphOps and X-
Stream frameworks for the workloads discussed. The metric
is execution run time, so lower is better. Both frameworks
were executed on the same machine, described in the begin-
ning of this section. X-Stream is a software-only framework
and used the host system CPU and memory resources, ig-
noring the FPGA.

The figure provides a breakdown of total execution time
for three GraphOps-based accelerators. GraphOps systems
compare favorably with the X-Stream applications, despite
the slightly inferior total bandwidth available to the GraphOps
accelerators. The reader should first note that the prepara-
tion and maintenance overhead for the LO-arrays, denoted
as graphops (scatter), is a small fraction of the overall run-
time for each implementation.

The most problematic data sets for the spmv and pager-
ank accelerators are wiki-Talk and cit-Patents. Both of
these accelerators are dependent upon efficient access to ver-
tex neighbors’ properties. Wiki-Talk and cit-Patents are
sub-optimal because they have relatively small average de-
grees, 2.1 and 4.3 for wiki-Talk and cit-Patents respectively.
Recall from our discussion of our target hardware system
that memory accesses are constrained to rather large data
blocks. Indeed, we designed the locality-optimizing stor-
age representation presented in Section 3 with this consid-
eration in mind. Because our system is fundamentally de-
signed around fetching neighbor property sets using large
data blocks, small-degree data sets such as wiki-Talk and
cit-Patents waste much of the bandwidth designated for that
purpose. This observation is also borne out by the superior
performance of GraphOps on the soc-pokec-relationships data
set, given its average degree of 19.1. The conductance accel-
erator is built around streaming the entire graph, as opposed
to a neighbor traversal, and is thus not subject to this small-
degree effect.

6.4 Bandwidth Utilization Calculations
We performed an experiment to determine how well the

single memory interface was being utilized by the various
memory interfaces. Details are omitted for brevity. The
steady state throughput for the PageRank GraphOps accel-
erator is about 37 MEPS, which corresponds to a through-
put of about 220 MB/s. This represents about 1/6 of the
available theoretical throughput.

The memory channel must switch among the three other
interfaces also issuing requests–this is the primary cause for
performance limitation. The secondary cause is that issuing
one memory request per neighbor set limits the size of the re-
quests and prevents optimizations at the memory controller
level.

7. RELATED WORK
Several approaches have used FPGAs as the vehicle for ac-

celerating graph analytics. Betkaoui et al [2] accelerated the
graphlet counting algorithm on an FPGA using an optimized
crossbar and custom memory banks. Their work differs from
GraphOps, because their framework requires an end user to
express his algorithm as a vertex-centric kernel, similar to
Pregel [9]. They do the work of mapping it to a Convey hard-
ware system. Nurvitadhi, Weisz, et al [13] created an FPGA
backend for a graph algorithm compiler called GraphGen.
They also focus only on vertex-centric graph descriptions,
an important difference from GraphOps, which is designed
to be more general. DeLorimier et al [7] presented Graph-
Step, a system architecture for sparse graphs that fit in the
block memory of the FPGA. While general, their architec-
ture is severely constrained in the size of dataset possible,
particularly in an era of rapidly expanding dataset sizes and
DRAM banks.

There has also been some work in the area of using a
streaming paradigm to process graphs. Ediger et al [8]
used a dynamic graph representation called STINGER to
extract parallelism and enable streaming processing. Roy et
al [18] proposed X-stream, which we presented in Section 6.
GraphOps differs from these approaches, as they are both
software-focused efforts. Another key difference is that these
approaches attempt to better utilize the memory hierarchy,
whereas GraphOps relies on main memory bandwidth.

116

0
100
200
300
400
500
600
700

R
u

n
-t

im
e

 (
m

s)
spmv

0
50

100
150
200
250
300
350
400

R
u

n
-t

im
e

 (
m

s)

conductance

x-stream graphops (total) graphops (run-time) graphops (scatter)

0

500

1000

1500

2000

2500

R
u

n
-t

im
e

 (
m

s)

pagerank (5 iterations)

Figure 6: Run-time comparison of GraphOps and X-Stream.

8. CONCLUSION
In this paper, we present the GraphOps hardware library,

a composable set of hardware blocks that allow a designer
to quickly create an energy-efficient graph analytics accel-
erator. Using the well-known computation PageRank as a
driving example, we explain how GraphOps addresses issues
that a designer would otherwise spend valuable time solving
and verifying. We evaluate the GraphOps library by com-
posing six different accelerators and using them to process a
variety of workloads. We compare with pure software imple-
mentations as well as with a software streaming framework.
Results show that the GraphOps-based accelerators are able
to operate close to the bandwidth limit of the FPGA system.
Overall, this paper demonstrates that graph-specific FPGA
acceleration can be achieved with a significant reduction in
design time if a hardware designer is given a useful set of
building blocks.
Acknowledgments

We would like to thank the Maxeler engineering team and
the Maxeler University Program for their diligent help and
support. We would also like to thank reviewers and the
programming chair for their reviews and attention.

This work is supported by DARPA Contract- Air Force,
Xgraphs; Language and Algorithms for Heterogeneous Graph
Streams, FA8750-12-2-0335; Army Contract AHPCRC W911NF-
07-2-0027-1; NSF Grant, BIGDATA: Mid-Scale: DA: Col-
laborative Research: Genomes Galore - Core Techniques, Li-
braries, and Domain Specific Languages for High-Throughput
DNA Sequencing, IIS-1247701; NSF Grant, SHF: Large:
Domain Specific Language Infrastructure for Biological Sim-
ulation Software, CCF-1111943; NSF Grant- EAGER- XPS:
DSD: Synthesizing Domain Specific Systems-CCF-1337375;
and the Stanford PPL affiliates program.

9. REFERENCES
[1] N. Bell and M. Garland. Efficient sparse matrix-vector

multiplication on cuda. Technical report, Nvidia Tech
Report NVR-2008-004, Nvidia Corporation, 2008.

[2] B. Betkaoui, D. B. Thomas, W. Luk, and N. Przulj. A
framework for fpga acceleration of large graph
problems. In FPT 2011, pages 1–8. IEEE, 2011.

[3] N. Biggs. Algebraic graph theory. Cambridge
university press, 1993.

[4] R. Che, Beckmann. Belred: Constructing gpgpu graph
applications with software building blocks.

[5] J. Chhugani, N. Satish, et al. Fast and efficient graph
traversal algorithm for cpus. In IPDPS 2012, IEEE
26th International, pages 378–389. IEEE, 2012.

[6] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[7] M. DeLorimier, N. Kapre, N. Mehta, et al. Graphstep:
A system architecture for sparse-graph algorithms. In
FCCM’06., pages 143–151. IEEE, 2006.

[8] D. Ediger, K. Jiang, et al. Massive streaming data
analytics: A case study with clustering coefficients. In
IPDPSW 2010, pages 1–8. IEEE, 2010.

[9] M. A. e. a. G. Malewicz. Pregel: a system for
large-scale graph processing. In ACM SIGMOD 2010,
pages 135–146. ACM, 2010.

[10] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna.
Analysis of high-performance floating-point arithmetic
on fpgas. In IPDPS 2004, page 149. IEEE, 2004.

[11] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun.
Green-marl: a dsl for easy and efficient graph analysis.
In ACM SIGARCH Computer Architecture News,
volume 40, pages 349–362. ACM, 2012.

[12] J. Leskovec and A. Krevl. Snap datasets:stanford large
network dataset collection. 2014.

[13] E. Nurvitadhi, G. Weisz, et al. Graphgen: An fpga
framework for vertex-centric graph computation. In
FCCM 2014, pages 25–28. IEEE, 2014.

[14] T. Oguntebi. Graphops source repository.
https://github.com/tayo/GraphOps.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking. 1999.

[16] C. H. Papadimitriou and K. Steiglitz. Combinatorial
optimization: algorithms and complexity. Courier
Dover Publications, 1998.

[17] O. Pell, O. Mencer, K. H. Tsoi, and W. Luk.
Maximum performance computing with dataflow
engines. In High-Performance Computing Using
FPGAs, pages 747–774. Springer, 2013.

[18] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream:
edge-centric graph processing using streaming
partitions. In SOSP 2013, pages 472–488. ACM, 2013.

117

