
An Efficient Graph Accelerator with Parallel
Data Conflict Management

Pengcheng Yao† Long Zheng† Xiaofei Liao† Hai Jin† Bingsheng He‡

†Service Computing Technology and System Lab/Cluster and Grid Computing Lab/Big Data Technology and
System Lab, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
‡School of Computing, National University of Singapore, Singapore, 117418, Singapore

{pcyao, longzh, xfliao, hjin}@hust.edu.cn, hebs@comp.nus.edu.sg

ABSTRACT
Graph-specific computing with the support of dedicated ac-
celerator has greatly boosted the graph processing in both
efficiency and energy. Nevertheless, their data conflict man-
agement is still sequential when certain vertex needs a large
number of conflicting updates at the same time, leading to
prohibitive performance degradation. This is particularly
true and serious for processing natural graphs.
In this paper, we have the insight that the atomic opera-

tions for the vertex updating of many graph algorithms (e.g.,
BFS, PageRank, and WCC) are typically incremental and sim-
plex. This hence allows us to parallelize the conflicting vertex
updates in an accumulativemanner.We architect AccuGraph,
a novel graph-specific accelerator that can simultaneously
process atomic vertex updates for massive parallelism while
ensuring the correctness. A parallel accumulator is designed
to remove the serialization in atomic protections for conflict-
ing vertex updates through merging their results in parallel.
Our implementation on Xilinx FPGA with a wide variety of
typical graph algorithms shows that our accelerator achieves
an average throughput by 2.36 GTEPS as well as up to 3.14x
performance speedup in comparison with state-of-the-art
ForeGraph (with its single-chip version).

1 INTRODUCTION
Graph processing plays an important role in many real-world
applications, e.g., ranking the web sites [23], analysing the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PACT ’18, November 1–4, 2018, Limassol, Cyprus
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5986-3/18/11. . . $15.00
https://doi.org/10.1145/3243176.3243201

social networks [15], and discovering 3D motifs in protein
structures [27]. Therefore, a large number of research efforts
have been made to build the dedicated hardware that can
execute graph applications with more efficiency than what
the general-purpose processors can provide [6, 9, 17, 20].
Nevertheless, the graph algorithms may still suffer from

considerable performance impacts caused by the atomic pro-
tections in existing graph accelerators. During the graph it-
erations, each vertex sends its value to all associated vertices.
Therefore, it is common that many vertices may read/write
the same vertex simultaneously, needing a significant num-
ber of atomic protections for preserving the correctness. This
performance overhead arising from the atomic operations
can be as much as nearly half of total graph execution, as
demonstrated in previous work [16, 31] and also witnessed
in our motivating study in Section 2.
Therefore, a lot of efforts have been made to reduce the

atomic overheads. Recent researches significantly reduce the
data access overheads by offloading the atomic operations
to specialized memory [1, 16]. Some studies also attempt to
reduce the number of atomic operations by sophisticated
preprocessing, e.g., graph partition [6] and dynamic sched-
uling [20]. Unlike these previous work that concentrates on
optimizing the individual atomic overhead, this work focuses
on the performance impact of sequentiality between atomic
operations, which is under-studied in graph processing.

Interestingly, graph processing for many graph algorithms
(e.g., BFS, PageRank, and WCC) shows significant, com-
mon features for their atomic operations: 1) incremental–the
atomic operations follow the commutative and associative
law, 2) simplex–all atomic operations are similar. Instead of
enforcing sequential execution of conflicting operations as
traditional designs, this unique observation enables to exe-
cute massive conflicting vertex updates in an accumulative
manner. Through simultaneously processing multiple atomic
operations and merging the results in parallel, these vertex
updates can be fully parallelized without changing final re-
sults. In this paper, we are addressing how we can design

https://doi.org/10.1145/3243176.3243201

PACT ’18, November 1–4, 2018, Limassol, Cyprus Pengcheng Yao, Long Zheng, Xiaofei Liao, Hai Jin, Bingsheng He

such an efficient accumulator for parallelizing the conflicting
data accesses for vertex updates in graph processing.

We propose AccuGraph, a novel accelerator that executes
atomic operations in an accumulative manner. AccuGraph
simultaneously processes multiple atomic operations for par-
allelizing the conflicting vertex updates while ensuring the
correctness. A specialized accumulator is provided to remove
the sequentiality in atomic opeartions through merging their
results in parallel. Considering that the real-world graphs
generally follow sparse and power-law topology [8, 15], the
accumulator is designed to distinguish the process of low-
degree and high-degree vertices. Internally, it executes mul-
tiple low-degree vertices in parallel for efficient edge-level
parallelism, and limits the vertex parallelism for the high-
degree vertices to avoid frequent synchronizations. To pro-
vide efficient vertex access, AccuGraph is also built with a
high-throughput on-chip memory.

The contributions of this work are summarized as follows:
• We study a wide range of graph workloads and per-
form a detailed analysis on their atomic operations. We
demonstrate that their distinct characteristics enable
the parallel execution for conflicting vertex updates.
• We propose a graph-specific accelerator which sup-
ports parallel execution of atomic operations. A par-
allel accumulator is designed to guarantee efficient pro-
cess of verticeswith different degrees. A high-throughput
on-chip memory is also provided for the efficient use.
• We compare our accelerator with the state-of-the-art
ForeGraph. Experimental results with three graph al-
gorithms on six real-world graphs show that our accel-
erator provides 2.36 GTEPS on average, outperforming
ForeGraph by up to 3.14x speedup.

The rest of this paper is organized as follows. In Section 2,
we introduce the background and provide our motivations
and challenges in detail. Section 3 and Section 4 propose
our accumulator designs and optimizations. The evaluation
results are presented in Section 5. We survey related work
in Section 6 and conclude the paper in Section 7.

2 BACKGROUND AND MOTIVATION
This section first reviews the vertex updating mechanism of
existing graph accelerators for the conflicting data accesses.
We next discuss its potential deficiency for graph processing
through a motivating study, finally presenting our approach.

2.1 Modern Graph Accelerator and Its Data
Conflict Management

In graph representation, each entity is defined as vertex, and
its connection is defined as edge. The degree of a vertex de-
notes the number of connections. The operations in graph

Input: Graph G = (V ,E), root vertex r
Output: Distance dis[V], initialized by∞

1 dis[r] ← 0 ;
2 f inished ← false;
3 while f inished = false do
4 f inished ← true;
5 for v ∈ V do
6 for u ∈ {k |(k,v) ∈ E} do
7

8

temp ← dis[u] + 1;
if temp < dis[v] then

9

10

dis[v] ← temp;
f inished ← false;

11 end
12 end
13 end
14 end

(a) Pseudocode of BFS

...4 4 3 321 21 21 11Atomic Structure...4 321 42 ...3 1SS 1 2 SSS SS 1S S1Cycle 1Cycle 2Cycle 3Cycle 1Cycle 2Cycle 3Cycle 4Cycle 5Cycle 6 Updating SequenceProcessing Sequence
(b) Execution flow of BFS

Figure 1: BFS pseudocode and its execution flow. In (b),
the numbers indicate the ID of vertices to be updated,
and the ‘S’ indicates a pipeline stall.
processing could be generally classified into computing oper-
ations that perform process on the edges, and updating oper-
ations that reduce their results to update the vertices [8, 26].

In existing graph processing frameworks, the vertices are
shared and might be simultaneously accessed by multiple
neighbors due to the complex graph connections [8, 15, 34].
As a result, there is a high coverage of data contentions
for updating operations. For ensuring the correctness of
vertex updating, existing researches often seek to use atomic
structures (e.g., content addressable memory [21]), which
tend to atomically protect the updates of each vertex if a
conflicting data access to this vertex has been detected.
A typical procedure of data conflict management used

in many graph accelerators [9, 20] is as follows. Multiple
edges of the given vertices will be fetched and sent to the
accelerator in each cycle. When receiving these edges, the
accelerator will check the pipeline states at first. If an edge is
connectedwith a vertex which is executing in the pipeline, its
process will be stalled until the prior one finishes execution.
In this way, the same vertex cannot appear in more than one
pipeline stage at the same time, thus ensuring atomicity.

2.2 Inefficiency in Graph Processing
Graph often exhibits the complex connections where any
vertex may be shared among different vertices. This is par-
ticularly true and serious for nature graphs that follow the
power-law degree distribution, where some vertices have
extremely large degree [8]. Thus, there involves a high risk
that a large number of low-degree vertices simultaneously
access the same high-degree vertex, leading to serious data
contention. Unfortunately, modern graph accelerators (e.g.,
ForeGraph [6] and Graphicionado [9]) fall short in handling
these highly-frequent data conflicts due to its serial seman-
tics in atomic protection for the vertex updates.

Atomic Protection Analysis: Figure 1(a) illustrates the
pseudo-code of Breadth-First-Search (BFS). It starts from a
root vertex r and iteratively traverses the graph to calculate

An Efficient Graph Accelerator with Parallel Data Conflict Management PACT ’18, November 1–4, 2018, Limassol, Cyprus

LiveJournal Snad Orkut Avg
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

 O
ve

rh
ea

ds

Graph Datasets

 Atomic update
 16-edge parallel update

Figure 2: Normalized performance overhead caused by
sequential atomic operations

the shortest distance from the root vertex to other vertices.
During the traversal, each vertex v will receive values temp
from its neighbors (Line 7) and update itself (Line 8 and 9).

Figure 1(b) shows an example of the execution flow of four
pipelines with atomic protection. In the first cycle, the accel-
erator receives four operations that all need to update the
vertex one. Because of the atomic protection, these received
operations from neighboring vertices have to be processed
one-by-one in each cycle for preserving the correctness of
final result. As a result, only the operation in the leftmost
pipeline is processed while the others are stalled. These oper-
ations will not be released before receiving the completion of
prior process. In other word, the process inside each vertex
is enforced to be sequential for reducing data contention at
the cost of performance.

Experimental Demonstration: We further make a set
of experiments to investigate how much performance im-
pact may be incurred by the atomic protection in graph
processing. We use a cycle-accurate simulator to perform
the vertex iteration with a parallel update for a maximal set
of 16 edges1. Figure 2 depicts the comparative results. It is
observed that the pure atomic protection leads to significant
performance degradation for all real-world graphs, with 45%
extra overheads on average in contrast to 16-edge parallel
vertex update. This is particularly true and serious for those
graphs that have the greater average degree (e.g., Orkut).

Remark: There are also a number of potential solutions
that can be used for reducing the performance impact arising
from atomic operations. ForeGraph [6] proposes a shuffling
mechanism to reorder the edges with potential data con-
flicts. [20] excessively schedules destination vertices and
process part of them based on a credit based mechanism.
Similarly, the basic idea of the above solutions is to avoid
simultaneously scheduling edges with the same vertex.
Figure 3 depicts two examples of the scheduling mecha-

nisms used by them. Although these mechanisms effectively
1The simulation is conducted with a pipelined architecture that is similar to
ForeGraph [6]. While data width of edges is usually 32-bits in BFS, we set
16-edge parallelism according to the memory access granularity (512-bits).
Edge shuffling optimization [6] is not covered in our simulation.

...
4 4 3 3
2
1

2
1

2
1

1
1

Atomic Structure

...

... 1

...
...

...

...
...
2

1
1

4 3 2 1
4 3 2 1Cycle 1

Cycle 2

Cycle 3
Cycle 4

Cycle 5

Updating Sequence
Processing Sequence

(a) Reordering between all pipelines

...
4 4 3 3
2
1

2
1

2
1

1
1

Atomic Structure

...

... 1
1
S

...
1

...
2

S
S

4 2 1 3
2 4 3 1Cycle 1

Cycle 2

Cycle 3
Cycle 4

Cycle 5

Updating Sequence
Processing Sequence

...

(b) Reordering inside each pipeline
Figure 3: Two mechanisms that avoid simultaneously
scheduling conflicting updates

reduce the pipeline stalls, the updates of each vertex (e.g.,
the five updates of vertex one) are still enforced to be se-
quentially processed. As a result, the temporary vertex data
is frequently synchronized between pipelines, leading to an
increasing number of memory overheads. Moreover, such se-
quentiality would lead to unbalanced process for the power-
law graphs. For example, the accelerator needs two more
cycles to wait for the process of vertex one in Figure 3.

Some work [1, 16] uses novel processing-in-memory (PIM)
technology [7] to offload the atomic operations to specialized
memory region, which reduces the execution time of atomic
operations. However, it needs to incorporate with specialized
memory architecture and also increases thememory requests
since all atomic operations need to be sent to the memory.

Table 1: Atomic operation types for the vertex update
in different graph algorithms

Algorithm Operation Type
Breadth-First Search CAS if less

Weakly Connected Components CAS if less
Shortest Path CAS if less
PageRank Atomic add

Triangle Counting Atomic add
Degree Centrality Atomic add

Collaborative Filtering Atomic add

2.3 Potential of Accumulator
The key insight of this work is that atomic operations for
many graph algorithms can be parallelized in an accumula-
tive manner. Table 1 illustrates the typical operations that
need an atomic protection for seven popular graph algo-
rithms. We can observe that these atomic operations as a
whole have two aspects of significant properties.

Observation 1: The atomic operations for updating the
conflicting vertex follow the commutative and associative law.

The commutative law means that the execution sequence
of the operations has no effect on the result. Associativity en-
sures the correctness of merging multiple operations. That is,
any of the operations can be simultaneously merged without

PACT ’18, November 1–4, 2018, Limassol, Cyprus Pengcheng Yao, Long Zheng, Xiaofei Liao, Hai Jin, Bingsheng He

changing the final result. For example, PageRank follows the
atomic-add operations to update every vertex by following
Rank(v) = ε +

∑
u ∈neiдhbor (v) Rank(u)/|neiдhbor (u)|, where

ε is a constant. Actually, no matter how we change the se-
quence or merge successive atomic-add operations, the final
result can be still consistent.

When considering the potential computation error caused
by floating-point values, the observation is still suitable for
graph processing because the algorithms are iterative and
inherently tolerate the imprecision [25].

Observation 2: The atomic operations for updating the
conflicting vertex are simple and used repeatedly.
Taking PageRank as the example, we find that all of its

atomic operations use the same atomic-add to sum up their
values to the final result. This similarity allows to use a
unique structure to merge all atomic operations.
These two observations consequently enable us to lever-

age existing well-developed accumulator to parallelize the
conflicting vertex update. Accumulator is a hardware compo-
nent that merges the inputs into a set of results with specific
function. Based on the accumulator, we could simultaneously
process the conflicting operations and merge their results in
parallel to achieve fully-pipelined and balanced computation.
Nevertheless, designing such accumulator for large-scale
graph processing remains tremendously challenging.

Challenges: First, the real-world graph topology is often
sparse with a low averaged degree. Traditional accumulator
designs [3, 10, 12] often establish a fixed mapping relation-
ship between the inputs and results. The reality is that the
degrees of vertices are largely different during the iterations.
Consequently, the traditional accumulators can only accu-
mulate the atomic operations of a single low-degree vertex at
the same time, leading to extremely low parallelism for graph
processing. There remains a significant gap in applying the
accumulation ideology into graph processing.
Second, natural graphs often follow a power-law distri-

bution. For the high-degree vertices with a large number of
edges that can be easily more than millions (e.g., twitter),
an accumulator with limited width is extremely difficult to
handle so many edges simultaneously. As a result, the accu-
mulator will be invoked several times at the cost of increased
synchronization overheads. Moreover, if multiple vertices are
simultaneously processed in this case, it may lead to massive
random edge accesses since their edges are likely to be non-
sequentially stored. Therefore, there still lacks an effective
technique that can improve the synchronization overheads
and random accesses for an efficient accumulation.

Third, it is also difficult to predict the non-sequential neigh-
boring vertices of each vertex in real-world graphs. Although
the accumulator can largely reduce the atomic overheads, the
random vertex access remains to be a potential bottleneck
and significantly limits the throughput.

Acceler-atorLocal Memory P1: Get VertexP4: Schedule Mem Interface Basic UnitsOn-chip Vertex MemoryP5: Process VertexP6: Parallel AccumulationP2: Read EdgesP3: Read Vertex
Figure 4: Architecture ofAccuGraph. Pi denotes the ith
pipeline stage.

2.4 Architectural Overview
Figure 4 shows an overview of our accelerator, which is de-
signed with six pipeline stages in total. These stages basically
serve as two major objectives as follows:

Designing an Efficient Accumulator (Section 3): As ex-
plained in the challenge discussions, the accumulator gener-
ally suffers from the sparse topology and power-law degree
distribution in real-world graphs. To achieve desirable per-
formance, the accumulator is expected to efficiently process
both of the low-degree and high-degree vertices.
For the low-degree vertex, the accumulator (P6) is de-

signed to simultaneously process multiple vertices for effi-
cient parallelism. Since the vertex degrees are mutable during
the process, it establishes a dynamic relationship between the
input vertices and the final results to ensure the correctness.
For the high-degree vertex, the accumulator (P6) is de-

signed with an specialized synchronization mechanism to
reduce synchronization overhead. Moreover, for avoiding
random edge accesses, a scheduling mechanism is proposed
in P2 to be dynamically aware of the changes in degree and
distinguish the schedule of different vertices.

Using Accumulator Efficiently (Section 4): While the
accumulator could provide high execution efficiency, the
on-chip memory is likely to be a potential performance bot-
tleneck. To keep with the throughput of accumulator, the on-
chip memory is partitioned into independent parts to process
multiple accesses. Furthermore, considering the randomness
and unbalance in vertex accesses, the on-chip memory would
reorder them to ensure a high throughput.

3 PARALLEL ACCUMULATOR DESIGN
This section discusses the design guideline for a parallel
accumulator as well as its core components for the efficiency.

3.1 Design Philosophy
Since accumulator is bounded with fixed width, it generally
needs to consider two situations where skewed graph ver-
tices with different degrees that can be greater or less than
accumulator width, involving different parallel designs.

An Efficient Graph Accelerator with Parallel Data Conflict Management PACT ’18, November 1–4, 2018, Limassol, Cyprus

3.1.1 Efficient Accumulation for Low-Degree Vertex.
Most of vertices for a natural graph have very low degrees
which are always no more than the fixed number of ports
for a typical accumulator. It is clear of a necessity to simul-
taneously process both updates of the same and different
vertices for desirable parallelism.

Problem Definition: Assuming N updates, belonging to
M vertices, need to be processed at once. This problem can
be described by pj =

∑
1≤i≤N ai · bi j , 1 ≤ j ≤ M , where pj

denotes the accumulated result of vertex j. ai denotes the
update i , and bi j denotes whether ai belongs to vertex j . The
objective is to get all pj with minimal latency.
Considering the locality of graph traversal, this problem

can be further simplified. During traversal, edges of the
same destination vertex are sequentially accessed in com-
mon graph representations, e.g., CSR/CSC [23]. It ensures
that update values of the same destination vertex are sequen-
tially received by the accumulator. Therefore, assuming that
Cj = [c1j , c2j] denotes the interval of vertex j’s update values
in all ai , the problem could be simplified bypj = f (c2j), where

f (i) =
{
f (i − 1) + ai , i < {c11, c12, . . . , c1M }

ai , i ∈ {c11, c12, . . . , c1M }
(1)

Solution: In Equation (1), we find that f (i) = f (i − 1)+ai
is a typical prefix-sum problem, which has been extensively
studied [4, 10–12, 24]. Beyond the prefix-sum problem, a
significant problem is that we still need to consider solving
the otherwise case. This needs to 1): dynamically recognize
the breakpoints that break the sequential computation and
cancel the related operations, and 2): select the appropriate
results since not all outputs are required. These are what we
have additionally contributed to cope with.

3.1.2 Efficient Accumulation for High-degree Vertex.
There are also many high-degree vertices that over-fit the
width of an accumulator. Invoking the accumulator multiple
times can be considered a useful approach by dividing these
edges into multiple parts and processing one of them at the
same time, but this costs more overhead.

Problem Definition: First, iteratively reading and writ-
ing back the temporary vertex data can lead to extra synchro-
nizations. The accumulator is desired to reduce the number
of synchronizing operations for high-degree vertex to im-
prove the memory performance.

Second, the graph edges are sequentially stored with com-
mon data structure (e.g., CSR/CSC), which means that the
edges of a high-degree vertex may be distributed to many
continuous addresses. When multiple vertices are simulta-
neously processed in this case, their edges are located in
non-adjacent addresses, leading to performance degradation.
The accumulator should dynamically change the number of
vertex scheduled to avoid random edge accesses.

Parallel Source AccumulatorN : M MultiplexerSequential Destination Accumulator 2 3 4 5 6 7 81 Crossbar Switch Comp aratorID Reg AdderData Reg Vertex Data Write Back
Accumulator Architecture

Updating valueUpdating value Updating value ...Updating valueDegree-Aware Accumulation
Figure 5: Architecture of parallel accumulator

Solution: Considering the locality of graph traversal that
updates of the same destination vertex come in sequence, the
first problem can be effectively solved. Such locality ensures
that the results of multiple accumulations for the same high-
degree vertex are also continuously generated. Therefore,
the write back of the vertex data can be delayed before the
accumulator sending a different vertex.
For the second problem, the inefficiency mainly comes

from fixed granularity for vertex scheduling. Without con-
sidering the differences in the vertex degree, it schedules
fixed number of vertices and simultaneously accesses their
edges in each cycle. Therefore, the viable method is to se-
quentially access all edges and dynamically schedule the
vertices based on the accessed edges, instead of accessing
the edges based on the scheduled vertices.

3.2 Parallel Accumulator Architecture
Figure 5 shows the overview of our parallel accumulator,
consisting of four parts. The parallel source accumulator and
multiplexer provide efficient accumulation for the low-degree
vertices, while the sequential destination accumulator and
degree-aware accumulation reduce the synchronization and
access overheads for the high-degree vertices.

Parallel Source Accumulator: To efficient accumulate
the low-degree vertices, the parallel source accumulator dy-
namically recognizes the breakpoints and cancels the related
operations based on prefix-sum adders [4, 11, 12, 24]. In this
work, we choose Ladner-Fischer Adder [12] as the basis of
our accumulator among a large number of previous efficient
accumulators for three reasons as follow.

First, our main objective is to get the accumulated results
in minimal latency, which filters the networks with depth
larger than log(N). Second, among all networks withminimal
latency, it has relatively fewer adders, which means that we
could use fewer extra resources for breakpoint recognition
and result selection. Finally, although its fanouts are rela-
tively larger than others, it does not increase the length of
critical path since its delay and route time are much smaller
comparing to that of on-chip memory access.

PACT ’18, November 1–4, 2018, Limassol, Cyprus Pengcheng Yao, Long Zheng, Xiaofei Liao, Hai Jin, Bingsheng HeCycle 12 1 3 11 1 4 2 3 2 2 3 1 3 5 3 Cycle 4Cycle 21 1 3 1 3 1 4 2 3 2 2 3 1 3 6 3Cycle 31 1 3 1 6 1 4 2 3 2 2 3 3 3 8 3 1 1 3 1 6 1 4 2 7 2 2 3 3 3 8 3Value ID Update Transfer Node Adder Node
Figure 6: Execution flow of performing PageRank
(with atomic-add operations) in the accumulator

Ladner-Fischer Adder opens a great opportunity for our
graph-specific accumulator. In Ladner-Fischer Adder’s orig-
inal design, it establishes a fixed mapping relationship be-
tween the inputs and outputs, which leads to incorrect results
when multiple vertices with mutable degrees are processed.
Therefore, we complement a breakpoint recognizing mech-
anism. We add a new vector V = (v1,v2, . . . ,vN) where vi
denotes the destination vertex that ai belongs to. With the
vector V , the recognition conditions could be easily imple-
mented by comparing the destination vertices of two inputs:

f (i) =
{
f (i − 1) + ai , vi = vi−1

ai , vi , vi−1
(2)

We then attach each update value with the ID of its des-
tination vertex in our design. To further reduce resource
usage, we compress the destination vertex ID by only us-
ing its last log(m) bits, where m denotes the width of the
accumulator. Based on Formula (2), the adder nodes (refer
to the gray nodes) are modified to selectively aggregate the
updates. Moreover, they could be easily adapted to different
algorithms through replacing the accumulating logic.
Figure 6 shows the process to perform PageRank in a

eight-width parallel source accumulator. Assuming that eight
updates A = {1, 2, 3, 4, 3, 2, 1, 5} belongs to three vertices
B = {1, 1, 1, 2, 2, 3, 3, 3}. In the first cycle, the accumulator
receives the updates and attaches them with vertex IDs in
the first row as described above. In the left cycles, these
updates are pushed to the next rows and processed by the
transfer or adder nodes. The transfer nodes directly send
the input updates to the output ports, while the adder nodes
are implemented with the logics based on Formula (2). More
specifically, each adder node aggregates the two input up-
dates if their IDs are the same. Otherwise, it directly transfers
the second input update to the output. In this way, both up-
dates of the same and different vertices are processed in
parallel, and ensured to be aggregated to separate locations.

Multiplexer: Once the updates are accumulated, the next
is to dynamically select the results for each destination ver-
tex from the output ports of parallel source accumulator. We
use a N : M multiplexer to implement such logics. Instead
of directly comparing the destination vertex IDs, the multi-
plexer selects the data based on edge offsets to simplify the
conditional logic. When the edges in pipeline stage P2 are
accessed, each scheduled vertex is attached with its edge
offset, indicating the last edge connected to it. Based on this
information, the multiplexer is thus able to naturally select
the data for each scheduled destination vertex in the ports re-
lated to its last edge. For example in Figure 6, the multiplexer
selects the data from the ports pointed by triangles.

Sequential Destination Accumulator: To efficiently
accumulate the high-degree vertices, we design a sequential
destination accumulator for reducing the synchronization
overheads. In light of the sequential arrival of accumulated
values, it opens an opportunity to avoid synchronization
on the temporary vertex data by delaying the write back of
the destination vertex data until the accumulated value of a
different vertex is received.
Therefore, the accumulator holds the destination vertex

ID and the accumulated value in private registers. In each
cycle, if the IDs in the input and the register are found to be
the same, the accumulator will accumulate the vertex data
in the input and register. Otherwise, the vertex data in the
register would be written back and replaced by the input
data. Furthermore, since the accumulator may simultane-
ously process multiple destination vertices, we replicate the
destination vertex accumulators and use a crossbar switch to
connect them with multiplexer. The crossbar switch routes
the vertex data based on the destination vertex. That is, the
last log(m) bits in its ID are used form replications.
Degree Aware Accumulation: To reduce the random

edge accesses for high-degree vertices, we propose a degree
aware accumulation, as shown in Figure 7. The basic idea
is to sequentially access all edges and dynamically schedule
vertices based on the runtime information of their edge off-
sets (e.g., edge ID table in CSR/CSC [9] which denotes the
location for the edges of each vertex).
More specifically, we use a specialized generator to au-

tomatically generate memory address for sequentially ac-
cessing all edges. In each cycle, every vertex pipeline stores
received edge offsets of each vertex, and compares the top
data in the FIFO with the generated memory address. If the
memory address is within the range of two edge offsets, the
top vertex would be scheduled and sent to the next stage.
Moreover, if the memory address is equal to the right edge
offset, which means all edges of the vertex have been read,
the top vertex in the FIFO would be removed. In this way, the
number of scheduled vertex is ensured to be the same with
that of vertex contained in requested edges. Furthermore, the

An Efficient Graph Accelerator with Parallel Data Conflict Management PACT ’18, November 1–4, 2018, Limassol, Cyprus1216171832333448.........16 edges (512bits)from memory Edge Pipeline 1Edge Pipeline 2Edge Pipeline 16Partitioned by the edge IDP1 Vertex Pipeline 1Vertex Pipeline 2Vertex Pipeline 8Partitioned by the vertex ID AllocatorAddress Generator ϵ?
ϵ?
ϵ? Memory1LR9LR17LR... 2LR10LR18LR...P1 8LR16LR24LR...P1

Figure 7: Degree aware accumulation with 8 vertex
pipelines and 16 edge pipelines. ‘L’ and ‘R’ represent
the memory address of the first and last edge for each
vertex, respectively.

edge pipelines could be shared among all vertex pipelines to
improve resource utilization.

4 OPTIMIZATIONS FOR EFFICIENT USE
In this section, we present several optimizations that are the
key for using the proposed parallel accumulator efficiently.

4.1 Source Vertex Access Parallelization
While the above accumulator can provide reasonable execu-
tion efficiency, the memory access is likely to be a potential
performance bottleneck. In practice, the neighbors of every
vertex are discontinuous, leading to significant randomness
in vertex access. Consequently, the vertex data is typically
stored in on-chip memory (e.g., BRAM in FPGA) [6, 17, 20].

Despite that it could efficiently reduce the access latency,
the throughput of on-chip memory is hard to keep with that
of accumulator. Considering the limitation of capacity and
frequency for on-chip memory in typical FPGA chips, mem-
ory partitioning [5, 30] is the most practical method to make
the memory simultaneously process multiple requests. Typ-
ical memory partitioning mechanisms divide the memory
into n independent parts and shuffle the requests to achieve
a maximal throughput of n. Nevertheless, due to the ran-
domness in vertex access, we find a significant number of
requests are shuffled to the same memory partition in each
cycle, leading to extra cycles to process these requests.

To balance the distribution of vertex access, we rearrange
the edges of every vertex during preprocessing. Algorithm 1
represents the pseudocode of our mechanism. The basic idea
is to rearrange the edges of each vertex to ensure that the
address values are relatively balanced in cacheline-width
granularity before processing the graph. Assuming that the
memory is partitioned to 16 dependent parts, we would also
maintain 16 queues for each vertex to store the edges based
on the connected vertex’s ID. During rearranging, we would
iteratively select edges from each queue in sequence for ev-
ery vertex. The overhead of rearrangement is about O(|E|),

Algorithm1: Pseudocode of the rearrangingmechanism
Input: Graph G = (V , E), partition number P
Output: Rearranged edge list NewEdдe

1 for v ∈ G do
2 for u ∈ {k |(k, v) ∈ E } do
3 Edдe(v, u MOD P).push(u);
4 end
5 N (v) ← |{k |(k, v) ∈ E } |;
6 end
7 for v ∈ G do
8 i ← 0;
9 while N (v) > 0 do

10 NewEdдe(v).push(Edдe(v, i).pop());
11 i ← (i + 1) MOD P ;
12 end
13 end

which is the same as that of compressing algorithms com-
monly used in graph processing (e.g., CSR/CSC). With the
mechanism, the address values could be evenly rearranged,
thus improving the memory performance.

Moreover, considering that some vertices might have more
accesses on a specific memory partition (edge values them-
selves are unbalanced), we try to change processing gran-
ularity to deal with such imbalance. More specifically, we
allow the on-chip memory to process the requests in an un-
blocking (out-of-order) manner. Through unblocked process,
the idle memory ports could be utilized by the latter requests,
thus improving memory efficiency.
Figure 8 shows the workflow of our mechanism. In each

cycle, stage P3 receives N edges from memory, and shuffles
them to different request FIFOs based on their values. The
FIFOs cache these edges and send the requests generated by
the top ones to the on-chip memory. To avoid the unblocked
requests breaking sequentiality of edge access and further
leading to incorrect results, a reorder stage is involved after
accessing the source vertex data. The reorder stage caches the
accessed vertex data, reorders them to match the sequence
of original requests, and sends reordered data to stage P4.
To implement such reordering logic, each memory request
would be attached with a token based on the last log(m) of
original edge memory address, where m denotes the size
of buffer in reorder stage. All accessed data with the same
token would be stored in the same location in reorder stage.
Once the top data finishes reordering, i.e., all data of the first
request has been received, it would be sent to the next stage.

4.2 Source-Based Graph Partition
While storing vertex data in on-chip memory could avoid
costly random access in main memory, it might require a
large number of resources that may exceed the capacity of
the chip. Assuming the 4-byte width of vertex data and 8

PACT ’18, November 1–4, 2018, Limassol, Cyprus Pengcheng Yao, Long Zheng, Xiaofei Liao, Hai Jin, Bingsheng He

M
em

or
y

In
te

rf
ac

e

Sh
uf

fle

Request
FIFO1

Request
FIFO2

Request
FIFON

Token
FIFO

On-chip
Memory Re

or
de

r

Read Source Property

To
P4

Rearranged
Input Graph

Figure 8: Workflow of accessing source vertex data

M vertices, the on-chip memory is desired to be larger than
32 MB, which is unpractical for most of FPGAs. To enable
process of large-scale graphs without losing the benefit of
on-chip memory usage, we partition the graph into several
parts and process a single part at a time.
To ensure that all vertex data in each graph part could

be held in on-chip memory, we use a source-based partition
mechanism [8]. The partition mechanism works as follows.
First, the vertices of the input graph are divided into K parts
based on their vertex IDs. The value of K depends on the
number of vertex and the capacity of on-chip memory. For
each part, the out-edges of each vertex are also included.
After the input graph is partitioned, our accelerator sequen-
tially processes each graph part in each iteration. Since every
edge would be partitioned to the graph part which includes
its destination vertex, no edges need to be processed twice.
The graph partition does incur some extra memory over-
heads, since the same destination vertex data might be read
and written more than once. More specific impacts would
be discussed in Section 5.5.

5 EVALUATION
This section evaluates efficiency of AccuGraph on typical
graph algorithms with real-world graph datasets.

5.1 Experimental Settings
Evaluation Tools: We implement our accelerator on Xilinx
Virtex Ultrascale+ XCVU9P-FLGA2104 FPGA with -2L speed
grade. The target FPGA chip provides 1.18 M LUTs, 2.36 M
registers, and 9.49 MB on-chip BRAM resources. We verify
the correctness and get the clock rate as well as resource
utilization using Xilinx Vivado 2017.1. All these results have
passed post-place-and-route simulations. The off-chip mem-
ory requests are processed by one DRAM, which is Micron
4GB DDR4 SDRAM (MT40A256M16GE-083E) in our evalua-
tion. We use DRAMSim2 [22] to simulate the cycle-accurate
behavior of the off-chip access. The memory has a running
frequency of 1.2 GHz and a peak bandwidth of 19.2 GB/s.

Graph Algorithms: We implement three well-known
graph algorithms on our accelerator, covering both CAS-if
and atomic-add operation types in Table 1.

Table 2: Graph datasets
Names # Vertices # Edges Description
Slashdot 0.08 M 0.95 M Link Graph
DBLP 0.32 M 1.05 M Collaboration Graph
Youtube 1.13 M 2.99 M Social Network
Wiki 2.39 M 5.02 M Website Graph

LiveJournal 4.85 M 69.0 M Follower Graph
Orkut 3.07 M 117 M Social Network

• Breadth First Search (BFS) is a basic traversal algorithm
utilized by many graph algorithms. It iteratively traverses
the input graph and calculates the distance of shortest path
from root to every vertex.
• PageRank (PR) is an important graph algorithm used to
rank web pages according to their importance. It updates
every vertex based on the formula Rank(v) = ε +∑
u ∈in−neiдhbor (v) Rank(u)/|out − neiдhbor (u)| in each it-

eration, where ε is a constant.
• Weakly Connected Components (WCC) is an algorithm that
checks the connectivity between two vertices in a graph.
During the traverse, every vertex would receive the labels
from all neighbors and update itself with the minimal one.
Graph Datasets: The graph datasets for the experiments

are summarized in Table 2. All these graphs are real graph
data sets collected from SNAP [13] and TAMU [28]. In our im-
plementation, each undirected edge is treated as two directed
edges between source destination vertex and processed twice.
Therefore, the number of edges for undirected graphs (DBLP,
Youtube, and Orkut) is considered double in our evaluation.

Table 3: Resource utilization and clock rate
BFS PR WCC

LUT 7.39% 10.1% 8.26%
registers 2.53% 4.47% 3.02%
BRAM 57.9% 69.9% 69.9%

Maximal clock rate 256 MHz 211 MHz 251 MHz
Simulation clock rate 250 MHz 200 MHz 250 MHz

5.2 Overall Performance
Resource utilization: Table 3 shows the resource utiliza-
tion and clock rate of the FPGA designwith 8 vertex pipelines
and 16 edge pipelines, which maximizes throughput given
the peak DRAM bandwidth. First of all, because of the shared
edge pipeline design described in Section 3.2, the number of
resources required is reduced. Therefore, the logic resource
(LUT and register) consumption of our accelerator is rela-
tively low. Second, we implement the on-chip memory with
BRAM resources to maintain vertex data. Similar to prior
work [6], we use 1 byte integer to represent the depth value
in BFS, single-precision floating point (4 bytes) in PR, and
4 bytes integer in WCC. In this way, the maximal memory
requirement is 1 × 4.85 = 4.85 MB for 1 byte data and 4 ×

An Efficient Graph Accelerator with Parallel Data Conflict Management PACT ’18, November 1–4, 2018, Limassol, Cyprus

YT Wk LJ AVG YT Wk LJ AVG YT Wk LJ AVG
0.0

0.5

1.0

1.5

2.0

2.5

3.0

WCCPRBFS

No
rm

ali
ze

d
Pe

rfo
rm

an
ce ForeGraph

 Our Accelerator

Figure 9: Our accelerator normalized to the ForeGraph
performance. YT denotes graph Youtube, Wk denotes
graph Wiki, and LJ denotes graph LiveJournal. AVG
presents the average speedup of all tested graphs

4.85 = 19.4 MB for 4 bytes data. Therefore, we hold all vertex
data when running BFS and about 1.7 M vertex data for other
algorithms, which consumes 57.9% and 69.9% of available
BRAM resources, respectively. The UltraRAM resources are
not used in our implementation.

Throughput: Figure 9 shows the normalized performance
comparing to ForeGraph, which is one of the fastest graph
processing accelerator implemented on FPGA, with respect
to throughput. By throughput, we refer to the number of tra-
versed edges per second (TEPS) [19], which is a performance
metric frequently used in graph processing.
Since ForeGraph has not been open-sourced, we execute

the same graph algorithms (BFS, PR, and WCC) and datasets
(youtube, wiki-talk, and LiveJournal) used by its evaluation
on our accelerator, and compare the results with the per-
formance reported in its work (just as previous work has
also done [6, 33]). When running PR and WCC on Wiki, the
BRAM resources available in the FPGA chip used in Fore-
Graph is large enough (up to 16.6 MB) to hold all vertex data
on-chip, which is unreliable for that of our FPGA chip (9.49
MB). Therefore, we compress the vertex data to 2 bytes when
running PR and WCC onWiki for fair comparison.
As shown in Figure 9, AccuGraph achieves 1.36x ∼ 3.14x

speedup compared to the ForeGraph. As analyzed in Section
2.2, the speedup comes from the reduced synchronization
overheads by simultaneously processing atomic operations.
Moreover, our accelerator could achieve better load-balance
using degree-aware accumulation by dynamically deciding
the number of vertices scheduled.
For the results of different algorithms, we find that the

speedup of PR is smaller. This is because of the lower clock
rate caused by complex floating units. Since the number
of edge pipelines is fixed in our implementation, the clock
rate directly influences the overall performance. Moreover,
the floating point units significantly increase the length of
pipelines, thus would need more cycles when recovering
from pipeline stalls. Therefore, the algorithms that use inte-
ger values could achieve slightly higher performance.

Slash DBLP Youtube Wiki LiveJournal Orkut
0

1

2

3

4

T
hr

ou
gh

pu
t (

G
T

E
P

S
)

Graph Datasets

 BFS WCC
 PR

(a) Performance for different graphs

0 10 20 30 40 50 60 70 80
1.0

1.5

2.0

2.5

3.0

3.5

T
h

ro
u

g
h

p
u

t
(G

T
E

P
S

)

Average Degree of The Graph Datasets

 BFS
 PageRank
 WCC

(b) Different average degrees

Figure 10: Sensitive study on throughput with differ-
ent graphs and average degrees
5.3 Sensitivity Study
To get a more comprehensive performance result, we exe-
cute all graphs described in Table 2 on our accelerator. The
structures of these graphs significantly differ from each other
(e.g., number of vertices and edges, average degree), thus pro-
viding an in-depth overview on the performance. As shown
in Figure 10(a), AccuGraph achieves 1.4 GTEPS ∼ 3.5 GTEPS
over all graph algorithms and datasets.
Among all graph datasets, Wiki’s throughput is particu-

larly low when executing on AccuGraph. This is because
Wiki is extremely sparse and makes the accelerator exhibits
unbalance between the vertex and edge pipelines. With low
average, the edges accessed fromWiki in each cycle prefer
to belong to multiple vertices (more than 8). Therefore, the
vertex pipelines might need more than one cycle to process
these edges, leading to lower performance.
As shown in Figure 10(b), the performance is almost lin-

early increased when the average degree is less than 16. This
is because that the percentage of low-degree vertex (≤ 2) de-
creases. Moreover, the performance improves slightly when
increasing the average degree from 16 to 76. This is because
that the memory bandwidth becomes the potential bottle-
neck in these cases, since it could only send a cacheline-width
edges in each cycle. In summary, the performance improves
as the average degree increases before reaching the limita-
tion of maximal memory bandwidth.
Lastly, we find obvious performance degradation for PR

and WCC when average degree is about 14 (LiveJournal).
Moreover, the performance of PR and WCC is significantly
lower than that of BFS when average degree is larger than 14
(LiveJournal and Orkut). This is because that the vertices data
is too large to be all held in on-chip memory in these cases.
Therefore, the graph partition mechanism is used when exe-
cuting PR andWCC on these graphs, which involves in more
vertex access. More detailed analysis of degree distribution
and graph partition is presented in Section 5.4 and 5.5.

5.4 Benefit Breakdown
We next break down the respective benefits of our different
graph accelerator designs as follow:

PACT ’18, November 1–4, 2018, Limassol, Cyprus Pengcheng Yao, Long Zheng, Xiaofei Liao, Hai Jin, Bingsheng He

Slashdot Dblp Youtube Wiki LiveJournal Orkut
0

1

2

3

4

5

6
No

rm
al

iz
ed

 P
er

fo
rm

an
ce

Graph Datasets

 Baseline
 CFG1 = Src Accumulator
 CFG2 = CFG1 + Dst Accumulator

Figure 11: Benefit of parallel accumulation
Benefits fromParallelAccumulation: Figure 11 shows

the normalized performance results. The baseline represents
the basic design without any optimizations described in Sec-
tion 3 and 4. It sequentially processes each edge, and accu-
mulates its values to the final result in each cycle. CFG 1
represents source vertex accumulation. CFG 2 further uses
destination vertex accumulation based on CFG1.
It is shown that CFG1 achieves 1.9x∼ 5.2x speedup com-

pared to the baseline. Note that Wiki is lowest performance
among all graph workloads. This is because that the num-
ber of vertex pipelines is set to one, leading to the fact that
only one vertex can be scheduled in each cycle for CFG 1.
Therefore, the number of edges sent to the accumulator in
each cycle is directly depended on the average degree. In a
word, the graphs with higher degree could experience higher
speedup when using source vertex accumulator.

For CFG 2, destination vertex accumulator achieves about
1.3x speedup in most of graphs, except for Slashdot (2.0x
speedup). This is because that Slashdot has self-loops, which
means that some edges connect a vertex to itself. When pro-
cessing these self-loops, the memory requests of source and
destination vertex would be assigned to the same on-chip
memory partition, leading to increased memory cycles. With
the source vertex accumulator, the request of destination ver-
tex could be avoid, thus improving the overall performance.

Benefits from Degree-aware Accumulation: Second,
we explore the impact of degree aware accumulation on
above accumulators. Figure 12(a) presents the results which
assume that on-chip memory could process any 16 memory
requests in each cycle. For the performance, we analyze
the speedup brought by different number of vertex pipelines,
which denotes the maximal parallelism of the accumulation2.

We make the observation that the performance improves
sub-linearly as the number of vertex pipelines increases. This
is because of the power-law degree distribution of graphs.
Assuming that the number of vertex pipelines is N , our de-
gree aware mechanism could cover the vertices with degree
≥ 16/N with 16 edge pipelines. As depicted in Figure 12(b),
the percentage of the covered edges formost graphs increases

2When the number of vertex pipelines is set to N , the mechanism dynami-
cally schedules 1 ∼ N vertices based on the degree.

Slashdot DBLP Youtube Wiki LiveJournalOrkut
0

1

2

3

4

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Graph Datasets

 1 Vertex Pipeline
 2 Vertex Pipelines
 4 Vertex Pipelines
 8 Vertex Pipelines

(a) Performance

2 4 6 8 10 12 14 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
er

ce
nt

ag
e

of
 C

ov
er

ed
 E

dg
es

Number of Vertex Pipelines

 Slashdot
 DBLP
 Youtube
 Wiki
 LiveJournal
 Orkut

(b) Percentage of covered edges
Figure 12: Benefit of degree-aware accumulation

sub-linearly because high-degree vertices have most of the
edges. While forWiki, the skewness of its degree distribution
is low, thus leading to an almost linear increment.

Benefits fromVertexAccess Parallelization: Figure 13
explores the impact of different optimization for parallel ac-
cumulations, without ignoring the influence of the on-chip
memory’s throughput. The left most bar in Figure 13 repre-
sents the baseline case where only parallel accumulation is
applied. CFG 3 represents the degree aware accumulation
with 8 vertex pipelines based on CFG2. CFG 4 shows the ef-
fects of rearranging mechanism and CFG 5 shows the effects
of reordering with buffer size of 64 discussed in Section 4.1.

The first observation is that the speedup of degree aware
accumulation is decreased to about 1.3x when considering
the influence of on-chip memory’s throughput. Since the
accumulator has already removed potential bottleneck in
atomic operations andmade the computations fully pipelined,
the throughput of on-chip memory becomes the main bot-
tleneck. Without any optimizations, there would be a signif-
icant amount of increased memory requests caused by the
unbalanced edge values, thus decreasing its impact.
Another observation is that our rearranging mechanism

could achieve 1.3x speedup and reordering mechanism could
achieve another 1.5x ∼ 2.8x speedup. When increasing the
reorder buffer size from 64 to 256, we only get 1.07x speedup
for all tested graphs. This is because that the vertex requests
do not put much pressure on the reordering buffer. Consider-
ing the randomness in vertex accesses, it is uncommon that
more than two requests are simultaneously sent to the same
memory partition after preprocessing. With these mecha-
nisms, the increased memory requests could be reduced to
≤ 10%, which significantly improves the memory efficiency.

5.5 Scalability
When the vertex data can not be held in the on-chip memory,
we would partition the graph to enable the process. Figure 14
explores the impact of graph partition described in Section
4.2. The leftmost bar represents the case where the on-chip
memory size is large enough to hold all vertex data, denoted
as partition number = 1. The other bars represent cases where
on-chip memory size is only enough to hold 1/N of the total
vertex data where N represents the number of partitions.

An Efficient Graph Accelerator with Parallel Data Conflict Management PACT ’18, November 1–4, 2018, Limassol, Cyprus

Slashdot DBLP Youtube Wiki LiveJournal Orkut
0

1

2

3

4

5

No
rm

al
ize

d
Pe

rfo
rm

an
ce

Graph Datasets

 Baseline
 CFG3 = Vertex Parallelization
 CFG4 = CFG3 + Rearranging
 CFG5 = CFG4 + Reordering

Figure 13: Effect of different optimizations inmemory
subsystem discussed in Section 4

In general, partitioning the graphs into 4 parts would
result in around 40% performance degradation. Among all
workloads, the Wiki experiences the largest performance
degradation which reaches about 61%. This is because we
would traverse all vertex in each sub-iteration when process-
ing each graph partition. As the average degree decreases,
the increased vertex access overheads would account for
a significant percentage of total overheads. Therefore, the
performance of graphs with lower average degree would be
more sensitive to the partition number.

6 RELATEDWORK
To improve the execution efficiency, a vast body of research
efforts have been therefore put intomaking the graph-specific
architectural innovations. Graphicionado [9] proposes a graph
accelerator which efficiently utilizes large on-chip scratch-
pad memory. GraphGen and Graphops [17, 18] automatically
compile graph algorithms to specialized graph processors.
Compared with these prior researches with strict atomic
protection, we argue that the heavy reliance on atomic op-
erations leads to significant performance degradation and
propose a novel accelerator to reduce atomic overheads.
There are also a large number of attempts that aim at re-

ducing atomic overheads of graph processing. ForeGraph [6]
uses a shuffling mechanism to avoid data contentions. [20]
proposes a specialized synchronizing mechanism to avoid
scheduling conflicting edges. Generally, their basic idea is to
avoid scheduling the edges with conflict vertices. However,
these accelerators still enforce to sequentially process the
updates of the same vertex, which increases the synchroniza-
tion overheads. Comparing to these work, we concentrate on
improving such sequentiality and propose to process these
updates in an accumulative manner. Moreover, comparing
to the researches that improve the sequentiality based on
general-purpose processors [14, 32], our accelerator needs
less computation and avoids global synchronizations.

Some recent work concentrates on improving the perfor-
mance of graph processing through utilizing GPU. Typical
GPU-based graph processing frameworks simultaneously

Slashdot Dblp Youtube Wiki LiveJournal Orkut
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Graph Datasets

 Partition Number = 1
 Partition Number = 2
 Partition Number = 4

Figure 14: Effect of graph partition mechanism

process thousands of vertices to achieve desirable perfor-
mance and focus on balanced mapping. For example, Gun-
rock [29] proposes a hybrid mapping mechanism to achieve
load-balance. Instead of using massive parallelism to cover
synchronization overheads, our accelerator tries to explore
the potential parallelism in limited number of scheduled
vertices. Through accumulating the atomic operations, the
parallelism of these vertices could be fully utilized.

Many other efforts have been put into improving the exe-
cution time of atomic operations. Tesseract [1] offloads all
graph operations to memory-based accelerator to ensure
atomicity without requiring software synchronization prim-
itives. Some researches [2, 16] also enables offloading opera-
tions at instruction-level. Compared to these PIM-enabled
graph architecture, our accelerator can achieve efficient man-
agement on shared data conflicts without introducing special
memory components. Moreover, our parallel data conflict
management can be also integrated into these accelerators
and help to reduce the memory requests.

7 CONCLUSION
In this paper, we present a pipelined graph processing accel-
erator to enable massive parallelism of vertex updates. Our
accelerator provides a parallel accumulator to simultaneously
schedule and process multiple destination vertices without
losing edge-level parallelism. Moreover, the accumulator
is designed to be degree-aware and can adaptively adjust
the vertex parallelism to different kinds of graphs. We also
present vertex access parallelization and source-based graph
partition for better supporting the efficient use of graph ac-
celerator. Our evaluation on a variety of graph algorithms
shows that our accelerator can achieve the throughput by
2.36 GTEPS on average, and up to 3.14x speedup compared to
the stat-of-the-art FPGA-based graph accelerator ForeGraph.

ACKNOWLEDGMENT
The work is supported by National Key Research and Devel-
opment Program of China under grant No. 2018YFB1003502.
This paper is also supported jointly by NSFC under grant No.
61702201, 61732010, 61628204. To whom the correspondence
should be addressed to Long Zheng.

PACT ’18, November 1–4, 2018, Limassol, Cyprus Pengcheng Yao, Long Zheng, Xiaofei Liao, Hai Jin, Bingsheng He

REFERENCES
[1] Junwhan Ahn, Sungpack Hong, Sungjoo Yoo, Onur Mutlu, and Kiy-

oung Choi. 2015. A Scalable Processing-in-Memory Accelerator for
Parallel Graph Processing. In Proceedings of the Annual International
Symposium on Computer Architecture (ISCA). 105–117.

[2] JunwhanAhn, Sungjoo Yoo, OnurMutlu, and Kiyoung Choi. 2015. PIM-
Enabled Instructions: A Low-Overhead, Locality-Aware Processing-
in-Memory Architecture. In Proceedings of the Annual International
Symposium on Computer Architecture (ISCA). 336–348.

[3] Guy E. Blelloch. 1989. Scans as Primitive Parallel Operations. IEEE
Transactions on Computers. 38, 11 (1989), 1526–1538.

[4] Richard P. Brent and Hsiang T. Kung. 1982. A Regular Layout for
Parallel Adders. IEEE Transactions on Computers. 3 (1982), 260–264.

[5] Jason Cong, Wei Jiang, Bin Liu, and Yi Zou. 2011. Automatic Memory
Partitioning and Scheduling for Throughput and Power Optimization.
ACM Transactions on Design Automation of Electronic Systems. 16, 2
(2011), 15:1–15:25.

[6] Guohao Dai, Tianhao Huang, Yuze Chi, Ningyi Xu, Yu Wang, and
Huazhong Yang. 2017. Foregraph: Exploring Large-Scale Graph Pro-
cessing onMulti-FPGA Architecture. In Proceedings of the International
Symposium on Field-Programmable Gate Arrays (FPGA). 217–226.

[7] MayaGokhale, Bill Holmes, and Ken Iobst. 1995. Processing inMemory:
The Terasys Massively Oarallel PIM Array. IEEE Computer. 28, 4 (1995),
23–31.

[8] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. 2012. Powergraph: Distributed Graph-Parallel Com-
putation on Natural Graphs. In Proceedings of USENIX Symposium on
Operating Systems Design and Implementation (OSDI). 17–30.

[9] Tae J. Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and
Margaret Martonosi. 2016. Graphicionado: A High-Performance and
Energy-Efficient Accelerator for Graph Analytics. In Proceedings of the
International Symposium on Microarchitecture (MICRO). 1–13.

[10] Simon Knowles. 2001. A Family of Adders. In Proceedings of IEEE
Symposium on Computer Arithmetic. 277–281.

[11] Peter M. Kogge and Harold S. Stone. 1973. A Parallel Algorithm for the
Efficient Solution of A General Class of Recurrence Equations. IEEE
Transactions on Computers. 100, 8 (1973), 786–793.

[12] Richard E. Ladner and Michael J. Fischer. 1980. Parallel Prefix Compu-
tation. Journal of the ACM. 27, 4 (1980), 831–838.

[13] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large
Network Dataset Collection. http://snap.stanford.edu/data.

[14] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai. 2017.
Garaph: Efficient GPU-Accelerated Graph Processing on A Single
Machine with Balanced Replication. In Proceedings of USENIX Annual
Technical Conference (ATC). 195–207.

[15] Grzegorz Malewicz, MatthewH. Austern, Aart J. C. Bik, James C. Dehn-
ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel:
A System for Large-Scale Graph Processing. In Proceedings of ACM
SIGMOD International Conference on Management of Data (SIGMOD).
135–146.

[16] Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith Ku-
mar, and Hyesoon Kim. 2017. GraphPIM: Enabling Instruction-Level
PIM Offloading in Graph Computing Frameworks. In Proceedings of
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). 457–468.

[17] Eriko Nurvitadhi, Gabriel Weisz, Yu Wang, Skand Hurkat, Marie
Nguyen, James C. Hoe, José F. Martínez, and Carlos Guestrin. 2014.
Graphgen: An FPGA Framework for Vertex-Centric Graph Computa-
tion. In Proceedings of IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 25–28.

[18] Tayo Oguntebi and Kunle Olukotun. 2016. Graphops: A Dataflow
Library for Graph Analytics Acceleration. In Proceedings of the In-
ternational Symposium on Field-Programmable Gate Arrays (FPGA).
111–117.

[19] Graph 500 Origanization. 2018. Graph 500 Benchmark. http://graph500.
org/.

[20] Muhammet M. Ozdal, Serif Yesil, Taemin Kim, Andrey Ayupov, John
Greth, Steven Burns, and Ozcan Ozturk. 2016. Energy Efficient Archi-
tecture for Graph Analytics Accelerators. In Proceedings of the Annual
International Symposium on Computer Architecture (ISCA). 166–177.

[21] Kostas Pagiamtzis and Ali Sheikholeslami. 2006. Content-Addressable
Memory (CAM) Circuits and Architectures: A Tutorial and Survey.
IEEE Journal of Solid-State Circuits. 41, 3 (2006), 712–727.

[22] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAM-
Sim2: A Cycle Accurate Memory System Simulator. IEEE Computer
Architecture Letters. 10, 1 (2011), 16–19.

[23] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In Proceedings of ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP). 135–146.

[24] Jack Sklansky. 1960. Conditional-Sum Addition Logic. IRE Transactions
on Electronic Computers. 2 (1960), 226–231.

[25] Linghao Song, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. 2018.
GraphR: Accelerating Graph Processing Using ReRAM. In Proceed-
ings of IEEE International Symposium on High Performance Computer
Architecture (HPCA). 531–543.

[26] Narayanan Sundaram, Nadathur Satish, Md M. A. Patwary, Subra-
manya R. Dulloor, Michael J. Anderson, Satya G. Vadlamudi, Dipankar
Das, and Pradeep Dubey. 2015. GraphMat: High Performance Graph
Analytics Made Productive. Proceedings of the VLDB Endowment. 8, 11
(2015), 1214–1225.

[27] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos
Siganos, Mohammed J. Zaki, and Ashraf Aboulnaga. 2015. Arabesque:
A System for Distributed Graph Mining. In Proceedings of the Sympo-
sium on Operating Systems Principles (SOSP). 425–440.

[28] Davis Tim. 2018. The University of Florida Sparse Matrix Collection.
https://sparse.tamu.edu/.

[29] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. 2016. Gunrock: A High-Performance Graph
Processing Library on the GPU. In Proceedings of ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (PPoPP).
11:1–11:12.

[30] Yuxin Wang, Peng Li, Peng Zhang, Chen Zhang, and Jason Cong.
2013. Memory Partitioning for Multidimensional Arrays in High-Level
Synthesis. In Proceedings of the Annual Design Automation Conference
(DAC). 12:1–12:8.

[31] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan
Wei, Haoxiang Lin, Yafei Dai, and Lidong Zhou. 2015. GraM: Scaling
Graph Computation to the Trillions. In Proceedings of ACM Symposium
on Cloud Computing (SoCC). 408–421.

[32] Long Zheng, Xiaofei Liao, and Hai Jin. 2018. Efficient and Scalable
Graph Parallel ProcessingWith Symbolic Execution. ACMTransactions
on Architecture and Code Optimization. 15, 1 (2018), 3:1–3:25.

[33] Shijie Zhou, Charalampos Chelmis, and Viktor K. Prasanna. 2016.
High-Throughput and Energy-Efficient Graph Processing on FPGA.
In Proceedings of IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM). 103–110.

[34] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph:
Large-Scale Graph Processing on A Single Machine Using 2-Level
Hierarchical Partitioning. In Proceedings of USENIX Annual Technical
Conference (ATC). 375–386.

http://snap.stanford.edu/data
http://graph500.org/
http://graph500.org/
https://sparse.tamu.edu/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Modern Graph Accelerator and Its Data Conflict Management
	2.2 Inefficiency in Graph Processing
	2.3 Potential of Accumulator
	2.4 Architectural Overview

	3 Parallel Accumulator Design
	3.1 Design Philosophy
	3.2 Parallel Accumulator Architecture

	4 Optimizations For Efficient Use
	4.1 Source Vertex Access Parallelization
	4.2 Source-Based Graph Partition

	5 Evaluation
	5.1 Experimental Settings
	5.2 Overall Performance
	5.3 Sensitivity Study
	5.4 Benefit Breakdown
	5.5 Scalability

	6 Related Work
	7 Conclusion
	References

