
Accelerating Graph Analytics on
CPU-FPGA Heterogeneous Platform

Shijie Zhou, Viktor K. Prasanna
Ming Hsieh Department of Electrical Engineering

University of Southern California

Los Angeles, CA, USA

{shijiezh, prasanna}@usc.edu

Abstract—Hardware accelerators for graph analytics have
gained increasing interest. Vertex-centric and edge-centric
paradigms are widely used to design graph analytics accelerators.
However, both of them have notable drawbacks: vertex-centric
paradigm requires random memory accesses to traverse edges
and edge-centric paradigm results in redundant edge traversals.
In this paper, we explore the tradeoffs between vertex-centric
and edge-centric paradigms and propose a hybrid algorithm
which dynamically selects between them during the execution.
We introduce the notion of active vertex ratio, based on which
we develop a simple but efficient paradigm selection approach.
We develop a hybrid data structure to concurrently support
vertex-centric and edge-centric paradigms. Based on the hybrid
data structure, we propose a graph partitioning scheme to
increase parallelism and enable efficient parallel computation on
heterogeneous platforms. In each iteration, we use our paradigm
selection approach to select the appropriate paradigm for each
partition. Further, we map our hybrid algorithm onto a state-
of-the-art heterogeneous platform which integrates a multi-core
CPU and a Field-Programmable Gate Array (FPGA) in a cache
coherent fashion. We use our design methodology to accelerate
two fundamental graph algorithms, breadth-first search (BFS)
and single-source shortest path (SSSP). Experimental results
show that our CPU-FPGA co-processing achieves up to 1.5×
(1.9×) speedup for BFS (SSSP) compared with optimized baseline
designs. Compared with the state-of-the-art FPGA-based designs,
our design achieves up to 4.0× (4.2×) throughput improvement
for BFS (SSSP). Compared with a state-of-the-art multi-core
design, our design demonstrates up to 1.5× (1.8×) speedup for
BFS (SSSP).

I. INTRODUCTION

Emerging applications in broad areas including social net-

works, bioinformatics, and information networks require fast

and efficient large-scale graph analytics [1]. To handle the

graphs produced by these applications, many graph analytics

engines have been proposed [2], [3], [4]. These engines

are based on software and target general-purpose processors.

Recently, accelerating graph analytics using hardware has been

an area of growing interest in the community [5-19].

With the increased focus on energy-efficient acceleration,

heterogeneous architectures integrating CPU and FPGA have

become attractive platforms to deliver both high performance

This work is supported by the U.S. National Science Foundation grants
ACI-1339756 and CNS-1643351. This work is also supported in part by Intel
Strategic Research Alliance funding. Equipment grant from the Intel Hardware
Accelerator Research Program is gratefully acknowledged.

and low cost [13], [20], [21]. FPGA vendors have integrated

general-purpose ARM processor and state-of-the-art FPGA

into the same chip [22], [23]. A new trend is to couple CPU

and FPGA through cache coherent interconnect. Intel and IBM

have developed coherent memory interconnect technologies

to provide coherent shared-memory access between CPU and

FPGA [24], [25]. This enables FPGA to be a peer to CPU from

a memory access standpoint, eliminating the need to move data

back and forth between CPU and FPGA.

Graph algorithms have data-driven computation dictated by

the vertices and edges of the graph. Vertex-Centric Paradigm

(VCP) [2] and Edge-Centric Paradigms (ECP) [3] have been

widely used to design graph processing engines. However,

both of them have notable drawbacks, making it challenging to

exploit FPGA to achieve efficient acceleration. VCP requires

random memory accesses to traverse edges [3], [6]. Long-

latency random memory accesses can result in accelerator

stalls, potentially leading to limited performance gains [6].

ECP traverses edges in a streaming fashion, making FPGA

an appropriate platform for acceleration [17]. However, ECP

results in redundant edge traversals for non-stationary graph

algorithms (e.g., BFS and SSSP) [29], [3]. In this paper, we

explore the tradeoffs between VCP and ECP, and propose

a hybrid algorithm to accelerate graph analytics on a CPU-

FPGA heterogeneous platform. Our main contributions are:

• We conduct a detailed comparison between VCP and

ECP. Based on their key characteristics, we propose

a hybrid algorithm which dynamically selects between

them during the execution.

• We propose a graph partitioning scheme to enable effi-

cient concurrent execution on heterogeneous platforms.

For each partition, we select the appropriate paradigm

based on a simple paradigm selection approach.

• We develop an FPGA accelerator to accelerate our hybrid

algorithm. We implement our approach on a state-of-the-

art heterogeneous platform that supports coherent shared-

memory between CPU and FPGA.

• Compared with state-of-the-art FPGA-based designs, our

design achieves up to 4.0× (4.2×) throughput improve-
ment for BFS (SSSP). Compared with a state-of-the-art

multi-core design, our design achieves up to 1.5× (1.8×)
speedup for BFS (SSSP).

2017 29th International Symposium on Computer Architecture and High Performance Computing

978-1-5090-1233-6/17 $31.00 © 2017 IEEE

DOI 10.1109/SBAC-PAD.2017.25

137

The rest of the paper is organized as follows. Section 2

covers background. Section 3 introduces our hybrid algorithm.

Section 4 describes implementation details. Section 5 discusses

experimental results. Section 6 presents related work. Section

7 concludes the paper.

II. BACKGROUND

A. Vertex-centric and Edge-centric Paradigms

Vertex-centric paradigm (VCP) [2] follows a scatter-gather

processing model. The computation is iterative, each iteration

consisting of a scatter phase followed by a gather phase.

Algorithm 1 shows the general computation template of VCP.

In the scatter phase, the vertices that have updates (e.g., the

attribute of a vertex has been updated in the previous iteration)

send the updates to their neighbours. Such vertices are defined

as active vertices. The outgoing edges of active vertices are

defined as useful edges. In the gather phase, updates are

performed and the vertices that are updated become active

vertices in the next iteration. One key issue of VCP is that

vertices require random memory accesses through indices or

pointers to traverse their edges [3], [6]. The random memory

accesses are highly irregular such that conventional prefetching

and caching strategies are not able to efficiently handle them,

resulting in dramatically higher memory access latency. In this

scenario, accelerator stalls and the performance significantly

deteriorates [3], [6].

Algorithm 1 Vertex-centric paradigm (VCP)

1: while not done do
2: Scatter:
3: for each vertex v do
4: if v has update u then
5: send u to neighbours (through v’s outgoing edges)
6: end if
7: end for
8: Gather:
9: for each update u do
10: if update condition is met then
11: update vertex u.dest
12: end if
13: end for
14: end while

Edge-centric paradigm (ECP) [3] also follows the iterative

scatter-gather processing model. Algorithm 2 illustrates the

general computation template of ECP. The gather phase of

ECP is the same as VCP, but the scatter phase is quite different:

ECP sequentially traverses all the edges in the scatter phase.
This eliminates random memory accesses to edges and enables

to read edges from external memory in a streaming fashion.

However, for non-stationary graph algorithms [29], in which

not all the vertices are active in every iteration, it is likely

that there are only a few active vertices in an iteration; in this

scenario, ECP leads to substantial redundant edge traversals

since it traverses all the edges rather than just the useful edges.

Algorithm 2 Edge-centric paradigm (ECP)

1: while not done do
2: Scatter:
3: for each edge e do
4: if vertex e.src has update u then
5: send u to vertex e.dest
6: end if
7: end for
8: Gather:
9: for each update u do
10: if update condition is met then
11: update vertex u.dest
12: end if
13: end for
14: end while

B. CPU-FPGA Heterogeneous Platform

Heterogeneous architectures integrating CPU and FPGA

have become attractive platforms for high-performance com-

puting with low cost [22], [23], [24], [25]. Since processing

units optimized for fast sequential processing (CPU) and pro-

cessing units optimized for massive parallelism (FPGA) coex-

ist, such architectures can efficiently cope with the workloads

that require variable amounts of parallelism across the execu-

tion. There has been a new trend to integrate CPU and FPGA

through cache-coherent interconnect [24], [25]. Intel and IBM

have developed server-class products that integrate CPU and

FPGA using cache-coherent interconnect technologies [24],

[25]. Such heterogeneous platforms allow FPGA to directly

read from and write to the memory hierarchy of CPU, making

FPGA a peer to the CPU from a memory access standpoint.

Compared with conventional interconnect technologies (e.g.,

PCIe), cache-coherent interconnect eliminates the need to

move data back and forth between CPU and FPGA, enabling

to offload specific workloads to FPGA for acceleration in a

fine-grained manner.

III. HYBRID ALGORITHM

A. Motivation

We define active vertex (in an iteration) as a vertex that
has an update to send to its neighbors, and active vertex
ratio as the number of active vertices over the total number
of vertices. Our hybrid algorithm targets non-stationary graph

algorithms, in which only a subset of the vertices are active in

each iteration. Example algorithms include breadth-first search

(BFS), single-source shortest path (SSSP), weakly connected

component, and community detection. Our hybrid algorithm is

motivated by the fact that for such graph algorithms, the active

vertex ratio varies over the iterations, especially when the input

graphs follow power-law structure [10], [13]. The key idea of

our hybrid algorithm is: (1) when the active vertex ratio in an

iteration is low, we adopt VCP to traverse edges (small amount

of random memory accesses are favored over large amount of

redundant edge traversals); (2) when the active vertex ratio in

an iteration is high, we adopt ECP to traverse edges (small

138

amount of redundant edge traversals are favored over large

amount of random memory accesses).

B. Hybrid Data Structure

We assume the input graph is initially stored based on the

coordinate (COO) format [26], which is a widely used storage

format for graphs [3], [18]. VCP and ECP have different data

structure requirements [2], [3], [18]. We propose a hybrid data

structure to concurrently support VCP and ECP.

Given a graph G = (V,E) with |V | vertices and |E| edges,
the COO format stores the graph as an edge array with |E|
elements; each edge is represented as a <src, dest, weight>
tuple, which specifies the source vertex, destination vertex, and

weight of the edge; the edge array has been sorted based on

source vertices. Besides the edge array, our design maintains a

vertex array with |V | elements. Each vertex has an algorithm-
specific ‘attribute’, which records the attribute value of the
vertex. For example, for BFS, the attribute refers to the BFS

level of the vertex; for SSSP, the attribute refers to the shortest

path length between the vertex and the source vertex. Further,

we partition the vertex array into sub-arrays of equal size, each

of which is defined as an interval. Assuming the vertex array
is partitioned into P intervals, the i-th interval (0 ≤ i < P)
includes the vertices with indices from i× |V |

P to (i+1)× |V |
P −

1. All the edges whose source vertices belong to the same
interval (i.e., outgoing edges of the vertices in the interval)

constitute a shard of the interval. Note that since the edge
array has been sorted based on source vertices, each shard is

a continuous sub-array of the edge array. For each interval, we

maintain an update bin which is an array to store the updates
whose destination vertices belong to the interval. An update

consists of a <dest, value> pair, in which ‘dest’ refers to the
destination vertex of the update and ‘value’ is used to update
the attribute of destination vertex. The partitioning scheme

increases the available parallelism because the computations of

different intervals can be performed in parallel. In addition, we

can choose the interval size |I| such that the vertex data of each
interval fit in on-chip memory (e.g., cache); as a result, the

vertex data can be repeatedly accessed from on-chip memory

when processing the shard of the interval.

The above data structure supports ECP, but does not support

VCP. The reason is that given a vertex, the memory location

of its outgoing edges is unknown; therefore, the vertex is not

able to access its edges. To resolve this issue, for each vertex,

we keep a ‘pointer’ to record the index of its first outgoing
edge in the edge array, through which each vertex can quickly

locate its edges. To indicate whether vertices are active or not

in an iteration, we assign an ‘active tag’ to each vertex, which
records the most recent iteration in which the attribute of the

vertex was updated. The vertices with ‘active tag’ value of i
become active vertices in the (i+1)-th iteration. In Figure 1,
we show the data structures for an example graph, assuming

the vertex array is partitioned into 2 intervals (|I| = 2).

C. Hybrid Algorithm

Figure 1: Example graph and its associated data structures

1) Paradigm Selection: The scatter phase includes 3 types
of operations, namely reading edges from memory, computing

updates, and writing updates into the update bins in memory.

Since the execution for computing updates and writing updates

are similar between VCP and ECP, reading edges results in the

most significant performance difference [3]. In each iteration,
we select the appropriate paradigm for each interval based
on the active vertex ratio of the interval. Let |I| denote the
number of vertices in an interval, BWV CP (BWECP) denote

the sustained memory bandwidth for reading edges based on

VCP (ECP), and r denote the active vertex ratio of an interval
(i.e., the number of active vertices in the interval divided by

|I|).
o Proposition 3.1: In the scatter phase, if r >

BWV CP /BWECP , ECP results in lower execution time; oth-
erwise, VCP results in lower execution time.

Proof. Let |S| denote the total number of edges in the shard
of the interval, and De denote the number of bytes required

to represent an edge. The execution time for reading all the

edges based on ECP can be estimated as:

TECP = |S| ×De/BWECP (1)

Let m denote the average degree of vertices (m = |S|/|I|) in
the interval. The execution time for reading all the edges of

active vertices based on VCP can be estimated as:

TV CP = r × |I| ×m×De/BWV CP (2)

By comparing Equations (1) and (2), we can obtain that when

r > BWV CP /BWECP , TECP is smaller; otherwise, TV CP
is smaller.

Let rthold denote the threshold for determining whether to
select VCP or ECP (i.e., rthold = BWV CP /BWECP). We

use the first two iterations to estimate BWV CP and BWECP

in order to determine rthold: in the first iteration, we enforce

139

to select ECP to estimate BWECP ; in the second iteration,

we enforce to select VCP to estimate BWV CP . We estimate

the sustained memory bandwidth for reading edges based on

Eq. (3), in which De denotes the number of bytes required to

represent an edge and Tscatter denotes the execution time of
the scatter phase in the corresponding iteration.

BW = # of accessed edges×De/Tscatter (3)

After rthold is determined, at the beginning of each iteration,
we select the appropriate paradigm for each interval based on

Algorithm 3. The scatter phase of the intervals that are added

into the V CP queue (ECP queue) will be performed based
on VCP (ECP).

Algorithm 3 Paradigm selection

Let P denote the total number of intervals

Let Ii denote the i-th interval (0 ≤ i < P)

1: for i from 0 to P − 1 do
2: if Ii.no of active vertices > |I| × rthold then
3: ECP queue.enqueue(Ii)
4: else if Ii.no of active vertices > 0 then
5: V CP queue.enqueue(Ii)
6: end if
7: end for

2) Scatter Phase: The scatter phase of the intervals in
V CP queue and ECP queue is performed based on Algo-
rithms 4 and 5, respectively. We accelerate the scatter phase

by CPU-FPGA co-processing. To coordinate the execution

between CPU and FPGA, we develop a runtime system.

As shown in Figure 2, (1) when both V CP queue and

ECP queue are not empty, CPU and FPGA concurrently

execute the scatter phase of the intervals in V CP queue and
ECP queue, respectively; (2) when V CP queue is empty
but there are still remaining intervals in ECP queue, the
runtime system employs a work-stealing strategy to achieve

load balancing between CPU and FPGA; in this scenario, CPU

‘steals’ an interval from ECP queue and executes its scatter
phase. We use FPGA to accelerate the scatter phase of the

intervals in ECP queue because (1) we observe that the total
execution time is dominated by executing the scatter phase of

the intervals with high active vertex ratio and (2) the streaming

nature of ECP makes FPGA suitable for acceleration [3], [17].

Note that when updates are written into the update bins in

the memory, atomic operations (e.g., exclusive access to shared

data) are required. This is because the updates are written

based on the destination vertices; it is likely that multiple

processing units (i.e., CPU cores and FPGA) concurrently

write updates into the same update bin. Thus, one shared

counter is required for each update bin to keep track of the

number of updates stored in each update bin.

3) Gather Phase: The gather phase of distinct intervals can
be independently executed in parallel. This is because the
updates stored in an update bin will be only performed on

the vertices in the corresponding interval. In the gather phase,

…

…

Figure 2: Coordination between CPU and FPGA by runtime

system

Algorithm 4 VCP-based scatter
1: function VCP scatter(Interval):
2: for each vertex v in Interval do
3: if v is active with update u then
4: for each outgoing edge e of v do
5: write u into the Update Bin of I�e.dest×P/|V |�
6: end for
7: end if
8: end for

Algorithm 5 ECP-based scatter
1: function ECP scatter(Interval):
2: for each edge e in the Shard of Interval do
3: if vertex e.src is active with update u then
4: write u into the Update Bin of I�e.dest×P/|V |�
5: end if
6: end for

we also keep track of the number of updated vertices in each

interval, which can be used to compute the active vertex ratio

of the interval in the next iteration.

IV. IMPLEMENTATION

Our approach targets a heterogeneous platform with coher-

ent shared-memory between CPU and FPGA. Examples in-

clude Intel-Altera Heterogeneous Architecture Research Plat-

form (HARP) [24]. The platform integrates an Intel Xeon

multi-core processor with an Altera FPGA through cache-

coherent QuickPath Interconnect (QPI) technology [24]. On

FPGA, a control unit for receiving control signals from CPU

and a 4KB device status memory for storing the status of

FPGA are provided. Users can implement customized Ac-

celerator Function Unit (AFU) on FPGA, which is able to

coherently access the CPU’s last-level cache (i.e., L3 cache)

and the DRAM attached to the CPU through QPI.

A. Overall Architecture

Figure 3 depicts the overall architecture of our design. The

vertex array, edge array, and update bins are stored in DRAM.

140

Figure 3: Overall architecture

On CPU, a master thread is created to schedule the execution

and coordinate with FPGA. The master thread creates a group

of worker threads to execute the computations for distinct

intervals in parallel. Each thread maintains a local update bin;

in the scatter phase, the produced updates are first written into

the local update bins; when a local update bin becomes full,

the corresponding thread will write the updates into DRAM.

Having the local update bins in cache is in order to avoid

frequent expensive atomic operations for writing updates into

the update bins in DRAM.

The master thread controls FPGA by sending control signals

to the control unit on FPGA. Based on the control signals,

FPGA obtains the memory addresses of the data to be pro-

cessed and starts processing. During processing, FPGA sets

its device status to ‘busy’; when FPGA completes processing,
it sets its device status to ‘free’ to indicate that it is ready
to process another interval. In the scatter phase, the updates

produced by FPGA are first written into the local update bin of

the master thread. The master thread is responsible for writing

them into DRAM.

B. Accelerator Function Unit Design

FPGA accesses the shared-memory in blocks of cache lines.

The cache line size (e.g., 64 bytes) can be much larger than

the data size of an edge. In order to fully utilize the data in

a cache line, we design a multi-pipeline architecture for the

AFU. Assuming the cache line size is CL bytes and each edge
is represented using De bytes, the AFU has CL/De pipelines

working in parallel. Figure 4 depicts the AFU architecture. All

the pipelines connect to an interval buffer which is composed

of on-chip Block RAMs (BRAMs). When FPGA executes the

scatter phase for an interval, the vertex data of the interval are

prefetched into the interval buffer; as a result, the pipelines

can access the vertex data only from the interval buffer other

than from DRAM. Each pipeline consists of a BRAM access

module and a compute module. The BRAM access module

reads the vertex data from the interval buffer when edges are

streamed in. The compute module is responsible for computing

the update based on the attribute of vertex and edge weight.

The update filter is used to filter out the invalid updates

produced by non-active vertices. An invalid update can be

identified by checking the ‘active tag’ of the source vertex
that produces the update. Valid updates are first written into

an output buffer on FPGA whose size is equal to the cache

line size. When the output buffer becomes full, FPGA issues

a memory write request to write the buffered updates into the

local update bin of the master thread.

Figure 4: AFU architecture

V. EXPERIMENTAL RESULTS

A. Experimental Setup

We implemented our designs on an Intel-Altera Heteroge-

neous Architecture Research Platform (HARP) [24]. The target

platform integrates a 14-core Intel Xeon E5-2680 processor

with an Altera Arria 10 GX1150 FPGA through QuickPath

Interconnect (QPI) technology. Each CPU core operates at

2.4 GHz. The FPGA has 1,150,720 Adaptive Logic Modules

(ALM) and up to 6.62 MB of on-chip BRAMs. The hetero-

geneous platform is equipped with 64 GB DDR3-1600 main

memory. CPU can assess the main memory with the peak

bandwidth of 30 GB/s. QPI enables the FPGA to assess the

main memory with the peak bandwidth of 12.8 GB/s [24].

We report the resource utilization of our FPGA accelerators

in Table I. They are evaluated using Quartus design software.

For BFS (SSSP), each interval has 512K (128K) vertices

and each vertex has a 8-bit (32-bit) attribute. We could not

further increase the interval size because the accelerators have

consumed up to 62.6% of the BRAMs in the FPGA device.

For both BFS and SSSP, the FPGA accelerator runs at 200

MHz and the AFU contains 8 parallel pipelines to saturate the

bandwidth available to the FPGA.

Table I: Resource utilization
Algorithm Logic (ALM) Register Block RAM

BFS 7.6% 84892 62.6%

SSSP 7.6% 87395 62.6%

We generate synthetic graphs using the Graph 500 graph

generator [1], which has been widely used [3], [8], [13], [15],

[30]. Table II summarizes the key characteristics of the graph

datasets. The pre-processing overhead to generate our hybrid

141

Figure 5: VCP vs. ECP on CPU

data structure (Section III-B) is also included in Table II. The

pre-processing is performed by the CPU of the target platform.

We assume the input graphs are initially stored in the COO

format and do not change during the execution. Results in

this work were generated using pre-production hardware and

software from Intel, and may not reflect the performance of

production or future systems.

Table II: Graph datasets
Notation # Vertices (|V |) # Edges (|E|) Tpre−processing

G1 10 M 140 M 0.005 s

G2 10 M 180 M 0.012 s

G3 10 M 160 M 0.025 s

We use execution time and throughput as the performance

metrics for evaluations. The throughput metric is proposed by

the Graph 500 community for performance comparison across

various architectures and frameworks [1]. It is defined as the

number of Traversed Edges Per Second (TEPS) [1].

B. VCP vs. ECP on CPU

To explore the tradeoffs between VCP and ECP, we first

compare their performance on the CPU of the target platform.

Figure 5 shows the execution time comparison of each iter-

ation. It can be observed that the active vertex ratio has a

significant impact on the execution time of each iteration for

both VCP and ECP: when the active vertex ratio of an iteration

increases, the execution time of the iteration increases as well.

In addition, we observe that when the active vertex ratio is

high, ECP results in lower execution time; whereas when the

active vertex ratio is low, VCP results in lower execution time.

We also notice that ECP sustains roughly 10× higher memory

bandwidth than VCP for reading edges in the scatter phase.

C. Hybrid Algorithm on CPU

Further, we compare our hybrid algorithm (Section III-C)

with VCP and ECP on the CPU of the target platform. Figure

6 shows the execution time comparison. For BFS, our hybrid

algorithm achieves up to 1.4× (1.5×) speedup compare with
VCP (ECP); for SSSP, our hybrid algorithm achieves up to

1.1× (1.3×) speedup compared with VCP (ECP).

1 2 3 4 5 6 7

Figure 6: Execution time comparison among VCP, ECP, and

hybrid algorithm on CPU

D. FPGA Acceleration for Hybrid Algorithm

We use our FPGA accelerator design (Section IV-B) to

accelerate the hybrid algorithm. Figure 7 shows the speedup

due to the FPGA acceleration. The CPU-FPGA co-processing

design achieves up to 1.5× (1.9×) speedup for BFS (SSSP)
compared with the CPU-only design. The achieved speedup is

142

Table III: Comparison with state-of-the-art FPGA-based designs

Approach Algorithm Platform
Memory BW (GB/s) Throughput

Generality
1lCPU1l FPGA (TEPS)

[8]

BFS

12-core processor + Virtex 5 32 20 1550 M
Supports BFS only

[15] 4-core processor + Kintex Ultrascale 17 60 1166 M

This paper 14-core processor + Arria 10 30 12.8 1670 M Supports various algorithms

[9]
SSSP

Virtex 7 − 31.8 1118 M Supports SSSP only

This paper 14-core processor + Arria 10 30 12.8 1175 M Supports various algorithms

mainly constrained by the QPI bandwidth (12.8 GB/s). When

FPGA has a higher bandwidth to access the memory, more

workloads can be offloaded onto the FPGA and our design

will achieve even higher speedup.

1 2 3 4 5 6 7

Figure 7: Accelerating hybrid algorithm by CPU-FPGA co-

processing on heterogeneous platform

E. Comparison with State-of-the-art Designs
1) Comparison with FPGA-based Design: There are sev-

eral designs to explore FPGA to accelerate BFS [8], [15]

and SSSP [9]. These designs are highly optimized imple-

mentations with optimizations only applicable to the specific

target algorithm. We compare with the state-of-the-art FPGA-

based designs based on the throughput performance. Table

III summarizes the comparison results. Our CPU-FPGA co-

processing design achieves up to 4.0× (4.2×) throughput
improvement for BFS (SSSP) with a even lower memory

bandwidth.
2) Comparison with Multi-core Design: We further com-

pare our design with a state-of-the-art multi-core design,

GraphMat [4]. GraphMat is a highly optimized open-source

graph processing framework and has demonstrated the best

performance among existing software graph-processing frame-

works. We execute GraphMat on our target platform. Table

IV shows the execution time comparison with GraphMat. Our

design achieves up to 1.5× and 1.8× speedup for BFS and

SSSP, respectively.

VI. RELATED WORK

A. Graph Processing Frameworks

Several software-based graph processing frameworks [3],

[4] and hardware-based graph processing frameworks [7], [16],

Table IV: Comparison with state-of-the-art multi-core design

Algorithm Dataset Approach Exec. time Speedup

BFS

G1
[4] 0.17 s

1.42×
This paper 0.12 s

G2
[4] 0.25 s

1.47×
This paper 0.17 s

G3
[4] 0.36 s

1.50×
This paper 0.24 s

SSSP

G1
[4] 0.97 s

1.54×
This paper 0.63 s

G2
[4] 1.81 s

1.65×
This paper 1.10 s

G3
[4] 3.87 s

1.81×
This paper 2.13 s

[17], [18], [27], [28] have been developed. These frameworks

provide high-level programming models to allow programmers

to easily perform graph analytics. They also focus on optimiz-

ing memory performance and exploiting massive parallelism.

However, these frameworks target homogeneous platforms and

are designed based on either VCP or ECP.

B. Graph Analytics on Heterogeneous Platforms

Accelerating graph analytics on CPU-accelerator hetero-

geneous platforms has been studied in [8], [10], [13], [16],

[30]. However, most of the existing designs mainly use the

CPU of the heterogeneous platform for scheduling and pre-

processing; when the accelerator is processing, CPU becomes

idle. In [10], [13], the computations of BFS is dynamically

mapped onto the CPU or the accelerator during the execution.

However, each iteration is executed entirely either on the CPU

or the accelerator, making the other idle. The design in [30]

tries to concurrently execute the computations of each BFS

iteration on both the CPU and GPU. However, the CPU-GPU

co-processing design severely degrades the performance of

each device. Compared with the existing designs, our design

methodology enables efficient CPU-accelerator co-processing

to fully utilize the computing resources of heterogeneous

platforms. We also address the load balancing issue between

the CPU and the accelerator.

143

C. FPGA-based Graph Analytics Accelerators

Using FPGA to accelerate graph analytics has sparked

great research interest. However, many existing FPGA-based

accelerators [6], [8], [9], [11], [12], [13], [15] are algorithm-

specific and can not be easily extended to accelerate other

graph algorithms. GraphGen [7] is an FPGA framework tar-

geting general graph applications. It partitions the graph into

sub-graphs and schedules the execution of each sub-graph.

However, GraphGen requires the vertex data and edge data

of a sub-graph to fit in the on-chip memory of FPGA. For

large graphs, this can lead to a large number of sub-graphs

and thus significantly increase the scheduling complexity. In

[17], FPGA-based accelerators for several graph algorithms

are proposed based on ECP. However, the work mainly focuses

on optimizing memory and energy-efficiency performance,

but does not address the redundant edge traversal issue of

ECP. ForeGraph [19] is a multi-FPGA-based graph processing

framework. It partitions the graph and uses multiple FPGAs to

concurrently process distinct partitions. However, the perfor-

mance is constrained by the communication overhead among

the FPGAs.

VII. CONCLUSION

In this paper, we proposed a novel hybrid algorithm based

on a CPU-FPGA heterogeneous platform to accelerate graph

analytics. Our algorithm dynamically selected between vertex-

centric and edge-centric paradigms to traverse edges. We

developed an efficient paradigm selection approach based on

the notion of active vertex ratio. We proposed a hybrid data

structure and graph partitioning scheme to enable efficient

concurrent execution on heterogeneous platforms. We imple-

mented our design on a state-of-the-art heterogeneous platform

to accelerate BFS and SSSP. Experimental results showed that

with efficient CPU-FPGA co-processing, our design achieved

up to 1.9× speedup compared with various highly optimized

baseline designs. Compared with state-of-the-art FPGA-based

designs, our design achieved up to 4.0× and 4.2× throughput

improvement for BFS and SSSP, respectively.

Currently, our CPU-FPGA co-processing design selects the

interval size based on the available on-chip memory resources

of FPGA, without considering the size of on-chip cache of

CPU. In the future, we plan to explore the impact of interval

size on the performance by varying the interval size. We

also plan to vary the threshold ratio to explore its impact on

the performance. Future work will also involve extending our

design methodology to accelerate other graph problems, such

as weakly connected components and community detection.

REFERENCES

[1] “Graph 500,” http://www.graph500.org/
[2] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N.

Leiser, and G. Czajkowski, “Pregel: A System for Large-scale Graph
Processing,” in Proc. of SIGMOD, pp. 135-146, 2010.

[3] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: Edge-centric
Graph Processing using Streaming Partitions,” in Proc. of SOSP, pp.
472-488, 2013.

[4] N. Sundaram, N. Satish, M. A. Patwary, S. R. Dulloor, M. J. Anderson,
S. G. Vadlamudi, D. Das, and P. Dubey, “GraphMat: High Performance
Graph Analytics Made Productive,” in Proc. of VLDB Endowment, vol.
8, no. 11, pp. 1214-1225, 2015.

[5] M. DeLorimier, N. Kapre, N. Mehta, and A. DeHon, “Spatial hardware
implementation for sparse graph algorithms in GraphStep,” in ACM
Transactions on Autonomous and Adaptive Systems, vol. 6, 2011.

[6] B. Betkaoui, Y. Wang, D. B. Thomas, and W. Luk, “A Reconfigurable
Computing Approach for Efficient and Scalable Parallel Graph Explo-
ration,” in Proc. of ASAP, pp. 8-15, 2012.

[7] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe,
J. F. Martinez, and C. Guestrin, “GraphGen: An FPGA Framework for
Vertex-centric Graph Computation,” in Proc. of FCCM, pp. 25-28, 2014.

[8] O. G. Attia, T. Johnson, K. Townsend, P. Jones, and J. Zambreno,
“CyGraph: A Reconfigurable Architecture for Parallel Breadth-First
Search,” in Proc. of IPDPSW, 2014.

[9] G. Lei, Y. Dou, R. Li, and F. Xia, “An FPGA Implementation for Solving
the Large Single-Source- Shortest-Path Problem,” IEEE Transactions on
Circuits and Systems II, vol. 63, iss. 5, pp. 473-477, 2016.

[10] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient Parallel Graph
Exploration on Multi-core CPU and GPU,” in Proc. of PACT, pp. 78-88,
2011.

[11] S. Zhou, C. Chelmis, and V. K. Prasanna, “Accelerating Large-scale
Single-source Shortest Path on FPGA,” in Proc. of IPDPSW, 2015.

[12] S. Zhou, C. Chelmis, and V. K. Prasanna, “Optimizing Memory Perfor-
mance for FPGA Implementation of PageRank,” in Proc. of ReConFig,
2015.

[13] Y. Umuroglu, D. Morrison, and M. Jahre, “Hybrid Breadth-First Search
on a Single-Chip FPGA-CPU Heterogeneous Platform,” in Proc. of FPL,
2015.

[14] H. Giefers, P. Staar, R. Polig, “Energy-Efficient Stochastic Matrix
Function Estimator for Graph Analytics on FPGA,” in Proc. of FPL,
2016.

[15] J. Zhang, S. Khoram, and J. Li, “Boosting the Performance of FPGA-
based Graph Processor using Hybrid Memory Cube: A Case for Breadth
First Search,” in Proc. of FPGA, 2017.

[16] T. Oguntebi and K. Olukotun, “GraphOps: A Dataflow Library for Graph
Analytics Acceleration,” in Proc. of FPGA, pp. 111-117, 2016.

[17] S. Zhou, C. Chelmis, and V. K. Prasanna, “High-throughput and Energy-
efficient Graph Processing on FPGA,” in Proc. of FCCM, pp. 103-110,
2016.

[18] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A High-performance and Energy-efficient Accelerator
for Graph Analytics,” in Proc. of MICRO, 2016.

[19] G. Dai, T. Huang, Y. Chi, N. Xu, Y. Wang, H. Yang, “ForeGraph:
Exploring Large-scale Graph Processing on Multi-FPGA Architecture,”
in Proc. of FPGA, pp. 217-226, 2017.

[20] S. Zhou, W. Jiang, and V. K. Prasanna, “A Flexible and Scalable High-
performance OpenFlow Switch on Heterogeneous SoC Platforms,” in
Proc. of IPCCC, 2014.

[21] Z. Li, L. Liu, Y. Deng, S. Yin, Y. Wang, and S. Wei, “Aggressive
Pipelining of Irregular Applications on Reconfigurable Hardware,” in
Proc. of ISCA, pp. 575-586, 2017.

[22] “Zynq UltraScale+ MPSoC,” https://www.xilinx.com/products/
silicon-devices/soc/zynq-ultrascale-mpsoc.html

[23] “Stratix 10 SoC,” https://www.altera.com/products/soc/portfolio/
stratix-10-soc/overview.html

[24] “Xeon+FPGA Platform for the Data Center,” https://www.ece.cmu.edu/
∼calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf

[25] “POWER8 Coherent Accelerator Processor Interface (CAPI),” http:
//www-304.ibm.com/support/customercare/sas/f/capi/home.html

[26] J. Park, H. Chao, H. R. Arabnia, and N. Y. Yen, “Advanced Multimedia
and Ubiquitous Engineering,” in Future Information Technology, vol. 2,
Springer, 2015.

[27] “nvGRAPH,” https://developer.nvidia.com/nvgraph
[28] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,

“Gunrock: A High-performance Graph Processing Library on the GPU,”
in Proc. of PPoPP, 2016.

[29] S. Singapura, A. Srivastava, R. Kannan, and V. K. Prasanna, “OSCAR:
Optimizing SCrAtchpad Reuse for Graph Processing,” in Proc. of HPEC,
2017.

[30] L. Remis, M. J. Garzaran, R. Asenjo, and A. Navarro, “Breadth-
First Search on Heterogeneous Platforms: A Case of Study on Social
Networks,” in Proc. of SBAC-PAD, pp. 118-125, 2016.

144

