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Abstract—In this paper, we propose a novel design for large-
scale graph processing on FPGA. Our design uses large external
memory for storing massive graph data and FPGA for accel-
eration, and leverages edge-centric computing principles. We
propose a data layout which optimizes the external memory per-
formance and leads to an efficient memory activation schedule to
reduce on-chip memory power consumption. Further, we develop
a parallel architecture on FPGA which can saturate the external
memory bandwidth and concurrently process multiple input
data to increase throughput. We use our design to accelerate
several classic graph algorithms, including single-source shortest
path, weakly connected component, and minimum spanning tree.
Experimental results show that for all the considered graph
algorithms, our design achieves high throughput of over 600
million traversed edges per second (MTEPS) and high energy-
efficiency of over 30 MTEPS/W. Compared with a baseline design,
our optimizations result in over 3.6× throughput and 5.8×
energy-efficiency improvements, respectively. Our design achieves
32% throughput improvement when compared with state-of-the-
art FPGA designs, and up to 7.8× speedup when compared with
state-of-the-art multi-core implementation.

I. INTRODUCTION

Graph processing has become increasingly important in

many real-world applications, such as genome analysis and

social networks [1]. However, obtaining high-performance

for large-scale graph processing is challenging due to: (1)

the datasets of graph problems are massive and can easily

overwhelm the computational and memory capabilities of the

target platform [2]; (2) graph problems exhibit poor spatial

and temporal locality of memory accesses [3]; therefore,

the runtime is dominated by external memory accesses [3].

Edge-centric graph processing [3] and vertex-centric graph

processing [4] have been proposed to solve large-scale graph

problems. While vertex-centric graph processing randomly

accesses edges through pointers stored with vertices [4], edge-

centric graph processing directly accesses edges from external

memory in a streaming fashion [3]. For graphs with the

property that the edge set is much larger than the vertex set,

edge-centric graph processing is often advantageous compared

to vertex-centric graph processing [3].
Throughput and energy-efficiency are key performance met-

rics, especially for large-scale problems [5], [6]. FPGA has
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become an attractive platform to offer acceleration and achieve

high performance with low power consumption for many

applications [7-9]. Recently, there has been increased focus

on accelerating large-scale graph processing using FPGA [10-

19]. However, the performance of external memory system

remains the bottleneck due to the irregular memory access

pattern of graph problems [10]. Moreover, energy-efficiency

optimizations have not been explored. It is still challenging

to develop high-throughput and energy-efficient FPGA design

for large-scale graph processing.

In this paper, we present an FPGA design for large-scale

graph processing that optimizes external memory performance

and at the same time is energy-efficient. We conduct compre-

hensive experiments to evaluate the performance with respect

to throughput and energy-efficiency based on a state-of-the-art

FPGA. Our main contributions are:

• We propose an optimized data layout for edge-centric

graph processing, which minimizes the number of ran-

dom external memory accesses and enables an efficient

memory activation schedule to reduce memory power.

• We develop a parallel architecture on FPGA which satu-

rates the external memory bandwidth and achieves high

clock rate (>200 MHz) for various graph problems.
• We evaluate our design and show that it achieves

high throughput of 600-1000 MTEPS and high energy-

efficiency of 30-50 MTEPS/W for large-scale graph pro-

cessing. This corresponds to over 3.6× higher throughput

and 5.8× higher energy-efficiency compared with a base-

line design, respectively.

• Our design achieves 32% throughput improvement com-

pared with state-of-the-art FPGA designs, and up to

7.8× speedup compared with state-of-the-art multi-core

implementation.

The rest of the paper is organized as follows. Section

II covers background and related work. Section III presents

our target system. Section IV introduces our optimization

techniques. Section V discusses architecture implementation.

Section VI reports experimental results. Section VII concludes

the paper.
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II. BACKGROUND AND RELATED WORK

A. Edge-centric Graph Processing

Edge-centric graph processing harnesses a scatter-gather

programming model and can be applied to a variety of graph

algorithms [3]. The processing is structured in a number of

iterations, each consisting of a scatter phase followed by a

gather phase. In the scatter phase, each edge produces a

message, which carries the data of the source vertex of the
edge and is used to update the destination vertex of the edge

in the gather phase. In the gather phase, all the messages

produced in the previous scatter phase are iterated over to

update the corresponding destination vertices. Algorithm 1

shows a general template of edge-centric graph processing.

The computation complexity of each iteration is O(|V |+ |E|),
where |V | denotes the number of vertices and |E| denotes
the number of edges in the graph. Compared with vertex-

centric graph processing [4], the main advantage of edge-

centric graph processing is that random accesses to the edges

are avoided. For large-scale graphs, for which the edge set is

much larger than the vertex set, edge-centric graph process-

ing usually achieves superior performance than vertex-centric

graph processing [3].

Algorithm 1 Edge-centric Graph Processing
1: while not done do
2: Scatter:

3: for each edge e do
4: Produce a message msg based on Vertex e.src
5: msg.dest = e.dest
6: end for
7: Gather:

8: for each message msg do
9: if update condition for Vertex msg.dest is true then
10: Update Vertex msg.dest based on msg
11: end if
12: end for
13: end while

B. FPGA-based Graph Processing

Recently, using FPGA for graph processing has sparked

great research interest and achieved considerable speedup

compared with multi-core CPU and GPGPU systems [10-19].

However, most of existing designs are application specific and

do not address energy-efficiency [10-16]. Instead, our design

serves a broader range of graph algorithms. GraphStep [17]

and GraphGen [18] are FPGA frameworks based on vertex-

centric graph processing and support a variety of graph algo-

rithms. However, neither GraphStep nor GraphGen explores

energy-efficiency optimizations. In [19], graph processing

accelerators that address energy-efficiency are proposed on

FPGA-based SoCs. However, [19] is designed for sparse graph

problems, while our design solves dense graph problems as

well.

III. SYSTEM OVERVIEW AND DRAM ACCESS

Our design is based on a general system [20] (shown in Fig.

1) that consists of FPGA and large external memory. We target

DRAM as external memory to store massive graph data. State-

of-the-art DRAM (e.g. DDR4 SDRAM) provides high peak

bandwidth, but the performance depends on the access pattern

[22]. In many cases, the sustained bandwidth is much lower

than the peak bandwidth [22], making DRAM performance

the main bottleneck of the target system.
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Fig. 1: System model

A DRAM chip is organized into banks, each consisting of

a two-dimensional matrix of locations ([row, column]) [22].

A row of a bank needs to be first activated to enable accesses

[22]. An access in an activated row is defined as row-hit.
When there is an access to a different row (i.e. other than

the activated row), the activated row must be closed and the

row in which the data resides must be activated. This results

in additional access latency and additional power consumption

[22]. Such access is defined as row-conflict.
There are two common DRAM access patterns: sequential

and random. For sequential access pattern, consecutive mem-

ory accesses map to the same row of DRAM. For random

access pattern, consecutive memory accesses usually map

to different rows of DRAM, resulting in considerable row-

conflicts [22]. Note that sequential access pattern also results

in row-conflicts when accesses switch to a different row. We

define the row-conflict due to sequential access pattern as

compulsory row-conflict, and the row-conflict due to random
access pattern as non-compulsory row-conflict, respectively.
Our focus is to minimize the number of non-compulsory row-

conflicts.

IV. DATA LAYOUT AND POWER OPTIMIZATION

We use single-source shortest path (SSSP) algorithm [21]

as an example to illustrate our optimization techniques. The

ideas extend to other edge-centric graph algorithms as well.

SSSP finds the shortest path from a source vertex to all the

other vertices in the graph. Each vertex maintains the weight

of the shortest path from the source vertex to itself. The data

of each edge include source vertex index, destination vertex

index and edge weight.
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A. Edge-centric Graph Processing based on Partitioning
Since vertex data are randomly accessed for edge-centric

graph processing (see Algorithm 1), it is desirable to store

vertex data in the on-chip memory of FPGA (BRAMs). When

the on-chip memory resources of FPGA are not sufficient to

store all the vertex data, we use the partitioning approach in [3]

to partition the graph data; then both scatter phase and gather

phase are processed partition by partition. Assuming the on-

chip memory can store the data of m vertices, the graph is

partitioned into
⌈ |V |
m

⌉
partitions. The i-th partition maintains

a vertex set including m vertices whose indices are from i×m
to (i + 1) ×m − 1 (0 ≤ i <

⌈ |V |
m

⌉
). Each partition also has

an edge list and a message list. The edge list stores all the

edges whose source vertices are in the partition’s vertex set.
The message list stores all the messages whose destination
vertices are in the partition’s vertex set. The edge list of each

partition remains fixed during the entire computation; the data

of message list are recomputed in every scatter phase; the data

of vertex set are updated in every gather phase. Fig. 2 shows

an example data layout after the graph data are partitioned

into three partitions. Note that the data of each vertex are

uniform in size for edge-centric graph processing [3]; thus,

the memory requirement for each vertex set is identical. Edge

lists and message lists can be different in size; the memory

requirement for each edge list depends on the number of edges

whose source vertices are in the corresponding vertex set;

the memory requirement for each message list depends on

the number of edges whose destination vertices are in the

corresponding vertex set. Algorithm 2 illustrates edge-centric

SSSP after the graph is partitioned.

Vertex ID Weight 
0 0 
1 500 
… … 

Graph Data 

  

Src. Dest. Weight 
0 123 10 
0 230 12 
… … … 

Dest. Value 
0 300 
1 200 
… … 

 

 

 

   

 

Fig. 2: Data layout after partitioning

B. Data Layout Optimization
1) Minimizing the number of non-compulsory row-conflicts:

In Algorithm 2, reading vertices (Line 4, 16), edges (Line

5) and messages (Line 17) from DRAM and writing vertices

(Line 24) into DRAM follow sequential access pattern; only

writing messages (Line 11) into DRAM in the scatter phase

follows random access pattern. This is because the produced

messages are written into DRAM based on their destination

vertices, which can belong to any message list in DRAM. In

the worst case, writing messages into DRAM in the scatter

phase results in O(|E|) non-compulsory row-conflicts. Fig. 3
shows an example in which writing every message into DRAM

results in a non-compulsory row-conflict.

Algorithm 2 Edge-centric SSSP
1: while not done do
2: Scatter:

3: for each partition do
4: read vertex set from DRAM and store into BRAM

5: for each edge e in edge list (read from DRAM) do
6: read weight of Vertex e.src from BRAM

7: let a = weight of Vertex e.src
8: produce a message msg
9: msg.value = e.weight + a
10: msg.dest = e.dest
11: write msg into message list of the partition whose

llllssss vertex set contains Vertex msg.dest in DRAM
12: end for
13: end for
14: Gather:

15: for each partition do
16: read vertex set from DRAM and store into BRAM

17: for each message msg in message list (read from
ldld DRAM) do

18: read weight of Vertex msg.dest from BRAM

19: let b = weight of Vertex msg.dest
20: if msg.value < b then
21: update weight of Vertex msg.dest in BRAM
22: end if
23: end for
24: write vertex set into DRAM

25: end for
26: end while
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Fig. 3: Row-conflicts due to writing messages into DRAM

In order to minimize the number of non-compulsory row-

conflicts due to writing messages into DRAM, we propose an

optimized data layout: the edge list of each partition is sorted
based on the destination vertices; if the destination veritices of

two edges are identical, sorting is based on the source vertices.

The computation complexity for our optimized data layout

is O(
∑k−1

i=0 |Ei| log|Ei|), where |Ei| denotes the number of
edges in the edge list of the i-th partition.

Theorem 4.1: In the scatter phase, based on our optimized
data layout, the number of non-compulsory row-conflicts due
to writing messages into DRAM is O(k2), where k is the total
number of partitions.
Proof: The destination vertices of messages are the same as the

destination vertices of the traversed edges. Since each edge list
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has been sorted based on the destination vertices, the messages

based on each edge list are also produced in a sorted order.

Thus, the messages whose destination vertices belong to the

same partition are produced consecutively and written into the

same message list in DRAM. Non-compulsory row-conflict

only occurs when a message belonging to a different partition

(i.e. other than the partition that the previous message belongs

to) is produced. Therefore, writing the messages produced by

traversing one edge list results in O(k) non-compulsory row-
conflicts. Since scatter phase traverses k edge lists, the total
number of non-compulsory row-conflicts is O(k2), which is
far less than O(|E|) when k is a small number. In Fig. 4, we
show our optimized data layout for the example of Fig. 3.
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1 201 

99 201 

DRAM 

Row-conflict R Row-hit 

Write messages 
based on Dest. 

Fig. 4: Optimized data layout for Fig. 3

2) Message combination mechanism: Due to our optimized
data layout, in the scatter phase, messages having the same

destination vertex are produced consecutively. We propose to

combine such messages before writing them into DRAM, in

order to reduce the number of messages to be processed in

the following gather phase. For example, for SSSP, combining

multiple messages with the same destination vertex is per-

formed by selecting the message that has the smallest value.

C. Memory Power Optimization

Our system is designed to handle large graph datasets.

Thus, memory power is a significant component of the overall

power. We optimize the memory power in order to improve

the energy-efficiency of the entire system.

1) BRAM Power Optimization: FPGA power consists of

static power, memory power, I/O power, clock power and

logic power. For the designs which consume large amount of

on-chip memory resources, on-chip memory power dominates

the overall FPGA power consumption. Since it is desirable to

reduce the number of partitions k by fully utilizing the on-
chip memory resources [3], our design uses large amount of

on-chip memory resources, which in turn leads to high on-chip

memory power consumption.

The on-chip memory in our design consists of a number

of BRAM modules, each storing the same amount of vertex

data. In order to reduce BRAM power consumption, we

implement a BRAM activation approach which selectively

activates and deactivates BRAM modules through the ‘enable’

port of BRAM [24]. Using this approach, a BRAM module is

activated when the accessed data is stored in it, otherwise it

is deactivated to save the BRAM power. Our optimized data

layout results in spatial locality and enables an efficient BRAM

activation schedule.

Theorem 4.2: In the scatter phase, traversing the edge list
of a partition activates each BRAM module at most w times,
where w is the number of distinct destination verices that
appear in the edge list of a partition.
Proof: In the scatter phase, reading vertex data from on-chip

memory is performed based on the source vertices of the

traversed edges. Recall our optimized data layout sorts the

edge list based on the destination verices; when two edges have

the same destination vertex, the sorting is based on the source

vertices. Thus, the edges with the same destination vertex are

not only stored together, but also in a sorted order based on

the source vertices. This leads to an access pattern in which

during a certain amount of time, the source vertices of the

traversed edges are accessed from the same BRAM module.

Hence, traversing the edges with the same destination vertex

activates each BRAM module at most once. When there are w
distinct destination vertices that appear in the edge list, each

BRAM module is activated at most w times (0 < w ≤ |V |).
Theorem 4.3: In the gather phase, traversing the message

list of a partition activates each BRAM module at most k times,
where k is the total number of partitions.
Proof: In the gather phase, accessing vertex data is based on

the destination vertices of messages. Let si,j denote all the
messages which are produced by the edge list of Partition i and
written into the message list of Partition j (0 ≤ i, j < k). The
messages of si,j are in a sorted order based on the destination
vertices due to our proposed data layout (see the proof of

Theorem 4.1). Thus, traversing si,j in the gather phase results
in one BRAM module being repeatedly accessed at a time,

and each BRAM module being activated at most once. For

Partition q (0 ≤ q < k), its message list is the union of s0,q ,
s1,q , ..., sk−1,q . Since traversing si,q (0 ≤ i < k) activates
each BRAM module at most once, traversing the union of

s0,q , s1,q , ..., sk−1,q activates each BRAM module at most k
times.

2) DRAM Power Optimization: DRAM power consists of

access power (i.e. read power and write power), activation

power, and background power [23]. The activation power is

consumed when row-conflict occurs [23]. As discussed in

Section IV-B-1, our optimized data layout reduces the number

of non-compulsory row-conflicts from O(|E|) to O(k2), thus
saving the activation power.

V. ARCHITECTURE IMPLEMENTATION

A. Overall Architecture

The overall architecture of our design is depicted in Fig. 5.

We detail each component in the following sections.

B. Controller

The architecture of controller is shown in Fig. 6. The

progress tracker uses counters to keep track of the processing

progress, including the current phase (scatter or gather), which

106106



On-chip Memory  

DR
AM

 

M
em

or
y 

In
te

rf
ac

e 

RA ry
In

Data 
Dependency 

Resolver 
Dependency

Resolver

FPGA 
Processing 
Pipelines Co

nt
ro

lle
r 

y 
In

nt
ro

Message 
Combiner 

p

Fig. 5: Overall system architecture

partition is being processed and whether the termination con-

dition of the algorithm is satisfied. Based on the processing

progress, the progress tracker generates a control signal to

inform the processing pipelines what the input data represent

(edges or messages) and instruct the processing pipelines to

perform the corresponding logical operations. The address

generator is responsible for determining the DRAM access

type (read or write) and computing the DRAM access ad-

dresses. The buffer is used to temporally store the data to

be written into DRAM. When the buffer is full, FPGA stops

reading from DRAM and begins writing the buffered data into

DRAM. The goal of including the buffer is to avoid reading

edges from DRAM and writing messages into DRAM at the

same time.
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Fig. 6: Architecture of controller

C. Processing Pipelines

To increase the data parallelism of the architecture (denoted

as p), we implement p (p ≥ 1) processing pipelines working
in parallel. In the scatter phase, p edges are concurrently pro-
cessed per clock cycle, and in the gather phase, p messages are
concurrently processed per clock cycle. The data parallelism

p is constrained by the DRAM bandwidth. Specifically, 1 ≤
p ≤ BW

u∗r , where BW denotes the peak DRAM bandwidth,

u denotes the data width of each input data, and r denotes
the clock rate of FPGA. In Fig. 7, we show the processing

pipelines for p=2. As shown, each processing pipeline contains
three stages, including vertex read stage, computation stage,

and vertex write stage.

In the scatter phase, at each clock cycle, each processing

pipeline takes one edge as the input data, and the vertex read

stage reads the source vertex of the edge (Line 6 of Algorithm

2). Then the computation stage produces the message (Line

Vertex Read Computation Vertex  Write 

Vertex Read Computation Vertex  Write VComputation Vertex  VVertex Read

ex Read Vertex  V

Data Forwarding 

Input 
Data 

Output 
Data 

Vertex Data 
On-chip Memory 

Processing Pipelines 

Fig. 7: Processing pipelines for p = 2

7-10 of Algorithm 2). Note that the vertex write stage just

outputs the message since there is no need to update vertices

in the scatter phase.

In the gather phase, at each clock cycle, each processing

pipeline takes one message as the input data, and the vertex

read stage reads the destination vertex of the message (Line 18

of Algorithm 2). Then the computation stage checks whether

the message results in an update (Line 20 of Algorithm 2), in

which case the vertex write stage updates the vertex data in

the on-chip memory (Line 21 of Algorithm 2). Since there is

delay for writing updated vertex data into the on-chip memory,

read-after-write data hazard may occur at the vertex read stage

and computation stage. To handle read-after-write data hazard

without stalling the pipelines, we add data forwarding circuits,

from each vertex write stage to all the vertex read stages and

computation stages, to forward the most recent updated vertex

data (O(p2) complexity).

D. On-chip Memory

The on-chip memory consists of a number of multi-ported

BRAM modules. We use the approach in [26] to implement

the multi-ported BRAM modules, each of which has p read
ports and p write ports (denoted as pR/pW). As a result, p
processing pipelines can read and write the on-chip memory

concurrently. For such a pR/pW BRAM module, the memory

requirement is O(p2) [26]. We also include an ‘enable’ port for
each BRAM module, through which the BRAM module can be

activated or deactivated [24]. To hide the latency of accessing

vertex data from DRAM (Line 4 and 16 of Algorithm 2), we

use double buffering technique: the on-chip memory is evenly

divided into two chunks; while one chunk stores the vertex

set of the partition which is being processed, the controller

pre-fetches the vertex set of the next partition to process into

the other chunk.

E. Data Dependency Resolver

In the gather phase, if multiple messages that enter the

processing pipelines at the same clock cycle have the same

destination vertex, conflict occurs when multiple processing

pipelines concurrently update the same vertex in the on-chip

memory. To address such data dependency, we implement

a combining network (CN) as data dependency resolver, to

combine the messages that are to be processed at the same

clock cycle and have the same destination vertex. The CN sorts
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p input messages based on the destination vertices in a bitonic
sorting fashion [25]; during sorting, if two messages are found

to have the same destination vertex, the two messages are

combined as one message. Thus, the data dependency resolver

ensures that the messages entering the processing stages at the

same clock cycle have distinct destination vertices. When p is
a power of 2, CN contains (1+logp)logp/2 pipeline stages and
each pipeline stage has p

2 comparators [25]. Fig. 8 shows the

architecture of CN for p=4.

Data Dependency Resolver (CN) 

Comp. 

Comp. 

C

CC

Comp. 

Comp. 

C

CC

Comp. 

Comp. 

<10, 115> 
<10, 228> 
<11, 550> 
<11, 122> 

<10, 115> 
<11, 122> 

<10 115> 10 115

Messages 

Value 
Dest. Vertex 

Fig. 8: Combining network for p = 4

F. Message Combiner

The message combiner is used to combine the messages

which have the same destination vertex and are produced con-

secutively in the scatter phase (Section IV-B2). The message

combiner first uses the CN architecture presented in Section

V-E to combine the messages that are produced at the same

clock cycle, then includes one more stage based on Algorithm

3 to combine the messages that are produced at different clock

cycles.

Algorithm 3 Last pipeline stage of message combiner
1: Initialization: reg msg = null
2: Input msg0, ..., msgq−1 from previous stage (1 ≤ q ≤ p)
3: if msg0.dest = reg msg.dest and q = 1 then
4: reg msg = Combine(msg0, reg msg)
5: else if msg0.dest = reg msg.dest and q > 1 then
6: msg0 = Combine(msg0, reg msg)
7: Output msg0, ..., msgq−2 to controller

8: reg msg = msgq−1

9: else
10: Output reg msg, msg0, ..., msgq−2 to controller

11: reg msg = msgq−1

12: end if

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

The experiments were conducted based on the Xilinx Virtex

UltraScale xcvu160flgb2104 with -2L speed grade. The target

device has 926,400 slice LUTs, 1,852,800 slice registers, and

up to 12.8 MB BRAMs. The clock rate, resource utilization,

and power of FPGA are evaluated using Xilinx Vivado 2015.2.

The designs were verified by post-place-and-route simulations

and the reported results are post-place-and-route results. We

use Micron 2GB DDR4 SDRAM (MTA8ATF51264HZ-2G3)

as the external memory. The target DRAM operates at 1.2

GHz and has a peak bandwidth of 19.2 GB/s. We evaluate

DRAM performance including sustained bandwidth and power

using DRAMSim2 [28], a widely used tool to evaluate DRAM

performance for the target system [29], [30].

We use our design to study three classic graph algo-

rithms, including single-source shortest path (SSSP), weakly

connected component (WCC), and minimum spanning tree

(MST). The graph datasets for the experiments (Table I) are

real-life graphs obtained from [27]. We assume that graph does

not change during runtime, and graph data have been pre-

processed and stored in DRAM based on our proposed data

layout (Section IV-B). The pre-processing can be achieved

by traversing the entire edge set for partitioning in O(|E|)
time, and then sorting the edge list of each partition using

streaming sorting network [31], [32] in O(|E|) time. We use
throughput (millions of edges traversed per second (MTEPS))

and energy-efficiency (throughput per Watt (MTEPS/W)) as

our main performance metrics.

TABLE I: Graph datasets
Name |V | |E| Description

com-Youtube 1.1M 12.8M Social network

wiki-Talk 2.3M 14.8M Web graph

cit-Patents 3.6M 15.7M Citation network

soc-LiveJournal 4.7M 65.8M Social network

B. Resource Utilization and Clock Rate

In Table II, we show the resource utilization and clock rate

of the FPGA designs for p=8, which maximize throughput
given the peak DRAM bandwidth. As p increases from 1

to 8, we observe slight clock rate degradation, which is due

to more complex implementation for data forwarding circuits

(O(p2) complexity) and multi-ported BRAM modules (O(p2)
complexity) for larger p. The on-chip memory of our design
has the capacity to store the data of 32K vertices. Since the on-

chip memory is used for double buffering (Section V-D), the

vertex set of each partition contains 16K vertices. The main

bottleneck to support a larger vertex set for each partition is

due to the BRAM resource limitation.

TABLE II: Resource utilization and clock rate
Algorithm Slice LUT Register lBRAMl Clock rate

SSSP 40.6% 21.5% 93.7% 230 MHz

WCC 29.2% 16.7% 64.5% 255 MHz

MST 31.8% 17.4% 64.5% 249 MHz

C. Throughput and Energy-efficiency

We show the performance with respect to throughput and

energy-efficiency in Table III. For all the graph algorithms

and datasets in our experiments, our design achieves high

throughput of 600-1000 MTEPS and high energy-efficiency

of 30-50 MTEPS/W. The achieved energy-efficiency is among

the top 30 in the Green Graph 500 benchmark list [6],

which maintains the most energy-efficient systems for graph

processing.
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TABLE III: Throughput and energy-efficiency

Alg. Dataset
Throughput Power (W) Energy-eff.

(MTEPS) DRAM lFPGAl (MTEPS/W)

SSSP

com 708

0.49 23.73

29.2

wiki 657 27.1

cit 687 28.3

soc 872 36.0

Average 731 30.2

WCC

com 854

0.49 17.42

47.7

wiki 779 43.5

cit 747 41.7

soc 1068 59.5

Average 862 48.1

MST

com 840

0.49 18.57

44.1

wiki 766 40.1

cit 732 38.4

soc 1043 54.7

Average 845 44.3

D. Comparison with Baseline Design

To show the effectiveness of our optimizations, we compare

our optimized design with a baseline design, which uses the

data layout proposed in [3] (Section IV-A), and does not

include our data layout optimization (Section IV-B) or power

optimization (Section IV-C). Table IV summarizes the com-

parison results based on the average performance for our graph

datasets. We observe that, our data layout optimization results

in at least 18.2× reduction of non-compulsory row-conflicts,

which in turn leads to a higher sustained DRAM bandwidth

and less DRAM power consumption. Our optimized design

achieves at least 3.6× higher throughput than the baseline

design.

We show the power consumption comparison in Fig. 9. We

observe that our optimized design reduces the BRAM power

by over 10×. As a result, the total power consumption is
reduced by over 2×, and the energy-efficiency of the entire
system is improved by up to 8.9×.
In Fig. 10, we show the runtime comparison based on the

dataset ‘soc’. Our optimized design reduces runtime by 3.8×
and 1.5×, for the scatter phase and gather phase, respectively.
The runtime reduction of scatter phase is due to our data layout

optimization (Section IV-B1) that reduces the number of non-

compulsory row-conflicts. The runtime reduction of gather

phase is due to our message combining mechanism (Section

IV-B2) which reduces the number of messages to be processed.

We found our observations to hold for all the datasets in our

experiments, hence we consider them to be robust.

TABLE V: Comparison with FPGA-based Design

Approach Platform
Peak BW Throughput per

(GB/s) FPGA (MTEPS)

[11] 4 FPGAs+DRAM 80.0 ∼550
Ours FPGA+DRAM 19.2 ∼730
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Fig. 10: Runtime comparison

E. Comparison with State-of-the-art FPGA Design

We compare our design with one state-of-the-art FPGA

design for graph processing [11]. Table V summarizes the

comparison results based on SSSP performance. Our design

achieves 1.32× higher throughput.

F. Comparison with State-of-the-art Multi-core Design

We compare our FPGA design with a highly optimized

multi-core implementation for edge-centric graph processing

[3]. The target platform of [3] is dual-socket AMD Opteron

6272 with 32 physical cores (2.1 GHz); the main memory has

a peak bandwidth of 25 GB/s. We summarize the results in

Table VI. Our design achieves 1.7×-7.8× speedup.

Although FPGA has a lower clock rate than multi-core

system, FPGA is more advantageous for edge-centric graph

processing due to: (1) DRAM accesses for multi-core imple-

mentation need go through cache hierarchies, while FPGA

directly accesses data from DRAM; (2) cache pollution may

occur for multi-core implementation, resulting in useful vertex

data being evicted from on-chip memory.

TABLE VI: Comparison with multi-core implementation

Algorithm
Throughput (MTEPS)

Speedup
l FPGA l Multi-core

SSSP 731 434 1.7×
WCC 862 110 7.8×
MST 845 139 6.0×
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TABLE IV: Performance comparison with baseline design

Alg. Approach
Sustained Non-compulsory Throughput MTEPS Power (W) Energy-eff. MTEP/W

BW (GB/s) row-conflict rate (MTEPS) Imprv. DRAM lFPGAl (MTEPS/W) Imprv.

SSSP
Optimized 15.3 10.8% 731

3.6× 0.49 23.73 30.2
8.9×

Baseline 15.3 14.8% 202 0.51 58.52 13.4

WCC
Optimized 17.3 10.8% 862

3.7× 0.49 17.42 48.1
5.8×

Baseline 16.0 15.7% 235 0.51 38.13 18.2

MST
Optimized 16.9 10.8% 845

3.7× 0.49 18.57 44.3
5.8×

Baseline 15.9 15.8% 230 0.51 39.76 17.6

VII. CONCLUSION

In this paper, we presented an FPGA design for large-

scale edge-centric graph processing. We proposed a data

layout which optimized the DRAM performance and resulted

in an efficient memory activation schedule to reduce on-

chip memory power consumption. We developed a parallel

architecture which sustained high DRAM bandwidth and was

energy-efficient. Our design achieves high throughput of 600-

1000 MTEPS and high energy-efficiency of 30-50 MTEPS/W

for three classic graph algorithms. Compared with a baseline

design, our proposed optimizations result in at least 3.6×
throughput improvement and 5.8× energy-efficiency improve-

ment, respectively. Compared with state-of-the-art multi-core

implementation, our design achieves up to 7.8× speedup. In

the future, we plan to include solid state drive in the system

to handle even larger graph datasets.
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