
A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing

lunwhan Ahn Sungpack Hong§ Sungjoo Yoo Onur Mutlu t Kiyoung Choi
junwhan@snu.ac.kr, sungpack.hong@oracle.com, sungjoo.yoo@gmail.com, onur@cmu.edu, kchoi@snu.ac.kr

Seoul National University §Oracle Labs tCarnegie Mellon University

Abstract
The explosion of digital data and the ever-growing need for

fast data analysis have made in-memory big-data processing

in computer systems increasingly important. In particular,

large-scale graph processing is gaining attention due to its

broad applicability from social science to machine learning.

However, scalable hardware design that can efficiently process

large graphs in main memory is still an open problem. Ideally,

cost-effective and scalable graph processing systems can be

realized by building a system whose performance increases

proportionally with the sizes of graphs that can be stored in

the system, which is extremely challenging in conventional

systems due to severe memory bandwidth limitations.

In this work, we argue that the conventional concept of

processing-in-memory (PIM) can be a viable solution to

achieve such an objective. The key modern enabler for P1M is

the recent advancement of the 3D integration technology that

facilitates stacking logic and memory dies in a single package,

which was not available when the P1M concept was originally

examined. In order to take advantage of such a new tech

nology to enable memory-capacity-proportional performance,

we design a programmable PIM accelerator for large-scale

graph processing called Tesseract. Tesseract is composed of

(1) a new hardware architecture that fully utilizes the available

memory bandwidth, (2) an efficient method of communication

between different memory partitions, and (3) a programming

interface that reflects and exploits the unique hardware de

sign. It also includes two hardware prefetchers specialized for

memory access patterns of graph processing, which operate

based on the hints provided by our programming model. Our

comprehensive evaluations using five state-of-the-art graph

processing workloads with large real-world graphs show that

the proposed architecture improves average system perfor

mance by a factor of ten and achieves 87% average energy

reduction over conventional systems.

1. Introduction

With the advent of the big-data era, which consists of increas
ingly data-intensive workloads and continuous supply and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ISCA'J5, June 13-17, 2015, Portland, OR, USA
© 2015 ACM. ISBN 978-1-4503-3402-0/15/06$15.00
001: hup://dx.doi.org/l0.1145/2749469.2750386

105

demand for more data and their analyses, the design of com
puter systems for efficiently processing large amounts of data
has drawn great attention. From the data storage perspective,
the current realization of big-data processing is based mostly
on secondary storage such as hard disk drives and solid-state
drives. However, the continuous effort on improving cost and
density of DRAM opens up the possibility of in-memory big
data processing. Storing data in main memory achieves orders
of magnitude speed up in accessing data compared to conven
tional disk-based systems, while providing up to terabytes of
memory capacity per server. The potential of such an approach
in data analytics has been confirmed by both academic and
industrial projects, including RAMCloud [46], Pregel [39],
GrapbLab [37], Oracle TimesTen [44], and SAP HANA [52].

While the software stack for in-memory big-data processing
has evolved, developing a hardware system that efficiently han
dles a large amount of data in main memory still remains as an
open question. There are two key challenges determining the
performance of such systems: (1) how fast they can process
each item and request the next item from memory, and (2) how
fast the massive amount of data can be delivered from memory
to computation units. Unfortunately, traditional computer ar
chitectures composed of heavy-weight cores and large on-chip
caches are tailored for neither of these two challenges, thereby
experiencing severe underutilization of existing hardware re
sources [10].

In order to tackle the first challenge, recent studies have
proposed specialized on-chip accelerators for a limited set of
operations [13,30,34,59]. Such accelerators mainly focus
on improving core efficiency, thereby achieving better per
formance and energy efficiency compared to general-purpose
cores, at the cost of generality. For example, Widx [30] is an
on-chip accelerator for hash index lookups in main memory
databases, which can be configured to accelerate either hash
computation, index traversal, or output generation. Multiple
Widx units can be used to exploit memory-level parallelism
without the limitation of instruction window size, unlike con
ventional out-of-order processors [43].

Although specialized on-chip accelerators provide the bene
fit of computation efficiency, they impose a more fundamental
challenge: system performance does not scale well with the

increase in the amount of data per server (or main memory

capacity per server) . This is because putting more acceler
ators provides speedup as long as the memory bandwidth is
sufficient to feed them all. Unfortunately, memory bandwidth
remains almost constant irrespective of memory capacity due
to the pin count limitation per chip. For instance, Kocberber et

al. [30] observe that using more than four index traversal units

in Widx may not provide additional speedup due to off-chip
bandwidth limitations. This implies that, in order to process
twice the amount of data with the same performance, one
needs to double the number of servers (which keeps memory
bandwidth per unit data constant by limiting the amount of
data in a server), rather than simply adding more memory
modules to store data. Consequently, such approaches limit
the memory capacity per server (or the amount of data han
dled by a single server) to achieve target performance, thereby
leading to a relatively cost-ineffective and likely less scalable
design as opposed to one that can enable increasing of memory
bandwidth in a node along with more data in a node.

This scalability problem caused by the memory bandwidth
bottleneck is expected to be greatly aggravated with the emer
gence of increasingly memory-intensive big-data workloads.
One of the representative examples of this is large-scale graph
analysis [12, 16, 17,37,39,51,58], which has recently been
studied as an alternative to relational database based analysis
for applications in, for example, social science, computational
biology, and machine learning. Graph analysis workloads are
known to put more pressure on memory bandwidth due to
(1) large amounts of random memory accesses across large
memory regions (leading to very limited cache efficiency) and
(2) very small amounts of computation per item (leading to
very limited ability to hide long memory latencies). These
two characteristics make it very challenging to scale up such
workloads despite their inherent parallelism, especially with
conventional architectures based on large on-chip caches and
scarce off-chip memory bandwidth.

In this paper, we show that the processing-in-memory (PIM)
can be a key enabler to realize memory-capacity-proportional

performance in large-scale graph processing under the current
pin count limitation. By putting computation units inside main
memory, total memory bandwidth for the computation units
scales well with the increase in memory capacity (and so does
the computational power). Importantly, latency and energy
overheads of moving data between computation units and main
memory can be reduced as well. And, fortunately, such bene
fits can be realized in a cost-effective manner today through
the 3D integration technology, which effectively combines
logic and memory dies, as opposed to the PIM architectures
in 1990s, which suffered from the lack of an appropriate tech
nology that could tightly couple logic and memory.

The key contributions of this paper are as follows:

• We study an important domain of in-memory big-data pro
cessing workloads, large-scale graph processing, from the
computer architecture perspective and show that memory
bandwidth is the main bottleneck of such workloads.

• We provide the design and the programming interface of a
new programmable accelerator for in-memory graph pro
cessing that can effectively utilize PIM using 3D-stacked
memory technologies. Our new design is called Tesseract. 1

'Tesseract means a four-dimensional hypercube. We named our archi
tecture Tesseract because in-memory computation adds a new dimension to
3D-stacked memory technologies.

106

• We develop an efficient mechanism for communication be
tween different Tesseract cores based on message passing.
This mechanism (1) enables etfective hiding of long re
mote access latencies via the use of non-blocking message
passing and (2) guarantees atomic memory updates without
requiring software synchronization primitives.

• We introduce two new types of specialized hardware
prefetchers that can fully utilize the available memory band
width with simple cores. These new designs take advantage
of (1) the hints given by our new programming interface
and (2) memory access characteristics of graph processing.

• We provide case studies of how five graph processing work
loads can be mapped to our architecture and how they
can benefit from it. Our evaluations show that Tesseract
achieves lOx average performance improvement and 87%
average reduction in energy consumption over a conven
tional high-performance baseline (a four-socket system with
32 out-of-order cores, having 640GB/s of memory band
width), across five different graph processing workloads, in
cluding average teenage follower [20], conductance [17,20],
PageRank [5,17,20,39], single-source shortest path [20,39],
and vertex cover [17]. Our evaluations use three large in
put graphs having four to seven million vertices, which
are collected from real-world social networks and internet
domains.

2. Background and Motivation

2.1. Large-Scale Graph Processing

A graph is a fundamental representation of relationship be
tween objects. Examples of representative real-world graphs
include social graphs, web graphs, transportation graphs, and
citation graphs. These graphs often have millions to billions
of vertices with even larger numbers of edges, thereby making
them difficult to be analyzed at high performance.

In order to tackle this problem, there exist several frame
works for large-scale graph processing by exploiting data par
allelism [12, 16, 17,37,39,51,58]. Most of these frameworks
focus on executing computation for different vertices in par
allel while hiding synchronization from programmers to ease
programmability. For example, the Page Rank computation
shown in Figure 1 can be accelerated by parallelizing the ver
tex loops [17] (lines 1-4, 8-13, and 14-18) since computation
for each vertex is almost independent of each other. In this
style of parallelization, synchronization is necessary to guar
antee atomic updates of shared data (w. nexLpage rank and
di ff) and no overlap between different vertex loops, which
are automatically handled by the graph processing frameworks.
Such an approach exhibits a high degree of parallelism, which
is effective in processing graphs with billions of vertices.

Although graph processing algorithms can be parallelized
through such frameworks, there are several issues that make
efficient graph processing very challenging. First, graph pro
cessing incurs a large number of random memory accesses
during neighbor traversal (e.g., line 11 of Figure 1). Second,
graph algorithms show poor locality of memory access since

I for (v: graph. vertices) {
2 v.pagerank = 1 / graph.num_vertices;
3 v.next_pagerank = 0.15 / graph.num_vertices;
4 }
5 count = 0;
6 do {
7 di ff = 0;
8 for (v: graph. vertices) {
9 value = 0.85 * v.pagerank / v.out_degree;

10 for (w: v.successors) {
11 w.nexLpagerank += value;
12

13 }
14 for (v: graph. vertices) {
15 diff += abs(v.next_pagerank - v.pagerank);
16 v.pagerank = v.next_pagerank;
17 v.next_pagerank = 0.15 / graph. num_vertices;
18

19 } while (diff > e && ++count < max_iteration);

Figure 1 : Pseudocode of PageRank computation.

many of them access the entire set of vertices in a graph for
each iteration. Third, memory access latency cannot be easily
overlapped with computation because of the small amount of
computation per vertex [39]. These aspects should be care
fully considered when designing a system that can efficiently
perform large-scale graph processing.

2.2. Graph Processing on Conventional Systems

Despite its importance, graph processing is a challenging task
for conventional systems, especially when scaling to larger
amounts of data (i.e., larger graphs). Figure 2 shows a scenario
where one intends to improve graph processing performance
of a server node equipped with out-of-order cores and DDR3-
based main memory by adding more cores. We evaluate the
performance of five workloads with 32 or 128 cores and with
different memory interfaces (see Section 4 for our detailed
evaluation methodology and the description of our systems).
As the figure shows, simply increasing the number of cores is
ineffective in improving performance significantly. Adopting
a high-bandwidth alternative to DDR3-based main memory
based on 3D-stacked DRAM, called Hybrid Memory Cube
(HMC) [22], helps this situation to some extent, however, the
speedups provided by using HMCs are far below the expected
speed up from quadrupling the number of cores.

However, if we assume that cores can use the internal mem
ory bandwidth of HMCs2 ideally, i.e., without traversing the
otf'-chip links, we can provide much higher performance by
taking advantage of the larger number of cores. This is shown
in the rightmost bars of Figure 3. The problem is that such
high performance requires a massive amount of memory band
width (near 500 GB/s) as shown in Figure 2b. This is beyond
the level of what conventional systems can provide under the
current pin count limitations. What is worse, such a high
amount of memory bandwidth is mainly consumed by random
memory accesses over a large memory region, as explained in

2The term internal memory bandwidth indicates aggregate memory band
width provided by 3D-stacked DRAM. In our system composed of 16 HMCs,
the internal memory bandwidth is 12.8 times higher than the off-chip memory
bandwidth (see Section 4 for details).

107

o 32 Cores + DDR3 0 128 Cores + DDR3

_ 128 Cores + HMC _ 128 Cores + HMC Internal Bandwidth
6r----------------------------------

I
I

51-- - - - -
I

Q. 4'- - - -
::J I

� 3 � - - - � (j)
I

1 I
I

o L
AT.LJ CT.LJ PR.LJ SPLJ

(a) Speedup (normalized to '32 Cores + DDR3')
VC.LJ

I
"1

-l

.J
I
I

I

6 00 r--------------------------------------I
CD� I

5001-- - - - S I

ID 400 � rn :::J 300 �
.<: I � 2 00r - - - -

'0 I @ 100 1- -
CD I

o L
AT.LJ CT.LJ PR.LJ SP.LJ

(b) Memory bandwidth usage (absolute values)
VC.LJ

I
"1

-l

.J
I
I

I

Figure 2: Performance of large-scale graph processing in con

ventional systems versus with ideal use of the HMC internal

memory bandwidth .

Section 2.1, which cannot be efficiently handled by the cur
rent memory hierarchies that are based on and optimized for
data locality (i.e., large on-chip caches). This leads to the key
question that we intend to answer in this paper: how can we

provide such large amounts of memory bandwidth and utilize

it for scalable and efficient graph processing in memory?

2.3. Processing-in-Memory

To satisfy the high bandwidth requirement of large-scale graph
processing workloads, we consider moving computation inside
the memory, or processing-in-memory. The key objective of
adopting PIM is not solely to provide high memory bandwidth,
but especially to achieve memory-capacity-proportional band
width. Let us take the Hybrid Memory Cube [24] as a viable
baseline platform for PIM. According to the HMC 1.0 specifi
cation [22], a single HMC provides up to 320 GB Is of external

memory bandwidth through eight high-speed serial links. On
the other hand, a 64-bit vertical interface for each DRAM par
tition (or vault, see Section 3.1 for details), 32 vaults per cube,
and 2 Gbls of TSV signaling rate [24] together achieve an
internal memory bandwidth of 512 GB/s per cube. Moreover,
this gap between external and internal memory bandwidth
becomes much wider as the memory capacity increases with
the use of more HMCs. Considering a system composed of 16
8 GB HMCs as an example, conventional processors are still
limited to 320 GB Is of memory bandwidth assuming that the
CPU chip has the same number of off-chip links as that of an
HMC. In contrast, PIM exposes 8 TB/s (= 16 x 512GB/s) of
aggregate internal bandwidth to the in-memory computation
units. This memory-capacity-proportional bandwidth facili-

(a) Network of cubes (b) Cube (HMC) (c) Vault

Figure 3: Tesseract architecture (the figure is not to scale).

tates scaling the system performance with increasing amount
of data in a cost-effective way, which is a key concern in graph
processing systems.

However, introducing a new processing paradigm brings a
set of new challenges in designing a whole system. Through
out this paper, we will answer three critical questions in design
ing a PIM system for graph processing: (1) How to design an
architecture that can fully utilize internal memory bandwidth
in an energy-efficient way, (2) how to communicate between
different memory partitions (i.e., vaults) with a minimal im
pact on performance, and (3) how to design an expressive
programming interface that reflects the hardware design.

3. Tesseract Architecture

3.1. Overview

Organization. Figure 3 shows a conceptual diagram of the
proposed architecture. Although Tesseract does not rely on a
particular memory organization, we choose the hybrid mem
ory cube having eight 8 Gb DRAM layers (the largest device
available in the current HMC specification [22]) as our base
line. An HMC, shown conceptually in Figure 3b is composed
of 32 vertical slices (called vaults), eight 40 GBls high-speed
serial links as the off-chip interface, and a crossbar network
that connects them. Each vault, shown in Figure 3c, is com
posed of a 16-bank DRAM partition and a dedicated memory
controller.3 In order to perform computation inside memory,
a single-issue in-order core is placed at the logic die of each
vault (32 cores per cube). In terms of area, a Tesseract core fits
well into a vault due to the small size of an in-order core. For
example, the area of 32 ARM Cortex-AS processors including
an FPU (0.68 mm2 for each core [1]) corresponds to only 9.6%
of the area of an 8 Gb DRAM die area (e.g., 226 mm2 [54]).

Host-Tesseract Interface. In the proposed system, host pro
cessors have their own main memory (without PIM capability)
and Tesseract acts like an accelerator that is memory-mapped
to part of a noncacheable memory region of the host proces
sors. This eliminates the need for managing cache coherence
between caches of the host processors and the 3D-stacked
memory of Tesseract. Also, since in-memory big-data work
loads usually do not require many features provided by virtual

3Due to the existence of built-in DRAM controllers, HMCs use a packet
based protocol for communication through the inter-lintra-HMC network
instead of low-level DRAM commands as in DDRx protocols.

108

memory (along with the non-trivial performance overhead of
supporting virtual memory) [3], Tesseract does not support
virtual memory to avoid the need for address translation inside

memory. Nevertheless, host processors can still use virtual ad
dressing in their main memory since they use separate DRAM
devices (apart from the DRAM of Tesseract) as their own main
memory.4

Since host processors have access to the entire memory
space of Tesseract, it is up to the host processors to distribute
input graphs across HMC vaults. For this purpose, the host
processors use a customized malloc call, which allocates an
object (in this case, a vertex or a list of edges) to a specific
vault. For example, numa_alloconnode in Linux (which
allocates memory on a given NUMA node) can be extended
to allocate memory on a designated vault. This information
is exposed to applications since they use a single physical
address space over all HMCs. An example of distributing an
input graph to vaults is shown in Figure 3a. Algorithms to
achieve a balanced distribution of vertices and edges to vaults
are beyond the scope of this paper. However, we analyze
the impact of better graph distribution on the performance of
Tesseract in Section 5.7.

Message Passing (Section 3.2). Unlike host processors that
have access to the entire address space of the HMCs, each
Tesseract core is restricted to access its own local DRAM
partition only. Thus, a low-cost message passing mechanism
is employed for communication between Tesseract cores. For
example, vertex v in Figure 3a can remotely update a property
of vertex u by sending a message that contains the target vertex
id and the computation that will be done in the remote core
(dotted line in Figure 3a). We choose message passing to com
municate between Tesseract cores in order to: (1) avoid cache
coherence issues among Ll data caches of Tesseract cores,
(2) eliminate the need for locks to guarantee atomic updates
of shared data, and (3) facilitate the hiding of remote access
latencies through asynchronous message communication.

Prefetching (Section 3.3). Although putting a core beneath
memory exposes unprecedented memory bandwidth to the

�For this purpose, Tesseract may adopt the direct segment approach [3]
and interface its memory as a primary region. Supporting direct segment
translation inside memory can be done simply by adding a small direct seg
ment hardware for each Tesseract core and broadcasting the base, limit, and
offset values from the host at the beginning of Tesseract execution.

core, a single-issue in-order core design is far from the best
way of utilizing this ample memory bandwidth. This is be
cause such a core has to stall on each Ll cache miss. To enable
better exploitation of the large amount of memory bandwidth
while keeping the core simple, we design two types of simple
hardware prefetchers: a list prefetcher and a message-triggered
prefetcher. These are carefully tailored to the memory access
patterns of graph processing workloads.

Programming Interface (Section 3.4). Importantly, we de
fine a new progranuning interface that enables the use of our
system. Our progranuning interface is easy to use, yet general
enough to express many different graph algorithms.

3.2. Remote Function Call via Message Passing

Tesseract moves computation to the target core that contains
the data to be processed, instead of allowing remote mem
ory accesses. For simplicity and generality, we implement
computation movement as a remote function call [4,57]. In
this section, we propose two different message passing mech
anisms, both of which are supported by Tesseract: blocking
remote function call and non-blocking remote function call.

Blocking Remote Function Call. A blocking remote func
tion call is the most intuitive way of accessing remote data. In
this mechanism, a local core requests a remote core to (1) exe
cute a specific function remotely and (2) send the return value
back to the local core. The exact sequence of performing a
blocking remote function call is as follows:

1. The local core sends a packet containing the function ad
dresss and function arguments6 to the remote core and
waits for its response.

2. Once the packet arrives at the remote vault, the network
interface stores function arguments to the special registers
visible from the core and emits an interrupt for the core.

3. The remote core executes the function in interrupt mode,

writes the return value to a special register, and switches
back to the normal execution mode.

4. The remote core sends the return value back to the local
core.

Note that the execution of a remote function call is not pre
empted by another remote function call in order to guarantee
atomicity. Also, cores may temporarily disable interrupt ex
ecution to modify data that might be accessed by blocking
remote function calls.

This style of remote data access is useful for global state
checks. For example, checking the condition 'di ff > e' in
line 19 of Figure 1 can be done using this mechanism. How
ever, it may not be the performance-optimal way of accessing
remote data because (1) local cores are blocked until responses
arrive from remote cores and (2) each remote function call

5We assume that all Tesseract cores store the same code into the same
location of their local memory so that function addresses are compatible
across different Tesseract cores.

61n this paper, we restrict the maximum size of arguments to be 32 bytes,
which should be sufficient for general use. We also provide an APl to transfer
data larger than 32 bytes in Section 3.4.

109

emits an interrupt, incurring the latency overhead of context
switching. This motivates the need for another mechanism for
remote data access, a non-blocking remote function call.

Non-Blocking Remote Function Call. A non-blocking re
mote function call is semantically similar to its blocking coun
terpart, except that it cannot have return values. This simple
restriction greatly helps to optimize the performance of remote
function calls in two ways.

First, a local core can continue its execution after invoking a
non-blocking remote function call since the core does not have
to wait for the termination of the function. In other words, it
allows hiding remote access latency because sender cores can
perform their own work while messages are being transferred
and processed. However, this makes it impossible to figure
out whether or not the remote function call is finished. To
simplify this problem, we ensure that all non-blocking remote
function calls do not cross synchronization barriers. In other
words, results of remote function calls are guaranteed to be
visible after the execution of a barrier. Similar consistency
models can be found in other parallelization frameworks such
as OpenMP [8].

Second, since the execution of non-blocking remote func
tion calls can be delayed, batch execution of such functions
is possible by buffering them and executing all of them with
a single interrupt. For this purpose, we add a message queue

to each vault that stores messages for non-blocking remote
function calls. Functions in this queue are executed once either
the queue is full or a barrier is reached. Batching the execution
of remote function calls helps to avoid the latency overhead of
context switching incurred by frequent interrupts.

Non-blocking remote function calls are mainly used for up
dating remote data. For example, updating PageRank values
of remote vertices in line 11 of Figure 1 can be implemented
using this mechanism. Note that, unlike the original implemen
tation where locks are required to guarantee atomic updates
of w. nexLpagerank, our mechanism eliminates the need for
locks or other synchronization primitives since it guarantees
that (1) only the local core of vertex w can access and mod
ify its property and (2) remote function call execution is not
preempted by other remote function calls.

3.3. Prefetching

We develop two prefetching mechanisms to enable each Tesser
act core to exploit the high available memory bandwidth.

List Prefetching. One of the most common memory access
patterns is sequential accesses with a constant stride. Such
access patterns are found in graph processing as well. For
example, most graph algorithms frequently traverse the list
of vertices and the list of edges for each vertex (e.g., the for
loops in Figure 1), resulting in strided access patterns.

Memory access latency of such a simple access pattern can
be easily hidden by employing a stride prefetcher. In this paper,
we use a stride prefetcher based on a reference prediction
table (RPT) [6] that prefetches multiple cache blocks ahead to
utilize the high memory bandwidth. In addition, we modify

In-Order Core

CD Message M 1
received

Figure 4: Message-triggered prefetching mechanism.

the prefetcher to accept information about the start address, the
size, and the stride of each list from the application software.
Such information is recorded in the four-entry list table at the
beginning of a loop and is removed from it at the end of the
loop. Inside the loop, the prefetcher keeps track of only the
memory regions registered in the list table and installs an RPT
entry if the observed stride conforms to the hint. An RPT entry
is removed once it reaches the end of the memory region.

Message-triggered Prefetching. Although stride prefetch
ers can cover frequent sequential accesses, graph processing
often involves a large amount of random access patterns. This
is because, in graph processing, infonnation flows through
the edges, which requires pointer chasing over edges toward
randomly-located target vertices. Such memory access pat
terns cannot be easily predicted by stride prefetchers.

Interestingly, most of the random memory accesses in graph
processing happen on remote accesses (i.e., neighbor traver
sal). This motivates the second type of prefetching we devise,
called message-triggered prefetching, shown in Figure 4. The
key idea is to prefetch data that will be accessed during a
non-blocking remote function call before the execution of the
function call. For this purpose, we add an optional field for
each non-blocking remote function call packet, indicating a
memory address to be prefetched. As soon as a request con
taining the prefetch hint is inserted into the message queue, the
message-triggered prefetcher issues a prefetch request based
on the hint and marks the message as ready when the prefetch
is serviced. When more than a predetermined number (Mth) of
messages in the message queue are ready, the message queue
issues an interrupt to the core to process the ready messages.?

Message-triggered prefetching is unique in two aspects.
First, it can eliminate processor stalls due to memory accesses
inside remote function call execution by processing only ready
messages. This is achieved by exploiting the time slack be
tween the arrival of a non-blocking remote function call mes
sage and the time when the core starts servicing the mes
sage. Second, it can be exact, unlike many other prefetching
techniques, since graph algorithms use non-blocking remote
function calls to send updates over edges, which contain the
exact memory addresses of the target vertices. For example,

7If the message queue becomes full or a barrier is reached before Mth
messages are ready, all messages are processed regardless of their readiness.

1 10

a non-blocking remote function call for line 11 of Figure 1
can provide the address of w. nexLpage rank as a prefetch
hint, which is exact information on the address instead of a
prediction that can be incorrect.

Prefetch Buffer. The two prefetch mechanisms store
prefetched blocks into prefetch buffers [25] instead of L1
caches. This is to prevent the situation where prefetched
blocks are evicted from the Ll cache before they are refer
enced due to the long interval between prefetch requests and
their demand accesses. For instance, a cache block loaded by
message-triggered prefetching has to wait to be accessed until
at least Mth messages are ready. Meanwhile, other loads inside
the normal execution mode may evict the block according
to the replacement policy of the Ll cache. A similar effect
can be observed when loop execution with list prefetching is
preempted by a series of remote function call executions.

3.4. Programming Interface

In order to utilize the new Tesseract design, we provide
the following primitives for programming in Tesseract. We
introduce several major API calls for Tesseract: get, put,

disable_interrupt, enable_interrupt, copy, list_begin,

lisLend, and barrier. Hereafter, we use A and S to indicate
the memory address type (e.g., void* in C) and the size type
(e.g., size_tin C), respectively.

get (id, A func, A arg, 5 arg_size, A ret, 5 ret_size)
put (id, A func, A arg, 5 arg_size, A prefetch_addr)

get and put calls represent blocking and non-blocking remote
function calls, respectively. The id of the target remote core
is specified by the id argument.S The start address and the
size of the function argument is given by a rg and a rg_size,

respectively, and the return value (in the case of get) is writ
ten to the address ret. In the case of put, an optional argu
ment p refetch_add r can be used to specify the address to be
prefetched by the message-triggered prefetcher.

disable_interrupt()

enable_interrupt()

disable_interrupt and enable_interrupt calls guarantee
that the execution of instructions enclosed by them are not
preempted by interrupts from remote function calls. This pre
vents data races between normal execution mode and interrupt
mode as explained in Section 3.2.

copy(id, A local, A remote, S size)

The copy call implements copying a local memory region to
a remote memory region. It is used instead of get or put

commands if the size of transfer exceeds the maximum size of
arguments. This command is guaranteed to take effect before
the nearest barrier synchronization (similar to the put call).

list_begin(A address, S size, S stride)
list_end(A address, S size, S stride)

81f a core issues a put command with its own id, it can either be replaced
by a simple function call or use the same message queue mechanism as in
remote messages. In this paper, we insert local messages to the message
queue only if message-triggered prefetching (Section 3.3) is available so that
the prefetching can be applied to local messages as well.

lisLbegin and lisLend calls are used to update the list
table, which contains hints for list prefetching. Programmers
can specify the start address of a list, the size of the list, and the
size of an item in the list (i.e., stride) to initiate list prefetching.

barrier()

The ba r rie r call implements a synchronization barrier across
all Tesseract cores. One of the cores in the system (prede
termined by designers or by the system software) works as a
master core to collect the synchronization status of each core.

3.5. Application Mapping

Figure 5 shows the PageRank computation using our program
ming interface (recall that the original version was shown in
Figure 1). We only show the transformation for lines 8-13 of
Figure 1, which contain the main computation. lisL for

is used as an abbreviation of a for loop surrounded by
lisLbegin and lisLend calls.

2 count = 0;
3 do {
4

5 list for (v: graph. vertices) {
6 value = 0.85 * v.pagerank / v.out_degree;
7 lisLfor (w: v.successors) {
8 arg = (w. value);
9 gg!(w.id. function(w. value)

10 w.next_pagerank += value;
11 }. &arg. sizeof(arg). &w.next_pagerank);
12

13

14

15

}

barrier() ;

16 } while (diff > e && ++count < max_iteration);

Figure 5: PageRank computation in Tesseract (corresponding

to lines 8-1 3 in Figure 1).

Most notably, remote memory accesses for updating the
nexLpagerank field are transformed into put calls. Conse
quently, unlike the original implementation where every Ll
cache miss or lock contention for w. nexLpage ran k stalls
the core, our implementation facilitates cores to (1) continu
ously issue put commands without being blocked by cache
misses or lock acquisition and (2) promptly update PageRank
values without stalls due to Ll cache misses through message
triggered prefetching. List prefetching also helps to achieve
the former objective by prefetching pointers to the successor
vertices (i.e., the list of outgoing edges).

We believe that such transformation is simple enough to
be easily integrated into existing graph processing frame
works [12,16,37,39,51,58] or DSL compilers for graph
processing [17,20]. This is a part of our future work.

4. Evaluation Methodology

4.1. Simulation Configuration

We evaluate our architecture using an in-house cycle-accurate
x86-64 simulator whose frontend is Pin [38]. The simulator
has a cycle-level model of many microarchitectural compo
nents, including in-order/out-of-order cores considering reg-

1 1 1

ister/structural dependencies, multi-bank caches with limited
numbers of MSHRs, MESI cache coherence, DDR3 con
trollers, and HMC links. Our simulator runs multi threaded
applications by inspecting pthread APIs for threads and syn
chronization primitives. For Tesseract, it also models remote
function calls by intercepting get/put commands (manually
inserted into software) and injecting messages into the tim
ing model accordingly. The rest of this subsection briefly
describes the system configuration used for our evaluations.

DDR3-Based System. We model a high-performance con
ventional DDR3-based system with 32 4 GHz four-wide out
of-order cores, each with a 128-entry instruction window and
a 64-entry load-store queue (denoted as DDR3-000). Each
socket contains eight cores and all four sockets are fully con
nected with each other by high-speed serial links, provid
ing 40 GB/s of bandwidth per link. Each core has 32 KB L1
instruction/data caches and a 256 KB L2 cache, and eight
cores in a socket share an 8 MB L3 cache. All three levels of
caches are non-blocking, having 16 (Ll), 16 (L2), and 64 (L3)
MSHRs [32]. Each L3 cache is equipped with a feedback
directed prefetcher with 32 streams [56]. The main memory
has 128 GB of memory capacity and is organized as two chan
nels per CPU socket, four ranks per channel, eight banks per
rank, and 8 KB rows with timing parameters of DDR3-1600
11-11-11 devices [41], yielding 102.4GB/s of memory band
width exploitable by cores.

DDR3-000 resembles modern commodity servers com
posed of multi-socket, high-end CPUs backed by DDR3 main
memory. Thus, we choose it as the baseline of our evaluations.

HMC-Based System. We use two different types of cores
for the HMC-based system: HMC-OoO, which consists of
the same cores used in DDR3-000, and HMC-MC, which is
comprised of 512 2 GHz single-issue in-order cores (128 cores
per socket), each with 32 KB Ll instruction/data caches and
no L2 cache. For the main memory, we use 16 8GB HMCs
(128 GB in total, 32 vaults per cube, 16 banks per vault [22],
and 256 B pages) connected with the processor-centric topol
ogy proposed by Kim et al. [29]. The total memory bandwidth
exploitable by the cores is 640 GB/s.

HMC-OoO and HMC-MC represent future server designs
based on emerging memory technologies. They come with
two flavors, one with few high-performance cores and the
other with many low-power cores, in order to reflect recent
trends in commercial server design.

Tesseract System. Our evaluated version of the Tesseract
paradigm consists of 512 2 GHz single-issue in-order cores,
each with 32 KB Ll instruction/data caches and a 32-entry
message queue (1.5 KB), one for each vault of the HMCs. We
conservatively assume that entering or exiting the interrupt
mode takes 50 processor cycles (or 25 ns). We use the same
number of HMCs (128 GB of main memory capacity) as that
of the HMC-based system and connect the HMCs with the
Dragonfly topology as suggested by previous work [29]. Each
vault provides 16 GB/s of internal memory bandwidth to the

Tesseract core, thereby reaching 8 TB/s of total memory band
width exploitable by Tesseract cores. We do not model the
host processors as computation is done entirely inside HMCs
without intervention from host processors.

For our prefetching schemes, we use a 4 KB 16-way set
associative prefetch butler for each vault. The message
triggered prefetcher handles up to 16 prefetches and triggers
the message queue to start processing messages when more
than 16 (= Mth) messages are ready. The list prefetcher is com
posed of a four-entry list table and a 16-entry reference predic
tion table (0.48 KB) and is set to prefetch up to 16 cache blocks
ahead. Mth and the prefetch distance of the list prefetcher are
detennined based on our experiments on a limited set of con
figurations. Note that comparison of our schemes against other
software prefetching approaches is hard to achieve because
Tesseract is a message-passing architecture (i.e., each core
can access its local DRAM partition only), and thus, existing
mechanisms require significant modifications to be applied to
Tesseract to prefetch data stored in remote memory.

4.2. Workloads

We implemented five graph algorithms in C++. Average
Teenager Follower (AT) computes the average number of
teenage followers of users over k years old [20]. Conductance
(CT) counts the number of edges crossing a given partition X
and its complement Xc [17,20]. PageRank (PR) is an algo
rithm that evaluates the importance of web pages [5,17,20,39].
Single-Source Shortest Path (SP) finds the shortest path from
the given source to each vertex [20,39]. Vertex Cover (VC)
is an approximation algorithm for the minimum vertex cover
problem [17]. Due to the long simulation times, we simulate
only one iteration of PR, four iterations of SP, and one iteration
of Vc. Other algorithms are simulated to the end.

Since runtime characteristics of graph processing algo
rithms could depend on the shapes of input graphs, we use
three real-world graphs as inputs of each algorithm: ljournal-

2008 from the LiveJournal social site (LJ, IVI = 5.3 M, IEI =

79M), enwiki-2013 from the English Wikipedia (WK, IVI =

4.2 M, IEI = 101 M), and indochina-2004 from the country
domains of Indochina (IC, IVI = 7.4 M, IEI = 194M) [33].
These inputs yield 3-5 GB of memory footprint, which is
much larger than the total cache capacity of any system in our
evaluations. Although larger datasets cannot be used due to the
long simulation times, our evaluation with relatively smaller
memory footprints is conservative as it penalizes Tesseract
because conventional systems in our evaluations have much
larger caches (41 MB in HMC-OoO) than the Tesseract system
(16 MB). The input graphs used in this paper are known to
share similar characteristics with large real-world graphs in
terms of their small diameters and power-law degree distribu
tions [42].9

9We conducted a limited set of experiments with even larger graphs
(it-2004. arabic-2005. and uk-2002 [33], IVI = 41M/23M/19M, IEI =
1151 M/640M/298 M, 32 GB/18 GB/10GB of memory footprints, respec
tively) and observed similar trends in performance and energy efficiency.

1 12

5. Evaluation Results

5.1. Performance

Figure 6 compares the performance of the proposed Tesser
act system against that of conventional systems (DDR3-000,
HMC-OoO, and HMC-MC). In this figure, LP and MTP indi
cate the use of list prefetching and message-triggered prefetch
ing, respectively. The last set of bars, labeled as GM, indicates
geometric mean across all workloads.

Our evaluation results show that Tesseract outperforms the
DDR3-based conventional architecture (DDR3-000) by 9x
even without prefetching techniques. Replacing the DDR3-
based main memory with HMCs (HMC-OoO) and using many
in-order cores instead of out-of-order cores (HMC-MC) bring
only marginal perfonnance improvements over the conven
tional systems.

Our prefetching mechanisms, when employed together, en
able Tesseract to achieve a 14x average performance improve
ment over the DDR3-based conventional system, while min
imizing the storage overhead to less than 5 KB per core (see
Section 4.1). Message-triggered prefetching is particularly
effective in graph algorithms with large numbers of neighbor
accesses (e.g., CT, PR, and SP), which are difficult to handle
efficiently in conventional architectures.

The reason why conventional systems fall behind Tesseract
is that they are limited by the low off-chip link bandwidth
(102.4GB/s in DDR3-000 or 640GB/s in HMC-OoO/-MC)
whereas our system utilizes the large internal memory band
width of HMCs (8 TB/s).tO Perhaps more importantly, such
bandwidth discrepancy becomes even more pronounced as the
main memory capacity per server gets larger. For example,
doubling the memory capacity linearly increases the memory
bandwidth in our system, while the memory bandwidth of the
conventional systems remains the same.

To provide more insight into the performance improvement
of Tesseract, Figure 7 shows memory bandwidth usage and
average memory access latency of each system (we omit re
sults for workloads with WK and IC datasets for brevity).
As the figure shows, the amount of memory bandwidth uti
lized by Tesseract is in the order of several TB/s, which is
clearly beyond the level of what conventional architectures
can reach even with advanced memory technologies. This, in
turn, greatly affects the average memory access latency, lead
ing to a 96% lower memory access latency in our architecture
compared to the DDR3-based system. This explains the main
source of the large speed up achieved by our system.

Figure 7a also provides support for our decision to have
one-to-one mapping between cores and vaults. Since the total
memory bandwidth usage does not reach its limit (8 TB/s),

10 Although Tesseract also uses off-chip links for remote accesses. moving
computation to where data reside (i.e., using the remote function calls in
Tesseract) consumes much less bandwidth than fetching data to computation
units. For example, the minimum memory access granularity of conventional
systems is one cache block (typically 64 bytes), whereas each message in
Tesseract consists of a function pointer and small-sized arguments (up to 32
bytes). Sections 5.5 and 5.6 discuss the impact of off-chip link bandwidth on
Tesseract performance.

o D D R3-000 0 HMC-OoO 0 HMC-MC _ Tesseract (No Prefetching) _ Tesseract + LP _ Tesseract + LP + MTP
2 5 � -

37.1 43 . 7 33.9 40 .1

2 0 L - �
I

0-
:J

�
ID
0-

(fJ

,

, ,
O L

-�- - - -I
I
I

-.J

AT.wK AT. IC AT.LJ CT.wK CT.lC CT.LJ P R .wK P R .l C P R .LJ SP.wK SP. IC SP.LJ VC.wK VC.IC VC.LJ GM

Figure 6: Performance comparison between conventional architectures and Tesseract (normalized to DDR3-000).

4,000 r- -,
�
�
ID
Cl

,

'"
:3 2 ,000 � - - - - -
.c '5 , � 1 ,000 ,- - - -
c: '" QJ O L

AT.LJ CT.LJ P R .LJ SP.LJ VC.LJ

,
.J

, -,

4 r- 1 ,
� I I � 3 L - ,

Cti
I I

---'
"0
ID

.!::!
"iii
E (; Z

I

2 � -iJL- - - - �
1 f- ·nJl- - - - ml- - - - n=fl- - - -n- - - - - - - - - - �
O L _Lill... _ Lhl..... _� � �

AT.LJ CT.LJ PR .LJ SP.LJ VC.LJ

(a) Memory bandwidth usage (b) Average memory access latency (normalized to DDR3-000)
Figure 7: Memory characteristics of graph processing workloads in conventional architectures and Tesseract.

allocating multiple vaults to a single core could cause further
imbalance between computation power and memory band
width_ Also, putting more than one core per vault complicates
the system design in terms of higher thermal density, degraded
quality of service due to sharing of one memory controller
between multiple cores, and potentially more sensitivity to
placement of data. For these reasons, we choose to employ
one core per vault.

5.2. Iso-Bandwidth Comparison of Tesseract and Conven

tional Architectures

In order to dissect the performance impact of increased mem
ory bandwidth and our architecture design, we perform ideal
ized limit studies of two new configurations: (1) HMC-MC
utilizing the internal memory bandwidth of HMCs without

off-chip bandwidth limitations (called HMC-MC + PIM BW)
and (2) Tesseract, implemented on the host side, leading to
severely constrained by off-chip link bandwidth (called Tesser

act + Conventional BW)_ The first configuration shows the
ideal performance of conventional architectures without any
limitation due to off-chip bandwidth. The second configura
tion shows the performance of Tesseract if it were limited by
conventional off-chip bandwidth_ Note that HMC-MC has
the same core and cache configuration as that of Tesseract.
For fair comparison, prefetching mechanisms of Tesseract are
disabled. We also show the performance of regular HMC-MC
and Tesseract (the leftmost and the rightmost bars in Figure 8).

As shown in Figure 8, simply increasing the memory band
width of conventional architectures is not sufficient for them
to reach the performance of Tesseract. Even if the memory
bandwidth of HMC-MC is artificially provisioned to the level
of Tesseract, Tesseract still outperforms HMC-MC by 2.2x

1 1 3

even without prefetching. Considering that HMC-MC has the
same number of cores and the same cache capacity as those
of Tesseract, we found that this improvement comes from our
programming model that can overlap long memory access
latency with computation through non-blocking remote func
tion calls_ The performance benefit of our new programming
model is also confirmed when we compare the performance
of Tesseract + Conventional BW with that of HMC-MC. We
observed that, under the conventional bandwidth limitation,
Tesseract provides 2.3x the performance of HMC-MC, which
is 2.8x less speedup compared to its PIM version. This im
plies that the use of PIM and our new programming model are
roughly of equal importance in achieving the performance of
Tesseract.

o HMC-MC 0 Tesseract + Conventional BW

_ HMC-MC + P IM BW _ Tesseract
� � - �

I

1 5 L -
I

§- I

� 1 0 � - - - �
(fJ

I
I

o L
AT.LJ CT.LJ P R .LJ SP.LJ

I
- - - - - - - --,

VC.LJ

--'
I

Figure 8: HMC-MC and Tesseract under the same bandwidth .

5.3. Execution Time Breakdown

Figure 9 shows execution time broken down into each oper
ation in Tesseract (with prefetching mechanisms), averaged
over all cores in the system. In many workloads, execution
in normal execution mode and interrupt mode dominates the

_ Nor mal Mode _ Interrupt Mode Interr upt Switching

D Network D Barrier

1 00 % � - �
I
I 75 % c-
I
I 50 % c- _
I
I 25 % I _ _
I
I 0 % L _

AT.LJ CT.LJ PR.LJ SPLJ VC.LJ

1
-,

1
1 - ,
1

- ,

Figure 9 : Execution time breakdown of our architecture.

total execution time. However, in some applications, up to
26% of execution time is spent on waiting for network due
to a significant amount of off-chip conununication caused by
neighbor traversal. Since neighbor traversal uses non-blocking

remote function calls, the time spent is essentially due to the
network backpressure incurred as a result of limited network
bandwidth. In Sections 5.6 and 5.7, we show how this problem
can be mitigated by either increased off-chip bandwidth or
better graph distribution schemes.

In addition, some workloads spend notable execution time
waiting for barrier synchronization. This is due to workload
imbalance across cores in the system. This problem can be
alleviated by employing better data mapping (e.g., graph parti
tioning based vertex distribution, etc.), which is orthogonal to
our proposed system.

5.4. Prefetch Efficiency

Figure 10 shows two metrics to evaluate the efficiency of our
prefetching mechanisms. First, to evaluate prefetch timeli
ness, it compares our scheme against an ideal one where all
prefetches are serviced instantly (in zero cycles) without incur
ring DRAM contention. Second, it depicts prefetch coverage,
i.e., ratio of prefetch buffer hits over all Ll cache misses.

D Tesseract + LP + MTP _ Ideal -+- Coverage
1 -

0.25 -
0 .00 L--L- _ L......-_ _ _ L-- -.! _ _ i.- _ _ L-- _

AT.LJ CT.LJ P R .LJ SP.LJ VC.LJ

1 00 %
75 %
50 %
25 %
0 %

Figure 1 0: Efficiency of our prefetching mechanisms.

Q) Ol � Q) > 0 ()

We observed that our prefetching schemes perform within
l .8% of their ideal implementation with perfect timeliness and
no bandwidth contention. This is very promising, especially
considering that pointer chasing in graph processing is not a
prefetch-friendly access pattern. The reason why our message
triggered prefetching shows such good timeliness is that it
utilizes the slack between message arrival time and message
processing time. Thus, as long as there is enough slack, our
proposed schemes can fully hide the DRAM access latency.

1 14

Our experimental results indicate that, on average, each mes
sage stays in the message queue for 1400 Tesseract core cycles
(i.e., 700 ns) before they get processed (not shown), which is
much longer than the DRAM access latency in most cases.

Figure 10 also shows that our prefetching schemes cover
87% of Ll cache misses, on average. The coverage is high
because our prefetchers tackle two major sources of memory
accesses in graph processing, namely vertexledge list traversal
and neighbor traversal, with exact information from domain
specific knowledge provided as software hints.

We conclude that the new prefetching mechanisms can be
very effective in our Tesseract design for graph processing
workloads.

5.5. Scalability

Figure 11 evaluates the scalability of Tesseract by measuring
the performance of 32/128/512-core systems (i.e., systems
with 8132/128 GB of main memory in total), normalized to
the performance of the 32-core Tesseract system. Tesseract
provides nearly ideal scaling of performance when the main
memory capacity is increased from 8 GB to 32 GB. On the
contrary, further quadrupling the main memory capacity to
128 GB shows less optimal performance compared to ideal
scaling. The cause of this is that, as more cubes are added into
our architecture, off-chip communication overhead becomes
more dominant due to remote function calls. For example,
as the number of Tesseract cores increases from 128 to 512,
the average bandwidth consumption of the busiest off-chip
link in Tesseract increases from 8.5 GBls to 17.2 GBls (i.e.,
bandwidth utilization of the busiest link increases from 43%
to 86%) in the case of AT.LJ. However, it should be noticed
that, despite this sublinear performance scaling, increasing the
main memory capacity widens the performance gap between
conventional architectures and ours even beyond 128 GB since
conventional architectures do not scale well with the increasing
memory capacity. We believe that optimizing the on'-chip
network and data mapping will further improve scalability of
our architecture. We discuss these in the next two sections.

0 32 Cores (8 GB) 1 28 Cores (32 GB) • 5 1 2 Cores (1 28 GB) 1 6 �- ,
1 1 2 L - - - - - - - - - - .
1

§- 1

� 8 � - - - -
Q.

(fJ

1

o L _
AT.LJ CT.LJ PR.LJ SP.LJ VC.LJ

Figure 1 1 : Performance scalability of Tesseract.

5.6. Effect of Higher Off-Chip Network Bandwidth

- - ,

- -I

I

_ J
I

The recent HMC 2.0 specification boosts the off-chip memory
bandwidth from 320 GBls to 480 GBls [23]. In order to evalu
ate the impact of such an increased off-chip bandwidth on both
conventional systems and Tesseract, we evaluate HMC-OoO
and Tesseract with 50% higher off-chip bandwidth. As shown

in Figure 12, such improvement in off-chip bandwidth widens
the gap between HMC-OoO and Tesseract in graph process
ing workloads which intensively use the off-chip network for
neighbor traversal. This is because the 1.5x off-chip link band
width is still far below the memory bandwidth required by
large-scale graph processing workloads in conventional archi
tectures (see Figure 7a). However, 1.5x off-chip bandwidth
greatly helps to reduce network-induced stalls in Tesseract,
enabling even more efficient utilization of internal memory
bandwidth. We observed that, with this increase in off-chip
link bandwidth, graph processing in Tesseract scales better to
512 cores (not shown: 14.9x speed up resulting from 16x more
cores, going from 32 to 512 cores).

o HMC·OoO 0 HMC·OoO (HMC 2 .0)

_ Tesseract + LP + MTP _ Tesseract + LP + MTP (HMC 2 .0)
40 r- - --- --- ·--- - --- -- - - - -------- - - ---

1 I
30 L -, 1

1
10 1- - - -

1

o L
AT.LJ CT.LJ PR.LJ SPLJ

I
_ _ _ _ _ _ _ _ 1

VC.LJ

-'
I

Figure 1 2: System performance under HMC 2.0 specification.

5.7. Effect of Better Graph Distribution

Another way to improve otl'-chip transfer efficiency is to em
ploy better data partitioning schemes that can minimize com
munication between different vaults. In order to analyze the
effect of data partitioning on system performance, Figure 13
shows the performance improvement of Tesseract when the
input graphs are distributed across vaults based on graph parti
tioning algorithms. For this purpose, we use METIS [27] to
perform 512-way multi-constraint partitioning to balance the
number of vertices, outgoing edges, and incoming edges of
each partition, as done in a recent previous work [51]. The
evaluation results do not include the execution time of the
partitioning algorithm to clearly show the impact of graph
distribution on graph analysis performance.

Employing better graph distribution can further improve the
perfonnance of Tesseract. This is because graph partitioning
minimizes the number of edges crossing between different
partitions (53% fewer edge cuts compared to random parti-

o Tesseract + LP + MTP _ Tesseract + LP + MTP with METIS
40 r - - -··- --- -- - - --- -- - ·- - - --- --- - �_.-- -- - - - - --- -- �

I
30 L I

g- I
� 2 0 � - - -
0.

(fJ I
10 r

I
o L _

ATLJ

40 . 1

_ _ _ _ _ _ _ _ 1

-'
1

CT.LJ PR.LJ SP.LJ VC.LJ

Figure 1 3: Performance improvement after graph partitioning.

1 1 5

tioning i n LJ), and thus, reduces off-chip network traffic for
remote function calls. For example, in AT.LJ, the partitioning
scheme eliminates 53% of non-blocking remote function calls
compared to random partitioning (which is our baseline).

However, in some workloads, graph partitioning shows only
small performance improvement (CT.LJ) or even degrades per
formance (SP.LJ) over random partitioning. This is because
graph partitioning algorithms are unaware of the amount of
work per vertex, especially when it changes over time. As a re
sult, they can exacerbate the workload imbalance across vaults.
A representative example of this is the shortest path algorithm
(SP.LJ), which skips computation for vertices whose distances
did not change during the last iteration. This algorithm experi
ences severe imbalance at the beginning of execution, where
vertex updates happen mostly within a single partition. This
is confirmed by the observation that Tesseract with METIS
spends 59% of execution time waiting for synchronization
barriers. This problem can be alleviated with migration-based
schemes, which will be explored in our future work.

S.S. EnergylPower Consumption and Thermal Analysis

Figure 14 shows the normalized energy consumption of HMCs
in HMC-based systems including Tesseract. We model the
power consumption of logic/memory layers and Tesseract
cores by leveraging previous work [48], which is based on Mi
cron's disclosure, and scaling the numbers as appropriate for
our configuration. Tesseract consumes 87% less average en
ergy compared to conventional HMC-based systems with out
of-order cores, mainly due to its shorter execution time. The
dominant portion of the total energy consumption is from the
SerDes circuits for off-chip links in both HMC-based systems
and Tesseract (62% and 45%, respectively), while Tesseract
cores contribute 15% of the total energy consumption.

_ Memory Layers 0 Logic Layers 0 Cores
2 .0 r- ,

1
>- 1 0 e' 1 .5 L -8 _0_ -� -, � 1 0 � ::;; W 1 :::2: 0 +

! : :JQlIT1ffi: iJ1�
ATLJ CTLJ PR.LJ SP.LJ VC.LJ

Figure 1 4: Normalized energy consumption of H MCs.

Tesseract increases the average power consumption (not
shown) by 40% compared to HMC-OoO mainly due to the
in-order cores inside it and the higher DRAM utilization. Al
though the increased power consumption may have a nega
tive impact on device temperature, the power consumption is
expected to be still within the power budget according to a
recent industrial research on thermal feasibility of 3D-stacked
PIM [9]. Specifically, assuming that a logic die of the HMC
has the same area as an 8 Gb DRAM die (e.g., 226 mm2 [54]),
the highest power density of the logic die across all work
loads in our experiments is 94 mW/mm2 in Tesseract, which
remains below the maximum power density that does not re-

quire faster DRAM refresh using a passive heat sink (i.e.,
133 mW/mm2 [9]).

We conclude that Tesseract is thermally feasible and leads to
greatly reduced energy consumption on state-of-the-art graph
processing workloads.

6. Related Work

To our knowledge, this paper provides the first comprehensive
accelerator proposal for large-scale graph processing using the
concept of processing-in-memory. We provide a new program
ming model, system design, and prefetching mechanisms for
graph processing workloads, along with extensive evaluations
of our proposed techniques. This section briefly discusses
related work in PIM, 3D stacking, and architectures for data
intensive workloads.

Processing-in-Memory. Back in the 1990s, several re
searchers proposed to put computation units inside memory to
overcome the memory wall [11,14,26,31,45,47]. At the time,
the industry moved toward increasing the off-chip memory
bandwidth instead of adopting the PIM concept due to costly
integration of computation units inside memory dies. Our
architecture takes advantage of a much more realizable and
cost-effective integration of processing and memory based on
3D stacking (e.g., the hybrid memory cube).

No prior work on processing-in-memory examined large
scale graph processing, which is not only commercially impor
tant but also extremely desirable for processing-in-memory as
we have shown throughout this paper.

Other than performing computation inside memory, a few
prior works examined the possibility of placing prefetchers
near memory [21,55,60]. Our two prefetching mechanisms,
which are completely in memory, are different from such
approaches in that (1) prior works are still limited by the off
chip memory bandwidth, especially when prefetched data
are sent to host processors and (2) our message-triggered
prefetching enables exact prefetching through tight integration
with our programming interface.

PIM based on 3D Stacking. With the advancement of 3D
integration technologies, the PIM concept is regaining atten
tion as it becomes more realizable [2,36]. In this context, it
is critical to examine specialized PIM systems for important
domains of applications [2,48,53,62,63].

Pugsley et al. [48] evaluated the PIM concept with MapRe
duce workloads. Since their architecture does not support
communication between PIM cores, only the map phase is
handled inside memory while the reduce phase is executed
on host processors. Due to this reason, it is not possible to
execute graph processing workloads, which involve a signif
icant amount of communication between PIM cores, with
their architecture. On the contrary, Tesseract is able to han
dle MapReduce workloads since our programming interface
provides sufficient flexibility for describing them.

Zhang et al. [61] proposed to integrate GPGPUs with 3D
stacked DRAM for in-memory computing. However, their
approach lacks a communication mechanism between multiple

1 1 6

PIM devices, which i s important for graph processing, as we
showed in Section 5. Moreover, specialized in-order cores are
more desirable in designing a PIM architecture for large-scale
graph processing over high-end processors or GPGPUs. This
is because such workloads require stacked DRAM capacity
to be maximized under a stringent chip thermal constraint for
cost-effectiveness, which in turn necessitates minimizing the
power consumption of in-memory computation units.

Zhu et al. [62,63] developed a 3D-stacked logic-in-memory
architecture for data-intensive workloads. In particular, they
accelerated sparse matrix multiplication and mapped graph
processing onto their architecture by formulating several graph
algorithms using matrix operations. Apart from the fact that
sparse matrix operations may not be the most efficient way of
expressing graph algorithms, we believe that our architecture
can also employ a programming model like theirs, if needed,
due to the generality of our programming interface.

Architectures for Big-Data Processing. Specialized accel
erators for database systems [7,30,59], key-value stores [34],
and stream processing [49] have also been developed. Several
studies have proposed 3D-stacked system designs targeting
memory-intensive server workloads [13,28,35,50]. Tesseract,
in contrast, targets large-scale graph processing. We develop
an efficient programming model for scalable graph processing
and design two prefetchers specialized for graph processing
by leveraging our programming interface.

Some works use GPGPUs to accelerate graph process
ing [15,18,19,40]. While a GPU implementation provides a
performance advantage over CPU-based systems, the memory
capacity of a commodity GPGPU may not be enough to store
real-world graphs with billions of vertices. Although the use
of multiple GPGPUs alleviates this problem to some extent,
relatively low bandwidth and high latency of PC le-based in
terconnect may not be sufficient for fast graph processing,
which generates a massive amount of random memory ac
cesses across the entire graph [40].

7. Conclusion and Future Work

In this paper, we revisit the processing-in-memory concept in
the completely new context of (1) cost-effective integration
of logic and memory through 3D stacking and (2) emerging
large-scale graph processing workloads that require an un
precedented amount of memory bandwidth. To this end, we
introduce a programmable PIM accelerator for large-scale
graph processing, called Tesseract. Our new system features
(1) many in-order cores inside a memory chip, (2) a new mes
sage passing mechanism that can hide remote access latency
within our PIM design, (3) new hardware prefetchers special
ized for graph processing, and (4) a programming interface
that exploits our new hardware design. We showed that Tesser
act greatly outperforms conventional high-performance sys
tems in terms of both performance and energy efficiency. Per
haps more importantly, Tesseract achieves memory-capacity

proportional performance, which is the key to handling in
creasing amounts of data in a cost-effective manner. We con-

elude that our new design can be an efficient and scalable
substrate to execute emerging data-intensive applications with
intense memory bandwidth demands.

Acknowledgments

We thank the anonymous reviewers for their valuable feed
back. This work was supported in large part by the National
Research Foundation of Korea (NRF) grants funded by the
Korean government (M EST) (No. 2012RIA2A2A0604729
7) and the IT R&D program of MKE/KEIT (No. 10041608,
Embedded System Software for New Memory-based Smart
Devices). Onur Mutlu also acknowledges support from the
Intel Science and Technology Center for Cloud Computing,
Samsung, Intel, and NSF grants 0953246, 1065112, 1212962,
and 132053l .

References
[1] ARM Cortex-AS Processor. Available: http://www.arm.com/products/

processors/cortex-alcortex-a5.php
[2] R. Balasubramonian et 01. , "Near-data processing: Insights from a

MICRO-46 workshop," IEEE Micro, vol. 34, no. 4, pp. 36-42, 2014.
[3] A. Basu et 01. , "Efficient virtual memory for big memory servers," in

Proc. ISCA, 20 1 3 .
[4] A. D . BirreU and B . J . Nelson, "Implementing remote procedure calls,"

ACM Trans. Comput. Syst. , vol. 2, no. 1 , pp. 39-59, 1 984.
[5] S. Brin and L. Page, "The anatomy of a large-scale hypertextual Web

search engine," in Proc. WWW, 1998.
[6] T.-F. Chen and J.-L. Baer, "Effective hardware-based data prefetching

for high-performance processors," IEEE Trans. Comput. , vol. 44, no. 5,
pp. 609-623, 1995.

[7] E. S. Chung et al. , "LINQits: Big data on little clients," in Proc. ISCA,
20 1 3 .

[8] L. Dagum and R . Menon, "OpenMP: A n industry-standard API for
shared-memory programming," IEEE Comput. Sci. & Eng. , vol. 5,
no. l , pp. 46-55, 1998.

[9] Y. Eckert et 01. , "Thermal feasibility of die-stacked processing in
memory," in WoNDP, 2014.

[l 0] M. Ferdman et 01. , "Clearing the clouds: A study of emerging scale-out
workloads on modern hardware," in Proc. ASPLOS, 2012.

[1 1] M. Gokhale et 01. , "Processing in memory: The Terasys massively
parallel PIM array," IEEE Comput. , vol. 28, no. 4, pp. 23-3 1 , 1 995.

[l 2] J. E. Gonzalez et 01. , "PowerGraph: Distributed graph-parallel compu
tation on natural graphs," in Proc. OSDI, 20 1 2 .

[l 3] A. Gutierrez e t 01. , "Integrated 3D-stacked server designs for increasing
physical density of key-value stores," in Proc. ASPLOS, 2014.

[1 4] M. Hall et al. , "Mapping irregular applications to DIVA, a PI M-based
data-intensive architecture," in Proc. SC, 1999.

[l 5] P. Harish and P. J. Narayanan, "Accelerating large graph algorithms on
the GPU using CUDA," in Proc. HiPC, 2007 .

[1 6] Harshvardhan et al. , "KLA: A new algorithmic paradigm for parallel
graph computations," in Proc. PACT, 20 14.

[1 7] S. Hong et 01. , "Green-Marl: A DSL for easy and efficient graph
analysis," in Proc. ASPLOS, 20 1 2 .

[1 8] S. Hong e t 01. , "Accelerating CUDA graph algorithms at maximum
warp;' in Proc. PPoPP, 201 1 .

[l 9] S. Hong et 01. , "Efficient parallel graph exploration on multi-core CPU
and GPU," in Proc. PACT, 201 1 .

[20] S. Hong et al. , "Simplifying scalable graph processing with a domain
specific language," in Proc. CGO, 20 14.

[2 1] c. J. Hughes and S. V. Adve, "Memory-side prefetching for linked
data structures for processor-in-memory systems," 1. Parallel Distrib.
Comput. , vol. 65, no. 4, pp. 448-463 , 2005.

[22] "Hybrid memory cube specification 1 .0," Hybrid Memory Cube Con
sortium, Tech. Rep., Jan. 20 1 3 .

[23] "Hybrid memory cube specification 2.0," Hybrid Memory Cube Con
sortium, Tech. Rep., Nov. 2014.

[24] J. Jeddeloh and B. Keeth, "Hybrid memory cube new DRAM architec
ture increases density and performance," in Proc. VLSIT, 20 1 2 .

[25] N. P. Jouppi, "Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers," in
Proc. ISCA, 1 990.

1 1 7

[26] Y. Kang e t 01. , "FlexRAM: Toward an advanced intelligent memory
system," in Proc. ICCD, 1999.

[27] G. Karypis and V. Kumar, "A fast and high quality multilevel scheme
for partitioning irregular graphs," SIAM 1. Sci. Comput. , vol. 20, no. 1 ,
pp. 3 59-392, 1998 .

[28] T. Kgil et al. , "PicoServer: Using 3D stacking technology to enable a
compact energy efficient chip mUltiprocessor," in Proc. ASPLOS, 2006.

[29] G. Kim et al. , "Memory-centric system interconnect design with hybrid
memory cubes," in Proc. PACT, 20 1 3 .

[30] O . Kocberber e t al. , "Meet the walkers: Accelerating index traversals
for in-memory databases," in Proc. MICRO, 20 1 3 .

[3 1] P. M . Kogge, "EXECUBE-a new architecture for scaleable MPPs," in
Proc. ICPP, 1 994.

[32] D. Kroft, "Lockup-free instruction fetchlprefetch cache organization,"
in Proc. ISCA , 1 98 1 .

[33] Laboratory for Web Algorithmics. Available : http://Iaw.di.unimi.itl
datasets.php

[34] K. Lim et 01. , "Thin servers with smart pipes: Designing SoC accelera
tors for memcached," in Proc. ISCA, 20 1 3 .

[35] G . H . Loh, "3D-stacked memory architectures for multi-core proces
sors," in Proc. ISCA , 2008.

[36] G. H. Loh et 01. , "A processing-in-memory taxonomy and a case for
studying fixed-function PIM," in WoNDP, 20 1 3 .

[37] Y. Low e t 01. , "Distributed GraphLab: A framework for machine
learning and data mining in the cloud," Proc. VLDB Endow. , vol. 5,
no. 8, pp. 7 1 6-727, 20 1 2 .

[3 8] C.-K. Luk e t 01. , "Pin: Building customized program analysis tools
with dynamic instrumentation," in Proc. PLDI, 2005.

[39] G. Malewicz et 01. , "Pregel: A system for large-scale graph processing,"
in Proc. SIGMOD, 20 1 0 .

[40] D. Merrill e t 01. , "Scalable GPU graph traversal," in Proc. PPoPP,
20 1 2 .

[4 1] 2Gb: x4, x8, xJ6 DDR3 SDRAM, Micron Technology, 2006.
[42] A. Mislove et 01. , "Measurement and analysis of online social net

works," in Proc. IMC, 2007 .
[43] O. Mutlu et 01. , "Runahead execution: An alternative to very large in

struction windows for out-of-order processors," in Proc. HPCA , 2003.
[44] Oracle TimesTen in-memory database. Available : http://www.oracle.

co mltechnetworkl database/ti mestenl
[45] M. Oskin et 01. , "Active pages: A computation model for intelligent

memory," in Proc. ISCA , 1998.
[46] J. Ousterhout et 01. , "The case for RAMClouds: Scalable high

performance storage entirely in DRAM," ACM SIGOPS Oper. Syst.
Rev. , vol. 43, no. 4, pp. 92-105, 20 1 0 .

[47] D. Patterson e t 01. , "Intelligent RAM (IRAM): Chips that remember
and compute," in ISSCC Dig. Tech. Pap. , 1 997.

[48] S. Pugsley et 01. , "NDC: Analyzing the impact of 3D-stacked mem
ory+logic devices on MapReduce workloads," in Proc. ISPASS, 20 14.

[49] W. Qadeer et 01. , "Convolution engine: Balancing efficiency & flexibil
ity in specialized computing," in Proc. ISCA , 20 1 3 .

[50] P. Ranganathan, "From microprocessors t o Nanostores: Rethinking
data-centric systems," IEEE Comput. , vol. 44, no. 1, pp. 39-48, 20 1 1 .

[5 1] S. Salihoglu and J. Widom, "GPS: A graph processing system," in
Proc. SSDBM, 20 1 3 .

[52] SAP HANA. Available : http://www.saphana.coml
[53] V. Seshadri et 01. , "RowClone: Fast and energy-efficient in-DRAM

bulk data copy and initialization," in Proc. MICRO, 20 1 3 .
[54] M . Shevgoor e t 01. , "Quantifying the relationship between the power

delivery network and architectural policies in a 3D-stacked memory
device," in Proc. MICRO, 20 1 3 .

[55] Y. Solihin e t 01. , "Using a user-level memory thread for correlation
prefetching," in Proc. ISCA, 2002.

[56] S. Srinath et 01. , "Feedback directed prefetching: Improving the per
formance and bandwidth-efficiency of hardware prefetchers," in Proc.
HPCA , 2007 .

[57] M. A. Suleman et al. , "Accelerating critical section execution with
asymmetric multi-core architectures," in Proc. ASPLOS, 2009.

[58] Y. Tian et 01. , "From "think like a vertex" to "think like a graph"," Proc.
VLDB Endow. , vol. 7, no. 3, pp. 193-204, 20 1 3 .

[59] L. Wu e t 01. , "Navigating big data with high-throughput, energy
efficient data partitioning," in Proc. ISCA , 20 1 3 .

[60] c.-L. Yang and A . R . Lebeck, "Push vs. pull: Data movement for
linked data structures," in Proc. ICS, 2000 .

[6 1] D. P. Zhang et 01. , 'TOP-PIM: Throughput-oriented programmable
processing in memory," in Proc. HPDC, 2014.

[62] Q. Zhu et 01. , "A 3D-stacked logic-in-memory accelerator for
application-specific data intensive computing," in Proc. 3DIC, 20 1 3 .

[63] Q . Zhu e t al. , "Accelerating sparse matrix-matrix multiplication with
3D-stacked logic-in-memory hardware," in Proc. HPEC, 20 1 3 .

