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Abstract 
The explosion of digital data and the ever-growing need for 

fast data analysis have made in-memory big-data processing 

in computer systems increasingly important. In particular, 

large-scale graph processing is gaining attention due to its 

broad applicability from social science to machine learning. 

However, scalable hardware design that can efficiently process 

large graphs in main memory is still an open problem. Ideally, 

cost-effective and scalable graph processing systems can be 

realized by building a system whose performance increases 

proportionally with the sizes of graphs that can be stored in 

the system, which is extremely challenging in conventional 

systems due to severe memory bandwidth limitations. 

In this work, we argue that the conventional concept of 

processing-in-memory (PIM) can be a viable solution to 

achieve such an objective. The key modern enabler for P1M is 

the recent advancement of the 3D integration technology that 

facilitates stacking logic and memory dies in a single package, 

which was not available when the P1M concept was originally 

examined. In order to take advantage of such a new tech

nology to enable memory-capacity-proportional performance, 

we design a programmable PIM accelerator for large-scale 

graph processing called Tesseract. Tesseract is composed of 

(1) a new hardware architecture that fully utilizes the available 

memory bandwidth, (2) an efficient method of communication 

between different memory partitions, and (3) a programming 

interface that reflects and exploits the unique hardware de

sign. It also includes two hardware prefetchers specialized for 

memory access patterns of graph processing, which operate 

based on the hints provided by our programming model. Our 

comprehensive evaluations using five state-of-the-art graph 

processing workloads with large real-world graphs show that 

the proposed architecture improves average system perfor

mance by a factor of ten and achieves 87% average energy 

reduction over conventional systems. 

1. Introduction 

With the advent of the big-data era, which consists of increas
ingly data-intensive workloads and continuous supply and 
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demand for more data and their analyses, the design of com
puter systems for efficiently processing large amounts of data 
has drawn great attention. From the data storage perspective, 
the current realization of big-data processing is based mostly 
on secondary storage such as hard disk drives and solid-state 
drives. However, the continuous effort on improving cost and 
density of DRAM opens up the possibility of in-memory big
data processing. Storing data in main memory achieves orders 
of magnitude speed up in accessing data compared to conven
tional disk-based systems, while providing up to terabytes of 
memory capacity per server. The potential of such an approach 
in data analytics has been confirmed by both academic and 
industrial projects, including RAMCloud [46], Pregel [39], 
GrapbLab [37], Oracle TimesTen [44], and SAP HANA [52]. 

While the software stack for in-memory big-data processing 
has evolved, developing a hardware system that efficiently han
dles a large amount of data in main memory still remains as an 
open question. There are two key challenges determining the 
performance of such systems: (1) how fast they can process 
each item and request the next item from memory, and (2) how 
fast the massive amount of data can be delivered from memory 
to computation units. Unfortunately, traditional computer ar
chitectures composed of heavy-weight cores and large on-chip 
caches are tailored for neither of these two challenges, thereby 
experiencing severe underutilization of existing hardware re
sources [10]. 

In order to tackle the first challenge, recent studies have 
proposed specialized on-chip accelerators for a limited set of 
operations [13,30,34,59]. Such accelerators mainly focus 
on improving core efficiency, thereby achieving better per
formance and energy efficiency compared to general-purpose 
cores, at the cost of generality. For example, Widx [30] is an 
on-chip accelerator for hash index lookups in main memory 
databases, which can be configured to accelerate either hash 
computation, index traversal, or output generation. Multiple 
Widx units can be used to exploit memory-level parallelism 
without the limitation of instruction window size, unlike con
ventional out-of-order processors [43]. 

Although specialized on-chip accelerators provide the bene
fit of computation efficiency, they impose a more fundamental 
challenge: system performance does not scale well with the 

increase in the amount of data per server (or main memory 

capacity per server) . This is because putting more acceler
ators provides speedup as long as the memory bandwidth is 
sufficient to feed them all. Unfortunately, memory bandwidth 
remains almost constant irrespective of memory capacity due 
to the pin count limitation per chip. For instance, Kocberber et 

al. [30] observe that using more than four index traversal units 



in Widx may not provide additional speedup due to off-chip 
bandwidth limitations. This implies that, in order to process 
twice the amount of data with the same performance, one 
needs to double the number of servers (which keeps memory 
bandwidth per unit data constant by limiting the amount of 
data in a server), rather than simply adding more memory 
modules to store data. Consequently, such approaches limit 
the memory capacity per server (or the amount of data han
dled by a single server) to achieve target performance, thereby 
leading to a relatively cost-ineffective and likely less scalable 
design as opposed to one that can enable increasing of memory 
bandwidth in a node along with more data in a node. 

This scalability problem caused by the memory bandwidth 
bottleneck is expected to be greatly aggravated with the emer
gence of increasingly memory-intensive big-data workloads. 
One of the representative examples of this is large-scale graph 
analysis [12, 16, 17,37,39,51,58], which has recently been 
studied as an alternative to relational database based analysis 
for applications in, for example, social science, computational 
biology, and machine learning. Graph analysis workloads are 
known to put more pressure on memory bandwidth due to 
(1) large amounts of random memory accesses across large 
memory regions (leading to very limited cache efficiency) and 
(2) very small amounts of computation per item (leading to 
very limited ability to hide long memory latencies). These 
two characteristics make it very challenging to scale up such 
workloads despite their inherent parallelism, especially with 
conventional architectures based on large on-chip caches and 
scarce off-chip memory bandwidth. 

In this paper, we show that the processing-in-memory (PIM) 
can be a key enabler to realize memory-capacity-proportional 

performance in large-scale graph processing under the current 
pin count limitation. By putting computation units inside main 
memory, total memory bandwidth for the computation units 
scales well with the increase in memory capacity (and so does 
the computational power). Importantly, latency and energy 
overheads of moving data between computation units and main 
memory can be reduced as well. And, fortunately, such bene
fits can be realized in a cost-effective manner today through 
the 3D integration technology, which effectively combines 
logic and memory dies, as opposed to the PIM architectures 
in 1990s, which suffered from the lack of an appropriate tech
nology that could tightly couple logic and memory. 

The key contributions of this paper are as follows: 

• We study an important domain of in-memory big-data pro
cessing workloads, large-scale graph processing, from the 
computer architecture perspective and show that memory 
bandwidth is the main bottleneck of such workloads. 

• We provide the design and the programming interface of a 
new programmable accelerator for in-memory graph pro
cessing that can effectively utilize PIM using 3D-stacked 
memory technologies. Our new design is called Tesseract. 1 

'Tesseract means a four-dimensional hypercube. We named our archi
tecture Tesseract because in-memory computation adds a new dimension to 
3D-stacked memory technologies. 
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• We develop an efficient mechanism for communication be
tween different Tesseract cores based on message passing. 
This mechanism (1) enables etfective hiding of long re
mote access latencies via the use of non-blocking message 
passing and (2) guarantees atomic memory updates without 
requiring software synchronization primitives. 

• We introduce two new types of specialized hardware 
prefetchers that can fully utilize the available memory band
width with simple cores. These new designs take advantage 
of (1) the hints given by our new programming interface 
and (2) memory access characteristics of graph processing. 

• We provide case studies of how five graph processing work
loads can be mapped to our architecture and how they 
can benefit from it. Our evaluations show that Tesseract 
achieves lOx average performance improvement and 87% 
average reduction in energy consumption over a conven
tional high-performance baseline (a four-socket system with 
32 out-of-order cores, having 640GB/s of memory band
width), across five different graph processing workloads, in
cluding average teenage follower [20], conductance [17,20], 
PageRank [5,17,20,39], single-source shortest path [20,39], 
and vertex cover [17]. Our evaluations use three large in
put graphs having four to seven million vertices, which 
are collected from real-world social networks and internet 
domains. 

2. Background and Motivation 

2.1. Large-Scale Graph Processing 

A graph is a fundamental representation of relationship be
tween objects. Examples of representative real-world graphs 
include social graphs, web graphs, transportation graphs, and 
citation graphs. These graphs often have millions to billions 
of vertices with even larger numbers of edges, thereby making 
them difficult to be analyzed at high performance. 

In order to tackle this problem, there exist several frame
works for large-scale graph processing by exploiting data par
allelism [12, 16, 17,37,39,51,58]. Most of these frameworks 
focus on executing computation for different vertices in par
allel while hiding synchronization from programmers to ease 
programmability. For example, the Page Rank computation 
shown in Figure 1 can be accelerated by parallelizing the ver
tex loops [17] (lines 1-4, 8-13, and 14-18) since computation 
for each vertex is almost independent of each other. In this 
style of parallelization, synchronization is necessary to guar
antee atomic updates of shared data (w. nexLpage rank and 
di ff) and no overlap between different vertex loops, which 
are automatically handled by the graph processing frameworks. 
Such an approach exhibits a high degree of parallelism, which 
is effective in processing graphs with billions of vertices. 

Although graph processing algorithms can be parallelized 
through such frameworks, there are several issues that make 
efficient graph processing very challenging. First, graph pro
cessing incurs a large number of random memory accesses 
during neighbor traversal (e.g., line 11 of Figure 1). Second, 
graph algorithms show poor locality of memory access since 



I for (v: graph. vertices) { 
2 v.pagerank = 1 / graph.num_vertices; 
3 v.next_pagerank = 0.15 / graph.num_vertices; 
4 } 
5 count = 0; 
6 do { 
7 di ff = 0; 
8 for (v: graph. vertices) { 
9 value = 0.85 * v.pagerank / v.out_degree; 

10 for (w: v.successors) { 
11 w.nexLpagerank += value; 
12 

13 } 
14 for (v: graph. vertices) { 
15 diff += abs(v.next_pagerank - v.pagerank); 
16 v.pagerank = v.next_pagerank; 
17 v.next_pagerank = 0.15 / graph. num_vertices; 
18 

19 } while (diff > e && ++count < max_iteration); 

Figure 1 :  Pseudocode of PageRank computation. 

many of them access the entire set of vertices in a graph for 
each iteration. Third, memory access latency cannot be easily 
overlapped with computation because of the small amount of 
computation per vertex [39]. These aspects should be care
fully considered when designing a system that can efficiently 
perform large-scale graph processing. 

2.2. Graph Processing on Conventional Systems 

Despite its importance, graph processing is a challenging task 
for conventional systems, especially when scaling to larger 
amounts of data (i.e., larger graphs). Figure 2 shows a scenario 
where one intends to improve graph processing performance 
of a server node equipped with out-of-order cores and DDR3-
based main memory by adding more cores. We evaluate the 
performance of five workloads with 32 or 128 cores and with 
different memory interfaces (see Section 4 for our detailed 
evaluation methodology and the description of our systems). 
As the figure shows, simply increasing the number of cores is 
ineffective in improving performance significantly. Adopting 
a high-bandwidth alternative to DDR3-based main memory 
based on 3D-stacked DRAM, called Hybrid Memory Cube 
(HMC) [22], helps this situation to some extent, however, the 
speedups provided by using HMCs are far below the expected 
speed up from quadrupling the number of cores. 

However, if we assume that cores can use the internal mem
ory bandwidth of HMCs2 ideally, i.e., without traversing the 
otf'-chip links, we can provide much higher performance by 
taking advantage of the larger number of cores. This is shown 
in the rightmost bars of Figure 3. The problem is that such 
high performance requires a massive amount of memory band
width (near 500 GB/s) as shown in Figure 2b. This is beyond 
the level of what conventional systems can provide under the 
current pin count limitations. What is worse, such a high 
amount of memory bandwidth is mainly consumed by random 
memory accesses over a large memory region, as explained in 

2The term internal memory bandwidth indicates aggregate memory band
width provided by 3D-stacked DRAM. In our system composed of 16 HMCs, 
the internal memory bandwidth is 12.8 times higher than the off-chip memory 
bandwidth (see Section 4 for details). 
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Figure 2: Performance of large-scale graph processing in con

ventional systems versus with ideal use of the HMC internal 

memory bandwidth . 

Section 2.1, which cannot be efficiently handled by the cur
rent memory hierarchies that are based on and optimized for 
data locality (i.e., large on-chip caches). This leads to the key 
question that we intend to answer in this paper: how can we 

provide such large amounts of memory bandwidth and utilize 

it for scalable and efficient graph processing in memory? 

2.3. Processing-in-Memory 

To satisfy the high bandwidth requirement of large-scale graph 
processing workloads, we consider moving computation inside 
the memory, or processing-in-memory. The key objective of 
adopting PIM is not solely to provide high memory bandwidth, 
but especially to achieve memory-capacity-proportional band
width. Let us take the Hybrid Memory Cube [24] as a viable 
baseline platform for PIM. According to the HMC 1.0 specifi
cation [22], a single HMC provides up to 320 GB Is of external 

memory bandwidth through eight high-speed serial links. On 
the other hand, a 64-bit vertical interface for each DRAM par
tition (or vault, see Section 3.1 for details), 32 vaults per cube, 
and 2 Gbls of TSV signaling rate [24] together achieve an 
internal memory bandwidth of 512 GB/s per cube. Moreover, 
this gap between external and internal memory bandwidth 
becomes much wider as the memory capacity increases with 
the use of more HMCs. Considering a system composed of 16 
8 GB HMCs as an example, conventional processors are still 
limited to 320 GB Is of memory bandwidth assuming that the 
CPU chip has the same number of off-chip links as that of an 
HMC. In contrast, PIM exposes 8 TB/s ( = 16 x 512GB/s) of 
aggregate internal bandwidth to the in-memory computation 
units. This memory-capacity-proportional bandwidth facili-



(a) Network of cubes (b) Cube (HMC) (c) Vault 

Figure 3: Tesseract architecture (the figure is not to scale). 

tates scaling the system performance with increasing amount 
of data in a cost-effective way, which is a key concern in graph 
processing systems. 

However, introducing a new processing paradigm brings a 
set of new challenges in designing a whole system. Through
out this paper, we will answer three critical questions in design
ing a PIM system for graph processing: (1) How to design an 
architecture that can fully utilize internal memory bandwidth 
in an energy-efficient way, (2) how to communicate between 
different memory partitions (i.e., vaults) with a minimal im
pact on performance, and (3) how to design an expressive 
programming interface that reflects the hardware design. 

3. Tesseract Architecture 

3.1. Overview 

Organization. Figure 3 shows a conceptual diagram of the 
proposed architecture. Although Tesseract does not rely on a 
particular memory organization, we choose the hybrid mem
ory cube having eight 8 Gb DRAM layers (the largest device 
available in the current HMC specification [22]) as our base
line. An HMC, shown conceptually in Figure 3b is composed 
of 32 vertical slices (called vaults), eight 40 GBls high-speed 
serial links as the off-chip interface, and a crossbar network 
that connects them. Each vault, shown in Figure 3c, is com
posed of a 16-bank DRAM partition and a dedicated memory 
controller.3 In order to perform computation inside memory, 
a single-issue in-order core is placed at the logic die of each 
vault (32 cores per cube). In terms of area, a Tesseract core fits 
well into a vault due to the small size of an in-order core. For 
example, the area of 32 ARM Cortex-AS processors including 
an FPU (0.68 mm2 for each core [1]) corresponds to only 9.6% 
of the area of an 8 Gb DRAM die area (e.g., 226 mm2 [54]). 

Host-Tesseract Interface. In the proposed system, host pro
cessors have their own main memory (without PIM capability) 
and Tesseract acts like an accelerator that is memory-mapped 
to part of a noncacheable memory region of the host proces
sors. This eliminates the need for managing cache coherence 
between caches of the host processors and the 3D-stacked 
memory of Tesseract. Also, since in-memory big-data work
loads usually do not require many features provided by virtual 

3Due to the existence of built-in DRAM controllers, HMCs use a packet
based protocol for communication through the inter-lintra-HMC network 
instead of low-level DRAM commands as in DDRx protocols. 
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memory (along with the non-trivial performance overhead of 
supporting virtual memory) [3], Tesseract does not support 
virtual memory to avoid the need for address translation inside 

memory. Nevertheless, host processors can still use virtual ad
dressing in their main memory since they use separate DRAM 
devices (apart from the DRAM of Tesseract) as their own main 
memory.4 

Since host processors have access to the entire memory 
space of Tesseract, it is up to the host processors to distribute 
input graphs across HMC vaults. For this purpose, the host 
processors use a customized malloc call, which allocates an 
object (in this case, a vertex or a list of edges) to a specific 
vault. For example, numa_alloconnode in Linux (which 
allocates memory on a given NUMA node) can be extended 
to allocate memory on a designated vault. This information 
is exposed to applications since they use a single physical 
address space over all HMCs. An example of distributing an 
input graph to vaults is shown in Figure 3a. Algorithms to 
achieve a balanced distribution of vertices and edges to vaults 
are beyond the scope of this paper. However, we analyze 
the impact of better graph distribution on the performance of 
Tesseract in Section 5.7. 

Message Passing (Section 3.2). Unlike host processors that 
have access to the entire address space of the HMCs, each 
Tesseract core is restricted to access its own local DRAM 
partition only. Thus, a low-cost message passing mechanism 
is employed for communication between Tesseract cores. For 
example, vertex v in Figure 3a can remotely update a property 
of vertex u by sending a message that contains the target vertex 
id and the computation that will be done in the remote core 
(dotted line in Figure 3a). We choose message passing to com
municate between Tesseract cores in order to: (1) avoid cache 
coherence issues among Ll data caches of Tesseract cores, 
(2) eliminate the need for locks to guarantee atomic updates 
of shared data, and (3) facilitate the hiding of remote access 
latencies through asynchronous message communication. 

Prefetching (Section 3.3). Although putting a core beneath 
memory exposes unprecedented memory bandwidth to the 

�For this purpose, Tesseract may adopt the direct segment approach [3] 
and interface its memory as a primary region. Supporting direct segment 
translation inside memory can be done simply by adding a small direct seg
ment hardware for each Tesseract core and broadcasting the base, limit, and 
offset values from the host at the beginning of Tesseract execution. 



core, a single-issue in-order core design is far from the best 
way of utilizing this ample memory bandwidth. This is be
cause such a core has to stall on each Ll cache miss. To enable 
better exploitation of the large amount of memory bandwidth 
while keeping the core simple, we design two types of simple 
hardware prefetchers: a list prefetcher and a message-triggered 
prefetcher. These are carefully tailored to the memory access 
patterns of graph processing workloads. 

Programming Interface (Section 3.4). Importantly, we de
fine a new progranuning interface that enables the use of our 
system. Our progranuning interface is easy to use, yet general 
enough to express many different graph algorithms. 

3.2. Remote Function Call via Message Passing 

Tesseract moves computation to the target core that contains 
the data to be processed, instead of allowing remote mem
ory accesses. For simplicity and generality, we implement 
computation movement as a remote function call [4,57]. In 
this section, we propose two different message passing mech
anisms, both of which are supported by Tesseract: blocking 
remote function call and non-blocking remote function call. 

Blocking Remote Function Call. A blocking remote func
tion call is the most intuitive way of accessing remote data. In 
this mechanism, a local core requests a remote core to (1) exe
cute a specific function remotely and (2) send the return value 
back to the local core. The exact sequence of performing a 
blocking remote function call is as follows: 

1. The local core sends a packet containing the function ad
dresss and function arguments6 to the remote core and 
waits for its response. 

2. Once the packet arrives at the remote vault, the network 
interface stores function arguments to the special registers 
visible from the core and emits an interrupt for the core. 

3. The remote core executes the function in interrupt mode, 

writes the return value to a special register, and switches 
back to the normal execution mode. 

4. The remote core sends the return value back to the local 
core. 

Note that the execution of a remote function call is not pre
empted by another remote function call in order to guarantee 
atomicity. Also, cores may temporarily disable interrupt ex
ecution to modify data that might be accessed by blocking 
remote function calls. 

This style of remote data access is useful for global state 
checks. For example, checking the condition 'di ff > e' in 
line 19 of Figure 1 can be done using this mechanism. How
ever, it may not be the performance-optimal way of accessing 
remote data because (1) local cores are blocked until responses 
arrive from remote cores and (2) each remote function call 

5We assume that all Tesseract cores store the same code into the same 
location of their local memory so that function addresses are compatible 
across different Tesseract cores. 

61n this paper, we restrict the maximum size of arguments to be 32 bytes, 
which should be sufficient for general use. We also provide an APl to transfer 
data larger than 32 bytes in Section 3.4. 
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emits an interrupt, incurring the latency overhead of context 
switching. This motivates the need for another mechanism for 
remote data access, a non-blocking remote function call. 

Non-Blocking Remote Function Call. A non-blocking re
mote function call is semantically similar to its blocking coun
terpart, except that it cannot have return values. This simple 
restriction greatly helps to optimize the performance of remote 
function calls in two ways. 

First, a local core can continue its execution after invoking a 
non-blocking remote function call since the core does not have 
to wait for the termination of the function. In other words, it 
allows hiding remote access latency because sender cores can 
perform their own work while messages are being transferred 
and processed. However, this makes it impossible to figure 
out whether or not the remote function call is finished. To 
simplify this problem, we ensure that all non-blocking remote 
function calls do not cross synchronization barriers. In other 
words, results of remote function calls are guaranteed to be 
visible after the execution of a barrier. Similar consistency 
models can be found in other parallelization frameworks such 
as OpenMP [8]. 

Second, since the execution of non-blocking remote func
tion calls can be delayed, batch execution of such functions 
is possible by buffering them and executing all of them with 
a single interrupt. For this purpose, we add a message queue 

to each vault that stores messages for non-blocking remote 
function calls. Functions in this queue are executed once either 
the queue is full or a barrier is reached. Batching the execution 
of remote function calls helps to avoid the latency overhead of 
context switching incurred by frequent interrupts. 

Non-blocking remote function calls are mainly used for up
dating remote data. For example, updating PageRank values 
of remote vertices in line 11 of Figure 1 can be implemented 
using this mechanism. Note that, unlike the original implemen
tation where locks are required to guarantee atomic updates 
of w. nexLpagerank, our mechanism eliminates the need for 
locks or other synchronization primitives since it guarantees 
that (1) only the local core of vertex w can access and mod
ify its property and (2) remote function call execution is not 
preempted by other remote function calls. 

3.3. Prefetching 

We develop two prefetching mechanisms to enable each Tesser
act core to exploit the high available memory bandwidth. 

List Prefetching. One of the most common memory access 
patterns is sequential accesses with a constant stride. Such 
access patterns are found in graph processing as well. For 
example, most graph algorithms frequently traverse the list 
of vertices and the list of edges for each vertex (e.g., the for 
loops in Figure 1), resulting in strided access patterns. 

Memory access latency of such a simple access pattern can 
be easily hidden by employing a stride prefetcher. In this paper, 
we use a stride prefetcher based on a reference prediction 
table (RPT) [6] that prefetches multiple cache blocks ahead to 
utilize the high memory bandwidth. In addition, we modify 
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the prefetcher to accept information about the start address, the 
size, and the stride of each list from the application software. 
Such information is recorded in the four-entry list table at the 
beginning of a loop and is removed from it at the end of the 
loop. Inside the loop, the prefetcher keeps track of only the 
memory regions registered in the list table and installs an RPT 
entry if the observed stride conforms to the hint. An RPT entry 
is removed once it reaches the end of the memory region. 

Message-triggered Prefetching. Although stride prefetch
ers can cover frequent sequential accesses, graph processing 
often involves a large amount of random access patterns. This 
is because, in graph processing, infonnation flows through 
the edges, which requires pointer chasing over edges toward 
randomly-located target vertices. Such memory access pat
terns cannot be easily predicted by stride prefetchers. 

Interestingly, most of the random memory accesses in graph 
processing happen on remote accesses (i.e., neighbor traver
sal). This motivates the second type of prefetching we devise, 
called message-triggered prefetching, shown in Figure 4. The 
key idea is to prefetch data that will be accessed during a 
non-blocking remote function call before the execution of the 
function call. For this purpose, we add an optional field for 
each non-blocking remote function call packet, indicating a 
memory address to be prefetched. As soon as a request con
taining the prefetch hint is inserted into the message queue, the 
message-triggered prefetcher issues a prefetch request based 
on the hint and marks the message as ready when the prefetch 
is serviced. When more than a predetermined number (Mth) of 
messages in the message queue are ready, the message queue 
issues an interrupt to the core to process the ready messages.? 

Message-triggered prefetching is unique in two aspects. 
First, it can eliminate processor stalls due to memory accesses 
inside remote function call execution by processing only ready 
messages. This is achieved by exploiting the time slack be
tween the arrival of a non-blocking remote function call mes
sage and the time when the core starts servicing the mes
sage. Second, it can be exact, unlike many other prefetching 
techniques, since graph algorithms use non-blocking remote 
function calls to send updates over edges, which contain the 
exact memory addresses of the target vertices. For example, 

7If the message queue becomes full or a barrier is reached before Mth 
messages are ready, all messages are processed regardless of their readiness. 

1 10 

a non-blocking remote function call for line 11 of Figure 1 
can provide the address of w. nexLpage rank as a prefetch 
hint, which is exact information on the address instead of a 
prediction that can be incorrect. 

Prefetch Buffer. The two prefetch mechanisms store 
prefetched blocks into prefetch buffers [25] instead of L1 
caches. This is to prevent the situation where prefetched 
blocks are evicted from the Ll cache before they are refer
enced due to the long interval between prefetch requests and 
their demand accesses. For instance, a cache block loaded by 
message-triggered prefetching has to wait to be accessed until 
at least Mth messages are ready. Meanwhile, other loads inside 
the normal execution mode may evict the block according 
to the replacement policy of the Ll cache. A similar effect 
can be observed when loop execution with list prefetching is 
preempted by a series of remote function call executions. 

3.4. Programming Interface 

In order to utilize the new Tesseract design, we provide 
the following primitives for programming in Tesseract. We 
introduce several major API calls for Tesseract: get, put, 

disable_interrupt, enable_interrupt, copy, list_begin, 

lisLend, and barrier. Hereafter, we use A and S to indicate 
the memory address type (e.g., void* in C) and the size type 
(e.g., size_tin C), respectively. 

get (id, A func, A arg, 5 arg_size, A ret, 5 ret_size) 
put (id, A func, A arg, 5 arg_size, A prefetch_addr) 

get and put calls represent blocking and non-blocking remote 
function calls, respectively. The id of the target remote core 
is specified by the id argument.S The start address and the 
size of the function argument is given by a rg and a rg_size, 

respectively, and the return value (in the case of get) is writ
ten to the address ret. In the case of put, an optional argu
ment p refetch_add r can be used to specify the address to be 
prefetched by the message-triggered prefetcher. 

disable_interrupt() 

enable_interrupt() 

disable_interrupt and enable_interrupt calls guarantee 
that the execution of instructions enclosed by them are not 
preempted by interrupts from remote function calls. This pre
vents data races between normal execution mode and interrupt 
mode as explained in Section 3.2. 

copy(id, A local, A remote, S size) 

The copy call implements copying a local memory region to 
a remote memory region. It is used instead of get or put 

commands if the size of transfer exceeds the maximum size of 
arguments. This command is guaranteed to take effect before 
the nearest barrier synchronization (similar to the put call). 

list_begin(A address, S size, S stride) 
list_end(A address, S size, S stride) 

81f a core issues a put command with its own id, it can either be replaced 
by a simple function call or use the same message queue mechanism as in 
remote messages. In this paper, we insert local messages to the message 
queue only if message-triggered prefetching (Section 3.3) is available so that 
the prefetching can be applied to local messages as well. 



lisLbegin and lisLend calls are used to update the list 
table, which contains hints for list prefetching. Programmers 
can specify the start address of a list, the size of the list, and the 
size of an item in the list (i.e., stride) to initiate list prefetching. 

barrier( ) 

The ba r rie r call implements a synchronization barrier across 
all Tesseract cores. One of the cores in the system (prede
termined by designers or by the system software) works as a 
master core to collect the synchronization status of each core. 

3.5. Application Mapping 

Figure 5 shows the PageRank computation using our program
ming interface (recall that the original version was shown in 
Figure 1). We only show the transformation for lines 8-13 of 
Figure 1, which contain the main computation. lisL for 

is used as an abbreviation of a for loop surrounded by 
lisLbegin and lisLend calls. 

2 count = 0; 
3 do { 
4 

5 list for (v: graph. vertices) { 
6 value = 0.85 * v.pagerank / v.out_degree; 
7 lisLfor (w: v.successors) { 
8 arg = (w. value); 
9 gg!(w.id. function(w. value) 

10 w.next_pagerank += value; 
11 }. &arg. sizeof(arg). &w.next_pagerank); 
12 

13 

14 

15 

} 

barrier() ; 

16 } while (diff > e && ++count < max_iteration); 

Figure 5: PageRank computation in Tesseract (corresponding 

to lines 8-1 3 in Figure 1 ). 

Most notably, remote memory accesses for updating the 
nexLpagerank field are transformed into put calls. Conse
quently, unlike the original implementation where every Ll 
cache miss or lock contention for w. nexLpage ran k stalls 
the core, our implementation facilitates cores to (1) continu
ously issue put commands without being blocked by cache 
misses or lock acquisition and (2) promptly update PageRank 
values without stalls due to Ll cache misses through message
triggered prefetching. List prefetching also helps to achieve 
the former objective by prefetching pointers to the successor 
vertices (i.e., the list of outgoing edges). 

We believe that such transformation is simple enough to 
be easily integrated into existing graph processing frame
works [12,16,37,39,51,58] or DSL compilers for graph 
processing [17,20]. This is a part of our future work. 

4. Evaluation Methodology 

4.1. Simulation Configuration 

We evaluate our architecture using an in-house cycle-accurate 
x86-64 simulator whose frontend is Pin [38]. The simulator 
has a cycle-level model of many microarchitectural compo
nents, including in-order/out-of-order cores considering reg-
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ister/structural dependencies, multi-bank caches with limited 
numbers of MSHRs, MESI cache coherence, DDR3 con
trollers, and HMC links. Our simulator runs multi threaded 
applications by inspecting pthread APIs for threads and syn
chronization primitives. For Tesseract, it also models remote 
function calls by intercepting get/put commands (manually 
inserted into software) and injecting messages into the tim
ing model accordingly. The rest of this subsection briefly 
describes the system configuration used for our evaluations. 

DDR3-Based System. We model a high-performance con
ventional DDR3-based system with 32 4 GHz four-wide out
of-order cores, each with a 128-entry instruction window and 
a 64-entry load-store queue (denoted as DDR3-000). Each 
socket contains eight cores and all four sockets are fully con
nected with each other by high-speed serial links, provid
ing 40 GB/s of bandwidth per link. Each core has 32 KB L1 
instruction/data caches and a 256 KB L2 cache, and eight 
cores in a socket share an 8 MB L3 cache. All three levels of 
caches are non-blocking, having 16 (Ll ), 16 (L2), and 64 (L3) 
MSHRs [32]. Each L3 cache is equipped with a feedback
directed prefetcher with 32 streams [56]. The main memory 
has 128 GB of memory capacity and is organized as two chan
nels per CPU socket, four ranks per channel, eight banks per 
rank, and 8 KB rows with timing parameters of DDR3-1600 
11-11-11 devices [41], yielding 102.4GB/s of memory band
width exploitable by cores. 

DDR3-000 resembles modern commodity servers com
posed of multi-socket, high-end CPUs backed by DDR3 main 
memory. Thus, we choose it as the baseline of our evaluations. 

HMC-Based System. We use two different types of cores 
for the HMC-based system: HMC-OoO, which consists of 
the same cores used in DDR3-000, and HMC-MC, which is 
comprised of 512 2 GHz single-issue in-order cores (128 cores 
per socket), each with 32 KB Ll instruction/data caches and 
no L2 cache. For the main memory, we use 16 8GB HMCs 
(128 GB in total, 32 vaults per cube, 16 banks per vault [22], 
and 256 B pages) connected with the processor-centric topol
ogy proposed by Kim et al. [29]. The total memory bandwidth 
exploitable by the cores is 640 GB/s. 

HMC-OoO and HMC-MC represent future server designs 
based on emerging memory technologies. They come with 
two flavors, one with few high-performance cores and the 
other with many low-power cores, in order to reflect recent 
trends in commercial server design. 

Tesseract System. Our evaluated version of the Tesseract 
paradigm consists of 512 2 GHz single-issue in-order cores, 
each with 32 KB Ll instruction/data caches and a 32-entry 
message queue (1.5 KB), one for each vault of the HMCs. We 
conservatively assume that entering or exiting the interrupt 
mode takes 50 processor cycles (or 25 ns). We use the same 
number of HMCs (128 GB of main memory capacity) as that 
of the HMC-based system and connect the HMCs with the 
Dragonfly topology as suggested by previous work [29]. Each 
vault provides 16 GB/s of internal memory bandwidth to the 



Tesseract core, thereby reaching 8 TB/s of total memory band
width exploitable by Tesseract cores. We do not model the 
host processors as computation is done entirely inside HMCs 
without intervention from host processors. 

For our prefetching schemes, we use a 4 KB 16-way set
associative prefetch butler for each vault. The message
triggered prefetcher handles up to 16 prefetches and triggers 
the message queue to start processing messages when more 
than 16 (= Mth) messages are ready. The list prefetcher is com
posed of a four-entry list table and a 16-entry reference predic
tion table (0.48 KB) and is set to prefetch up to 16 cache blocks 
ahead. Mth and the prefetch distance of the list prefetcher are 
detennined based on our experiments on a limited set of con
figurations. Note that comparison of our schemes against other 
software prefetching approaches is hard to achieve because 
Tesseract is a message-passing architecture (i.e., each core 
can access its local DRAM partition only), and thus, existing 
mechanisms require significant modifications to be applied to 
Tesseract to prefetch data stored in remote memory. 

4.2. Workloads 

We implemented five graph algorithms in C++. Average 
Teenager Follower (AT) computes the average number of 
teenage followers of users over k years old [20]. Conductance 
(CT) counts the number of edges crossing a given partition X 
and its complement Xc [17,20]. PageRank (PR) is an algo
rithm that evaluates the importance of web pages [5,17,20,39]. 
Single-Source Shortest Path (SP) finds the shortest path from 
the given source to each vertex [20,39]. Vertex Cover (VC) 
is an approximation algorithm for the minimum vertex cover 
problem [17]. Due to the long simulation times, we simulate 
only one iteration of PR, four iterations of SP, and one iteration 
of Vc. Other algorithms are simulated to the end. 

Since runtime characteristics of graph processing algo
rithms could depend on the shapes of input graphs, we use 
three real-world graphs as inputs of each algorithm: ljournal-

2008 from the LiveJournal social site (LJ, IVI = 5.3 M, IEI = 

79M), enwiki-2013 from the English Wikipedia (WK, IVI = 

4.2 M, IEI = 101 M), and indochina-2004 from the country 
domains of Indochina (IC, IVI = 7.4 M, IEI = 194M) [33]. 
These inputs yield 3-5 GB of memory footprint, which is 
much larger than the total cache capacity of any system in our 
evaluations. Although larger datasets cannot be used due to the 
long simulation times, our evaluation with relatively smaller 
memory footprints is conservative as it penalizes Tesseract 
because conventional systems in our evaluations have much 
larger caches (41 MB in HMC-OoO) than the Tesseract system 
(16 MB). The input graphs used in this paper are known to 
share similar characteristics with large real-world graphs in 
terms of their small diameters and power-law degree distribu
tions [42].9 

9We conducted a limited set of experiments with even larger graphs 
(it-2004. arabic-2005. and uk-2002 [33], IVI = 41M/23M/19M, IEI = 
1151 M/640M/298 M, 32 GB/18 GB/10GB of memory footprints, respec
tively) and observed similar trends in performance and energy efficiency. 
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5. Evaluation Results 

5.1. Performance 

Figure 6 compares the performance of the proposed Tesser
act system against that of conventional systems (DDR3-000, 
HMC-OoO, and HMC-MC). In this figure, LP and MTP indi
cate the use of list prefetching and message-triggered prefetch
ing, respectively. The last set of bars, labeled as GM, indicates 
geometric mean across all workloads. 

Our evaluation results show that Tesseract outperforms the 
DDR3-based conventional architecture (DDR3-000) by 9x 
even without prefetching techniques. Replacing the DDR3-
based main memory with HMCs (HMC-OoO) and using many 
in-order cores instead of out-of-order cores (HMC-MC) bring 
only marginal perfonnance improvements over the conven
tional systems. 

Our prefetching mechanisms, when employed together, en
able Tesseract to achieve a 14x average performance improve
ment over the DDR3-based conventional system, while min
imizing the storage overhead to less than 5 KB per core (see 
Section 4.1). Message-triggered prefetching is particularly 
effective in graph algorithms with large numbers of neighbor 
accesses (e.g., CT, PR, and SP), which are difficult to handle 
efficiently in conventional architectures. 

The reason why conventional systems fall behind Tesseract 
is that they are limited by the low off-chip link bandwidth 
(102.4GB/s in DDR3-000 or 640GB/s in HMC-OoO/-MC) 
whereas our system utilizes the large internal memory band
width of HMCs (8 TB/s).tO Perhaps more importantly, such 
bandwidth discrepancy becomes even more pronounced as the 
main memory capacity per server gets larger. For example, 
doubling the memory capacity linearly increases the memory 
bandwidth in our system, while the memory bandwidth of the 
conventional systems remains the same. 

To provide more insight into the performance improvement 
of Tesseract, Figure 7 shows memory bandwidth usage and 
average memory access latency of each system (we omit re
sults for workloads with WK and IC datasets for brevity). 
As the figure shows, the amount of memory bandwidth uti
lized by Tesseract is in the order of several TB/s, which is 
clearly beyond the level of what conventional architectures 
can reach even with advanced memory technologies. This, in 
turn, greatly affects the average memory access latency, lead
ing to a 96% lower memory access latency in our architecture 
compared to the DDR3-based system. This explains the main 
source of the large speed up achieved by our system. 

Figure 7a also provides support for our decision to have 
one-to-one mapping between cores and vaults. Since the total 
memory bandwidth usage does not reach its limit (8 TB/s), 

10 Although Tesseract also uses off-chip links for remote accesses. moving 
computation to where data reside (i.e., using the remote function calls in 
Tesseract) consumes much less bandwidth than fetching data to computation 
units. For example, the minimum memory access granularity of conventional 
systems is one cache block (typically 64 bytes), whereas each message in 
Tesseract consists of a function pointer and small-sized arguments (up to 32 
bytes). Sections 5.5 and 5.6 discuss the impact of off-chip link bandwidth on 
Tesseract performance. 
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Figure 6: Performance comparison between conventional architectures and Tesseract (normalized to DDR3-000). 
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Figure 7: Memory characteristics of graph processing workloads in conventional architectures and Tesseract. 

allocating multiple vaults to a single core could cause further 
imbalance between computation power and memory band
width_ Also, putting more than one core per vault complicates 
the system design in terms of higher thermal density, degraded 
quality of service due to sharing of one memory controller 
between multiple cores, and potentially more sensitivity to 
placement of data. For these reasons, we choose to employ 
one core per vault. 

5.2. Iso-Bandwidth Comparison of Tesseract and Conven

tional Architectures 

In order to dissect the performance impact of increased mem
ory bandwidth and our architecture design, we perform ideal
ized limit studies of two new configurations: (1) HMC-MC 
utilizing the internal memory bandwidth of HMCs without 

off-chip bandwidth limitations (called HMC-MC + PIM BW) 
and (2) Tesseract, implemented on the host side, leading to 
severely constrained by off-chip link bandwidth (called Tesser

act + Conventional BW)_ The first configuration shows the 
ideal performance of conventional architectures without any 
limitation due to off-chip bandwidth. The second configura
tion shows the performance of Tesseract if it were limited by 
conventional off-chip bandwidth_ Note that HMC-MC has 
the same core and cache configuration as that of Tesseract. 
For fair comparison, prefetching mechanisms of Tesseract are 
disabled. We also show the performance of regular HMC-MC 
and Tesseract (the leftmost and the rightmost bars in Figure 8). 

As shown in Figure 8, simply increasing the memory band
width of conventional architectures is not sufficient for them 
to reach the performance of Tesseract. Even if the memory 
bandwidth of HMC-MC is artificially provisioned to the level 
of Tesseract, Tesseract still outperforms HMC-MC by 2.2x 
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even without prefetching. Considering that HMC-MC has the 
same number of cores and the same cache capacity as those 
of Tesseract, we found that this improvement comes from our 
programming model that can overlap long memory access 
latency with computation through non-blocking remote func
tion calls_ The performance benefit of our new programming 
model is also confirmed when we compare the performance 
of Tesseract + Conventional BW with that of HMC-MC. We 
observed that, under the conventional bandwidth limitation, 
Tesseract provides 2.3x the performance of HMC-MC, which 
is 2.8x less speedup compared to its PIM version. This im
plies that the use of PIM and our new programming model are 
roughly of equal importance in achieving the performance of 
Tesseract. 
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Figure 8: HMC-MC and Tesseract under the same bandwidth . 

5.3. Execution Time Breakdown 

Figure 9 shows execution time broken down into each oper
ation in Tesseract (with prefetching mechanisms), averaged 
over all cores in the system. In many workloads, execution 
in normal execution mode and interrupt mode dominates the 
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Figure 9 :  Execution time breakdown of our architecture. 

total execution time. However, in some applications, up to 
26% of execution time is spent on waiting for network due 
to a significant amount of off-chip conununication caused by 
neighbor traversal. Since neighbor traversal uses non-blocking 

remote function calls, the time spent is essentially due to the 
network backpressure incurred as a result of limited network 
bandwidth. In Sections 5.6 and 5.7, we show how this problem 
can be mitigated by either increased off-chip bandwidth or 
better graph distribution schemes. 

In addition, some workloads spend notable execution time 
waiting for barrier synchronization. This is due to workload 
imbalance across cores in the system. This problem can be 
alleviated by employing better data mapping (e.g., graph parti
tioning based vertex distribution, etc.), which is orthogonal to 
our proposed system. 

5.4. Prefetch Efficiency 

Figure 10 shows two metrics to evaluate the efficiency of our 
prefetching mechanisms. First, to evaluate prefetch timeli
ness, it compares our scheme against an ideal one where all 
prefetches are serviced instantly (in zero cycles) without incur
ring DRAM contention. Second, it depicts prefetch coverage, 
i.e., ratio of prefetch buffer hits over all Ll cache misses. 
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Figure 1 0: Efficiency of our prefetching mechanisms. 
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We observed that our prefetching schemes perform within 
l .8% of their ideal implementation with perfect timeliness and 
no bandwidth contention. This is very promising, especially 
considering that pointer chasing in graph processing is not a 
prefetch-friendly access pattern. The reason why our message
triggered prefetching shows such good timeliness is that it 
utilizes the slack between message arrival time and message 
processing time. Thus, as long as there is enough slack, our 
proposed schemes can fully hide the DRAM access latency. 
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Our experimental results indicate that, on average, each mes
sage stays in the message queue for 1400 Tesseract core cycles 
(i.e., 700 ns) before they get processed (not shown), which is 
much longer than the DRAM access latency in most cases. 

Figure 10 also shows that our prefetching schemes cover 
87% of Ll cache misses, on average. The coverage is high 
because our prefetchers tackle two major sources of memory 
accesses in graph processing, namely vertexledge list traversal 
and neighbor traversal, with exact information from domain
specific knowledge provided as software hints. 

We conclude that the new prefetching mechanisms can be 
very effective in our Tesseract design for graph processing 
workloads. 

5.5. Scalability 

Figure 11 evaluates the scalability of Tesseract by measuring 
the performance of 32/128/512-core systems (i.e., systems 
with 8132/128 GB of main memory in total), normalized to 
the performance of the 32-core Tesseract system. Tesseract 
provides nearly ideal scaling of performance when the main 
memory capacity is increased from 8 GB to 32 GB. On the 
contrary, further quadrupling the main memory capacity to 
128 GB shows less optimal performance compared to ideal 
scaling. The cause of this is that, as more cubes are added into 
our architecture, off-chip communication overhead becomes 
more dominant due to remote function calls. For example, 
as the number of Tesseract cores increases from 128 to 512, 
the average bandwidth consumption of the busiest off-chip 
link in Tesseract increases from 8.5 GBls to 17.2 GBls (i.e., 
bandwidth utilization of the busiest link increases from 43% 
to 86%) in the case of AT.LJ. However, it should be noticed 
that, despite this sublinear performance scaling, increasing the 
main memory capacity widens the performance gap between 
conventional architectures and ours even beyond 128 GB since 
conventional architectures do not scale well with the increasing 
memory capacity. We believe that optimizing the on'-chip 
network and data mapping will further improve scalability of 
our architecture. We discuss these in the next two sections. 
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Figure 1 1 :  Performance scalability of Tesseract. 

5.6. Effect of Higher Off-Chip Network Bandwidth 
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The recent HMC 2.0 specification boosts the off-chip memory 
bandwidth from 320 GBls to 480 GBls [23]. In order to evalu
ate the impact of such an increased off-chip bandwidth on both 
conventional systems and Tesseract, we evaluate HMC-OoO 
and Tesseract with 50% higher off-chip bandwidth. As shown 



in Figure 12, such improvement in off-chip bandwidth widens 
the gap between HMC-OoO and Tesseract in graph process
ing workloads which intensively use the off-chip network for 
neighbor traversal. This is because the 1.5x off-chip link band
width is still far below the memory bandwidth required by 
large-scale graph processing workloads in conventional archi
tectures (see Figure 7a). However, 1.5x off-chip bandwidth 
greatly helps to reduce network-induced stalls in Tesseract, 
enabling even more efficient utilization of internal memory 
bandwidth. We observed that, with this increase in off-chip 
link bandwidth, graph processing in Tesseract scales better to 
512 cores (not shown: 14.9x speed up resulting from 16x more 
cores, going from 32 to 512 cores). 
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Figure 1 2: System performance under HMC 2.0 specification. 

5.7. Effect of Better Graph Distribution 

Another way to improve otl'-chip transfer efficiency is to em
ploy better data partitioning schemes that can minimize com
munication between different vaults. In order to analyze the 
effect of data partitioning on system performance, Figure 13 
shows the performance improvement of Tesseract when the 
input graphs are distributed across vaults based on graph parti
tioning algorithms. For this purpose, we use METIS [27] to 
perform 512-way multi-constraint partitioning to balance the 
number of vertices, outgoing edges, and incoming edges of 
each partition, as done in a recent previous work [51]. The 
evaluation results do not include the execution time of the 
partitioning algorithm to clearly show the impact of graph 
distribution on graph analysis performance. 

Employing better graph distribution can further improve the 
perfonnance of Tesseract. This is because graph partitioning 
minimizes the number of edges crossing between different 
partitions (53% fewer edge cuts compared to random parti-
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Figure 1 3: Performance improvement after graph partitioning. 
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tioning i n  LJ), and thus, reduces off-chip network traffic for 
remote function calls. For example, in AT.LJ, the partitioning 
scheme eliminates 53% of non-blocking remote function calls 
compared to random partitioning (which is our baseline). 

However, in some workloads, graph partitioning shows only 
small performance improvement (CT.LJ) or even degrades per
formance (SP.LJ) over random partitioning. This is because 
graph partitioning algorithms are unaware of the amount of 
work per vertex, especially when it changes over time. As a re
sult, they can exacerbate the workload imbalance across vaults. 
A representative example of this is the shortest path algorithm 
(SP.LJ), which skips computation for vertices whose distances 
did not change during the last iteration. This algorithm experi
ences severe imbalance at the beginning of execution, where 
vertex updates happen mostly within a single partition. This 
is confirmed by the observation that Tesseract with METIS 
spends 59% of execution time waiting for synchronization 
barriers. This problem can be alleviated with migration-based 
schemes, which will be explored in our future work. 

S.S. EnergylPower Consumption and Thermal Analysis 

Figure 14 shows the normalized energy consumption of HMCs 
in HMC-based systems including Tesseract. We model the 
power consumption of logic/memory layers and Tesseract 
cores by leveraging previous work [48], which is based on Mi
cron's disclosure, and scaling the numbers as appropriate for 
our configuration. Tesseract consumes 87% less average en
ergy compared to conventional HMC-based systems with out
of-order cores, mainly due to its shorter execution time. The 
dominant portion of the total energy consumption is from the 
SerDes circuits for off-chip links in both HMC-based systems 
and Tesseract (62% and 45%, respectively), while Tesseract 
cores contribute 15% of the total energy consumption. 
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Figure 1 4: Normalized energy consumption of H MCs. 

Tesseract increases the average power consumption (not 
shown) by 40% compared to HMC-OoO mainly due to the 
in-order cores inside it and the higher DRAM utilization. Al
though the increased power consumption may have a nega
tive impact on device temperature, the power consumption is 
expected to be still within the power budget according to a 
recent industrial research on thermal feasibility of 3D-stacked 
PIM [9]. Specifically, assuming that a logic die of the HMC 
has the same area as an 8 Gb DRAM die (e.g., 226 mm2 [54]), 
the highest power density of the logic die across all work
loads in our experiments is 94 mW/mm2 in Tesseract, which 
remains below the maximum power density that does not re-



quire faster DRAM refresh using a passive heat sink (i.e., 
133 mW/mm2 [9]). 

We conclude that Tesseract is thermally feasible and leads to 
greatly reduced energy consumption on state-of-the-art graph 
processing workloads. 

6. Related Work 

To our knowledge, this paper provides the first comprehensive 
accelerator proposal for large-scale graph processing using the 
concept of processing-in-memory. We provide a new program
ming model, system design, and prefetching mechanisms for 
graph processing workloads, along with extensive evaluations 
of our proposed techniques. This section briefly discusses 
related work in PIM, 3D stacking, and architectures for data
intensive workloads. 

Processing-in-Memory. Back in the 1990s, several re
searchers proposed to put computation units inside memory to 
overcome the memory wall [11,14,26,31,45,47]. At the time, 
the industry moved toward increasing the off-chip memory 
bandwidth instead of adopting the PIM concept due to costly 
integration of computation units inside memory dies. Our 
architecture takes advantage of a much more realizable and 
cost-effective integration of processing and memory based on 
3D stacking (e.g., the hybrid memory cube). 

No prior work on processing-in-memory examined large
scale graph processing, which is not only commercially impor
tant but also extremely desirable for processing-in-memory as 
we have shown throughout this paper. 

Other than performing computation inside memory, a few 
prior works examined the possibility of placing prefetchers 
near memory [21,55,60]. Our two prefetching mechanisms, 
which are completely in memory, are different from such 
approaches in that (1) prior works are still limited by the off
chip memory bandwidth, especially when prefetched data 
are sent to host processors and (2) our message-triggered 
prefetching enables exact prefetching through tight integration 
with our programming interface. 

PIM based on 3D Stacking. With the advancement of 3D 
integration technologies, the PIM concept is regaining atten
tion as it becomes more realizable [2,36]. In this context, it 
is critical to examine specialized PIM systems for important 
domains of applications [2,48,53,62,63]. 

Pugsley et al. [48] evaluated the PIM concept with MapRe
duce workloads. Since their architecture does not support 
communication between PIM cores, only the map phase is 
handled inside memory while the reduce phase is executed 
on host processors. Due to this reason, it is not possible to 
execute graph processing workloads, which involve a signif
icant amount of communication between PIM cores, with 
their architecture. On the contrary, Tesseract is able to han
dle MapReduce workloads since our programming interface 
provides sufficient flexibility for describing them. 

Zhang et al. [61] proposed to integrate GPGPUs with 3D
stacked DRAM for in-memory computing. However, their 
approach lacks a communication mechanism between multiple 
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PIM devices, which i s  important for graph processing, as we 
showed in Section 5. Moreover, specialized in-order cores are 
more desirable in designing a PIM architecture for large-scale 
graph processing over high-end processors or GPGPUs. This 
is because such workloads require stacked DRAM capacity 
to be maximized under a stringent chip thermal constraint for 
cost-effectiveness, which in turn necessitates minimizing the 
power consumption of in-memory computation units. 

Zhu et al. [62,63] developed a 3D-stacked logic-in-memory 
architecture for data-intensive workloads. In particular, they 
accelerated sparse matrix multiplication and mapped graph 
processing onto their architecture by formulating several graph 
algorithms using matrix operations. Apart from the fact that 
sparse matrix operations may not be the most efficient way of 
expressing graph algorithms, we believe that our architecture 
can also employ a programming model like theirs, if needed, 
due to the generality of our programming interface. 

Architectures for Big-Data Processing. Specialized accel
erators for database systems [7,30,59], key-value stores [34], 
and stream processing [49] have also been developed. Several 
studies have proposed 3D-stacked system designs targeting 
memory-intensive server workloads [13,28,35,50]. Tesseract, 
in contrast, targets large-scale graph processing. We develop 
an efficient programming model for scalable graph processing 
and design two prefetchers specialized for graph processing 
by leveraging our programming interface. 

Some works use GPGPUs to accelerate graph process
ing [15,18,19,40]. While a GPU implementation provides a 
performance advantage over CPU-based systems, the memory 
capacity of a commodity GPGPU may not be enough to store 
real-world graphs with billions of vertices. Although the use 
of multiple GPGPUs alleviates this problem to some extent, 
relatively low bandwidth and high latency of PC le-based in
terconnect may not be sufficient for fast graph processing, 
which generates a massive amount of random memory ac
cesses across the entire graph [40]. 

7. Conclusion and Future Work 

In this paper, we revisit the processing-in-memory concept in 
the completely new context of (1) cost-effective integration 
of logic and memory through 3D stacking and (2) emerging 
large-scale graph processing workloads that require an un
precedented amount of memory bandwidth. To this end, we 
introduce a programmable PIM accelerator for large-scale 
graph processing, called Tesseract. Our new system features 
(1) many in-order cores inside a memory chip, (2) a new mes
sage passing mechanism that can hide remote access latency 
within our PIM design, (3) new hardware prefetchers special
ized for graph processing, and (4) a programming interface 
that exploits our new hardware design. We showed that Tesser
act greatly outperforms conventional high-performance sys
tems in terms of both performance and energy efficiency. Per
haps more importantly, Tesseract achieves memory-capacity

proportional performance, which is the key to handling in
creasing amounts of data in a cost-effective manner. We con-



elude that our new design can be an efficient and scalable 
substrate to execute emerging data-intensive applications with 
intense memory bandwidth demands. 
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