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Medusa: Simplified Graph Processing on GPUs

Jianlong Zhong and Bingsheng He

Abstract—Graphs are common data structures for many applications, and efficient graph processing is a must for application
performance. Recently, the graphics processing unit (GPU) has been adopted to accelerate various graph processing algorithms
such as BFS and shortest paths. However, it is difficult to write correct and efficient GPU programs and even more difficult for graph
processing due to the irregularities of graph structures. To simplify graph processing on GPUs, we propose a programming
framework called Medusa which enables developers to leverage the capabilities of GPUs by writing sequential C/C++ code.
Medusa offers a small set of user-defined APls and embraces a runtime system to automatically execute those APIs in parallel on the
GPU. We develop a series of graph-centric optimizations based on the architecture features of GPUs for efficiency. Additionally,
Medusa is extended to execute on multiple GPUs within a machine. Our experiments show that 1) Medusa greatly simplifies
implementation of GPGPU programs for graph processing, with many fewer lines of source code written by developers and 2) the
optimization techniques significantly improve the performance of the runtime system, making its performance comparable with or

better than manually tuned GPU graph operations.

Index Terms—GPGPU, GPU programming, graph processing, runtime framework

1 INTRODUCTION

GRAPHS are common data structures in various applica-
tions such as social networks, chemistry and web link
analysis. Graph processing algorithms have been the
fundamental tools in various fields. Developers usually
apply a series of operations on the graph edges and vertices
to obtain the final result. The example operations can be
breadth first search (BFS), PageRank [32], shortest paths
and even their customized variants (for example, devel-
opers may apply different application logics on top of BES).
The efficiency of graph processing is a must for high
performance of the entire system. On the other hand,
writing every graph processing algorithm from scratch is
inefficient and involves repetitive work, since different
algorithms may share the same operation patterns, opti-
mization techniques and common software components. A
programming framework supporting high programmabil-
ity for various graph processing applications and pro-
viding high efficiency as well can greatly improve
productivity.

Recent years have witnessed the increasing adoption of
GPGPU (General-Purpose computation on Graphics Pro-
cessing Units) in many applications [31]. The GPU has been
used as an accelerator for various graph processing
applications [14], [16], [23], [35]. While those GPU-based
solutions have demonstrated significant performance im-
provement over CPU-based implementations, they are
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limited to specific graph operations. Developers usually
need to implement and optimize GPU programs from
scratch for different graph processing tasks.

Writing a correct and efficient GPU program is
challenging in general, and even more difficult for graph
applications. First, the GPU is a many-core processor with
massive thread parallelism. To fully exploit the GPU
parallelism, developers need to write parallel programs
that scale to hundreds of cores. Moreover, compared with
CPU threads, the GPU threads are lightweight, and the
tasks in the parallel algorithms should be fine grained.
Second, the GPU has a memory hierarchy that is different
from the CPU’s. Since graph applications usually involve
irregular accesses to the graph data, careful designs of data
layouts and memory accesses are key factors to the
efficiency of GPU acceleration. Finally, since the GPU is
designed as a co-processor, developers have to explicitly
perform memory management on the GPU, and deal with
GPU specific programming details such as kernel config-
uration and invocation. All these factors make the GPU
programming a difficult task.

To ease the pain of leveraging the GPU in common
graph computation tasks, we propose a software frame-
work named Medusa to simplify programming graph
processing algorithms on the GPU. Inspired by the bulk
synchronous parallel (BSP) model, we develop a novel
graph programming model called “Edge-Message-Vertex”’
(EMV) for fine-grained processing on vertices and edges.
EMV is specifically tailored for parallel graph processing
on the GPU. Like existing programming frameworks such
as MapReduce [9] and its variant on the GPU [15], Medusa
provides a set of APIs for developers to implement their
applications. The APIs are oriented at the EMV program-
ming model for fine-grained parallelism. Medusa embraces
an efficient message passing based runtime. It automati-
cally executes user-defined APIs in parallel on all the
processor cores within the GPU and on multiple GPUs, and
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hides the complexity of GPU programming from devel-
opers. Thus, developers can write the same APIs, which
automatically run on multiple GPUs.

Memory efficiency is often an important factor for the
overall performance of graph applications [14], [16], [23],
[35]. To improve the memory efficiency of Medusa, we
have developed a series of memory optimizations. A
novel graph layout is developed to exploit the coalesced
memory feature of the GPU. A graph aware message
passing mechanism is specially designed for message
passing in Medusa. We also develop two multi-GPU-
specific optimization techniques, including the cost model
guided replication for reducing data transfer across the
GPUs and overlapping between computation and data
transfer.

We have evaluated the efficiency and programmability
of Medusa on a machine with four NVIDIA C2050 GPUs
and two Intel E5645 CPUs. To demonstrate the program-
mability of Medusa, we develop a set of common graph
processing primitives on sparse graphs and compare
Medusa-based implementations with manual implementa-
tions. The CPU-based manual implementations are based
on the MultiThreaded Graph Library (MTGL) [7], and we
adopt previous GPU implementations [14], [19], [30] as
GPU-based manual implementations.

Our experimental results show that: 1) Medusa simpli-
fies programming GPU graph processing algorithms in
terms of a significant reduction in the number of source
code lines. Medusa achieves comparable or better perfor-
mance than the manually tuned GPU graph operations.
2) Our optimization techniques on graph layout and
message buffering significantly improve the performance
of graph processing operations on the GPU. 3) Medusa
executing on four GPUs is up to 1.8 and 2.6 times faster than
on a single GPU for BFS and PageRank, respectively.

1.1 Organization

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 describes
the system overview, followed by detailed design in
Section 4. We present evaluation results in Section 5, and
conclude in Section 6.

2 RELATED WORK

2.1 Graph Processing

Parallel algorithms have been a classical way to improve
the performance of graph processing. On multicore CPUs,
parallel libraries such as MTGL [7] have been developed
for parallel graph algorithms. Similar to Medusa, MTGL
offers a set of data structures and APIs for building graph
algorithms. The MTGL API is modeled after the Boost
Graph Library [34] and optimized to leverage shared
memory multithreaded machines. The SNAP framework
[5] provides a set of algorithms and building blocks for
graph analysis, especially for small-world graphs. To
facilitate developing distributed graph algorithms in the
cluster/grid settings, software libraries such as Parallel
BGL [13] and Combinatorial BLAS [8] have been devel-
oped. Cloud platforms are becoming popular for graph
applications [20], [21], [29].
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Previous studies [10], [25], [26] have observed that many
common graph algorithms can be formulated using a form
of the bulk synchronous parallel (BSP) model (we call it
GBSP). In GBSP, local computations are performed on
individual vertices. Vertices are able to exchange data with
each other. The same computation and communication
procedures are executed iteratively with barrier synchro-
nization at the end of each iteration. This common
algorithmic pattern is also adopted by distributed graph
processing frameworks such as Pregel [29] and distributed
GraphLab [27]. For example, Pregel applies a user-defined
function Compute() on each vertex in parallel in each
iteration of the GBSP execution. The communications
between vertices are performed with message passing
interfaces. Medusa shares the same design goal as Pregel in
providing a programming framework to ease development
of graph algorithms, and in hiding the complexity of the
underlyingruntime from developers.

Medusa differs from Pregel in the following aspects.
First, the design, implementation and optimization of
Medusa are specific to the hardware features of GPUs.
For example, our multi-GPU Medusa adopts graph
partitioning to reduce data transfer on the host-device
communication link (i.e., PCl-e bus), while Pregel uses
random hashing by default. Second, Medusa provides
more fine-grained programming interfaces than Pregel,
exposing fine-grained data parallelism on edges, vertices
and messages. Finally, Medusa does not have the sophis-
ticated design for distributed systems, such as failure
handling.

More recently, the GraphLab2 project [12], [24] further
decomposes the vertex-program abstraction into small
pieces, which also offer fine-grained parallelism like our
EMV model. Green-Marl [18] is another recent effort on
easing the difficulty of optimizing GPU graph analysis
algorithms, which uses domain-specific language (DSL) to
provide developers a high level language interface. In
comparison with Medusa, Green-Marl processes all verti-
ces with a foreach loop in the order of BFS or DFS, and does
not use message passing mechanisms of the GBSP model.

22 GPGPU

In this work, we adopt NVIDIA CUDA as our development
platform. The GPU consists of an array of streaming
multiprocessors (SM). Inside each SM is a group of scalar
cores. CUDA allows developers to write device programs,
which are called kernels, to run on hundreds of GPU cores
with thousands of threads. Each 32 of the massive number
of threads are grouped as a warp and execute synchro-
nously on one SM. Divergence inside a warp is supported
but may introduce a severe performance penalty since
different paths are executed serially. An important mem-
ory feature exposed by CUDA is called coalesced accesses. If
memory requests issued by a warp fall into the same
memory segment, they are coalesced into one, thus
significantly improving memory bandwidth utilization.
Different from common CPUs, the CUDA memory hierar-
chy includes a scratchpad memory called shared memory
which has much lower latency than the device memory.
With massive parallelism, GPUs have been adopted to
accelerate graph processing. Harish et al. [14] investigated
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Fig. 1. Overview of Medusa.

the design and implementation of several most commonly
used graph algorithms on GPUs, including BFS, single
source shortest paths (SSSP) and all-pair shortest paths
(APSP). Hong et al. proposed a virtual warp-centric [19]
GPU BFS algorithm with optimization techniques such as
deferring outliers to address irregularities of the graph data
structure. Compared with Harish’s work, the warp-centric
method achieved notable speedup when the input graph is
highly irregular. Luo et al. [28] and Merrill et al. [30]
implemented BFS with queue structures to store the frontier
vertices or edges in order to reduce excessive accesses. Most
existing GPU graph processing studies focus on specific
algorithms.

Both Medusa and our previous work Mars [15] are
designed as programming frameworks to simplify parallel
GPU programming with sequential interfaces. Medusa is
specifically designed for graph processing. We have also
addressed some inefficient designs of Mars, e.g., the graph-
aware message passing mechanism for Medusa avoids the
costly pre-counting result output mechanism in Mars.

3 OVERVIEW

The following two design goals guide our design to make a
useful programming framework for different graph pro-
cessing algorithms. Particularly, programmability is our
first-class design goal, and our overall goal is to offer a
highly programmable graph processing framework for
different applications with reasonable performance.

We present our techniques for directed graphs, and the
techniques are applicable to undirected graphs. In a
directed graph, we define an edge s — ¢, where s is the
head vertex and t is the tail vertex. We say the edge is
associated with s. Each vertex in the graph has a unique ID
ranging in [0,V — 1], where V is the number of vertices in
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the graph. For the set of edges associated with the same
vertex, we assign a unique local ID for each edge ranging in
[0,d — 1], where d is the out-degree of the vertex. dy,y is
defined as the maximum value of the out-degrees in the
graph.

In the remainder of this section, we present the
programming interface and workflow of Medusa, mainly
from the developers’ perspective.

3.1 Programming Interface

Fig. 1 shows the system architecture of Medusa. Medusa is
able to run on one or multiple GPUs in the same machine.
In this section, we give an overview of the entire system
from the developers’ perspective on how they use Medusa.
The detailed designs are described in Section 4.

Previous studies [10], [25], [26], [27], [29] have shown
that the GBSP model greatly simplifies the composition of
graph algorithms by offering a sequential programming
interface oriented on individual vertices. This model is
derived from the observation of two common access
patterns in various graph applications. First, the processing
of vertices and edges is often localized within neighboring
vertices. Second, many graph applications have multiple
iterations where many edges and vertices are accessed and
updated within an iteration. Most GBSP-based systems
provide a single vertex-based APL

The EMV model of Medusa enhances the current single
vertex-based API design to support efficient and fine-
grained graph processing on the GPU. In particular,
Medusa offers the following two mechanisms for program-
mability and efficiency.

First, Medusa provides six device code APIs for
developers to write GPU graph processing algorithms, as
shown in Table 1. Each API is either for processing vertices
(VERTEX), edges (ELIST, EDGE) or messages (MESSAGE,
MLIST). Using these APIs, programmers can define their
computation on vertices, edges and messages. The vertex
and edge APIs can also send messages to neighboring
vertices. The idea of providing six APIs is mainly for
efficiency (The details are presented in Section 4.1).

Second, Medusa hides the GPU-specific programming
details with a small set of system provided APIs (Table 2).
Particularly, Medusa provides EMV (type) :: Run() to in-
voke the device code API, which automatically sets up the
thread block configurations and calls the corresponding
EMV user-defined function. Medusa allows developers to
define an iteration by running multiple EMV (type) :: Run()
calls sequentially in one host function (invoked by
Medusa :: Run()). The iteration is performed iteratively
until predefined conditions are satisfied. Medusa offers a

TABLE 1

User-Defined APIs in the EMV Model
API Type Parameters Variant Description
ELIST Vertex v, Edge-list el Collective | Apply to edge-list el of each vertex v
EDGE Edge e Individual | Apply to each edge e
MLIST Vertex v, Message-list ml | Collective | Apply to message-list ml of each vertex v
MESSAGE | Message m Individual | Apply to each message m
VERTEX Vertex v Individual | Apply to each vertex v
Combiner Associative operation o Collective | Apply an associative operation to all edge-lists or message-lists
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TABLE 2
System Provided APIs and Parameters in Medusa

API/Parameter Description

AddEdge (void* e), AddVertex(void* v)

Add an edge or a vertex into the graph

InitMessageBuffer(void* m)

Initiate the message buffer

mazlteration

The maximum iterations that Medusa executes (2°1 — 1 by default)

halt

A flag indicating whether Medusa stops the iteration

Medusa :: Run(Func f)

Execute f iteratively according to the iteration control

EMV <type>:: Run(Func f’)

Execute EMV API f’ with type on the GPU

set of configuration parameters and utility functions for
iteration control.

Given user-defined data structures and definitions of
device code APIs, the Medusa front end automatically
transforms them into compilable CUDA kernels and
related device management code. The design goal of the
front end is to hide GPU specific programming details.
After the preprocessing using the front end, the program is
compiled and linked with the Medusa libraries.

In the storage component, Medusa allows developers to
initialize the graph structure by adding vertices and edges
with two system provided APIs, namely AddEdge and
AddVertex. After initialization, the storage component
stores the graph with the optimized graph layout on the
GPU (Section 4). Note, the memory management on the
GPU and data transfer between the GPU memory and
the main memory is managed by Medusa, which is trans-
parent to developers.

The Medusa runtime is responsible for executing the
user-defined APIs in parallel on the GPU. Medusa offers
two system provided APIs for execution,
Medusa :: Run(Func f) and EMV (type) :: Run(Func f’).
Medusa :: Run(Func f) is the main entry of the Medusa
execution, and executes function f according to the
iteration control policy, where f usually consists of 27
an execution sequence of the EMV APIs. EMV (type) :
Run(Func f’) executes an EMV user-defined API on
the graph storage according to type (type € {ELIST,
EDGE, MLIST, MESSAGE, MLIST}).

3.2 Medusa Workflow

There are three steps to implement a graph algorithm based
on Medusa. First, the developer defines the basic data
structures such as edge, message and vertex in C/C++
structs. Second, the developer implements EMV APIs
according to his/her application logic. Third, the developer
composes the main program, including initializing the
graph structure, configuring the framework parameters
and invoking the customized EMV APIs with the system
provided APIs (in Table 2).

Many graph computation tasks require multiple itera-
tions until convergence. To support iterations, Medusa
provides two interfaces for controlling the number of
iterations of the execution. Developers can use both of them
for a more flexible iteration control. First, the developer can
specify the maximum number of iterations, maxlIteration.
Medusa terminates when the number of iterations reaches
the predefined limit. Second, Medusa has defined a global
variable halt, which can be modified by the EMV APIs. By
initializing halt as false, the framework continues the
iterations until any of the API instance sets halt to be true.

This is equivalent to all API instances needing to vote false
to continue the iteration. This iteration control mechanism
is also used in Pregel [29].

To demonstrate the usage of Medusa, we show an
example of the PageRank implementation with Medusa, as
shown in Fig. 2. Data structures (e.g., vertex) are defined.
The function PageRank() is composed of three user-
defined EMV API function calls: an ELIST type API
(SendRank), a message Combiner and a VERTEX type
API (UpdateRank). In the main function, we configure the
execution parameters such as the Combiner data type and
operation type, the number of GPUs to use and the
maximum number of iterations. Init Device DS automati-
cally builds the graph data structures and copies them to
the GPU. Medusa :: Run(PageRank) invokes the Page Rank
function.

4 SYSTEM DESIGN

This section details the design and implementation of
Medusa. The Medusa runtime involves advanced and
complicated mechanisms and implementations in order to
improve the efficiency with the constraint of preserving
high programmability. Most runtime optimizations are
entirely transparent to developers. Some implementations
may be seemingly trivial for specific applications, but
become challenging to integrate into a framework to
support general graph processing operations. In particular,
Medusa focuses on processing sparse graphs.

Device code APlIs: Iteration definition:
/*ELIST API*/ void PageRank() {
struct SendRank{ [* Initiate message buffer to 0 */

__device__ void operator() (EdgeList el,
Vertex v){
int edge_count = v.edge_count;
float msg = v.rank/edge_count;
for(inti = 0; i < edge_count; i ++)
elfi].sendMsg(msg);

/* VERTEX API ¥/
struct UpdateVertex{

__device__ void operator() (Vertex v, int

super_step){
float msg_sum = v.combined_msg();
vertex.rank = 0.15 + msg_sum*0.85;

}
Data structure definitions:
struct vertex{

float pg_value;

int vertex_id;

}
struct edge{
int head_vertex_id, tail_vertex_id;

struct message{
float pg_value;

InitMessageBuffer(0);

I* Invoke the ELIST API */
EMV<ELIST>::Run(SendRank);

[* Invoke the message combiner */
Combiner(};

[* Invoke the VERTEX API */
EMV<VERTEX>::Run(UpdateRank);

Configurations and APl execution:

int main(int argc, char **argv) {
Graph my_graph;
[* Load the input graph. */
conf.combinerOpType = MEDUSA_SUM,;
conf.combinerDataType = MEDUSA_FLOAT;
conf.gpuCount = 1;
conf.maxlteration = 30;
[*Setup device data structure.”/
Init_Device_DS(my_graph);
Medusa::Run(PageRank);
[* Retrieve results to my_graph. */
Dump_Result{my_graph);

return 0;

Fig. 2. User-defined functions in PageRank implemented with Medusa.
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TABLE 3
Summary of Techniques Used in Medusa and Their Advantages
Problem Solution Advantage
Massive parallelism EMV API Fine grained parallelism for massive parallelism

Work efficiency
SetActive API

Queue-based implementation with our

Allow developing more work-efficient algorithm

GPU specific programming details

Automatic GPU specific code generation

Eliminate the GPGPU learning curve

Graph layout

Novel graph representation

Better memory bandwidth utilization

Message passing efficiency

Graph-aware buffer scheme

Better memory bandwidth utilization and avoid
message grouping overheads

Multi-GPU execution
tion overlapping

Replication, memory transfer/computa-

Alleviate PCI-e overheads

Table 3 presents a summary of the list of optimizations in
Medusa and their respective advantages. The proposed
optimizations enable Medusa to better exploit massive
parallelism and memory features of the GPU while preserv-
ing the simple programming interface at the same time. For
multi-GPU execution, the graph is partitioned using METIS
[22]. Due to space limitations, we present the details on the
GPU-transparent programming interface and graph layouts
in Appendix A of the supplementary file which which is
available in the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2013.111.

4.1 Fine-Grained Graph APIs

Most GBSP model based systems provide a single vertex
centered API. Programmers use the single vertex API to
access all associated edges and messages (one typical
access pattern is iterating edges/messages one by one).
While the single vertex-based API design of the GBSP
model has achieved good performance and programma-
bility on distributed systems like Pregel [29], such coarse-
grained designs are inefficient on GPUs due to execution
divergence and irregular memory access. The vertex-based
API exhibits severe divergence which makes it unsuitable
for GPU execution. First, different vertices may have
different numbers of edges, leading to different workloads
on each API instance. Second, different number of received
messages is another source of divergence. As for memory
efficiency, the vertex-centric API makes the memory
optimizations on edges and messages a challenging task.

To address those issues, we propose the EMV model as an
extension of GBSP. It decouples the single vertex API into
separate APIs which target individual vertices, edges or
messages. Each GPU thread executes one instance of the user-
defined API. The thread configuration such as the number of
threads is tuned to maximize GPU utilization. The fine-
grained data parallelism exposed by the EMV model can
better exploit the massive parallelism of the GPU.

In addition, Medusa supports two variants of APIs for
individual and collective operations of edges and messages
associated with the same vertex. The collective APIs allow
developers to access the elements in each edge-list (the set of
edges associated with the same head vertex) or a message-
list (the set of messages sent to the same vertex) sequen-
tially. On the other hand, the individual APIs support
operations on individual edges, vertices or messages and
expose more parallelism. Medusa also provides a
Compbiner interface, with which developers can apply an
associative operator to all the elements of each edge-list
and message-list. All these APIs require no parallel

programming, and developers write conventional sequen-
tial code to implement those APIs.

The collective APIs forms a superset of the individual
APIs in terms of expressibility. Operations which involve
dependent computation (e.g., the computation on one edge
depends on other edges in the same edge-list) can only be
implemented by collective APIs. However, we have
observed that many graph algorithms do not need
dependent computation on the edge-lists or message-lists.
Choosing individual graph elements yields better work-
load balance and more parallelism. Moreover, many
dependent computations are associative operations, for
example, PageRank sums the values of received messages
of each vertex to update rank values. This enables us to use
the Combiner interface. The Combiner interface is imple-
mented as segmented scan, which has the load-balanced
implementation on GPUs [33].

By default, Medusa applies the user-defined API on the
vertices/edges on the entire graph. This may result in
work-suboptimal algorithms for some applications such as
BFS and SSSP. In order to allow developers to implement
work-efficient algorithms, we have added an additional
device code API called SetActive(vertexID/edgelD), and
developers are able to indicate whether a vertex or an edge
is active in the next EMV API call. The active edges/
vertices are maintained in a dynamic queue. We implement
the queue structure following the previous study [30],
where we do not have specific order of enqueuing vertices
or edges. In subsequent API invocations, developers are
able to apply the EMV APIs to the active vertices and edges
only and thus implement more work efficient algorithms.
With the SetActive API, we have implemented work-
efficient BFS and SSSP algorithms and experimentally
evaluated their performance (described in Section 5).

4.2 Graph-Aware Buffer Scheme

Messages are temporarily stored in buffers, allocated by
calling the system provided API InitMessageBuffer. We
first discuss two basic buffer schemes, array-and list-based
buffer schemes with respect to the memory efficiency of
sending and receiving messages.

The array-based buffer scheme is to allocate an array for
message storage. Implementing the buffer with a fixed-
sized array, this buffer scheme requires the information of
the buffer size as well as the output positions for each
message to avoid conflicts. Even worse, if the messages to
the same vertex are not stored consecutively, Medusa
needs a grouping operation in order to support message
processing in collective user-defined APIs. In contrast, the
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Fig. 3. Graph aware buffer scheme. (a) Original graph. (b) Reversed
graph and rID. (c) Graph aware buffer scheme.

list-based buffer scheme relies on dynamic memory
allocation. We adopt a hash table with dynamic memory
allocation [17] to store messages. This method eliminates
the pre-computation of message sizes and the grouping
operation in the array-based storage scheme. However, the
dynamic hash table requires atomic operations and the
accesses to the hash table are minimally coalesced.

Neither of the two buffer schemes can achieve good
performance on both storing and processing the messages.
That motivates us to develop a buffer scheme to capture the
best of both worlds. We observe that the messages are
usually sent/received along the edge in the EMV model.
Given the maximum number of messages that can be sent
along each edge, we can compute 1) the maximum total
number of messages; 2) the maximum number of messages
that each vertex can receive. The awareness of the graph
structure helps us to allocate the buffer, and to obtain the
write positions of the messages along each edge.

To avoid the grouping operation, we ensure that the
write positions of the messages sent to the same vertex are
consecutive. This is achieved with the idea of ““reversed
edge indexed message passing”’. While loading the graph,
Medusa constructs a reverse graph by swapping the head
and tail of each edge. The reverse graph is stored in AA
format. We assign an rID (reverse ID) for each edge in the
original graph, whereby the r/D value of each edge equals
the index of its reverse edge in the adjacency array. Fig. 3b
shows the rID value for each edge in an example graph.

The rID definition has an important property: the rID
values for the edges with the same tail vertex are consecutive
integers. For example, the r/Ds of the edges with the same
tail vertex D in the original graph in Fig. 3 are 4 and 5. We
take advantage of this property to ensure that the write
positions of the messages sent to the same vertex are
consecutive.

The graph aware buffer scheme works as follows. First, a
message buffer with (E x m) entries is allocated, where m
is the maximum number of messages that can be sent via
each edge. For example, m is equal to one in PageRank.
Medusa allows developers to set the m value. Second,
when a message is sent along an edge and the 71D of that
edge is k, the start position for the message generation is
(k x m) in the message buffer. Fig. 3c shows an example of
the graph aware buffer scheme for PageRank (m = 1).

When sending messages, the rID values give the write
locations for the message along each edge. When receiving
messages, the messages for the same vertex are already
stored together. Thus, all the messages are already grouped
by the tail vertex. This is because of the property of the /D
values. Thus, no additional grouping operation is needed.

Fig. 4. Graph partitioning and replication: (a) direct partitioning; (b) repli-
cation for EMV executions (dashed circles represent the replicas).

Moreover, the message buffer uses an array, and thus the
memory efficiency of message processing is much higher
than that of the list-based buffer scheme, as demonstrated
in our experiments.

4.3 Multi-GPU Execution

We first present a basic implementation of the multi-GPU
extension, and then our multihop replication optimization
to reduce the data transfer cost in the PCl-e bus. Our
multihop replication scheme is inspired by stencil opera-
tion optimizations [6], [11]. Differently, we target at
partitioned graphs in multi-GPU environments.

4.3.1 Replication

To accommodate multi-GPU graph processing, we divide
the graph into equal-sized partitions and store each
partition on one GPU. We adopt the widely used graph
partitioning tool METIS [22] to partition the input graph.
Clearly, the quality of graph partitioning has great effect
on the amount of data transfer among different GPUs. It is
our future work to investigate other graph partitioning
algorithms.

Fig. 4a shows an example with three GPUs. A directed
graph is partitioned into three parts and each part is stored
on one GPU. In the design of Medusa, messages are passed
along edges. Graph partitioning introduces cross-partition
edges, whose head and tail vertices are in different
partitions and hence stored on different GPUs.

In order to apply EMV APIs on each graph partition, we
maintain replicas of the head vertices of all cross-partition
edges in the partitions where the tail vertices reside (we call
it the tail partition). Each cross partition edge is replicated in
its tail partition, as shown in Fig. 4b. Thus, messages are
emitted directly from the replicas and every edge can
access its head and tail vertices directly. The execution of
EMV APIs is performed on each partition independently.
After the execution, we update the replicas on each graph
partition. The update requires the costly PCl-e data
transfer, which can become a bottleneck for some applica-
tion such as BFS. We therefore propose a multihop
replication scheme as well as overlapping on the compu-
tation and data transfer to alleviate the overhead of PCl-e
data transfer.

4.3.2 Multihop Replication Scheme

When the inter-GPU communication time is dominant in
the total execution time, reducing the time cost of
communication can significantly improve the application
performance. The multihop replication scheme presented
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Fig. 5. Graph partitioning with multihop replication.

alleviates the overhead of inter-GPU communication by
reducing the number of times of replica update.

Instead of only maintaining head vertices of cross-
partition edges as replicas, we introduce the second hop
replicas by replicating tail vertices of the first hop replicas.
Similarly, more hops of replicas can be added to each
partition. We call this approach as multihop replication
scheme. Our multihop replication scheme is inspired by
stencil operation optimizations [11]. Due to the message
propagation nature of the EMV model, replica update only
needs to be carried out after every n iterations if there are n
hops of replicas. We call n iterations as a round and one
round has n stages. As the stages are carried out outer hops
of replicas are marked as ““outdated”. That essentially uses
the eventual consistency model, and the data are consistent
after each round.

Fig. 5 shows an example of the same graph as in Fig. 4.
Now Partition 2 and Partition 3 both maintain two-hop
replication. The replicas need to be updated every two
iterations, reducing the number of replica update by a half.
In the first stage of each round, Medusa APIs are applied to
all vertices in each partition. After that, the second hop
replicas are outdated and are not processed in the second
stage. After each round, the replicas are updated and a new
round start.

As described above, increasing the number of replica
hops can reduce the number of times of updating replicas.
However, this scheme is not guaranteed to be beneficial
compared with the basic replication scheme since more
replicas and edges need to be processed. For example,
maintaining multiple hops of replicas for dense graphs or
small-world graphs with a small diameter can lead to
explosive growth of replica vertices. However, since
Medusa mainly deals with sparse graphs, multihop
replication can be beneficial. For a given graph, we estimate
the benefits of all possible hop numbers within the storage
constraint and select the best one. Medusa uses a cost
model to estimate the benefits of all possible hop numbers.
More details can be found in Appendix A.3 of the
supplementary file available online.

5 EVALUATION

5.1 Experimental Setup

We have conducted the evaluations on a workstation
equipped with four NVIDIA Tesla C2050 GPUs, two Intel
Xeon E5645 CPUs (totally 12 CPU cores at 2.4 GHz) and
24 GB RAM.

Our workloads include a set of common graph proces-
sing operations for manipulating and visualizing a graph
on top of Medusa. The graph processing operations include
PageRank, breadth first search (BFS), maximal bipartite
matching (MBM), and single source shortest paths (SSSP).
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TABLE 4

Characteristics of Graphs Used in the Experiments

Graph Vertices| Edges | Max Avg | o
(108) (10%) | d d

RMAT 1.0 16.0 1742 | 16 329
Random (Rand) 1.0 16.0 38 16 4.0
BIP 4.0 16.0 40 4 5.1
WikiTalk (Wiki) 24 5.0 100022 2.1 99.9
RoadNet-CA (Road) | 2.0 55 12 2.8 1.0
kkt_power (KKT) 2.1 13.0 95 6.3 7.5
coPapersCiteseer 0.4 321 1188 739 | 101.3
(Cite)
hugebubbles-00020 | 21.2 63.6 3 3.0 0.03
(Huge)

In order to assess the queue-based design in Medusa, we
have implemented two versions of BFS: BFS-N and BFS-Q
for the implementations without and with the usage of
SetActive APIs, respectively. Similarly, we have also
implemented two versions of SSSP: SSSP-N and SSSPQ
without and with the usage of Set Active APIs, respectively.
The implementation details are presented in Appendix B of
the supplementary file available online. In the remainder of
this section, we use ““Medusa’”’ to refer to the better-
performing implementation of the two versions on BFS and
SSSP, unless we specify “-N’” and ““-Q"" explicitly.

Our experimental dataset includes two categories of
sparse graphs: real-world and synthetic graphs. Table 4
shows their basic characteristics. We use the GTgraph
graph generator [2] to generate power-law graph RMAT
and Random graph. To evaluate MBM, we generate a
synthetic bipartite graph (denoted as BIP), where vertex
sets of two sides have one half of the vertices and the edges
are randomly generated. The real world graphs are
publicly available [1], [3].

All the experiments are executed for ten runs and the
average execution time is reported. The difference among
runs for the same experiment is smaller than 2 percent. For
BFS and SSSP, we randomly choose 100 source vertices and
report the average execution time.

5.2 Comparison with Manual Implementations

We first compare the Medusa BFS and SSSP implementa-
tions with manual implementations of GPU graph proces-
sing: Harish’s work [14] and Hong’s work [19].

Harish’s work provides an open-source implementation
of BFS and SSSP using CUDA and we tune the thread
configuration and shared memory optimizations according
to the C2050 Fermi architecture. We use it as the basic
implementation. We implement the virtual warp-centric
BFS proposed in Hong’s work [19]. The underlying
difference between the Medusa implementation and the
warp-centric method is that Medusa applies L threads to a
vertex if that vertex has L edges, while the warp-centric
method applies a virtual warp to a vertex. As a result, our
method incurs more memory accesses because we check
the head vertex status for every edge.

Table 5 shows the traversed edges per second (TEPS)
comparison between the three implementations of BFS.
Compared to the basic implementation, Medusa performs
better on all graphs except KKT. Although Medusa incurs
more memory access and runtime overhead than the highly
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TABLE 5
Traversed Edge per Second (10 TEPS) Comparison with
Manual Implementations [14], [19]

Basic Warp-centric Medusa

Wiki 61.4 152.9 1091.1
Road 26.2 45.7 63.5
RMAT | 593.2 971.1 895.8
Rand 648.6 844.95 765.8
Huge 5.7 13 68.1
KKT 480.7 175.7 3515
Cite 14604 | 1503.1 2686.7

optimized warp-centric method, Medusa outperforms
warp-centric on some graphs and degrades the perfor-
mance on other graphs. Note that the reported results of the
warp-centric approach are better than those in the original
paper [19], mainly because the GPU in our experiment is
more powerful.

Fig. 6 shows the performance comparison between
Medusa and basic implementation of SSSP. Medusa
provides comparable performance with the basic imple-
mentation except on Road and Huge. On large-diameter
graphs such as Road and Huge, the performance of
Medusa-based SSSP is notably worse than that of the basic
implementation. This is because the Combiner API invo-
cation in SSSP takes a large part of its execution time and
that overhead is almost fixed for every iteration.

Programmability is difficult for a quantitative compar-
ison. As a start, we show the programmability comparisons
on some major implementation issues of GPU programs in
Table 6. Medusa simplifies GPU programming for graph
processing, by significantly reducing the number of GPU-
related source code lines written by developers. This is
because Medusa hides the GPU programming complexity
by offering a small set of user-defined APIs. For example,
developers only need to write 7 and 11 lines of source code
for defining the APIs in BFS-Q and SSSP-Q, respectively,
whereas the basic implementation [14] has 56 and 59 lines
of GPU-related code. Moreover, compared to manual
implementations, Medusa requires no parallel or GPU
specific programming.

Overall, Medusa offers reasonable performance in
comparison with manual implementations. With different
design goals, Medusa is to offer good programmability
with reasonable performance, whereas manual implemen-

1965 40569 141826
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Execution Time (ms)

200

Wiki

RMAT Rand Road  Huge KKT Cite

Fig. 6. Performance comparison between Medusa and existing GPU
implementation of SSSP [14].
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TABLE 6
Coding Complexity of Medusa Implementation and
Manual Implementations

Baseline | Warp-centric Medusa
(N/Q)
GPU code lines (BFS) 56 76 9/7
GPU code lines (SSSP) 59 N.A. 13/11
GPU memory management | Yes Yes No
Kernel configuration Yes Yes No
Parallel programming Thread Thread+Warp | No

tations usually do not consider programmability. Some
techniques that are applicable to manual implementa-
tions may not be applicable to Medusa, if they hurt
programmability.

We present more experimental results on BFS. Table 7
shows the comparison on BFS between Medusa-based
implementation and the Contract-Expand and Hybrid
approaches in Merrill et al’s paper [30]. The Hybrid
approach is more optimized than the Contract-Expand
approach. For more details of those approaches, we refer
the reader to the original paper [30]. The design and
implementation of Medusa-based BFS is similar to the
Contract-Expand approach, but targets at general graph
processing. Overall, Medusa-based implementation can be
slower than the Contract-Expand approach on some
graphs such as Huge and KKT, and can be faster on other
graphs such as Cite. On the other hand, Medusa-based
implementation is slower than the Hybrid approach on all
the three graphs. Compared with various specific optimi-
zations for BFS, Medusa involves considerate runtime
overhead in supporting general graph processing, for
example, message passing based mechanisms.

5.3 Experiments on Efficiency
5.3.1 Overall Comparisons

We implement the graph processing operations with
MTGL [7], as the baseline for graph processing on multi-
core CPUs.

The BFS and PageRank implementations are offered by
MTGL and we implement the Bellman-Ford algorithm for
single source shortest paths and a randomized maximal
matching algorithm [4] using the MTGL APIs. We tuned
the number of threads in MTGL and report the best result
obtained when the number of threads was 12 on our
machine. MTGL running on 12 cores is on average 3.4 times
faster than that running on one core. Due to the memory
intensive nature of graph algorithms, the scalability of
MTGL is limited by the memory bandwidth.

Fig. 7 shows the speedup for Medusa over MTGL
running on 12 cores. The speedup is defined as the ratio
between the elapsed time of the CPU-based execution and
that of Medusa-based execution. PageRank is executed

TABLE 7
Traversed Edge per Second (10° TEPS) Comparison with
Merrill et al.’s Paper [30]

Medusa | Contract-Expand [30] | Hybrid [30]
Huge | 0.1 0.4 0.4
KKT 0.4 0.7 1.1
Cite 2.7 1.3 3.0




ZHONG AND HE: MEDUSA: SIMPLIFIED GRAPH PROCESSING ON GPUs

20 E

18
s E
2 16 E
2 14 | . ® BFS-N
) i a
§ 12 1 7 BFS-Q
= 10 ; SSSP-N
St
g 5 Z = SSSP-Q
< 4 ®m PageRank
g 6Ty Z
g 4] » : _ BM

: —7
21 : 3
i 1 i 7 | 4

RMAT Rand Wiki Road Huge KKT Cite BIP

Fig. 7. Performance speedup of Medusa running on the GPU over MTGL
[7] running on 12 cores.

with 100 iterations. Medusa is significantly faster than
MTGL on most comparisons and delivers a performance
speedup of 1.0-19.6 with an average of 5.5 (we report the
better results of the two implementations of BFS and SSSP,
respectively). On some graphs such as Road, BFS-N is
notably slower than MTGL-based BFS, because the work-
inefficient issue of BFS-N is exaggerated on the graphs with
large diameter.

The work-efficient BFS and SSSP algorithms (BFSQ and
SSSP-Q) achieve better performance on the graphs with
large diameters, and can degrade the performance in some
cases (e.g., Rand, Wiki and KKT) due to the computation
and memory overhead in maintaining the queue structure.
This is consistent with the previous studies [19]. Currently,
we leave the decision on whether to use the Set Active API
to the users. In the future work, we consider whether this
decision can be made automatically in Medusa.

6 CONCLUSION

In this paper, we address the efficiency and programma-
bility of GPU-based parallel graph processing by develop-
ing a programming framework named Medusa. Medusa
embraces an optimized runtime system to hide the
programming complexity of implementing parallel graph
computation tasks for GPUs. Developers only need to write
sequential programs to implement a small set of APIs. On
an NVIDIA Tesla C2050 GPU, Medusa-based implementa-
tions are 5.5 times on average faster than the parallel MTGL
based implementations on two Intel six-core CPUs. More-
over, with much less coding complexity, Medusa achieves
comparable or even better performance than existing
manual implementations. As for future work, we are
interested in evaluating Medusa in other architectures
such as Intel Xeon Phi and extending Medusa to distrib-
uted environments.

The source code of Medusa is
http://code.google.com/p/medusa-gpu/.

available at

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments, and Pawan Harish for
providing the source code for CUDA-based BFS and
shortest paths. This work is partly supported by a MoE

1551

AcRF Tier 2 Grant (MOE2012-T2-2-067) and an NVIDIA
Academic Partnership Award.

REFERENCES

[1] 10th DIMACS Implementation Challenge, accessed on Feb. 2013.
[Online]. Available: http://www.cc.gatech.edu/dimacs10/index.
shtml

[2] GTGraph generator, accessed on Feb. 2013. [Online]. Available:
http://www.cse.psu.edu/~madduri/software/GTgraph/index.
html

[3] Stanford Large Network Dataset Collections, accessed on Feb.
2013. [Online]. Available: http://snap.stanford.edu/data/index.
html

[4] T.E. Anderson, S.S. Owicki, J.B. Saxe, and C.P. Thacker, “High-
Speed Switch Scheduling for Local-Area Networks,”” ACM Trans.
Comput. Syst., vol. 11, no. 4, pp. 319-352, Nov. 1993.

[5] D. Bader and K. Madduri, “SNAP, Small-World Network
Analysis and Partitioning: An Open-Source Parallel Graph
Framework for the Exploration of Large-Scale Networks,” in
Proc. IEEE IPDPS, 2008, pp. 1-12.

[6] F.Bassetti, K. Davis, and D.]J. Quinlan, ““Optimizing Transforma-
tions of Stencil Operations for Parallel Object-Oriented Scientific
Frameworks on Cache-Based Architectures,” in Proc. Int. Symp.
Comput. Obj.-Oriented Parallel Environ., 1998, pp. 107-118.

[7] J. Berry, B. Hendrickson, S. Kahan, and P. Konecny, ““Software
and Algorithms for Graph Queries on Multithreaded Archi-
tectures,” in Proc. IEEE IPDPS, Mar. 2007, pp. 1-14.

[8] A. Bulug and J.R. Gilbert, “The Combinatorial BLAS: Design,
Implementation, Applications,” Int. ]. High Perform. Comput.
Appl., vol. 25, no. 4, pp. 496-509, Nov. 2011.

[9] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters,” Commun. ACM, vol. 51, no. 1,
pp- 107-113, Jan. 2008.

[10] M. Delorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin,
T.E. Uribe, T.F. Knight, and A. Dehon, “GraphStep: A System
Architecture for Sparse-Graph Algorithms,”” in Proc. IEEE FCCM,
2006, pp. 143-151.

[11] M. Frigo and V. Strumpen, ““Cache Oblivious Stencil Computa-
tions,”” in Proc. ICS, 2005, pp. 361-366.

[12] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed Graph-Parallel Computation on
Natural Graphs,” in Proc. OSDI, 2012, pp. 17-30.

[13] D. Gregor and A. Lumsdaine, “The Parallel BGL: A Generic
Library for Distributed Graph Computations,” in Proc. POOSC,
2005, pp. 1-18.

[14] P. Harish and P.J. Narayanan, ‘“Accelerating Large Graph
Algorithms on the GPU Using CUDA,” in Proc. HiPC, 2007,
pp. 197-208.

[15] B. He, W. Fang, Q. Luo, N.K. Govindaraju, and T. Wang, “"Mars:
A MapReduce Framework on Graphics Processors,” in Proc.
PACT, 2008, pp. 260-269.

[16] G. He, H. Feng, C. Li, and H. Chen, “Parallel SimRank
Computation on Large Graphs with Iterative Aggregation,” in
Proc. SIGKDD, 2010, pp. 543-552.

[17] C. Hong, D. Chen, W. Chen, W. Zheng, and H. Lin, “MapCG:
Writing Parallel Program Portable between CPU and GPU,” in
Proc. PACT, 2010, pp. 217-226.

[18] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-Marl: A
DSL for Easy and Efficient Graph Analysis,” in Proc. ASPLOS,
London, UK., 2012, pp. 349-362.

[19] S.Hong, S.K. Kim, T. Oguntebi, and K. Olukotun, *“Accelerating
CUDA Graph Algorithms at Maximum Warp,”” in Proc. PPoPP,
2011, pp. 267-276.

[20] U. Kang, C. Tsourakakis, A.P. Appel, C. Faloutsos, and
J. Leskovec, “HADI: Fast Diameter Estimation and Mining in
Massive Graphs with Hadoop,” Carnegie Mellon Univ.,
Pittsburgh, PA, USA, Tech. Rep. CMU-ML-08-117, 2008.

[21] U. Kang, C.E. Tsourakakis, and C. Faloutsos, “PEGASUS: A
Peta-Scale Graph Mining System—Implementation and Obser-
vations,” in Proc. IEEE ICDM, 2009, pp. 229-238.

[22] G. Karypis and V. Kumar, ““A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs,”” SIAM |. Sci. Comput.,
vol. 20, no. 1, pp. 359-392, Aug. 1998.

[23] GJ. Katz and ]J.T. Kider Jr., ““All-Pairs Shortest-Paths for Large
Graphs on the GPU,” in Proc. Graph. Hardware, 2008, pp. 47-55.



1552

(24]
[25]

[26]

[27]

(28]

[29]

(30]

(31]

[32]

(33]

[34]

(35]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL.25, NO. 6,

A. Kyrola, G. Blelloch, and C. Guestrin, “’GraphChi: Large-Scale
Graph Computation on Just a PC,”” in Proc. OSDI, 2012, pp. 31-46.
J. Lin and M. Schatz, “Design Patterns for Efficient Graph
Algorithms in MapReduce,” in Proc. MLG, 2010, pp. 78-85.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J.M. Hellerstein, “GraphLab: A New Parallel Framework for
Machine Learning,” in Proc. Conf. UAI, July 2010, pp. 340-349.
Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and
J.M. Hellerstein, ““Distributed GraphLab: A Framework for
Machine Learning and Data Mining in the Cloud,” Proc.
VLDB Endowment, vol. 5, no. 8, pp. 716-727, Apr. 2012.

L. Luo, M. Wong, and W.-M. Hwu, “An Effective GPU
Implementation of Breadth-First Search,” in Proc. DAC, 2010,
pp- 52-55.

G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A System for Large-Scale Graph
Processing,” in Proc. SIGMOD, 2010, pp. 135-146.

D. Merrill, M. Garland, and A. Grimshaw, ““Scalable GPU Graph
Traversal,” in Proc. PPoPP, 2012, pp. 117-128.

J.D. Owens, D. Luebke, N.K. Govindaraju, M. Harris, J. Kruger,
A.E. Lefohn, and T.J. Purcell, “A Survey of General-Purpose
Computation on Graphics Hardware,” in Proc. Eurographics,
State Art Rep., 2005, pp. 21-51.

L. Page, S. Brin, R. Motwani, and T. Winograd, ““The PageRank
Citation Ranking: Bringing Order to the Web,”” Stanford Univ.
InfoLab, Stanford, CA, USA, Tech. Rep., 1999.

S. Sengupta, M. Harris, and M. Garland, “’Efficient Parallel Scan
Algorithms for GPUs,”” NVIDIA, Santa Clara, CA, USA, Tech.
Rep. NVR-2008-003, 2008.

J. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Library: User
Guide and Reference Manual. Reading, MA, USA: Addison-
Wesley, 2002.

V. Vineet and P.J. Narayanan, “CUDA Cuts: Fast Graph Cuts on
the GPU,” in Proc. IEEE CVPR Workshops, June 2008, pp. 1-8.

database systems.

JUNE 2014

Jianlong Zhong received the bachelor degree
in software engineering from Tianjin University,
in 2010, and is now a PhD candidate in the
School of Computer Engineering of Nanyang
Technological University, Singapore. His
research interests include GPU computing and
parallel graph processing.

Bingsheng He received the bachelor degree in
computer science from Shanghai Jiao Tong
University, Shanghai, China, in 2003, and the
PhD degree in computer science in Hong Kong
University of Science and Technology, New
Territories, Hong Kong, in 2008. He is an
Assistant Professor in the Division of Networks
and Distributed Systems, School of Computer
Engineering of Nanyang Technological Univer-
sity, Singapore. His research interests are high
performance computing, cloud computing, and

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


