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Abstract—GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding

graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence.

Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads

when implemented on GPUs. As such, the coloring algorithm is adopted to separate the vertices with potential updating conflicts,

guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low

parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We

propose a light-weight asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental

idea is based on the Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of real-world graph

coloring cases. We find that a majority of vertices (about 80 percent) are colored with only a few colors, such that they can be read and

updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the

processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the

vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3)

how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data

(Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk, and Twitter) to evaluate our approach and make comparisons with well-known

non-preprocessed (such as Totem, Medusa, MapGraph, and Gunrock) and preprocessed (Cusha) approaches, by testing four

classical algorithms (BFS, PageRank, SSSP, and CC). On all the tested applications and datasets, Frog is able to significantly

outperform existing GPU-based graph processing systems except Gunrock and MapGraph. MapGraph gets better performance than

Frog when running BFS on RoadNet-CA. The comparison between Gunrock and Frog is inconclusive. Frog can outperform Gunrock

more than 1.04X when running PageRank and SSSP, while the advantage of Frog is not obvious when running BFS and CC on some

datasets especially for RoadNet-CA.

Index Terms—GPGPU, graph processing, asynchronous computing model
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1 INTRODUCTION

GRAPH is a fundamental data representation used in
many large-size and complicated problems. Large

graph processing can be commonly found in many compu-
tational domains, such as social networks and web link
analysis. In such domains, it is critical to develop a light-
weight approach that can process large graphs with mil-
lions/billions of vertices/edges very efficiently.

GPUs are often used to accelerate the CUDA based large
scale computing, not only because of the massive com-
putation power, but also due to much higher memory

bandwidth and throughput. In recent years, some research-
ers try to use GPU to accelerate graph computing, but there
are still some issues in the existing solutions for GPU-based
graph processing.

� The maximum size of available GPU memory is still
very limited for large graph processing. For example,
there is only 12 GB of memory for NVIDIA Tesla
K40. As such, a lot of existing works [1], [2], [3] make
use of a hybrid model with both CPU and GPU to
execute large-size graphs. There are two general
ideas while partitioning and processing large-scale
graphs. One is partitioning the large graph into small
pieces and offloading them one by one to the GPU
for the execution. The other one is placing some ver-
tices in one type of processor (such as GPU cores)
and putting the rest in the other type (such as CPU),
so as to make use of both types of compute resour-
ces. The CPU, however, is still a bottleneck when
processing large-scale graphs. Hence, it is still neces-
sary to design a framework that can process the
entire graph on GPU processors.

� Most existing GPU-accelerated graph frameworks
(such as Totem [2]) are designed based on the
synchronous processing model—Bulk Synchronous
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Parallel (BSP) model [4]. The BSP model divides the
data processing procedure into several super-steps,
each of which consists of three phases: computation,
communication and synchronization. Such a model,
however, will introduce a huge cost in synchroniza-
tion especially as the graph size grows significantly,
because any message processing must be finished in
the previous super-step beforemoving to the next one.

� In comparison to synchronousmodels, there are some
asynchronous models that have been proved more
efficient in processing graphs [5], but they are not
very suitable for parallel graph processing on GPU. In
asynchronous models, more vertices can be updated
simultaneously in each step, thus with a very huge
performance gain on the graph processing. In order to
ensure the correct/consistent processing results in
the parallel computations, many existing solutions
(such as GraphLab [5]) adopt fine-grained locking
protocols or update most vertices sequentially for
simplicity. Locking policy, however, is unsuitable for
GPU-based parallel processing because of the huge
cost of the locking operations onGPU.

In our work, we design a lock-free parallel graph proc-
essing method named Frog with a graph coloring model. In
this model, each pair of adjacent vertices with potential
update conflicts will be colored differently. The vertices
with the same colors are allowed to be processed in parallel,
also guaranteeing the sequential consistency [5] of the paral-
lel execution.

Graph coloring issue [6] is an NP-complete problem,
whichmeans that it is impossible to find the optimal solution
with polynomial time unless P=NP. As for a large graph
with billions of vertices, existing graph coloring heuristics
are, in general, not viable to use because coloring graphs
with billions of vertices may raise hundreds of different col-
ors, which will lead to significant overhead when processing
such hundreds of super-steps by a round-robin scheduler.

Our design is motivated by a crucial observation that the
whole course of graph coloring usually follows a Pareto prin-
ciple (or 80-20 rule). That is, a large majority of vertices
(roughly 80 percent) are colored with only a small number of
colors (about 20 percent or less), while only a small amount
of vertices (about 20 percent) are assigned with a large num-
ber of different colors (about 80 percent). Based on such a
finding, our solution will process the vertices based on their
coloring distributions. In particular, we process a majority of
the mutually non-adjacent vertices with the same colors in a
high degree of parallelism on GPU, and process the minority
of the “conflict” vertices in a separate super-step.

There are still three issues in designing such a parallel
model based on coloring distribution, which will be our
focus. In this paper, we mainly answer the following three
questions:

� What is the difference between synchronous and
asynchronous graph processing models on GPU(s)?

� Given a small number of colors, how to partition a
large graph and select 80 percent of vertices that are
assigned different colors?

� How to reduce the overhead of data transfers on
PCIe while processing each partition?

Overall, we have the following four contributions to
address the above problems.

1) An efficient hybrid graph coloring algorithm: We pro-
pose a relaxed pre-partition method that can solve
the problem of vertex classification using a moderate
number of colors. This method does not force all
adjacent vertices to be assigned with different colors,
which is particularly different from other graph col-
oring algorithms. Instead, we only ensure that there
are no adjacent vertices assigned together into the
small set of colors. For the vertices with the rest of
colors, we combine them together into one color and
process them in a super-step.

2) A coloring-based asynchronous execution model on
GPUs: We design and implement an execution
engine, in order to scan and update the graph that is
partitioned by our hybrid graph coloring algorithm.
The partitioned graph will be scanned color by color,
and all vertices with the same color will be updated
in parallel (one color as per kernel1 execution). Since
concurrently accessed vertices must be non-adjacent,
there will be no need to lock the adjacent edges
when updating a vertex.

3) A light-weight streaming execution engine for handling
the large graph on GPUs: In our design, when process-
ing each partition, the data transfers are overlapped
with the executions of GPU kernel functions, so as to
minimize the overhead of PCIe data transfers.

4) An open source toolkit for graph processing on GPUs: We
carefully implemented the whole Frog toolkit, which
is available to download for free.2 We evaluate our
hybrid graph coloring model by comparing to five
other state-of-the-art related systems. Experiments
show that our solution obtains great performance
gains over three systems (Cusha [7], Medusa [8] and
Totem [2]). Except for RoadNet-CA on BFS, Frog
gets better performance than MapGraph [9]. Frog
outperforms Gunrock [10] by 4.51X-20.18X on Pag-
eRank , and 1.04X-2.13X on SSSP. For BFS and CC,
Gunrock shows better performance especially for
RoadNet-CA. Frog outperforms Gunrock by 0.34X-
1.29X on BFS, and 0.13X-3.32X on CC.

The rest of this paper is organized as follows. In Section 2,
we present some background and the motivation of this
work. We will then present our novel and relaxed graph col-
oring algorithm in Section 3. Based on this partitioning strat-
egy, we will present the overview of our system and our
asynchronous approach on handling large-size graphs in
Section 4. The results of performance evaluation will be pre-
sented and analyzed in Section 5. Related work is discussed
in Section 6. Finally, we conclude this paper in Section 7.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce some characteristics of
GPU processors. Subsequently, we explain the sequential

1. Kernel is referred to the procedure executed on GPU.
2. Source codes and technical report (including program APIs,

intensive performance evaluations) are available at http://grid.hust.
edu.cn/xhshi/projects/frog.html
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consistency in parallel programming. Finally, we present
the motivation of this work. We discuss why we choose
asynchronous execution model over synchronous model to
process graphs on GPU, why we adopt graph coloring as
the basic method, and the pros and cons of existing graph
coloring methods.

2.1 Characteristics of GPU Processors

Today’s GPUs have a high computation power with mas-
sive multithreading and become popular in graph process-
ing due to the NVIDIA CUDA framework, and have been
used widely to accelerate graph processing. Although GPU
is a fairly powerful computing processor, it suffers from
some limitations. First, GPU has very limited global mem-
ory. The PCIe bus, as the bridge of data transfer between
CPU and GPU memory, may become a bottleneck because
of the limited bandwidth. Usually, PCIe transfers consume
a large fraction (30 to 80 percent) of total execution time
dedicated to CPU-GPU memory transfer and GPU kernel
execution. This requires an efficient method to enforce data
transfers between these two different devices. Second, some
general operations used on CPU-based systems are very
costly for GPU-based processing. Lock operations and
atomics, for example, are usually very expensive on mas-
sively parallel GPUs and often result in the critical path in a
program. This is one reason why we design an efficient col-
oring based execution instead of using locks on GPUs.
Third, it is difficult to write correct and efficient GPU pro-
grams and even more difficult for graph processing. There
are some existing studies to make easy programming on
GPUs [7], [8], [9], [10].

Our system Frog is aimed at solving the above problems.
Considering the limited global memory, a large-scale graph
will be divided by our coloring algorithm, such that it can
be processed separately in different partitions. In order to
reduce the overhead of locking mechanism, our coloring
algorithm ensures the asynchronous execution of each parti-
tion. Our system also provides APIs for developers to make
the programming easier. So the developers can deal with
graph processing without concerning the details of GPU
programming model.

Not only do we consider GPU existing limitations, but
we also find two significant characteristics of GPU process-
ors based on our experiments. We conduct these experi-
ments using synthetic graphs generated by GTgraph [11],
which can generate graphs with power-law degree distribu-
tions (or Pareto principle) and small-world characteristics
based on Recursive MATrix (RMAT) model [12]. Each
R-MAT graph in our experiments has n vertices and 10 � n
edges. We are mostly concerned about the performance of
processing power-law graphs, since such graphs have been
widely studied in many domains.

One characteristic is that the execution performance of
GPU is closely related to the number of vertices to process. In
order to keep high execution efficiency, one should make
sure that a large number of vertices will be updated in paral-
lel by thousands of threads or more during the graph proc-
essing. If the parallelism is not high enough, it would take
much longer time to complete the tasks as the GPU comput-
ing resources cannot be fully utilized. This is due to the fact
that one has to actually assign work to all the pipelines on

GPU. Fig. 1a shows that it costs almost the same time when
processing graphs with 10 vertices, 100 vertices, 1k vertices
and even 10k vertices on GPU. The kernel code was to calcu-
late the out-degree of vertices and each vertex was updated
by one thread. Obviously, we should have 14K ormore verti-
ces/threads run concurrently on NVIDIA K20m GPUs, in
order to obtain a good performance.

The other characteristic is that the overhead of schedul-
ing between different kernels is low. NVIDIA CUDA is a
scalable parallel programming model and a software envi-
ronment for parallel computing, so we adopt it as our devel-
opment platform. CUDA uses thousands of threads that can
execute the same kernel to achieve performance gains, and
the kernel can be launched very quickly on GPU. Fig. 1b
shows that it costs almost the same time while processing
the same graph using different numbers of kernels, which
suffers only a little overhead of scheduling. That is, the
overhead induced with kernel scheme is low even we parti-
tion the graph and make kernel calls for each partition.

2.2 Significance and Classification of Sequential
Consistency

It is mandatory to take into account the sequential consis-
tency when coding a parallel algorithm on GPU. According
to the definition proposed by Lamport, sequential consis-
tency guarantees “the result of any execution is the same as if
the operations of all the processors were executed in some
sequential order, and the operations of each individual pro-
cessor appear in this sequence in the order specified by its
program.” [13]. Sequential consistency ensures that the
instructions in each thread will be executed as the program-
ming order. The results would be wrong without sequential
consistency, because of the wrong order of the execution and
the data race between the parallel threads [14], [15], [16].

There are three data consistency models [15] that can be
used to guarantee the sequential consistency in graph proc-
essing. Each one of them can guarantee correct results when
a parallel algorithm performs update operations in any
sequence, with different permissions of reading and writing
given by different data consistencymodels.When the update
function is updating a vertex Vp, the weakest vertex consis-
tency model ensures that each update function has only
read-write access to the vertex Vp itself and read-only access
to its adjacent edges, yet its adjacent vertices cannot be read.
The edge consistency model ensures each update function
has an exclusive read-write access to the vertex Vp and

Fig. 1. GPU execution time with different scale R-MAT graphs and differ-
ent number of GPU kernels. (a) It takes almost the same time when
processing graphs with 10 vertices and 10k vertices, which means this
scale of graphs can not utilize the GPU resources. (b) It takes almost the
same time while processing the same graph by different number of ker-
nels, with only a little overhead of scheduling between different kernels.
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adjacent edges but read-only access to its adjacent vertices.
The strongest full consistency mode ensures read-write
access to the vertex Vp and all its adjacent edges and vertices.

An appropriate selection of the consistencymodel directly
affects the correctness of the program.Wedo not have to sup-
port all of the three models in the asynchronous framework.
In our system, we adopt the edge consistencymodel, because
it can reach a higher parallelism than the full consistency
model and suffer less cost in guaranteeing the data consis-
tency than the vertex consistency model. By comparison, in
the vertex consistencymodel, we need to ensure all updating
vertices cannot change immediately values of all edges and
vertices, which leads to a lower convergence speed.

2.3 Motivation of This Work

For the purpose of easy programming and system deploy-
ment, the synchronous execution model is particularly suit-
able for the GPU architecture. This is because many graph
algorithms need to iteratively update all the vertices and
edges which are highly correlated to each other. The algo-
rithm PageRank, for example, updates the rank values of
vertices iteratively until majority of rank values do not
change clearly any more. In general, when updating some
vertex (such as changing the rank values), the algorithm
also needs to query the information of its neighborhood
(such as the rank values of its neighboring vertices). In other
words, some vertex is required to “see” the updates of its
neighboring vertices before being updated. To this end, it is
fairly straight-forward to adopt synchronous model to solve
the graph problems. However, this also results in some sig-
nificant issues, as listed below.

� Slow Convergence: Under the synchronous execution
model, a vertex cannot see the updates of its neigh-
boring vertices until the end of an iteration, so the
synchronous execution model can only update the
vertices based on the values at the previous time step,
inevitably causing a slow convergence. By contrast,
asynchronous execution model is able to update
vertices using the most recent values, which will
converge much faster than synchronous model. This
has been confirmed by a lot of existing researches [5],
[17], [18].

� Non-negligible Synchronization Overhead: Synchronous
model is fairly suitable to process the graph with a
large number of active vertices to update in an itera-
tion step, in that the synchronization overhead like
the cost of the global barrier could be negligible com-
pared to the huge updating cost in each iteration.
The number of active vertices, however, is likely to
change a lot during the execution. For instance, the
amount of active vertices varied significantly in dif-
ferent BFS levels [19]. As a consequence, the synchro-
nization overhead could be significant especially
when there are only a small number of active vertices
in an iteration.

� Limits on Coordination: Many algorithms may not con-
verge in the synchronous model [20], [21], such that
they cannot resolve the situation with a lot of coordi-
nations among adjacent vertices. More specifically,
all adjacent vertices in the synchronous model can

only be updated simultaneously according to the
same values at previous steps with no coordination.
On the other side, these algorithms can converge
under the asynchronous model if we ensure the
appropriate consistency at the same time [22].

� LowAdaptability to Load Imbalance: In order to complete
the whole graph-processing work, the overall perfor-
mance is usually determined by the slowest GPU
thread. Since the synchronousmodel always synchro-
nizes each iteration during the execution, it is hard to
perform the load balance in such a short period. By
contrast, the asynchronous model is more flexible
because of the loosely coupled parallel threads.

Due to above problems of synchronous model, asynchro-
nousmodel has been paidmore andmore attentions, but it is
rather difficult to design andmanage. Specifically, one has to
always guarantee the serializability during the whole execu-
tion. That is, any correct result of a parallel execution must
be equal to the result of some sequential execution. There are
several approaches to enforce serializability, such as lock-
based protocol [5] and sequential execution [20]. Locking or
atomic operations, however, would be very expensive on
massively parallel GPUs [23], [24], thus neither locking pro-
tocol nor sequentially updating is a viable solution.

In comparison to locking protocol and atomic operations,
graph coloring is a more efficient asynchronous model
because it can process vertices in parallel and guarantee the
serializability meanwhile. Its fundamental principle is to
construct a coloring mechanism that assigns each vertex a
color such that no adjacent vertices share the same color.
This completely conforms to the edge consistency model
defined by GraphLab [15]. Under the edge consistency
model, each update operation on some vertex is allowed to
modify the vertex’s values as well as its adjacent edges, but
it can only read the values of adjacent vertices. Vertices of
the same color can be updated in parallel without any lock-
ing or atomic protocol. Apparently, the edge consistency
model significantly increases parallelism compared to the
locking protocol, since the vertices sharing the same edges
will be partitioned into different color groups and processed
in separate execution phases.

Traditional strict graph coloring, however, may not work
very efficiently, especially when the number of vertices/
edges is extremely large. For a data graph with billions of
vertices, hundreds of colors have to be generated to com-
plete the graph coloring (as shown in Fig. 2). This may result
in a large number of small color groups each with only a
few vertices to update, which eventually degrades the par-
allelism significantly.

Based on a lot of experiments (shown as the Fig. 7 in the
evaluation section), we observe a typical Pareto principle in
the coloring process, i.e., a large number of vertices are col-
ored with only a few colors. This inspires us to design a
graph coloring algorithm based on the coloring distribution,
significantly improving the parallelism for the graph proc-
essing on GPU.

3 COLORING BASED GRAPH PARTITIONING

In this section, we describe the features required by coloring
based graph partitioning strategies, as well as the detailed
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coloring method. Our partitioning strategy processes
graphs iteratively in three stages: 1) loading edges in the
form of (vsrc, vdst) from the file on disk; 2) putting the vertex
vsrc in one of partitions; and 3) putting the vertex vdst in
another different partition. Such three stages are explained
in detail below, using a concrete example.

3.1 Required Features for Coloring Based Graph
Partitioning Strategies

We propose the following characteristics that are supposed
to be taken into account by the coloring based graph parti-
tioning strategies.

� Low time complexity: It will be more and more costly
to process a graph as its size grows. Since the parti-
tioning is just the preliminary step, our partitioning
method should not lead to a long analysis time.

� High Reusability: When running some applications
with the same graph, we should avoid performing
the partitioning step redundantly, because the parti-
tion result is supposed to be unchanged for all cases
with the same graph.

� Minimized Data Transfer Overhead: Since it is always
costly to scan a disk file that stores the graph data,
we should make sure that the file loading only
occurs when necessary (i.e., to make sure each proc-
essing just scans the original data file only once).

3.2 Coloring-Based Partitioning Strategy

We color the vertices of the given graph using a small num-
ber of colors, to make sure that each partition contains a suf-
ficient number of vertices that can be processed in a high
degree of parallelism. Suppose we will generate n parti-
tions, denoted as p1, p2, p3, . . ., pn. For the first n� 1 parti-
tions (p1, p2, . . ., pn�1), all the vertices in the same partition
share the same color and satisfy the edge consistency model,
which means that no two adjacent vertices share the same
color. The last partition pn is a hybrid partition whose verti-
ces are allowed to be assigned different colors.

In comparison to classic vertex coloring approaches for
maintaining consistency, our algorithm has three distinct
features.

1) Maximizing the Degree of Parallelism for first n� 1
partitions: Instead of guaranteeing that all of the

adjacent vertices are assigned different colors in the
whole graph, we adopt a relaxed hybrid k-coloring
method, which makes sure that a majority of adja-
cent vertices are assigned different colors. That is,
our solution allows a few pairs of adjacent vertices
(about 20 percent of vertices) to be assigned the same
color, such that the whole graph can be processed in
a high degree of parallelism for processing most of
vertices. In contrast, if we adopt a full coloring strat-
egy, there may be some particular colors that only
involve a small number of vertices. This will be vali-
dated in Section 5.2 later on. When the system pro-
cesses the minority of vertices corresponding to such
colors, we may not fully harness the GPUs parallel-
ism power and processing ability. Our algorithm can
avoid such a low resource utilization issue since we
maximize the number of vertices in each of the first
n� 1 color partitions/chunks.

2) Guaranteeing the Consistency for nth partition: Our
solution has a mix color partition (i.e., the last parti-
tion) wherein the adjacent vertices could be assigned
different colors. This is why we call our coloring
algorithm a hybrid method. We adopt GPU atomic
operations to process the vertices in this partition, in
order to guarantee the consistency.

3) Low Complexity Due to High Reusability: Our solution
has a very low complexity, since we try to reuse the
previous analysis of the graph in the following color-
ing process. In particular, our algorithm only takes
O(vþ e) time to finish the process. If the target graph
is added by some new vertices and edges without
changing the topological structure of origin data
graph, our solution does not have to perform all of
the coloring operations repeatedly but just conducts
some necessary extra operations compared to the
previous analysis, so as to minimize the time com-
plexity in graph processing.

In the following text, we first present our coloring
method, and then describe it using a concrete example.

Our partitioning strategy processes graphs iteratively in
three stages.

� Stage 1: We create a table to record the coloring
results. The size of this table is n � jV j, where n is the
number of partitions and jV j represents the number
of vertices of the graph (assume we know this num-
ber before processing the graph). Then, we read
edges of the graph one by one throughout the data
file and denote them in the form of (vsrc, vdst), which
has no weight information yet.

� Stage 2: We choose a color for the vertex vsrc if it has
not been processed, and scan the table from n�vsrc + 1
to n�vsrc+n. When the table value is empty, we mark
the unit i as TRUE (i is a value from 1 to n), which
means that the vertex vsrc is assigned the ith color.

� Stage 3: If the value i is among 1 to n� 1, we should
make sure that the vdst would not be the same color
such that there are no adjacent vertices in these parti-
tions. To achieve this purpose, we mark the position
n�vdst+i in the table by FALSE. If the value i equals to
n� 1, the vertex vsrc must be put into the hybrid par-
tition pn, then we should not process vertex vdst.

Fig. 2. Result of coloring on graph DBLP. Strict graph coloring algorithm
requires 119 colors. The top four colors cover 82.8 percent of vertices,
while the remaining hundreds of colors cover only 17.5 percent of
vertices.
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By partitioning the graph by colors, we can update verti-
ces of partitions from p1 to pn�1 in parallel. There are no
data conflicts inside each partition. For the last partition pn,
we process its vertices and edges sequentially or use GPU
atomic operations.

We use the example shown in Fig. 3 to further illustrate
our solution. In this example, we have a graph of eight verti-
ces and divide the graph into three partitions, as shown in
Fig. 3. The coloring algorithm loads the edges and processes
associated vertices. Fig. 3a shows three vertices that are
processed first and the order being processed is V1, V3, V2

(which means that we do not need sorted ids of vertices).
Fig. 3b shows the conflict table named CT after processing
such three vertices. In the conflict table, vertex v will be
assigned a Processed flag at row j if the vertex v is put in the
partition j, or an Unprocessed flag if there is a conflict
between vertex v and some other vertices. For this example,
the size of CT is 3 � 8. Based on the table shown in Fig. 3b,
we can know that vertex 1 is put in the partition p1 as there
is a Processed flag in CT [1,1], and obviously vertex V3 and V2

cannot be set to the same partition. After processing all of
the edges, we can generate the conflict table eventually, as
shown in Fig. 3c. We complete the coloring processing
within O(jV j+jEj) time complexity. Fig. 3d shows the result
of our coloring algorithm. We use only three partitions,
allowing some vertices (such as V4, V2, V8 in this example) to
be assigned different colors in the last hybrid partition.

3.3 Determining the Number of Colors/Partitions

The number of partitions must be set at the beginning of our
coloring algorithm. With the consideration of the five-color
theorem and the analysis of a real-world graph named
DBLP (performance result shown in Fig. 7b), we find that it
is usually viable to color a given graph under the consis-
tency model with only five colors. Actually, the number of
colors/partitions can be set to any viable number by the
users/programmers. Although five colors may not be the
best choice for Frog, we observe most of real-world graphs

can get a good performance with only five colors: four col-
ors contain about 80 percent of vertices and the last color
includes the rest 20 percent of vertices. So we use the num-
ber 5 in our evaluation.

When processing a large-scale graph, one of the parti-
tions may contain too many vertices to be held in the GPU
memory at a time. In order to address this issue, we split
each color set into multiple pieces such that they can be put
in the GPU memory. Moreover, the last one color set could
be further colored for reaching the maximal parallelism
especially for a large-scale graph, because its last partition
may still have a large number of vertices and edges even
though it is only 20 percent of the total amount. The further
recoloring step on the last partition, however, may not work
effectively for a median-size graph because the number of
nodes/edges in the last partition is not that large.

4 DESIGN OVERVIEW AND IMPLEMENTATION

We design a light-weight asynchronous model in handling
large-scale graphs based on our proposed hybrid graph col-
oring algorithm. This section describes the execution model
and the details of our implementation.

4.1 Design Overview

The system architecture is shown in Fig. 4. Our design is
focused on the middle-ware layer, which analyzes the appli-
cations and processes the related graphs using our opti-
mized hybrid graph partitioning algorithm. It includes
three parts: a hybrid graph coloring algorithm, an asynchro-
nous execution model, and a streaming execution engine on
GPUs. The first two parts are the most critical in our design.

We partition the graph based on the colors assigned to
vertices, and process/update the vertices in parallel. Verti-
ces with the same color are partitioned into the same chunk
(also called color-chunk), which is to be processed in a sepa-
rate color-step. A color-chunk contains the vertices which
can be processed/updated without violating the sequential
consistency. In the example shown in Fig. 5, the vertices 1,
6, 7 can be updated meanwhile because they have no adja-
cent edges, thus they can be put in a color-chunk and
updated in parallel. Our algorithm ensures that no adjacent
vertices are partitioned into the same color-chunk except for
the last one. That is, the last color-chunk (and only this
color-chunk) may contain some adjacent vertices, in order
to reduce the number of colors for majority of vertices. In
other words, the only possible synchronous processing
occurs in the last hybrid color-chunk.

The asynchronous execution model aims to process the
color-chunks generated by our coloring algorithm one by

Fig. 3. A concrete example with our coloring algorithm: (a) The example
graph and three vertices have been colored. (b) V3 and V2 can not be
divided into the same partition with V1 as they are adjacent, so V3 is set
to the partition 2 and V2 to partition 3. (c) The final result of the conflict
table. (d) The final coloring result of our novel algorithm, and we color
the graph with a limited number of colors and allow some neighbor verti-
ces in the same partition, such as V4, V2, V8.

Fig. 4. System architecture.
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one, and also to guarantee the sequential consistency for
each color-chunk (including the last hybrid color-chunk)
meanwhile. For the last color-chunk that contains adjacent
vertices and edges to process, there are two alternative solu-
tions, either updating them sequentially or adopting atomic
based operations. We find that if we use a sequential updat-
ing strategy, we cannot make full use of the powerful proc-
essing capacity provided by GPUs. Instead, the other
strategy leads to the limited extra costs on GPU, due to the
fact that the total number of vertices in the last hybrid color-
chunk is always not very large (only about 20 percent or
fewer vertices of the entire graph). Such a finding is con-
firmed in our experiments. In addition, our asynchronous
execution model is also responsible for coordinating the
message transmission among different chunks.

4.2 Asynchronous Execution

4.2.1 Graph Representation and Preprocessing

In the beginning of the processing work, our system checks
if there exists some colored result to be processed in the
data graph. If the answer is yes, the result can be used
directly, which is one feature of our coloring algorithm.
Otherwise, we need to process the data graph and divide
vertices into several partitions based on the relaxed graph
coloring algorithm.

After processing the data graph, we will get several
color-chunks of vertices. Then we load graph edges based
on the distribution of vertices and begin to partition the
graph edges. Graph color-chunks are represented as Com-
pressed Sparse Rows (CSR) in CPU memory. Furthermore,
the array S which represents the local state of each vertex is
necessary for our approach. In every color-step, update
functions will access values of adjacent vertices without any
changes. Thus, the capacity of array S must be larger than
the number of partitioned vertices. We divide graphs into
some partitions by the preprocessing/hybrid coloring algo-
rithm, which also reduces random memory accesses inside
each color-chunk.

4.2.2 Color-Step Iterative Asynchronous Execution

Our asynchronous approach processes graph partitions
iteratively, as most of the graph algorithms follow itera-
tive calculations. In our asynchronous approach, we use
color-step (in analogy to the super-step in the BSP model)
to describe the process of updating all the vertices in a sin-
gle partition. As we divide the graph into n partitions, n
color-steps should be processed. For each color-step, we
conduct data transfers and GPU kernel function execu-
tions at the same time under the support of CUDA stream-
ing technology, to reduce the overhead of PCIe data
transfers.

Fig. 6 shows the computational abstraction based on a
sample graph, which is processed with 3 colors/partitions.
As we have already divided the graph into several parti-
tions based on our hybrid graph coloring algorithm, vertices
V1, V6, and V7 can be simultaneously processed in the color-
step 1 (shown in the left sub-figure), and the vertices V3 and
V5 (shown in the middle sub-figure) can be processed in
color-step 2 in parallel. As shown in the right sub-figure,
vertices V2, V4, and V8 of color-step 3 are assigned to the
same color-chunk, which is a hybrid partition because V2

and V8 are adjacent vertices.
We group n color-steps into two categories: P-step and

S-step. The first n� 1 color-steps will be processed as the
P -steps, which means vertices and edges of color-step can
be updated in parallel without concerning the data conflicts;
for the nth hybrid partition (the S-step), vertices and edges
must be processed sequentially or using GPU atomic opera-
tions. The basic scheme is the simple kernel execution as
per one color-step.

While processing graphs with the scale out of GPU mem-
ory, we only need to make sure that the scale of each P-step
or S-step is not out of GPU memory. This can be guaranteed
by the preprocessing stage, which means that we should
not assign too many vertices to each color-chunk and may
use more colors to partition out of GPU memory graphs.

4.2.3 Processing Hybrid Vertices Using Atomic

Operations

To utilize the GPU resource, we combine several different
colors together into the last partition, serving as the S-step to
be processed on GPU. As mentioned previously, for most of
graphs, there always exist some colors that consist of only a
few vertices after the color partitioning. If we process them
in a separate color-step and invoke one kernel execution,
the worst case is that only a few or dozens of vertices would
be updated by GPU stream processors.

For kernel execution of S-step to process the hybrid parti-
tion, we use atomic operations to guarantee the sequential
consistency. Due to the limited number of vertices and
edges to be updated serially, the overhead of using atomic
operations is acceptable. The other workable solution is to
process vertices and edges sequentially on CPU cores.

5 PERFORMANCE EVALUATION

In this section, we present experimental results in three dif-
ferent categories. First, we partition the graphs based on our
improved coloring algorithm, to evaluate the efficiency of
our hybrid approach on different colors. Second, we investi-
gate the impact of the different numbers of partitions to the
performance of our asynchronous method. Finally, we

Fig. 5. An example of color-chunk. Fig. 6. Illustration of the hybrid coloring method using an example.
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present the execution performance under our asynchronous
model with the hybrid coloring algorithm by comparing to
five other related systems [2], [7], [8], [9], [10].

5.1 Experimental Setting

5.1.1 Experimental Environment

We conduct our experiments on a Kepler-based GPU, NVI-
DIA Telsa K20m with 6 GB main memory and 2,688 CUDA
cores. We compile the CUDA programs with CUDA 7.0
using the -arch=sm_35 flags. We directly reuse the source
code of those engines from the authors.

5.1.2 Datasets, Testing Algorithms and Systems

Datasets. We evaluate six real-world graphs with different
properties in our experiments, as shown in Table 1. Ama-
zon, DBLP and Twitter are real-world graphs from [25], and
others are from SNAP Datasets [26].

Testing Algorithms. We implement four common graph
algorithms, namely PageRank, Breadth First Search (BFS),
Single Source Shortest Path (SSSP) and Connected Compo-
nent (CC). We mainly focus on the first two algorithms in
the evaluation, because they are the most representative
ones in the graph theory community.

� PageRank. PageRank [27] has a strong demand for
edge consistency model. While updating the rank
value of vertex v, the rank values of all of its neigh-
bor vertices that have outbound edges are also sup-
posed to be updated. If implemented based on BSP
model, rank values changed at current iteration only
can be seen by other vertices at next super-step. For
asynchronous approach execution, changes can be
known by the function that updates other vertices
which start from next color-step. This leads to a great
convergence speed for PageRank.

� BFS. BFS is a widely used graph search algorithm
which has a low computation-to-communication
ratio. BFS mainly performs memory lookups rather
than computations; hence its performance is more
sensitive to memory access latency. The kernel
implementation of BFS is based on the one that is
used in Medusa [8]. This implementation of BFS
explores all neighboring vertices from a starting ver-
tex, in a level-by-level manner.

� SSSP. In the SSSP problem, we aim to find the short-
est paths from a particular source vertex to all other
vertices in the graph (if they exist). The traditional
approach to SSSP problem is Dijkstra’s method,
which is also our choice. We assign random values
between 1 and 64 to the edge values used in SSSP.

� CC. A connected component (or just component) of
an undirected graph is a subgraph in which any two
vertices are connected to each other by paths, and

which is connected to no additional vertices in the
other subgraphs.

Testing Systems. We evaluate five other GPU-based sys-
tems as compared with our systems. To analyze the effect of
the hybrid/relaxed graph coloring algorithm, we add Frog-
Native to compare with Frog. Frog treats the undirected
graphs as a kind of special directed graphs to process, as
also did by Cusha and Medusa.

� Medusa. Medusa [8] embraces an optimized runtime
system with a simplified graph processing on GPUs.
However it can only process graphs whose scales are
smaller than that of device memory.

� Totem. Totem [28] is a hybrid system that partitions
the graph and processes tasks using both the tradi-
tional CPU cores and GPU. There are three different
graph partitioning strategies presented in Totem,
HIGH-degree, LOW-degree and RAND-degree.
HIGH-degree divides the graph such that the highest
degree vertices are assigned to the CPU, while LOW-
degree divides the graph with the lowest degree ver-
tices being assigned to the CPU. For RAND-degree,
vertices are randomly assigned to the CPU. Totem
allows users to set the percentage of edges assigned
to different devices. In our experiments, we load all
graph edges to the GPU device to evaluate the
performance.

� Cusha. Cusha [7] is a vertex-centric graph processing
framework focusing on exploration of new graph
representations named G-Shards and Concatenated
Windows. We use the CW method, leading to the
best performance of CuSha in our experiments.

� MapGraph. MapGraph [9] is a parallel graph pro-
gramming framework based on Gather-Apply-Scatter
(GAS) model. There are two different strategies
adopted byMapGraph to improve the performance of
Gather and Scatter phase. We use the default setting
in MapGraph to choose optimized strategies in our
experiments.

� Gunrock. Gunrock [10] is a high-performance graph
processing library on GPU. The input parameters of
algorithms we used in our evaluation are the same
as that of its publication [10].

� Frog-Native. Frog-Native is a non-preprocessed syn-
chronous graph processing system. The main differ-
ence between Frog and Frog-Native is that Frog-
Native uses BSP model, while Frog uses a hybrid col-
oring model and asynchronous execution. In the
computation phase of BSP model, Frog-Native uses
atomics to ensure the data consistency and edge-
centric programming model which is the same as
Frog. Other implementations such as the realization
of four graph algorithms are the same as Frog.

5.2 Hybrid/Relaxed Graph Coloring Algorithm

As mentioned previously, we color the graphs by only 5
colors, which is sufficient to fully utilize GPU resources. Our
graph coloring algorithm guarantees that vertices in the first
four partitions have no adjacent vertices. For the last partition,
we combine a few different colors that are used in other
ordinary heuristic coloring algorithms together.

TABLE 1
Properties of Graphs Used in Our Experiments

Datasets Amazon DBLP YouTube RoadNet-CA WikiTalk Twitter

Vertices 735,322 986,286 1,134,890 1,965,206 2,394,385 41,652,229

Edges 5,158,012 6,707,236 2,987,624 2,766,607 5,021,410 1,468,365,167
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Fig. 7 shows the results of graph partitioning in numbers
of vertices in the five partitions. For the first four partitions,
all vertices in the same color-chunk share the same color,
i.e., no adjacent vertices are in the same color-chunk. The
number of vertices assigned to the first four partitions is
nearly about 80 percent of the total number of vertices in
the entire graph, or even more than this percent. For the last
partition, there are only about 20 percent of vertices. For
some graphs, such as the WikiTalk graph shown as Fig. 7e,
they can be partitioned almost completely using only five
colors. In addition, we observe that the first partition of
most graphs always holds the most vertices which can take
full advantage of GPU resource by having enough tasks to
be processed at the same time.

Based on the above analysis, the hybrid scheme is suitable
to partition the graphs, in thatwe can processmajority of ver-
tices with the satisfaction of sequential consistency and
minority using atomic operations. More importantly, there
are still enough vertices to process which can utilize the GPU
resource. For graphs of different scales, however, some of
the partitions may not consist of enough vertices. This is the
reason why we need to analyze the effect of partitioning the
graph using different numbers of colors. We conduct some
experiments to study how the number of partitions affects
the performance of our asynchronous approach.

Fig. 8 shows the performance of our asynchronous
approach using different numbers of partitions execution
running on BFS and PageRank. For graphs partitioning into
different number, the performance improvement is remain-
ing at around 0.5X - 1.0X. We set the performance using 3
partitions as the baseline.

For two real-world graphs, DBLP and WikiTalk, both of
them need a lot of colors to complete the coloring work, 119
colors for graph DBLP and 81 colors for graph WikiTalk.
When we add a partition (suppose the number of partitions
is changed from k to k+1), only a few vertices and edges are
put in the extra partition k, while most of vertices still stay
in the last mix-color partition. The color-step invoked by
these vertices obviously cannot utilize the GPU resource.
For example, when we split the graph DBLP into six parti-
tions, the additional partition only holds 5.89 percent of

vertices from the previous hybrid partition using five parti-
tions. The total processing time of this additional partition,
however, is nearly 20 percent of the previous time, which
leads to a lower processing capacity (only 5.89% / 20% =
29.5% of the previous processing). This means that when
processing these few vertices on GPU, many processors are
not utilized, which leads to significant resource idling.

So far, we get different performance with different parti-
tion numbers being used. We always get a maximum per-
formance gain using a moderate coloring and partitioning
number, which happens while using 3 colors or 5 colors for
real-world graphs.

5.3 Performance of Asynchronous Approach

Asynchronous computations can substantially accelerate
the convergence of many algorithms in comparison with
the BSP model. We process all the graphs using five parti-
tions in the evaluation. The whole execution flow of graph
processing mainly contains four stages: (1) disk I/O stage:
reading graph data from disk; (2) data preprocessing stage
(for example, partition the data if needed); (3) data transfer-
ring from CPU to GPU: also known as I/O overhead
between CPU and GPU; (4) task execution stage: processing
data on GPU. Stage 2 and 4 are two key steps we are focused
on. In this section, we record the execution time in stage 4
(shown in Tables 2, 3 and 4) to analyze the performance of
four algorithms, and record the time of other three steps
(shown in Fig. 9) to mainly analyze the performance of pre-
processing stages. Specifically, we analyze the reason why
we get a good performance by presenting the number of
iterations and atomic operations in the graph processing.

Table 2 presents the performance comparison between
our asynchronous approach and five other systems by run-
ning BFS algorithm. Our algorithm has clear performance
gains as shown in the table except compared with Gunrock
[10]. Only except for the RoadNet-CA dataset, we get
similar performance with Gunrock and better performance
than MapGraph [9]. One of the reasons is that our system is
particularly designed for the power-law graphs, while
RoadNet-CA does not exhibit typical power-law feature.
Another reason is that BFS algorithm cannot benefit from
the asynchronous model, while Gunrock and MapGraph
optimize the processing of BFS by using the frontier to
reduce computation. As shown in Table 2, we obtain 6.55X
performance improvement over Cusha [7].

We also get a high performance gain on PageRank, with
an improvement of 4.32X over Medusa [8], as shown in
Table 3. In particular, our asynchronous approach scales up
to 55.15X on the algorithm PageRank when processing the
graph WikiTalk. We run the PageRank algorithm when the
damping factor is 0.85 and the precision is 0.005.

From the perspective of the overall system performance,
our Frog also outperforms other state-of-the-art systems in

Fig. 8. Effect of different partition numbers on the BFS and PageRank
algorithm.

Fig. 7. Results of graph coloring and partitioning, using five partitions to divide graphs.

SHI ET AL.: FROG: ASYNCHRONOUS GRAPH PROCESSING ON GPUWITH HYBRID COLORING MODEL 37



most of cases. For example, we get a better performance
than the graph processing framework CuSha [7] while run-
ning PageRank. As an asynchronous execution system, Frog
exhibits a performance improvement from 1.96X to 6.55X
over CuSha while running the BFS algorithm. Although
CuSha partitions the graphs into different G-shards, which
is similar to Frog, it generates too many partitions with a lot
of duplicate values. In the PageRank case, Frog always out-
performs Gunrock in any of the data sets.

In addition, Table 4 shows the performance improve-
ment of Frog compared with CuSha, Gunrock and Totem
on SSSP and CC algorithms. As for RoadNet-CA, Gunrock
has higher convergence rate on CC algorithms because of
its filter operator, while Frog does not make separate opti-
mization for any one of algorithms. Overall, Frog gets a bet-
ter performance over other system in most situation when
comparing the execution time on GPU.

Frog also exhibits a better performance than prepro-
cessed approach CuSha in the preprocessing stage, as
shown in Fig. 9. As for the GPU-based systems listed in
Fig. 9, only Cusha has the preprocessing stage before proc-
essing graph data on single-node GPU, in that Cusha
adopts the shard concept to achieve high GPU utilization
and it needs to take into account the size of the SM shared
memory and generates hundreds of shards in general. In
Fig. 9, we also observe that the preprocessing time of Frog
always takes a very small portion of its total time of the
three stages.

We record the numbers of iterations of all benchmarks,
which confirms our asynchronous approach can acceler-
ate the convergence with fewer iterations. Table 5 shows
that we can reduce the number of iterations than other
systems in most of the benchmarks, indicating much less
overhead in the whole calculation process under our

TABLE 2
Execution Time of BFS (in Milliseconds)

Datasets
Amazon DBLP YouTube RoadNet-CA WikiTalk Twitter Improvement

Systems

Frog-Native 9.882 7.631 13.286 223.606 24.143 null –
Frog 10.587 6.980 5.635 176.856 4.583 1,883.06 –
Totem 39.265 38.220 33.143 254.798 72.225 null 1.44X–15.76X
Medusa 10.554 7.066 31.053 200.674 4.695 null 0.997X–5.51X
CuSha 34.321 31.856 19.805 347.314 30.009 null 1.96X–6.55X
MapGraph 10.467 11.285 9.549 82.112 17.996 null 0.46X–3.93X
Gunrock 5.859 4.874 7.246 60.166 5.675 null 0.34X–1.29X

Note: Null means that the system can not process such dataset on GPU, and the improvement is made based on Frog.

TABLE 3
Execution Time of PageRank (in Milliseconds)

Datasets
Amazon DBLP YouTube RoadNet-CA WikiTalk Twitter Improvement

Systems

Frog-Native 163.872 268.201 117.421 171.620 790.033 null –
Frog 34.723 50.813 35.655 20.370 75.130 144,893.98 –
Totem 549.530 929.635 591.573 1,443.650 1,231.735 null 15.83X–70.87X
Medusa 149.916 313.145 503.283 165.758 4,143.684 null 4.32X–55.15X
CuSha 85.507 113.223 395.699 94.925 227.455 null 2.23X–11.10X
MapGraph 180.730 298.002 292.432 168.001 876.102 null 5.20X–11.66X
Gunrock 211.509 262.512 719.603 237.864 338.730 null 4.51X–20.18X

Note: Null means that the system can not process such dataset on GPU, and the improvement is made based on Frog.

TABLE 4
Execution Time of SSSP and CC (in Milliseconds)

Algorithm Dataset Amazon DBLP YouTube RoadNet-CA WikiTalk Twitter Improvement

Frog-Native 74.348 192.882 111.223 1411.780 241.231 null –
Frog 34.320 47.461 13.042 280.390 24.412 65,708.65 –

SSSP Totem 54.890 53.926 30.393 567.612 91.923 null 1.14X–3.77X
CuSha 86.038 86.023 34.438 1115.650 53.479 null 1.81X–3.98X

MapGraph 72.541 78.820 29.779 785.858 107.598 null 1.66X–4.41X
Gunrock 38.952 53.251 19.813 291.500 52.035 null 1.04X–2.13X

Frog-Native 24.601 39.910 29.823 270.362 68.091 null –
Frog 8.718 9.207 6.180 247.850 11.053 35,027.73 –

CC Totem 34.775 31.048 24.123 741.287 47.645 null 2.99X–4.31X
CuSha 34.930 32.588 23.526 388.392 21.011 null 1.57X–4.01X

MapGraph 88.608 78.963 56.893 1,834.050 114.630 null 7.40X–10.37X
Gunrock 26.787 30.527 18.038 31.362 13.050 null 0.13X–3.32X

Note: Null means that the system can not process such dataset on GPU, and the improvement is made based on Frog.
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solution Frog. For algorithm CC, Gunrock has only two
iterations for all kinds of datasets, which is the key reason
why Gunrock exhibits better performance than Frog on
CC in some cases.

We also record the numbers of atomic operations for all
systems on GPU in the compute stage. Atomic operations
on GPU are used to avoid race conditions and they simplify
the coding for programmers. It is well-known that atomics
can be used on GPU [24], but over-use of atomics may
degrade the performance significantly. In fact, it is difficult
to quantify the cost of an atomic operation on GPU accu-
rately, because the cost of atomics in each system is related
to many factors. As indicated by [24], some programming
skills depending on different algorithms are leveraged to
avoid atomics, and they are adopted by PageRank of Totem
and CC of Gunrock to realize atomic-free design respec-
tively. Table 6 shows that Frog has fewer atomics operations
than other systems in most cases, especially in RoadNet-CA.
Because only the last partition of data in Frog needs to use
atomics and the number of atomics of Frog is closely related
to the result of coloring partition.

To analyze the effect of the hybrid graph coloring algo-
rithm in Frog, we conduct comparative experiment with
Frog-Native. We observe that Frog significantly outper-
forms Frog-Native in almost all of our benchmarks, as it has
fewer iterations and atomics than Frog-Native.

The reason our solution has a very high performance is
two-fold. (1) The asynchronous model we adopt can con-
verge faster than the synchronous model, because the
updated value in the asynchronous model can be quickly
accessed by other vertices. So, for the iterative graph algo-
rithm, we have fewer iterations compared with other syn-
chronous systems in GPU, which has been confirmed in our
experiments (see Table 5). (2) We use hybrid coloring algo-
rithm to implement an asynchronous execution model. Our
strategy suffers from fewer atomics (see Table 6) in ensuring
the data consistency on GPU as compared with the locking
policy. Atomics may degrade performance significantly if
they are used inappropriately, so we suffer less risk intro-
duced by atomic operations.

6 RELATED WORK

6.1 GPU-Accelerated Graph Processing

Much research has been conducted on the efficient process-
ing of large graphs due to the increasing number of graph-
based applications. Some researchers used GPU to acceler-
ate graph algorithms [23], [29], because GPUs have signifi-
cantly higher memory access bandwidth and much higher
parallelism. Hong et al. [19] present a BFS implementation
on a GPU-accelerated platform and divide the processing
into two phases. The phase on GPU starts as soon as enough
parallelism is exposed to utilize the GPU memory band-
width more efficiently.

Medusa [8] andMapGraph [9] both are the programming
frameworks which provide a set of APIs for developers to
implement their applications simply on GPUs. Medusa ena-
bles developers to leverage the capabilities of GPUs. The
system loads the whole graph into GPU memory and auto-
matically executes user-defined operations in parallel. Map-
Graph adopts dynamic scheduling strategy and two-phase
decomposition strategy to decrease the thread-divergence
penalty and balance the workload of threads. Totem [2] is a
hybrid system that partitions the graph and processes tasks
using both the traditional CPU cores and the GPU. By
uploading a suitable number of vertices onto the device,
Totem is able to process graphs that not fit the GPUmemory
size. CuSha [7] is a framework which makes it easy for users
to define vertex-centric algorithms for processing large
graphs on GPU. Gunrock [10] is a high-level graph library
on the GPU which provides a novel data-center abstraction
and several GPU-specific optimization strategies.

6.2 Graph Partitioning

While processing large-scale graphs, partitioning is a major
step which affects the performance of graph processing. A

TABLE 5
Comparison of Iteration Number on
Frog and Competitive Systems

Algorithm Dataset Amazon DBLP YouTube RoadNet-CA WikiTalk Twitter

Cusha 27 13 10 553 6 null

Totem 29 15 15 556 7 null

BFS MapGraph 30 15 23 557 7 null

Gunrock 21 15 15 557 8 null

Frog-Native 30 15 23 557 7 null

Frog 29 14 22 556 6 14

Cusha 62 72 65 67 70 null

Totem 126 165 13 143 107 null

Page

Rank

MapGraph 34 41 55 44 67 null

Gunrock 46 47 50 26 50 null

Frog-Native 52 51 15 31 33 null

Frog 20 25 10 16 19 15

Cusha 36 17 41 1097 6 null

Totem 30 15 15 556 7 null

SSSP MapGraph 30 15 23 557 7 null

Gunrock 46 57 29 694 12 null

Frog-Native 28 14 18 555 8 null

Frog 17 8 14 279 4 7

Cusha 27 13 18 551 2 null

Totem 20 12 10 555 5 null

CC MapGraph 20 15 14 555 8 null

Gunrock 2 2 2 2 2 null

Frog-Native 35 32 26 561 20 null

Frog 9 7 8 252 5 6

Note: Null means that the system can not process such dataset on GPU, and
the improvement is made based on Frog.

Fig. 9. Time of three stages before graph processing on GPU. Compared
with the preprocessed approach Cusha, the time used in the preprocess-
ing stage of Frog is just approximately 1/3 fraction of that in Cusha.
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lot of work has been done on graph partitioning. Power-
Graph [22] is a distributed graph system that overcomes the
workload imbalance problemwith vertex-based partitioning
with replication. GPS [30] extends Pregel’s API and supports
dynamic repartitioning based on the outgoing communica-
tion. Tian et al. [31] introduce a graph-centric programming
model that opens up the partition structure to users and
allows information to flow freely inside a graph partition.

Both Medusa [8] and Hong et al. [19] assume that GPU
memory can hold the entire graph. However, this is not
true when processing large graphs. The benefit of GPU
execution is limited by GPU’s relatively small memory
capacity. This is a major limitation of large-scale graph
processing on GPUs. Totem [2] is introduced as a hybrid
system that partitions the graph and processes tasks using
both the traditional CPU cores and the GPU. Totem parti-
tions the graph by placing the high-degree vertices in one
type of processor and the low-degree ones in the other
type, or placing random-degree vertices on two types of
processor. However, this method does not adapt to the
asynchronous execution because of the data dependent
computation on graphs.

6.3 Synchronous/Asynchronous Execution Models

Pregel [4] is a vertex-centric framework based on the BSP
model, which uses synchronous super-steps for computation
and communication. Mizan [32] uses fine-grained vertex
migration to achieve the workload balance across Pregel
super-steps. Similar to systems such as Pregel, X-Stream [33]
presents an edge-centric graph processing using streaming
partitions for scale-up graph processing on a single shared-
memorymachine, which takes the cost of random access into

the set of vertices instead of the set of edgeswithmuch larger
scale. By exploiting the high level semantics of abstract data
types, the Galois [34] system ensures that any parallel execu-
tion must be faithful to the sequential semantics and is able
to allow concurrent accesses and updates to shared objects.
Ligra [35] presents a simple shared memory abstraction for
vertex algorithms which is particularly good for problems
similar to graph traversal, which is motivated in part by
Beamer et. al.s recent work on a very fast BFS for shared
memorymachines [36].

In contrast to synchronous execution models, which
update all values simultaneously by using values from
previous time step, asynchronous systems update them
using the most recent values. In the paper [5], it demon-
strates that how asynchronous computation can substan-
tially accelerate the convergence of some algorithms like
PageRank. GraphLab [15] and PowerGraph [22] present
the framework based on the asynchronous computational
model to achieve better convergence than the synchronous
implementation. To exploit asynchronous parallelism in
iterative algorithms on distributed shared memory,
ASPIRE [37] uses a relaxed memory consistency model
and cache consistency protocol, simultaneously maximiz-
ing the avoidance of long latency communication opera-
tions and minimizing the adverse impact of stale values
on convergence.

7 CONCLUSION

GPUs have recently been adopted to accelerate various
graph processing algorithms. Many existing frameworks
and processing engines are based on the BSP model.

TABLE 6
Comparison of the Number of Atomic Operations on Frog and Competitive Systems

Algorithm Dataset Amazon DBLP YouTube RoadNet-CA WikiTalk Twitter Operation Ratio

Cusha 1.0E+8 6.6E+7 2.5E+7 1.6E+9 2.3E+7 null 1.4E+1X–5.7E+6X
Totem 1.5E+6 1.6E+6 7.4E+6 4.2E+6 4.7E+6 null 2.8E+0X–1.5E+4X

BFS MapGraph 7.7E+5 9.2E+5 4.5E+5 1.9E+6 1.3E+7 null 1.3E+0X–7.0E+3X
Gunrock 1.3E+6 8.6E+5 6.8E+5 1.9E+4 2.6E+8 null 2.0E+0X–1.6E+2X

Frog-Native 1.3E+6 1.5E+06 1.1E+6 2.3E+6 3.1E+6 null 1.9E+0X–8.3E+3X
Frog 1.8E+5 4.0E+5 3.4E+5 2.8E+2 1.6E+6 1.9E+7 –

Cusha 3.2E+8 4.1E+8 7.5E+7 3.9E+8 3.0E+8 null 3.2E+2X–9.5E+4X
Totem 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 null –

PageRank MapGraph 7.7E+5 9.2E+5 1.5E+6 2.0E+6 1.8E+6 null 3.2E+0X–4.9E+2X
Gunrock 3.7E+6 4.0E+6 3.1E+6 5.3E+6 4.8E+6 null 1.3E+1X–1.3E+3X

Frog-Native 2.9E+7 2.6E+7 7.7E+6 2.1E+7 7.1E+7 null 3.3E+1X–5.2E+3X
Frog 2.4E+5 1.7E+5 2.3E+5 4.0E+3 2.0E+5 5.5E+7 –

Cusha 4.3E+8 3.3E+8 8.4E+7 1.9E+9 6.7E+7 null 1.3E+2X–1.2E+5X
Totem 9.7E+7 1.2E+8 4.7E+7 9.5E+8 1.7E+8 null 3.0E+2X–6.1E+4X

SSSP MapGraph 1.8E+7 1.8E+7 6.9E+6 1.8E+8 2.4E+7 null 4.4E+1X–1.2E+4X
Gunrock 5.9E+6 1.1E+6 9.5E+5 2.5E+5 1.1E+9 null 3.0E+0X–2.1E+3X

Frog-Native 7.5E+6 6.3E+6 2.7E+6 6.2E+7 6.8E+6 null 1.3E+1X–4.0E+3X
Frog 2.4E+5 3.5E+5 1.6E+5 1.6E+4 5.2E+5 5.8E+7 –

Cusha 9.9E+7 6.6E+7 2.5E+7 1.6E+9 2.3E+7 null 1.3E+1X–1.2E+5X
Totem 7.1E+7 7.5E+7 4.3E+7 1.9E+9 1.4E+8 null 6.1E+1X–1.4E+5X

CC MapGraph 6.5E+7 6.1E+7 2.2E+7 7.6E+8 3.5E+7 null 2.0E+1X–5.7E+4X
Gunrock 0.0E+0 0.0E+0 0.0E+0 0.0E+0 0.0E+0 null –

Frog-Native 9.5E+7 7.6E+7 2.9E+7 2.8E+8 4.9E+7 null 2.8E+1X–2.1E+4X
Frog 1.2E+6 8.6E+5 4.4E+5 1.3E+4 1.7E+6 3.8E+6 –

Note: Null means that the system can not process such dataset on GPU, and Operation Ratio is referred to as the ratio of the atomic operation of other systems
over Frog.
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Unfortunately, the cost of synchronization becomes serious
because of the increasing graph scale.

We present a light-weight asynchronous framework
called Frog on GPU. We partition the graph based on a new
efficient graph coloring algorithm to ensure that no adjacent
vertices are divided into the same color-chunk for a large
majority of vertices. Vertices of each partition, except the
last hybrid partition, satisfy sequential consistency and can
be updated in parallel without modifying the data in adja-
cent vertices. Some key findings based on our experiments
are summarized below.

� We present a novel and relaxed graph coloring
algorithm, which divides majority of vertices (about
80 percent of the entire graph) into a moderate num-
ber of partitions without adjacent vertices.

� We present an asynchronous framework based on
our relaxed coloring algorithm. The scheduling
scheme is one color-chunk for one kernel execution.
Thus we can process most of vertices of color-chunk
without adjacent vertices in parallel. By the experi-
mental results, it can be seen that our system Frog
exhibits better performance than the other three
well-known GPU-based graph processing systems
(Cusha, Medusa and Totem) on all cases. Gunrock
and MapGraph exhibits better performance than
our system on some cases. Specially, For CC, only
the preprocessed system Gunrock performs better
on the dataset RoadNet-CA than our system. For
BFS, our system exhibits comparable performance
with Gunrock on datasets except for Amazon,
DBLP and RoadNet-CA, and outperforms the other
four GPU-based systems on almost all datasets.
The only exception is the case of RoadNet-CA,
where MapGraph exhibits better performance than
our system.

� We also present a light-weight streaming execution
engine for handling the large scale graph on GPU,
such as twitter-2010 graph with 1.468 billion edges.
We get a better performance than Totem and CuSha,
while the other systems like Medusa is unable to run
these graphs in such a large scale.
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