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Abstract— On a GPU cluster, the ratio of high computing
power to communication bandwidth makes scaling breadth-
first search (BFS) on a scale-free graph extremely challenging.
By separating high and low out-degree vertices, we present
an implementation with scalable computation and a model
for scalable communication for BFS and direction-optimized
BFS. Our communication model uses global reduction for high-
degree vertices, and point-to-point transmission for low-degree
vertices. Leveraging the characteristics of degree separation, we
reduce the graph size to one third of the conventional edge list
representation. With several other optimizations, we observe
linear weak scaling as we increase the number of GPUs, and
achieve 259.8 GTEPS on a scale-33 Graph500 RMAT graph
with 124 GPUs on the latest CORAL early access system.
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I. INTRODUCTION

Breath-First Search (BFS) on graphs is a fundamental

and important problem that draws attention from a wide

range of research communities. It is a building block of

more advanced algorithms that involve graph traversals,

such as betweenness centrality and community detection.

Traversals can be highly parallelizable; however, achieving

good performance is challenging, especially on scale-free

graphs with wide ranges of degree distribution. This is due

in part to low arithmetic computation density and irregular

memory access patterns caused by the algorithm and the

graph topology. When running on distributed memory sys-

tems, high communication cost adds additional challenges

to achieve good performance. Because of the importance

and challenging nature of BFS at large scale, the High

Performance Computing (HPC) graph community chose

BFS as the first benchmark in the Graph500 [1]. In addi-

tion to testing hardware capability of HPC machines, the

Graph500 has been a catalyst for a series of algorithmic

innovations [2]–[4] for HPC graph analytics.
Graphics Processing Units (GPUs) provide more comput-

ing power and memory bandwidth than CPUs, and thus may

be a good candidate for a high-performance BFS. A fast

BFS on GPUs is a challenge, however; irregular memory

access patterns and the workload imbalance caused by

widely different neighbor list lengths require optimizations

to utilize the GPU hardware. Another challenge is the low

per-processor memory size of the GPU (16 GB for the

largest NVIDIA GPUs), much smaller than the CPU’s.

Processing graphs larger than one GPU’s memory requires

multiple GPUs and a distributed-memory implementation.

On the algorithms side, Beamer, Asanović and Patter-

son [4] introduced Direction-Optimizing (DO) BFS that sig-

nificantly reduces traversal workload on power-law graphs,

such as those used by Graph500 and social-network graphs.

DOBFS’s workload reduction exacerbates the imbalance

between highly efficient local GPU computation and the

relatively limited communication bandwidth in and out of

GPUs: a DOBFS implemented across multiple GPUs using

existing techniques will almost surely be limited completely

by communication bandwidth and will fail to scale. Our

previous work [5] shows DOBFS is the most challenging

algorithm (among the five we tried) to scale even on multiple

GPUs connected by a PCI Express bus. Targeting a multi-

node GPU cluster, with its lower inter-node bandwidth, will

be even more difficult. Existing work on GPU clusters does

not target DOBFS because of these challenges.

Our work targets the growing trend of multiple GPUs

per compute node on HPC systems. CORAL/Sierra [6]

will be Lawrence Livermore National Lab’s (LLNL) newest

supercomputer. This system will contain only a few thousand

compute nodes, compared to 10× that amount in previous

supercomputers. However, each node will feature more local

computing power, mainly from four Volta GPUs, and more

memory. This change further raises the computing power vs.

communication bandwidth ratio. From a BFS perspective,

the graph partition on each GPU will be larger, while the

communication bandwidth for each GPU may not increase.

Thus, the available bandwidth per unit graph size decreases

significantly, and makes scaling on such systems harder.

In short, the challenges of a scalable (DO)BFS on GPU

clusters are: 1) limited GPU memory—small per-GPU

graphs will not be sufficient to utilize the computing power

of latest GPUs; 2) irregular memory access patterns and

unbalanced workloads, which together limit local traversal

performance; and 3) a high-computing-power to limited-

communication-bandwidth ratio, making scaling difficult.

Our work in this paper targets an scalable implementation

of (DO)BFS for the CORAL early access system at LLNL

called Ray [7] that can utilize the latest hardware. Our

implementation makes no CORAL-specific optimizations

but instead aims for generality to address any GPU cluster.

We achieve scalable performance up to a scale-33 RMAT

graph on this machine. The key idea allowing us to achieve

scalable performance is that by separating high- and low-

degree vertices [8], we design and implement a scalable
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computation and communication model that, for the first

time, achieves scalable DOBFS on GPU clusters. We make

the following contributions:

• Scalable BFS and DOBFS traversal results, reaching

260 Giga Traversal Edges Per Second (GTEPS) on a

scale-33 Graph500 RMAT graph with 124 GPUs, which

is 18.5× better weak-scaling performance than the best

known GPU cluster work on the Graph500 list [1];

• An efficient graph representation that uses about half

the memory as the conventional compressed sparse row

(CSR) format;

• Fast and scalable local traversal on GPUs;

• A scalable communication model for DOBFS; and

• Several design decisions that may be useful for other

programmers on similar systems.

II. RELATED WORK

A. Terminology

For ease of discussion, we define the following terms, and

use them in later sections of the paper.

graph A graph G(V,E) is defined by its vertices V and

edges E. In this paper, to study DOBFS scalability without

doubling the storage size, we assume the graph is symmetric.

n = |V |, the number of vertices in the graph.

m = |E|, the number of edges in the graph.

prank the number of Message Passing Interface (MPI)

ranks.

pgpu the number of GPUs per MPI rank.

p = prank · pgpu, the number of GPUs used.

g the inverse of inter-node communication bandwidth.

TH the degree separation threshold (section III-A).

delegates vertices with out-degree larger than TH .

normal vertices vertices with out-degree at most TH .

Enn, End, Edn, Edd normal → normal, normal → del-

egate, delegate → normal, and delegate → delegate edges.

d the number of delegates in the graph.

S the number of iterations (i.e., super-steps) of running

BFS on the graph, bounded by the diameter of the graph.

B. Challenges with Scaling Directional Optimization

Directional optimization is a widely adopted optimization

used in high-performance BFS implementations. First de-

scribed by Beamer, Asanović, and Patterson [4], it switches

from the conventional forward-push (i.e. top-down) direction

to the backward-pull (i.e. bottom-up) direction when the

workload of visiting all neighbors of the newly discovered

vertices from the previous iteration is greater than trying

to find only one previously visited parent of the unvisited

vertices. The workload savings from skipping a vertex’s

parent list once a valid one is found can be huge, and it

is very efficient for graphs with small diameters and dense

cores, for example, social networks and RMAT graphs.

However, conventional DOBFS implementations face

scaling issues in a cluster environment. When running in the

backward-pull direction, each active (unvisited) vertex must

know the status of all its possible parents. This information

comes with a high communication cost. If the graph is 1D-

partitioned, it forces broadcasting the newly visited vertices

to all the peers that host their neighbors. In practice, this

often results in broadcasting the newly visited vertices to

every peer, which is 8m bytes in communication volume,

and 8m/p · g in communication time. If the graph is 2D-

partitioned [10], it takes 2 hops to propagate the visiting

status of vertices: one reduction across the row direction,

and one broadcast across the column direction.

Let us use nt to indicate the number of vertices visited in

the forward-push iterations, and Sb to indicate the number of

iterations in the backward-pull direction. We make the fol-

lowing assumptions: 1) row- and column-wise vertex num-

bers are 32-bit; 2) reduction and broadcast works in a tree-

like manner, which gives log
√
p communication for each

column or row; 3) the same vertex is never visited in more

than one iteration, otherwise the communication cost will

be higher; and 4) the processor grid is square, i.e., there are

equal divisions in the row and the column directions. Then

the total communication volume for the forward direction is

8nt
√
p log

√
p bytes, and it is 2nSb

√
p(log

√
p)/8 bytes for

the backward direction using compressed bit masks. The

communication time is (4nt + nSb/8)((log
√
p)/
√
p) · g.

When the graph size and the number of nodes increase

at the same rate (weak scaling), the above communication

cost will increase as
√
p, and this limits the scalability on

large systems. There are also increases in the computation

workload: instead of finding only one valid parent for each

unvisited vertex, the 2D partitioned case tries to finds
√
p

valid parents, one in each of the
√
p row-partitions of an

unvisited vertex. When running on large clusters, i.e.
√
p

is large, this workload increase defeats the workload saving

purpose of DO. In summary, both 1D and 2D partitioning

within a cluster on a DOBFS present significant scalability

challenges.

Previous work on large-scale BFS falls into three cate-

gories. Single-node projects, either CPU or GPU, generally

sustain the highest throughput per processor but are limited

by storage or compute to relatively modest graph scales.

The largest CPU clusters (tens of thousands of nodes)

have addressed the largest graph scales (≥ 36), whereas

smaller-sized GPU clusters (thousands of nodes) have not

yet reached that scale. As a gross generalization, CPU

implementations are limited in scalability by computation

(they must add nodes to have more compute resources to

process larger graphs), whereas the GPU ones are limited by

memory size (they must add nodes to have more memory to

store larger graphs). We summarize this work in figure 1.

C. BFS within Single Node

Using GPUs in the same node for BFS yields impressive

per-node performance [5], [9], [11], [12], but because all

1091



[5] 46.1

[9] 174.7

[16] ~850

[16] ~240

[14] ~5363
[14] 38621.4

[15] 23755.7

[19] 29.1, 
[21] 3.26

[20] 13.7

[18] 828.39

[T] 259.8

[17] 317, 
[1] 462.25

[9] 40
1

8

64

512

4096

32768

262144

26 28 30 32 34 36 38 40

N
um

be
r o

f P
ro

ce
ss

or
s

ScaleGPU 1 Node CPU Cluster GPU Cluster
WeakScale CPU 1 Node

[5] 26

[15] 33

[9] 33

[16] 36

[14] 37

[14] 40

[15] 40

[19] 27

[21] 27

[20] 29 [18] 33

[T] 33

[1] 35
[17] 35

[9] 27

0.03

0.13

0.50

2.00

8.00

32.00

1 4 16 64 256 1024 4096 16384 65536 262144

G
TE

PS
 p

er
 P

ro
ce

ss
or

Number of ProcessorsGPU 1 Node CPU Cluster
GPU Cluster CPU 1 Node

Figure 1: Placing our work (marked [T]) in the context of other large-scale BFS projects. GPU clusters are black circles

and CPU clusters are red crosses. Two symbols mark top single-node CPU [9] and GPU [5] accomplishments. Left: RMAT

scale (graph size) vs. number of processors to process a graph at that scale. Results nearer the bottom right can process

larger graphs with fewer processors. The dashed line represents the weak scaling line corresponding to our scale-processor

count. Annotations mark aggregate GTEPS. Right: Cluster size vs. throughput (edges processed per second) per processor.

Results nearer the top right sustain higher throughput with more processors. Annotations mark maximum RMAT scale.

their communication is within a node and thus faster than

within a cluster, their per-node performance is superior to

cluster-based solutions. However, their graphs must fit into

one node’s memory (GPU or CPU), and this inherently limits

the maximum size of a processed graph.

To break this memory limitation, other researchers have

used a shared memory architecture [9] or high-speed local

storage [13]. The shared memory architecture is essentially

multiple nodes with unified memory space, and it is less

common than distributed memory architectures. Using fast

local storage can help to process huge graphs with limited

hardware resources, but moving large amounts of graph data

limits overall traversal performance.

D. BFS on CPU Clusters

The Graph500 list is mostly CPU cluster implementa-

tions [14]–[16], which use a large number of processors,

typically more than 10k, to reach the reported performance.

These implementations tend to use very specific graph

representations [2], [14], which may not be GPU-friendly,

because their complex memory access patterns bring extra

irregularity and more branching conditions, both of which

reduce achievable parallelism on GPUs. We instead choose

a standard graph representation (CSR). We expect our BFS

implementation will be used as a component of a complex

workflow with many components that use standard formats

for passing data between them. Using non-standard graph

representations requires such a workflow to incur an addi-

tional cost of format conversion, to duplicate graphs, or to

redesign other components, none of which are desirable.

These implementations also generally use 2D partitioning

to distribute the graph across processors. 2D partitioning

may introduce a high communication cost (Section II-B).

As subgraph sizes on each processor increase (to make full

usage of more capable nodes as the number of nodes de-

creases), the data transmitted per node will increase together

with the graph size, but the bisection network bandwidth will

be lower as the network shrinks. Machine-specific network

optimization could help, but this direction may make the

implementation less applicable to other systems.

The recent implementation by Yasui and Fujisawa [9]

shows a significant improvement in per-processor perfor-

mance, using a shared memory system with 128 processors.

In this work, the subgraph size on each processor is con-

siderably larger than previous BFS work on CPU clusters.

With upcoming supercomputers featuring a smaller number

of nodes with more resources per node, using larger sub-

graphs per processor may be more suitable for upcoming

machines.

E. BFS on GPU Clusters

BFS on GPU clusters is a relatively recent topic of

study [1], [17], [18] (citation [1] here refers to TSUBAME

2.0’s number 31 ranking in the June 2017 Graph500 list. The

achieved performance is 462.25 GTEPS with scale 35 using

4096 Tesla GPUs in 1366 nodes. We can’t find published

work that references this particular record.), with some

recent work focusing on a smaller number of GPUs [19]–

[21]. None of this work demonstrates competitive per-node

performance vs. single-node work, and none shows the

combination of scalability and performance per node that

we demonstrate in this work.

III. GRAPH REPRESENTATION

The key to a scalable DOBFS on a GPU cluster is

to (a) maximize the fraction of the graph that can be

stored on one GPU, thus allowing fast computation with no

communication on that portion of the graph, and (b) optimize
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the communication between GPUs, which would otherwise

limit scalability, even within a single node [5].

A. Separation of Vertices
Our design to accomplish these goals starts from a simple

but powerful idea that we have pursued in previous work

on CPU clusters [8]: separate the vertices into two sets

by out-degrees, and treat them differently. The separation

point between the two, the threshold out-degree TH , is

an important tuning parameter, and we will show how

it affects the overall performance in upcoming sections.

We call vertices with more than TH direct neighbors the

delegates, and the rest normal vertices.
The intuition behind this design choice is that in local

traversal, vertices at different ends of the degree distribution

should have different load-balancing strategies; and in com-

munication, vertices that almost every GPU touches should

not be treated the same as those needed by very few GPUs.

By separating vertices into different sets, we can pursue

different strategies in graph representation, local traversal,

and communication on those sets, which we describe below.

B. Distribution of Edges
Algorithm 1 Edge Distributor

Let P (v) = mod(v, prank )
Let G(v) = mod(v/prank , pgpu)

1: for each edge (u→ v) do:

2: if u is normal then: to rank P (u), GPU G(u)
3: else if v is normal then: to rank P (v), GPU G(v)
4: else if (OutDegree(u) < OutDegree(v)) then:

5: to rank P (u), GPU G(u)
6: else if (OutDegree(u) > OutDegree(v)) then:

7: to rank P (v), GPU G(v)
8: else: to rank P (min(u, v)), GPU G(min(u, v))
9: end if

10: end for

On scale-free graphs, most storage is devoted to edges,

not vertices. We distribute edges to individual MPI ranks,

and then to individual GPUs within the same rank, using

the distributor described in Algorithm 1. In it, we divide

edges into four categories depending on the type of their

source and destination vertices (normal or delegate). Our

edge distributor has the following advantages:
Simple The location of an edge can be easily computed

from its index locally without table lookup or remote query.
Symmetric Except for normal to normal edges, subgraphs

on individual GPUs are symmetric. Because we make an

edge pair of opposite directions for an undirected edge, they

need to be on the same GPU to preserve the correctness of

DOBFS without a global traversal direction. Otherwise if

the traversal directions of the edge pair are opposite to their

respective directions, both edges will be ignored.
Bounded size The number of possible destination vertices

for non-(normal to normal) edges on each GPU are bounded:

10 2

3 6

9 7

4 5

8

10 2

3 6

9 7

4 5

80 1 0 1 0 1

DV Normal vertex Delegate

nd / dn Edge nn Edge dd Edge

Figure 2: Example of degree separation and edge distribution

for a graph with 3 partitions and degree threshold 5. Top:

the original graph. Bottom: subgraphs after making vertex

7 as delegate 0, and vertex 8 as delegate 1. nd, dn, nn and

dd refer to normal to delegate, delegate to normal, normal

to normal, and delegate to delegate edges, respectively.

the number of normal vertices is at most n/p, and the

number of delegates is at most d. Thus vertex indices for

these edges can be represented as 32-bit numbers locally, and

converted back to 64-bit when necessary for communication.

This allows us to store more of the graph in a fixed-size

memory.

Balanced This distribution prioritizes placement of ver-

tices with lower out-degrees. Neighbor lists of high-degree

vertices are distributed according to the destination vertices,

and scattered across the entire cluster. The number of edges

in the partitioned subgraphs on individual GPUs are very

close to each other, giving each GPU a balanced workload.

Figure 2 illustrates our vertex separation and edge dis-

tribution strategies. Vertices 7 and 8 have out-degree more

than TH , which is 5 in this example, and they are converted

to delegates 0 and 1, respectively. All partitions keep a

copy of the delegates, and all edges involving the dele-

gates are changed to the local copies. After this operation,

only edges between normal vertices require communication

across GPUs; all other edges are between two vertices on

the same GPU. This is the right choice because normal

vertices are the ones with the fewest neighbors and thus the

least communication. Any delegate-related communication

is performed using global reductions (details in section V).

C. Efficient Graph Storage

The bounded-size feature of our edge distributor is critical

for processing huge graphs within limited GPU device

memory, and makes processing larger graphs using the
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sub-graph row offsets column indices

nn n/p · 4 |Enn|/p · 8
nd n/p · 4 |End|/p · 4
dn d · 4 |Edn|/p · 4
dd d · 4 |Edd|/p · 4

Total 8n+ 8d · p 4m+ 4|Enn|

Table I: Memory usage for subgraphs in bytes.

Delegate 
PreVisit

(Reverse) 
Delegate-

Delegate Visit (Reverse) 
Normal-

Delegate Visit

Normal 
PreVisit

(Reverse) 
Delegate-

Normal Visit
Normal-

Normal Visit

Input & 
Previous 
Delegate 
Masks

Input 
Normal 
Frontier

Output 
Delegate 
Masks

Output 
Normal 
Frontier

DD Queue

DN Workload
ND Queue

ND Workload
DN Queue

NN Queue

Delegate Stream

Normal Stream

Figure 3: Local computation for one BFS iteration, showing

data dependency and stream allocation.

same number of GPUs possible. When the number of local

normal vertices and the number of delegates are bounded

by n/p, with the exception of destinations of nn edges,

we can use 32-bit values to store local normal vertex and

global delegate ids, instead of 64-bit values. This provides

significant savings on the memory storage footprint of the

graph. As listed in Table I, the total memory usage for all

subgraphs on the GPUs is 8n+8d ·p+4m+4|Enn| bytes. In

practice, when using suitable values of TH (Section VI-B),

while still using CSR format for each sub-graphs, the above

memory usage is only about one third of the conventional

edge list format (16m bytes), and a little more than half of

CSR format (8n+ 8m) without the degree separation.

It is possible to utilize CPU memory and handle graphs

larger than GPU memory, with different techniques [22],

[23]. However, the current latency and bandwidth differences

between GPU memory and the GPU-CPU connection would

impose a high performance penalty. This decision could be

revisited when CORAL is fully equipped with NVLink2,

which doubles CPU-GPU bandwidth, in the near future. In

this paper, we only focus on graphs that fit in GPU memory.

IV. LOCAL COMPUTATION

On each GPU, we now have 4 different subgraphs:

normal to normal (nn), normal to delegate (nd), delegate to

normal (dn) and delegate to delegate (dd). While we could

apply the exact same strategies to each of them, we note

that their different characteristics motivate different load-

balancing strategies for traversal (Section IV-A), different

direction switching conditions for DOBFS (Section IV-B),

and different input from/output to the communication model

(Section V). Because subgraphs can be processed in parallel,

we can achieve some overlap between computation and

communication in our processing pipeline (Fig. 3).

At a high level, we separate local traversal on the four

subgraphs into a delegate stream and a normal stream,

depending on the destination type of the edge, as two

cudaStreams. Each stream begins with a “previsit” kernel,

used to preprocess the inputs. This includes marking level

labels for input vertices, filtering out duplicates and zero-

out-degree vertices, forming the queues of vertices to be

visited by the visit kernels, and calculating the would-

be workload for these kernels, which is important for the

direction decisions in DO. Then each stream spawns a “visit”

kernel for the two edge types in the stream. The two streams

run independently of each other, except when dependencies

are established explicitly (Fig. 3).

A. Forward Traversal

The visited status of delegates are maintained by bitmasks,

with each delegate only occupying 1 bit. This is an effective

way to store and communicate the status of high out-degree

vertices. We use advanced load balancing techniques for

the visiting kernels: the delegate to delegate visit kernel

uses merge-based workload partitioning [24], because the dd

subgraph covers a wide range of degree distribution, and has

large average out-degrees; the other visit kernels use thread-

warp-block dynamic workload mapping [25], based on the

fact that the out-degree range of dn, nd, and nn subgraphs

are all limited, and the average out-degrees are low.

B. Directional Optimization

Not all subgraphs benefit from directional optimization.

We do not use DO for normal → normal visits, because the

nn subgraph on each GPU is not symmetric, the range of

destination vertices of nn edges are unbounded, and most

importantly, DO is not efficient for the very low in-degree

nn subgraphs. Without separating the graph, skipping the nn

portion from using DO is impossible.

On each GPU, we keep a source list of the normal-to-

delegate subgraph, i.e., all the normal vertices that have

edges pointing to delegates. These are exactly the potential

destination vertices in the reverse subgraph, i.e., the delegate

to normal subgraph. When running in the backward-pull

direction for a delegate to normal visit, we use the normal-

to-delegate subgraph, and start from its source list. For the

same purpose, we keep source masks for the dd and dn

subgraphs. Keeping source lists and masks avoids vertices

that may not find local parents, and provides more accurate

workload prediction.

The traversal direction is decided based on a workload

comparison, computed in each iteration, between the forward

and the backward directions. The forward workload FV is

calculated by the previsit kernels as the sum of neighbor list

lengths from the source vertices to be visited. The backward

workload BV is calculated using the estimated number of
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parents to check until finding the first visited one. Let:

U = unvisited sources in the reversed graph;

q = input frontier length;

s = number of unvisited sources in the forward graph;

a = probability that a potential parent is newly visited;

= q/(q + s);

od(u) = out degree of u;

Then: BV =
∑

u∈U
((1− a)od(u) +

od(u)−1∑

i=0

a(1− a)i)

=
∑

u∈U

1− (1− a)od(u)

a
≈ |U |/a

assuming od(u) is large, & a not too small

= |U |(q + s)/q

Starting from the forward-push direction, with two

direction-switching factors factor0 and factor1 , the visiting

direction is decided as:

if current direction is forward, and FV > factor0 · BV
then switch to backward;

if current direction is backward, and FV < factor1 ·BV
then switch to forward;

otherwise keep current direction.

No matter which direction a visiting kernel takes, it only

affects the kernel itself, and the input and the output are the

same. The three visiting kernels with DO have three sets of

direction-switching factors. This allows the kernels to switch

for their own optimized conditions.

Our strategy for DOBFS results in a smaller workload

than a 2D partitioning strategy. In our strategy, for normal

vertices, only one GPU must do the reverse visiting for

each individual normal vertices. Only the delegates may

need to have more than one GPUs visiting their parents,

and moreover, the delegates are only a small portion of

all vertices. Let m′ be the number of edges the DOBFS

algorithm would need to visit if the graph was traversed

by a single processor. Then the workload of our DOBFS

implementation would be bounded by m′ + dp · b, where b
is the average number of parents a delegate must search on

each GPU before finding a visited one. While keeping d in

the order of O(n/p), the term dp · b is scalable even when

p is large, because it is in the order of O(nb) and b is not

a large number—only delegates with very large out-degrees

are distributed across a large number of nodes, and delegates

with large out-degrees tend to be close to portions of the

graph with high connectivity, which reduces the number of

neighbors to try before finding a visited one.

V. COMMUNICATION

Because local computation performance is increasing

more quickly than interconnect bandwidth, designing for

;
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Delegate 

Masks
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Normal 
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Input Delegate 
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Normal 
Frontier

Delegate Stream
Normal Stream

Local 
Broadcast

Uniquify

Figure 4: Communication flow

scalable communication is more important for graph pro-

cessing than ever before. Our scalable communication model

(shown in Fig. 4) adopts different strategies for delegates and

normal vertices.

A. Communication for Delegates

The visited status of delegates may be updated by any

GPU, or consumed by any GPU. We thus use a global

reduction to gather and distribute the delegate mask updates

whenever any update occurs in a iteration. The reduction is

done in two phases: locally across peer GPUs, and globally

across different MPI ranks. During the local phase, all

GPUs in the same MPI rank push their updated masks to

GPU0, and GPU0 performs the reduction in parallel. During

the global phase, only GPU0 (more accurately, the CPU

thread that controls GPU0) participates, and all GPUs in

the same MPI rank consume the resulted masks for the next

iteration. We utilize fast GPU-GPU data channels and the

GPU’s parallel computing capability for the local phase, and

efficient MPI (I)AllReduce calls for the global phase.

The cost of this delegate communication is small. For each

iteration that has updates to the delegate masks, the commu-

nication volume is 2dpranks/8 bytes, and the communication

time is d log pranks/4 · g, assuming the global reduction is

done in a tree-like manner. The delegate reduction might

run on every iteration, which gives the total communication

cost as d log prank/4 · gS. However, for graphs with more

concentrated cores, the delegate updates will finish faster

than normal vertices, which reduces the number of iterations

that require delegate communication. In practice, we keep d
(the number of delegates) low, so that the size of delegate

masks, d/8, is under the limit of several tens of MBs.

B. Communication for Normal Vertices

The basic communication model for normal vertices is

point-to-point transmission via MPI Isend and MPI Irecv.

We use a non-blocking version to keep the pipeline running

and take advantage of possible workload overlaps. The total

communication volume is 4|Enn| bytes, assuming each nn

edge is a cutting edge (i.e., a edge with end points on two

different GPUs). The communication time is 4|Enn|/p · g.

Note that only the outputs from nn edge visits may result

in direct remote normal vertex updates: the results from dd

and nd edge visits are communicated via global delegate

mask reduction, and the updates from dn visits are always
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local, as a result of our edge distributor (Algorithm 1). When

setting TH , the degree threshold, to an optimal value, the nn

edges are only a small portion of the graph, and the resulting

normal communication is a lot less than m.

The normal vertex exchange requires some extra local

computation, such as binning (group vertices need to be sent

to the same GPU together) and vertex number conversion

(from the 64-bit global ids used in nn edge destinations

to 32-bit local ids at destination GPUs). These computa-

tions are done on GPUs. The workload is in the order of

O(|Enn|/p) on each GPU for all iterations combined. This

is a small cost compared to the traversal workload, and does

not affect the scalability of our BFS implementation.

We also tried two optimizations to reduce communication

cost. The first one is called Local All2all: prior to the remote

vertex exchange, we first run a local exchange to gather

vertices going to GPUxs in all MPI ranks on the local GPUx.

As a result, normal vertex exchanges only occur among

GPU0s, among GPU1s, etc., but never between GPU0s and

GPU1s, etc. This reduces the number of communication

pairs from p2 to p2/pgpu, each of which has more vertices

to send. In turn, this allows a second optimization, uniquifi-

cation, which removes duplicated vertices going to the same

GPU. However, because relatively few individual destination

vertices of nn edges are on a given GPU or node, with

the expected value capped by TH /prank, the chance to find

duplications is small, and may not be sufficient to overcome

the extra computation. We show our findings in the next

section.

Combining the communication for delegates and nor-

mal vertices together, we have a model that has at most

dpranks/4 ·S+4|Enn| bytes total volume and (d log pranks/4 ·
S + 4|Enn|/p)g communication cost. For graphs that have

a small number of vertices covering a large portion of

edges, the number of iterations S′ that need delegate masks

exchange, is less than S; for the graphs we tested, S′ is

about half of S. With suitable values of TH (Section VI-B),

we saw delegate mask reduction and normal vertex ex-

change taking roughly the same amount of time. Under

these conditions, we approximate our communication cost

as d log prank/4 · Sg. We also keep d on the same scale as

n/p, more accurately, under the value of 4n/p in practice.

As a result, the communication cost is n log prank/p · Sg. It

starts from n ·Sg on single node, and grows on the order of

log prank when n and m increase at the same rate as p (weak

scaling). This growth is slow, and more scalable than the
√
p

growth order of conventional 2D partitioning methods. Thus,

we argue that our communication model is more scalable.

VI. RESULTS

A. Testing Environment

1) Hardware: Our implementation targets an early access

system (Ray) of LLNL’s upcoming CORAL/Sierra super-

computer. The current system has more than 40 compute

nodes; each features two 10-core IBM Power8+ CPUs at

2.06 GHz with 256 GB CPU memory. Each CPU has two

NVIDIA Tesla P100 GPUs; the two GPUs and the CPU

are connected by high-speed NVLink [26] with 40 GB/s

bandwidth in each direction. Each socket has a Enhanced

Data Rate (EDR) 100 Gbps InfiniBand connection to a

network with FatTree topology.

Because the interconnection speed is higher than a con-

ventional cluster, and because GPUs achieve their best

performance only when fully occupied by a sufficient work-

load, we first test how the network performs with different

message sizes. In an experiment, we use 32 nodes, each with

one MPI rank, and 4 CPU threads, and each thread sending

MB-sized data to all threads on other nodes, to simulate

a scenario where each of the 128 GPUs sends out data to

the 124 GPUs on other nodes. After sweeping through the

message size from 128 kB to 16 MB, we found that the

optimal message size is about 4 MB for data larger than

2 MB. While this is much larger than normal MPI usage, it

is the best fit for the GPUs. With smaller data (under 2 MB),

the network appears to do a better job with caching, and the

differences between message sizes are not that significant.

2) Software: The cluster runs on 64-bit Linux with GPU

driver version 384.59. The compilation toolchain includes

gcc 4.9.3, cuda 9.0.167, and spectrum-mpi 2017.08.24 with

OpenMP support. nvcc options are -O3 –std=c++11 –expt-
extended-lambda. The GPU target is set to the hardware’s

SM version (i.e., 6.0 for P100 GPUs).

At the time of our experiments, we faced the following cur-

rent limitations with Ray. Many of these will be addressed

in the full system or with system software updates.

• Network Interface Controller (NIC)-GPU Remote Di-

rect Memory Access (RDMA) was not planned for Ray;

instead all NIC-GPU traffic goes through CPU memory.

• Asynchronous GPU memory copy was not supported

by the MPI implementation; as a workaround, our

implementation copies data from GPU memory to CPU

memory with appropriate cudaMemcpyAsync calls, then

issues MPI calls from the CPU memory, and copies the

data from CPU to GPU on the receiving end.

• Random delays of ∼100 ms were observed when

consuming data on CPU right after receiving them from

unblocking MPI calls; as a result, we only use the CPUs

for GPU workload scheduling and data movement

controls in our experiments.

• Degraded data movement performance between CPUs

and GPUs were observed on some nodes; all but one

experiments only use up to 124 GPUs on 31 selected

nodes to avoid this issue; the experiment with the WDC

2012 graph includes 3 GPUs affected by this issue, out

of 160 GPUs on 40 nodes.

3) Reporting: We use RMAT graphs for testing our BFS

implementation. The RMAT graph generator is a distributed
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Figure 5: Distribution of different kinds of edges and dele-

gates, as a function of degree threshold, for a scale-30 RMAT

graph.

GPU implementation conforming to the Graph500 specifica-

tions [1]. The edge factor is 16, and the RMAT parameters

are A,B,C,D = 0.57, 0.19, 0.19, 0.05. For a given RMAT

graph at scale N , the number of vertices n is 2N ; the

number of edges m, after making the graph undirected by

edge doubling, is 2N ·32. However, following the Graph500

specification [1], we only use m/2 = 2N ·16 to calculate the

edge traversal rate. Vertex numbers are randomized using a

deterministic hashing function after edge generation.

Our implementation outputs the hop-distances from the

source vertex, instead of the BFS tree required by Graph500.

The cost of building such a tree should be low in our imple-

mentation: only the destination vertices of nn edges, without

possible delegate parents, would need to communicate their

parent information at the end of BFS; vertices visited by dd,

dn, and nd kernels can get the parent information locally,

with almost no extra cost to the local computation.

For each reported data point, we executed 140 BFS

runs with randomly generated sources; only the ones that

executed for more than 1 iteration are considered. We report

the geometric mean of edge traversal rates (in the unit of

Giga Traversal Edges Per Second, GTEPS) or elapsed times

(in the unit of milliseconds, ms).

We use number of nodes × number of MPI ranks per node
× number of GPUs per MPI rank to denote the hardware for

our experiments and for prior work. For example, 4× 1× 2
means 4 nodes with 1 MPI rank per node, and 2 GPUs per

MPI rank, 8 GPUs in total.

B. Parameter Settings

Our implementation has several parameters and options

that can be used to tune performance. The single most im-

portant parameter is the degree threshold TH . By changing

TH , we are balancing the percentages of delegates and nn

edges. Generally we want d to be on the same order as the

number of local vertices n/p; in our experiment, we keep d
under 4n/p. It would also be desirable to keep the nn edge

percentage under 10%. Figure 5 shows how TH changes the

distributions of vertices and edges on the scale-30 RMAT

graph. Any TH in the range of [16, 512] will satisfy our
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Figure 6: Traversal rates vs. degree threshold, for a scale-30

RMAT graph with 4× 1× 4 GPUs.
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Figure 7: Suggested degree thresholds for different RMAT

scales, with the resulting delegate and nn edges percentages.

The 4/2N−26 line is the percentage of 4n/p vertices when

using scale 26 RMAT graph per GPU.

goal. We sweep this range to see the resulted performance,

as shown in Figure 6. The actual range that gives the best

performance for both BFS and DOBFS is quite wide, from

45 to 90; we use 64 in our experiments.

With a similar experiment, we suggest degree thresholds

for a wide range of graph scales (Fig. 7). The optimal TH
increases at the rate of about

√
2 per scale. For scales up

to 33, the delegate percentage is well below the 4n/p line;

at scale 33, the delegate percentage is 1.75%, and the 4n/p
line is at 3.23%. The nn edge percentages increases slightly,

to 6.3% at scale 33, which is still a small and acceptable

percentage. For larger scales that may lead to insufficient

GPU memory caused by a large number of delegates or nn

edges, the following options may be considered: 1) increase

TH to decrease the number of delegates, as a range of

values yield similar performance; 2) increase p to reduce the

memory usage per GPU, as there is no limitation on how

many GPUs can be used, provided that the GPU memory is

sufficient. With these two options, we believe our method

could continue to scale on larger GPU clusters.

We can tune our implementation with several options:

directional optimization (DO), local all2all (L), uniquify (U),

blocking global mask reduction (BR) using MPI Allreduce
or unblocking reduction (IR) using MPI Iallreduce, and

1097



0

200

400

600

800

1000

El
ap

se
d 

TI
m

e 
(m

s.
)

Options
Computation Local Communication
Remote Normal Exchange Remote Delegate Reduce
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stands for directional optimization; L for local-all2all; U

for uniquify; IR for unblocking delegate mask reduction;

and BR for blocking reduction. The graph is RMAT scale

32 with degree threshold 128, with a 16 × 2 × 2 hardware

configuration on the left and 16× 1× 4 on the right.

hardware configuration (e.g., a ∗ × 2 × 2 or ∗ × 1 × 4
setup). Figure 8 shows how different options affect the

timings of different parts of the BFS runtime. DO cuts

the computation time by a factor of three, even when the

workload is distributed on 64 GPUs. L and U add a small

amount of time to local data exchange, but do not have a

significant impact on the global communication time, mainly

because the degree threshold TH is so low that we see few

duplications in the normal vertex exchange. BR significantly

reduces the communication time in this example, although

the actual volumes of communication are the same. This

may be a consequence of an unoptimized implementation of

MPI Iallreduce, a newly available feature on this machine.

When running on fewer than 8 nodes, the communication

time of IR is less than that of BR. We hope the same

applies to a larger number of nodes so that the advantage of

workload overlapping can be fully explored. The sum of all

parts in one column is more than the elapsed time of BFS,

because different parts may overlap. For example, visiting

from the delegates can start once the delegate masks are

received without waiting for the normal vertices. For this

particular experiment, the overlaps reduce the running time

by about 10% on average when compared to the sum of all

parts.

For each of the three subgraphs that apply DO, our im-

plementation has two direction-switching factors that decide

when to change the traversal direction. For RMAT, once the

traversal switches to the backward direction, it does not need

to change back; as a result, we only have three factors to

decide. After scanning these factors from 10−8 to 10 for the

best performance, we found out that all three factors have a

wide range of near-optimal values; in fact, the same range

(0.5, 0.05, 1×10−7) for dd, dn, and nd subgraphs applies to

almost all configurations that follow the weak scaling curve

and the suggested TH values. From our experience, these

selections are similar for the same type of graphs.
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Figure 9: Weak scaling with a scale-26 RMAT graph per
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Figure 10: Runtime breakdown for ∗×2×2 setup along the

weak scaling curve. DOBFS is on the left, and BFS on the

right; scales 28 to 30 use unblocking global delegate mask

reductions and merge communication time for masks and

normal vertices; scale 31 to 33 use blocking global delegate

mask reduction. Because of overlap, the sum of different

parts in a column is not equal to the BFS running time.

C. Overall Results and Comparisons

Figure 9 shows overall weak scaling curves, with ∼scale-

26 RMAT graphs on each GPU up to 124 GPUs. In this

range it is mostly linear, peaking at 259.8 GTEPS for RMAT

scale 33 on 124 GPUs. From 16 GPUs to 32 GPUs, we

switch from MPI Iallreduce to MPI Allreduce, as discussed

earlier in this section, which introduces performance in-

creases higher than the average.

Figure 10 shows detailed timing for DOBFS and BFS

at different scales. Local visiting time grows slowly, only

4× over 7 scales for DOBFS as the graph size and the

number of GPUs increase to 124×. The BFS computation

time increases to 3× for the same range. This shows the

computation is scaling as expected. The communication

grows slightly faster than the computation, especially from

scale 32 to 33. This may be caused by the increases in

number of delegates and nn edges, as shown previously in

Figure 5 and Section VI-B, or it may be traffic conditions

in the network, as about 70% of the nodes in the cluster are

actively transmitting large amounts of data. Because our im-
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Figure 11: Strong scaling with a scale-30 RMAT graph.

plementation overlaps communication and computation, we

mitigate the effects of this increase in communication cost.

Both computation and communication appear to successfully

scale throughout this range of RMAT sizes.

Figure 11 shows strong scaling curves using the scale-30

RMAT graph. Because of our efficient graph representation,

we can fit the 34 billion edge graph onto 12 GPUs, at about

2.9 billion edges per GPU. The performance of DOBFS

increases 29% when using 24 GPUs instead of 12, and the

strong scaling curve stays almost flat after 24 GPUs. When

using more GPUs, the timing improvement in computation

is about the same as the increase in communication, caused

by delegate masks reduction across more nodes and more

cutting nn edges. On more than 48 GPUs, the communi-

cation time is dominant and the GPUs are under-utilized,

thus the performance starts to drop. BFS yields better strong

scalings than DOBFS, primarily because of its comparably

larger computation workload.

We compare our results with previous efforts in Ta-

ble II. When compared against single-node multi-GPU Gun-

rock [5], this work is a little slower when using the same

graphs, which may be the effect of more optimizations

in Gunrock’s traversal kernels. As we add more GPUs in

this work, we see the gap in performance is narrowing,

which indicates better scalability; and the memory size

improvements we made in this paper allows us to process

larger graphs on one node, up to scale 28 on 4 GPUs, than

any other GPU-based previous work.

Compared to Bernaschi et al. [18], our work achieves

about 31% of their performance with only 3% the number of

GPUs. Although the GPUs they used are not as new as ours,

the 10× per-GPU performance shows our efficient compu-

tation and communication. Compared to Krajecki, Loiseau,

Alin, and Jaillet [20], we achieve 4× the performance using

only one eighth the number of GPUs.

The flagship shared-memory CPU implementation by

Yasui and Katsuki [9] uses a similar number of processors;

we obtained 1.49× the performance of their work, which we

believe is partially because of the performance advantages of
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Figure 13: Traversal rates vs. degree threshold, for the

friendster graph with 1× 2× 2 GPUs.

the GPU. We also demonstrate slightly better performance

than Buluç et al. [16] despite their 8.4× more processors.

D. General Graphs and Applications

We are also interested in graphs more general than RMAT,

and use the Friendster graph [27] to test our implementation.

We prepare this graph by randomizing the vertex numbers

and make the graph symmetric by edge doubling. The

resulting graph has 134 million vertices, about half of which

are isolated ones, and 5.17 billion edges. Figure 12 shows

how the distribution of different kinds of edges and vertices

change with regard to various degree thresholds TH , and

Fig. 13 shows the resulting performance. Similar to RMAT,

the friendster social network has a wide range of suitable

TH values, in [16, 128]. There is also a wide range [32, 91]
of TH values that gives close to the best performance.

We also analyze the Web Data Common (WDC) 2012

hyperlink graph [28], but reduce the hyper edges into single

ones. Vertex-randomization and edge-doubling give a graph

with 4.29 billion vertices, 402 million of which are zero-

degree ones, and 224 billion edges. Using 160 GPUs in a

40× 2× 2 setup, our implementation achieves 84.2 GTEPS

and 79.7 GTEPS, for BFS and DOBFS respectively, both

using degree threshold 256. The BFS searches have about

330 iterations at average, and experience long-tail behavior.

The averaged per-iteration time of 8 μS is not much more

than the per-iteration overhead of a few μS. In this situation,

the additional workload for direction decisions in DOBFS

is more than the workload saving in traversal. As a result,
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scale ref. ref. hw. ref. comm. ref. perf. our hw. our perf.

{24, 25, 26} Pan [5] 1×1×{1, 2, 4} Tesla P100 single node {31.6, 42.9, 46.1} 1×1×{1, 2, 4} Tesla P100 {22.9, 32.5, 39.8}
33 Bernaschi [18] 4096×1×1 Tesla K20X Dragonfly 100Gbps 828.39 31×2×2 Tesla P100 259.8
29 Krajecki [20] 64×1×1 Tesla K20Xm FatTree 10Gbps 13.7 2×1×4 Tesla P100 53.13
33 Yasui [9] 128×10×1/10 Xeon E5-4650 v2 shared memory 174.7 31×2×2 Tesla P100 259.8
33 Buluc [16] 1204×1×1 Xeon E5-2695 v2 Dragonfly 64Gbps ∼240 31×2×2 Tesla P100 259.8

Table II: Comparison with previous works.

the DOBFS performance is slightly less than BFS.

For algorithms more general than BFS, in most cases,

the local computation is at least in the order of O(m),
much larger than that of DOBFS. They also introduce larger

communication volumes: BFS only needs 1 bit for the

visited status of delegates, and 32 bits for newly visited

normal vertices of cutting nn edges across GPUs. Other

graph algorithms require more bits of state for delegates—

for example, ranking scores for PageRank—and associative

values for normal vertices in additional to the vertex numbers

themselves. For large scale-free graphs, the increases in

computation and communication are roughly in the same

order, and our computation and communication models

should still be scalable. For graph processing that yields

insufficient local workloads over many iterations, either

caused by the graph topologies or the algorithms, we argue

that they may not be suitable for Bulk Synchronous Parallel

(BSP) frameworks on systems with fat nodes: the GPUs

will be underutilized, and the per-iteration overhead may

well make such implementations unscalable. Asynchronous

graph frameworks, such as HavoqGT [29] and Groute [12],

may be more suitable for such workloads.

VII. CONCLUSIONS

Base on the idea of separating vertices by out-degrees, we

implemented a scalable BFS, consisting of an efficient graph

representation, scalable and fast local computation kernels,

and a scalable communication model. With 124 P100 GPUs

on the CORAL EA system, we achieved 259.8 GTEPS

on the scale 33 RMAT graph. The close-to-linear weak

scaling indicates that our work successfully targets modern

GPU clusters, which feature fewer nodes and more local

computing power than previous systems.

We believe our work provides a better alternative to con-

ventional 2D partitioning methods for scaling DOBFS, and

is better aligned with the latest trend of supercomputers and

large systems. Further exploration using even more GPUs

in the range of thousands, when they are available, could

bring us more insight into and solutions for the scalability

problem.

Future work includes investigating graph applications be-

yond BFS. These applications need more local computation

than just neighborhood queries, more communication than

just 1-bit visited status, and more attributes on vertices

and edges than a single label. While most techniques and

optimizations for BFS should still be applicable, we hope to

see further work in the components of graph representation,

local computation, and remote communication, under more

complex application scenarios.
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