
A Pattern Based Algorithmic Autotuner for Graph

Processing on GPUs

Ke Meng1,2, Jiajia Li3, Guangming Tan1,2, Ninghui Sun1,2
1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

2University of Chinese Academy of Sciences
3Pacific Northwest National Laboratory

mengke@ncic.ac.cn Jiajia.Li@pnnl.gov {tgm, snh}@ict.ac.cn

Abstract

This paper proposes GSWITCH, a pattern-based algorithmic
auto-tuning system that dynamically switches between opti-
mization variants with negligible overhead. Its novelty lies in
a small set of algorithmic patterns that allow for the config-
urable assembly of variants of the algorithm. The fast tran-
sition of GSWITCH is based on a machine learning model
trained using 644 real graphs. Moreover, GSWITCH provides
a simple programming interface that conceals low-level tun-
ing details from the user. We evaluate GSWITCH on typical
graph algorithms (BFS, CC, PR, SSSP, and BC) using Nvidia
Kepler and Pascal GPUs. The results show that GSWITCH

runs up to 10× faster than the best configuration of the state-of-
the-art programmable GPU-based graph processing libraries
on 10 representative graphs. GSWITCH outperforms Gunrock
on 92.4% cases of 644 graphs which is the largest dataset
evaluation reported to date.

CCS Concepts • Software and its engineering → Soft-

ware libraries and repositories;

Keywords GPU, Graph processing, Auto-tuning

1 Introduction

Graph algorithms support a broad spectrum of applications.
For example, social network analytics, such as PageRank [11]
and HITS [54], rely heavily on graph models to represent rela-
tionships. Analysis tasks such as bug finding and network rout-
ing have used graph-based algorithms to improve their perfor-
mance and accuracy [15, 57]. However, graph processing, es-
pecially for large-scale graphs, is computationally expensive.
As GPUs provide higher parallelism and memory bandwidth
than traditional CPUs, they are a promising hardware for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PPoPP ’19, February 16–20, 2019, Washington, DC, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6225-2/19/02. . . $15.00
https://doi.org/10.1145/3293883.3295716

accelerating graph applications. Some programmable graph
processing frameworks have been developed on GPUs, such
as CuSha [27], Frog [50], WS-VR [26], and Gunrock [58].
They integrate graph primitives and tend to provide a general-
purpose library.

However, from the perspective of optimization, these frame-
works often fail owing to the inherent properties of input sen-

sitivity and algorithmic diversity, which are two fundamental
problems in the performance tuning of many applications. (i)
In the scenario featuring input sensitivity, dynamic graphs and
the influence of diverse graph topologies are rarely considered
in current graph algorithm libraries. A single optimization
variant is typically used during the entire course of execution,
which leads to significant bias in the best performance at-
tained. For an instance of breadth-first search (BFS), the Gun-
rock library [58], the best hand-tuned implementation to date,
achieves up to 47GTEPS on a scale-free graph and retards to
44MTEPs on a road-net graph. (ii) In the scenario featuring
algorithmic diversity, an algorithm-specific optimization does
not always work well for all cases. For example, WS-VR [26]
and CuSha [27] perform well on PageRank-like algorithms
that require dense workloads but show poor performance on
traversal-based algorithms like SSSP with sparse workloads.
On the contrary, direction optimization [7], which is applica-
ble to a greater variety of graph algorithms, is used and tuned
for only BFS in Gunrock. This isolated performance tuning

leads to difficulties in exploring all potential features and fails

to reuse tuning strategies among different graph algorithms

and datasets.
Several studies have recently developed new auto-tuning

techniques [5, 14, 32, 38] targeting the input sensitivity for
performance critical applications. In contrast to traditional
auto-tuning systems [16, 60] that generate libraries in an off-
line way, an input sensitivity auto-tuning system requires an
on-line manner of determining the best configuration or as-
sembly of algorithms, referred to as algorithmic auto-tuning.
The key is to specify an algorithm-choosing strategy that
extracts cost-effective input features and maps them to a per-
formance space, as in Ding et al.’s work [14]. Our contribu-
tion here is a set of algorithmic patterns that helps build an
efficient algorithmic auto-tuner. This work focuses on GPU
architectures because of their powerful capability in terms of
both parallel computation and memory bandwidth.

201

https://www.acm.org/publications/policies/artifact-review-badging/#replicated
https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#reusable

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Ke Meng, Jiajia Li, Guangming Tan, Ninghui Sun

We present GSWITCH 1. It abstracts from a graph algorithm
as a small set of algorithmic patterns that are characterized
by quantitative parameters (features). Given different graph
inputs, a graph algorithm is dynamically composed of con-
crete implementations of these algorithmic patterns during
runtime. GSWITCH leverages a machine learning model to
select good algorithmic configurations. Specifically, our main
contributions are as follows:

• We define two properties, generality and significance,
to identify good algorithmic patterns. Through a com-
prehensive study of graph algorithms using more than
1,200 real graphs, we extract five composable patterns
satisfying these properties.
• We propose a machine learning based algorithmic auto-

tuner called GSWITCH to dynamically generate high-
performance graph algorithms. GSWITCH dynamically
chooses the best choice of an algorithm with minimal
overhead and no user intervention.
• GSWITCH is highly productive in terms of user pro-

gramming. It consists of a front-end exposed to users
and a transparent back-end. The front-end provides
a succinct yet flexible abstraction for programming a
graph processing algorithm. The back-end integrates in-
dividual highly optimized kernels into a parameterized
kernel library.
• GSWITCH was implemented and evaluated on GPUs.

Experiments on typical graph applications show that it
outperforms the state-of-the-art libraries/frameworks
by a factor of 2 ∼ 10. It achieves better performance
than the highly hand-tuned counterpart Gunrock li-
brary [58] for 92.4% instances of 644 graphs.

To the best of our knowledge, this work is the first study to
systematically investigate tuning variants of graph algorithms
and develop an auto-tuning system for them on GPUs.

We have organized the remainder of this paper as follows:
Section 2 provides related definitions and our motivations.
Section 3 explores five algorithmic patterns, and Section 4
outlines the framework of GSWITCH and shows details of its
implementation. In Section 5, we evaluate our system and
analyze the effectiveness of our auto-tuning method. Section
6 surveys graph processing work on GPUs, and Section 7
concludes this work.

2 Background and Motivation

In this section, we introduce basic definitions for the graph
processing framework. We also provide our motivations to
give an intuition of why a pattern-based auto-tuner is both
easy to implement algorithms and provides higher perfor-
mance than state-of-the-art hand-tuned systems.

1GSWITCH is currently available in an open-source repository at
https://github.com/PAA-NCIC/gswitch.

Filter Expand (75%)

Runtime breakdown of BFS

Filter (86.1%)

Expand

Runtime breakdown of BFS

F
ro

n
ti

e
r

S
iz

e M

M.

Distance from source

100× K

K

Distance from source

F
ro

n
ti

e
r

S
iz

e

(a) (b)

(c)

P
e

rf
o

rm
a
n

ce
 L

o
ss

 (
%

)

Datasize (nnz)
4.8K 530M

Figure 1. A motivating example of the BFS: The frontier
expansion on (a) a scale-free graph com-youtube and (b)
a road-net graph roadNet-CA; (c) Performance loss if we
only use the Push [9] optimization variant on 1288 graphs.

2.1 Graph Algorithms

This work considers BSP (Bulk Synchronous Parallel) graph
algorithms using the widely adopted neighbor-based prop-
erty [62], where all vertices communicate only with their
neighbors. A graph algorithm in the BSP model is treated
as a sequence of super-steps that iteratively converge, with
each step requiring global synchronization. Only a subset of
the vertices or edges, known as the active set, participates in
the computation in each iteration. An algorithm terminates
with no more active elements. GSWITCH standardizes a graph
algorithm as a quadratic-work process: The filtering step (re-
ferred as Filter in GSWITCH) generates the active set and
updates their private data; then the expansion step (referred
as Expand in GSWITCH) processes all the neighbors of the
generated active set. Our Filter-Expand abstraction is inspired
by the Gather-Apply-Scatter approach in PowerGraph [19]
and the Advance-Filter-Update mechanism in Gunrock [58].
The main difference is that we simplify the abstraction by
integrating the “Apply/Update” step into our Filter. In this
paper, we use five typical graph applications to benchmark
GSWITCH: Breadth-First Search (BFS) [7], Connected Com-
ponents (CC) [53], PageRank (PR) [11], Single Source Short-
est Path (SSSP) [42], and Betweenness Centrality (BC) [47]
algorithms.

2.2 Motivation

Such challenges of graph processing on GPUs as irregular
memory access patterns and unbalanced workloads have led
to numerous optimization studies [7, 9, 44, 52, 58, 61, 66].
The idea of the algorithmic pattern is partially inspired by
these efforts.

For example, directional optimization [7] has been widely
used in some frameworks/libraries to handle irregular work-
loads. Figure 1 shows a breakdown of the runtime of the BFS,
and the behavior at the edge and vertex frontiers of two types

202

Gswitch PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Push Pull

1 83

2

6

5

4 7

1 83

2

6

5

4 7

ActiveVisited Unvisited Work-item

edge skipping

reduce

atomic

Figure 2. Direction: Push vs. Pull for BFS.

of graphs: a scale-free graph com-youtube and a road-net
graph roadNet-CA. The graph com-youtube (Figure 1
(a)) has a small diameter (13 from the x-axis) and workload
explosion, its edges to be processed in middle iterations can
be 100× more than the vertices in number. The Expand is its
performance bottleneck (75% Expand vs. 25% Filter). By
contrast, the graph roadNet-CA (Figure 1 (b)) has a larger
diameter yet edges to process in each iteration. Thus, it spends
more time on the Filter than the Expand (86.1% vs. 13.9%). If
a single optimization variant (e.g., push [9]) is used on the two
graphs, the loss of performance of the BFS can be as high as
80% (Figure 1 (c)). Some past work [7, 9, 21, 44, 52, 61, 66]
has reported this performance variance and proposed specific
tuning algorithms. We further abstract these characteristics as
algorithmic patterns which heavily affect performance.

As we know, many influential performance-tuning strate-
gies are available for implementing high-performance graph
algorithms. Examples are strategies used to handle the load-
imbalance within and between each warp/block, atomic-free
operations, kernel fusion, coalesced memory access, among
others [7, 9, 21, 22, 34, 35, 41, 44, 52, 61, 63, 66]. We advo-
cate that a group of low-level optimizations should be con-
sidered as a single algorithmic pattern that can reduce the
tuning space significantly. This motivates us to explore more
algorithmic patterns and use them to build our algorithmic
auto-tuner.

3 Exploring Algorithmic Patterns

A pattern here means a group of methods, strategies, or tech-
niques to optimize the similar algorithmic paradigms in differ-
ent graph applications, such as load-balance strategies, data
structure. We call the optimization variants of a pattern as
candidates. Specifically, we claim that an algorithmic pattern
should have two properties:

• Generality: The pattern is effective for more than one
application.
• Significance: The behavior of candidates is significantly

different, depending on inclusion of the pattern.

The pattern set of GSWITCH includes direction, the active

set format, load balancing, stepping, and kernel fusion. We
describe each pattern from the perspective of their two prop-
erties below.

R
u

n
ti

m
e
 (

m
s)

Iteration No. of BC

Iteration No. of Delta-PR

Iteration No. of BFS

Iteration No. of BF-SSSP

R
u

n
ti

m
e
 (

m
s)

PullPush

Figure 3. Runtime per-iteration in push and pull modes for
graph hollywood-09.

Pattern 1: Direction (Candidates: Push and Pull).
Generality: Direction is the push-pull dichotomy general-

ized form [7]. Figure 2 plots an example of the BFS. The push
mode touches the neighboring edges of active vertices and
updates a vertex property via an atomic operation. The pull
mode touches the neighboring edges of inactive vertices and
updates a vertex property via a reduction operation. The push-
pull dichotomy can be applied to all the five graph algorithms
as demonstrated in previous work [9, 52, 66]. In contrast to
Gunrock, which only enables this optimization for BFS, we
generalize this dichotomy as a common optimization for all
the graph algorithms.

Significance: Figure 3 shows that the difference in perfor-
mance between the push and pull modes is significant. For
BFS and BC, the pull mode skips a large number of edges
in the middle iterations. For Delta-PageRank [19], the push
mode outperforms the pull mode when the active vertices
decrease in length. For BF 2, the pull mode is faster than the
push mode in some iterations with heavy workloads. Based
on our observations of thousands of cases, we conclude that
the pull mode is preferable in the middle iterations when the
number of the active edges is greater than that of inactive
edges. Therefore, using the numbers (and ratios) of the active
and inactive elements in an iteration as tuning parameters is
beneficial for auto-tuning.

Pattern 2: Active-set data-structure (Candidates: Bitmap,
Unsorted queue, and Sorted queue).

Generality: As introduced in Section 2, the active set is
a common data representation for most graph algorithms.
GSWITCH chooses the data structure between the bitmap and
the queue to maintain the active set [44]. Figure 4 shows these
data structures for an example active vertex set ({2,3} for the
second-level iteration) and their generations. The bitmap uses
one bit for each vertex, where the value one represents an
active vertex and zero represents an inactive vertex. Active
vertices can also be described by a compact sorted/unsorted
queue, which is generated by performing a scan-based method

2In this paper, SSSP refers to our implementation of dynamic stepping , BF
is short for the unordered Bellman-Ford algorithm, and ∆-stepping represents
the traditional implementation of stepping with the static priority threshold.

203

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Ke Meng, Jiajia Li, Guangming Tan, Ninghui Sun

Unsorted Queue Sorted Queue

1 2 3 4 5 6 1 2 3 4 5 6

23 2 3
scan

coalesced non-coalesced

out-of-order sequential

Bitmap

10 01 00

cause threads idle

low overhead 232 41 1 5 6 63 53

21 X2 XXLevel[]

Filter(i): Level[i]==2

scan

Active Set

less space

Level[]

Figure 4. The second iteration of BFS with an active vertex
set {2,3}. To select the active set in this iteration, the bitmap
marks the two vertices as 1s and the rest as 0s, whereas the
queue copies them to a compact in- or out-of-order array.

R
u

n
ti

m
e
 (

m
s)

Iteration No. of PR Iteration No. of SSSP

Bitmap Sorted queue Unsorted queue

(a) (b)

Figure 5. Runtime for each number of iterations in bitmap,
unsorted queue, and sorted queue formats for (a) Pager-
ank in graph kron_g500-log21 and (b) SSSP for graph
msdoor.

that computes the offset of each thread. Comparing these two
formats, the bitmap has no scan overhead but threads may be
idle when assigned an inactive element, especially for small
active sets. On the contrary, the queue does not cause idle
threads but its generation step may be costly, especially for
large active sets. The queue format can be either unsorted or
sorted as shown in Figure 4. The generation of the unsorted
queue is fast because it ensures coalesced memory access. The
generation of the sorted queue is unfriendly to memory access,
but the following Expand step benefits from the potentially
contiguous memory access of the queue [33].

Significance: The performance of the tested candidates is
shown in Figure 5. For an algorithm with a dense workload,
like PageRank, all the vertices and edges are active in each
iteration. Thus, the bitmap can avoid overhead due to the
enqueue. For an algorithm with a sparse workload, like SSSP,
compressing the sporadic active vertices into the queue is use-
ful. In conclusion, bitmap is more friendly to dense workloads,
the unsorted queue is more friendly to sparse workloads, and
the sorted queue is in the middle. Tuning parameters such as
the active set size and the number of corresponding edges are
critical to this pattern.

Pattern 3: Load balance (Candidates: TWC, WM, CM,
and STRICT).

Generality: Due to the mismatch between the irregular
computations in graph algorithms and the Single Instruction
Multiple Threads (SIMT) architecture of GPUs, this pattern
is important for GPU optimizations. Figure 6 illustrates four
load-balancing strategies:

• The Thread, Warp, and CTA (TWC) method was first
introduced by the B40C [41]. For Nvidia GPUs, a warp
is a set of threads working in a lockstep fashion, while
CTA (Cooperative Thread Array) is a set of warps. The
active vertex set is divided into low-, medium-, and
high-degreed vertices according to their out-degrees,
which are mapped to a thread, a thread warp, and a CTA
separately.
• The Warp Mapping (WM) method redresses the imbal-

ance in a warp. A warp processes continuous vertices
from the active set as a batch. It loads the warpsize of
their neighbors into GPU shared memory each time,
until all their neighbors have been processed. A binary
search on the loaded edges is performed to find the
sources of the neighbors. Finally, the results are written
back to global memory.
• The CTA Mapping (CM) method is similar to WM, and

deals with the balance in a CTA. A CTA loads contin-
uous blocksize vertices as a batch and their blocksize
neighbors into the shared memory until all neighbors
have been processed. A larger binary search is used
to compute the source of the loaded neighbors, and
synchronization is needed for threads in a CTA.
• The STRICT method handles the balance both in CTAs

and across them. It is modified from the load-balance
partitioning (LB) in [13]. This method forces each CTA
to maintain an equal number of vertices and edges, by
using a sorted search to find the optimal partitioning of
the workload. Then, the edge and vertex lists are then
both partitioned.

Significance: STRICT obtains the best load balance but its
overhead is the highest, WM/CM is in between, and TWC

has the lowest overhead but it is not balanced well. The main
overhead of WM is the binary search, which can be completed
in no more than log2 (warpsize) steps, while that of CM is
log2 (blocksize) steps. As shown in Figure 7, TWC runs faster
owing to its lower overhead, and CM and WM perform better
with irregular workloads. When the workload contains a hub
vertex which is connected to a large number of neighboring
vertices, STRICT is the best method.

Pattern 4: Stepping (Candidates: Increase, Decrease, and
Remain).

Generality: This pattern is also related to the active set as it
specifies its execution behavior for different graph processing
algorithms. A monotonic algorithm, such as SSSP, can be
implemented in either ordered or unordered mode [21]. An
ordered implementation updates only high-priority elements
of the active set (e.g., the ∆-stepping algorithm [42]) to avoid

204

Gswitch PPoPP ’19, February 16–20, 2019, Washington, DC, USA

WM/CM STRICT
warp size/CTA size=8

Active set (queue or bitmap)

1 2

61 3 4 5 2 21 2 2162 4

__global__

__global__

Adj_List

__shared__ local_v_value

load value... ...

seg1 seg2

local_v_value

seg_reduce

3 4 5 621__global__

write back

vdata

filter

Next Active set__global__

__shared__

grid size=2

Active set (queue or bitmap)

1 2__global__

0 4 1012151720__global__ Row_offset + vid

sorted_search

CTA
...

CTA
...

__global__ 61 3 4 5 2 21 2 2162 4 1
0 4 8

__global__ 3 4 5 621 vdata

filter

__global__ Next Active set

atomic

Adj_List

1 2

TWC

BalancedLow Overhead

warp size=4
Active set

__global__

Thread Warp CTA
...

(2, 4) (4, 32)

61 3 4 5 2 21 2 2162 4

smallq

1
middleq

2
largeq

Adj_List

__global__

barrier

3 4 5 621__global__ vdata

filter

__global__
<2

Next Active setsmallq middleq largeq

Figure 6. Load-balancing strategies: TWC, WM, CM, and STRICT.

Iteration No. of PR Iteration No. of BFS Iteration No. of BFS

R
u

n
ti

m
e
 (

m
s)

131 170

Push Mode

235240232151

Pull Mode

(a) (b) (c)

STRICTCMTWC WM

Figure 7. Runtime per iteration on TWC, WM, CM, and
STRICT methods for Load-Balancing. (a) The PageRank for
soc-orkut. (b) The push mode of BFS for soc-orkut.
(c) The pull mode of BFS for soc-orkut.

Iteration No. of SSSP

To
u

ch
e
d

 E
d

g
e
s

R
u

n
ti

m
e
 (

m
s)

Bellman-Ford Dynamic stepping∆-stepping

Iteration No. of SSSP

Figure 8. A comparsion among the unordered Bellman-Ford,
the ordered ∆-stepping , and dynamic stepping for SSSP on
graph soc-orkut.

R
u

n
ti

m
e
 (

m
s)

Iteration No. of BFS Iteration No. of BFS

36 55

R
u

n
ti

m
e
 (

m
s)

(a) (b)

Figure 9. Runtime per iteration runtime of variants with fused
or standalone candidate for graphs (a) roadNet-CA and (b)
soc-orkut.

unnecessary computation. An unordered implementation en-
gages as many active elements as possible to pursue high
parallelism (e.g., the Bellman-Ford algorithm). With online al-
gorithmic auto-tuning in mind, we propose a dynamic priority
threshold and amend it by comparing the (estimated) number
of edges between the previous iterations and the ones follow-
ing. If the number of edges increases or decreases by some
margin, we increase or decrease the priority threshold accord-
ingly by a pre-set step size; otherwise, the priority threshold
stays constant. From our experiments, the increase/decrease
ratio was set to 35%.

Significance: Figure 8 shows the difference among the un-
ordered version, the static ordered version (∆-stepping), and
the dynamic ordered version. We set the priority threshold for
the static unordered version to the cw/d, used in [13]. The
dynamic ordered version was more flexible when facing work-
load explosion. To determine whether to increase or decrease
the stepping threshold, GSWITCH collects the characteristics
of the current workload (the number of edges to be explored
and the edge distribution) as tuning parameters.

Pattern 5: Kernel fusion (Candidates: Standalone and
Fused).

Generality: Kernel fusion fuses multiple operations into a
single kernel to improve the operational intensity. To avoid
processing duplicated vertices, active set generation and pro-
cessing are usually implemented as two separate kernels such
as in Gunrock and Enterprise. A duplicate removal process
is required for them. However, for some sparse graphs with
stable workloads, if the attributes of the dataset and historical
information imply a shortcut, we use the kernel fusion to
speed up the execution. Duplication-tolerant techniques such
as bitmap marking is applied to guarantee the correctness in a
kernel-fusion variant. If the runtime of the last iteration is far

205

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Ke Meng, Jiajia Li, Guangming Tan, Ninghui Sun

Online

Offline

 Record runtime characteristic Statistics

Traning

Kernel Libs

Learning Model

Expand

Active-set

Filter

Use filter function to

generate active set

filter

update vertex data status

Active Inactive Fixed

Inspector

Feature Extraction Features

Check whether the algorithm

has converged or not
is converged?

use emit function to send

vmsg to another vertex

emit

comp/compAtomic

comp/compAtomic function

describes how the vmsg are

processed

Runtime Characteristics

� number of active vertices
� number of inactive vertices
� number of active edges
� number of inactive edges
 ...

Selector

Estimate the performance

 and make decisions Configurations

Executor

Kernel Libs

Historical Information

� last filter time
� last expand time
 ...

Feature Database

Feedback

1

2

3

[Y] Bypass the decision making [N] To reconfigure

Is stable?

Host

Host

Device

Dataset Attributes

� number of vertices
� number of edges
� the average degree
� Gini coefficient
 ...

Figure 10. The overview of GSWITCH. On the host side, the Inspector extracts the feature vectors that are fed to the learning
model in the Selector. On the device side, the Executor processes the selected kernels and generates the feedback for the next
iteration.

Table 1. Feature vector in GSWITCH.

Parameter Meaning Correlation

Dataset attributes

N , M the number of vertices and edges P3,5
d the average of degrees P3,5
σd the standard deviation of degrees P3,5
rd the relative range of degrees P3,5
GI Gini coefficient [29] P3,5
Her Relative edge distribution entropy [29] P3,5

Runtime Characteristics

Va , Ea the number of active vertices and edges P1,2,3,4
Via , Eia the number of inactive vertices and edegs P1,2,3,4
Vap , Eap the ratio of active vertices and edges P1,2,3,4
Viap , Eiap the ratio of inactive vertices and edges P1,2,3,4
cd the average of degrees in current workload P1,2,3,4
rcd the relative range of degrees in current workload P1,2,3,4

Historical Information

tf the time of the last Filter step P5
te the time of the last Expand step P5
Tf the average time of previous Filter steps P5
Te the average time of previous Expand steps P5

longer than the average runtime in the fused mode, GSWITCH

switches back to the standalone mode.
Significance: As illustrated in Figure 9 (a), the fused ver-

sion runs 12× faster than the standalone one, which improves
performance significantly on road-net graphs. However, for
dense inputs like those from social graphs, where the work-
load is irregular and unpredictable, too many duplicates are
generated from fused version to achieve reasonable perfor-
mance (Figure 9 (b)). Features of the input graph and the
runtime of previous iterations are relevant tuning parameters
for this pattern.

The parameters of these patterns are summarized in Table 1.
We refer to Pattern i as Pi for short. By determining a proper
configuration of these parameterized patterns, GSWITCH ob-
tains an optimized execution of a given graph processing

algorithm. The machine learning technique used to train these
candidate values will be discussed in the next section.

4 Implementation of GSWITCH

4.1 GSWITCH Overview

As the algorithmic optimizations are abstracted as assembled
parameterized patterns, it is natural to adopt a machine learn-
ing based method, as they have been successfully used in
recent auto-tuners [12, 32, 48, 64]. As shown in Figure 10, in
every iteration (or super-step) GSWITCH selects optimized
variants on-the-fly through the Inspector, Selector, and Ex-

ecutor stages. Two knowledge databases (feature database
and parameterized kernel library) are constructed to train the
model offline.

• Inspector. The inspector (labeled as 1) first checks
for the convergence of the previous iteration. If the
previous iteration has not converged, it starts a new
iteration, collects the values of the pre-defined features:
dataset attributes, runtime characteristics, and historical
information, and saves them as a vector. These feature
values are the inputs to the selector.
• Selector. The selector (labeled as 2) is a black-box

learning model which is trained offline from the feature
database. It takes the feature vector from the Inspector
to predict the optimal kernel configuration for the next
iteration. The configuration is saved as an entry in the
kernel library.
• Executor. The executor (labeled as 3) chooses the de-

termined kernels from the kernel library and executes
them appropriately on the GPU. Meanwhile, some run-
time characteristics are profiled for use as feedback for
the next inspector.

As shown in Figure 10, the inspector and selector stages are
executed on the host (CPUs), while the executor is processed

206

Gswitch PPoPP ’19, February 16–20, 2019, Washington, DC, USA

on the device (GPUs). The kernel library stores the imple-
mentation variants of the Filter and Expand primitives. At
the end of each iteration, a feedback stage copies the runtime
characteristics and historical information of the last iteration
from the device to the host.

4.2 Programming APIs

To implement the customized graph application, users need to
provide four functions for GSWITCH to implement their graph
applications: filter, emit, comp and compAtomic. Figure 11
gives an example of these functions that together implement
BFS. The filter function provides a predicate to refine the
active set for the current iteration. The emit function defines
the message that the source vertex should send. The comp

and compAtomic functions both describe how the message
is processed in the receiving vertex, with the former being
atomic-free while the latter is not. No tuning parameters are
required and all the tuning details are opaque to users.

__device__ void compAtomic(int* u, int lvl, G g){
 atomicExch(u, lvl);
}
__device__ void comp(int* u, int lvl, G g){
 *u = lvl;
}

__device__ int emit(int vid, Empty* weight, G g){
 return data_of(vid)+1;
}

__device__ Status filter(int vid, G g){
 int lvl = data_of(vid);
 if(lvl == g.level()){return Active;}
 else if(lvl < 0) return Inactive;
 else return Fixed;
}

Figure 11. An example of BFS algorithm in GSWITCH.

4.3 Feature Extraction

The feature vector for training and inference on the model
is listed in Table 1. These features are easily collected even
during runtime because most of the required runtime char-
acteristics are side products of the Filter and Expand steps.
These features fall in three dimensions:

• The dataset attributes provide the basic description of
the graph. First, two parameters are used to represent
the basic structure of the graph: N (the number of ver-
tices) and M (the number of edges). Second, d, σd ,
and rd are added to describe the distribution of the
edges. To classify whether a graph is regular or irreg-
ular, we introduce the Gini coefficient and the relative
edge distribution entropy to measure the equality of
degree distributions [29]. The attributes of the dataset
are computed only once while loading the data into the
memory.
• The runtime characteristics describe the workload in

each iteration. The numbers and ratios of active and

inactive elements in the graph help determine the direc-
tion (P1). Once this is done, GSWITCH chooses the ac-
tive or inactive elements as the current workload. cd and
rcd describe the degree distribution of the given work-
load. The active set format (P2) and load-balancing
strategies (P3) are highly relevant to the features of the
given workload.
• Historical information reveals the workload imbalance

of previous iterations. By comparing the time taken for
the last iteration with the average time for all previous
iterations, we can estimate the workload of the last
iteration without copying the runtime characteristics
from the device.

The features are selected based on a statistical analysis.
Figure 12 shows six most prominent features for the five pat-
terns on 644 graphs [1], where the distribution of each pattern
reflects the influence of the features. Figure 12 (a) shows that
the pull mode improvements when the number of inactive
edges is small; By contrast, the push mode is preferred when
the number of inactive edges increases. Figure 12 (b) shows
that the queue mode performs well when the number of active
vertices is small. Figure 12 (c) and (d) show that the STRICT
mode is beneficial when the data are irregular and the number
of active vertices is large. Figure 12 (e) indicates that the
stepping threshold should be increased when the number of
active edges is small. Figure 12 (f) shows the Gini coefficient
that describes the inequality of the degree distribution, from
which we can conclude that fused kernels are preferred when
the vertices in a graph have similar numbers of neighbors.

4.4 Model Generation

We treat patterns as independent decision goals, and the sta-
tistics of each iteration constitute a record in the feature data-
base. For example, one record of the graph web-it-2004
is R ={509338, 7178410, 28.2, 58.7, 16.6, 0.55, 0.94, 289,
508987, 2694, 14353300, 0.0006, 0.9994, 0.0002, 0.9998, 9.32,
137.7, 1.2, 1.3, 0.4, 0.15}. We ran all the implementations of
the kernel library on 644 graphs [1] for all the benchmarks
and gathered a total of 386,780 records (one record for each
iteration). The true optimal configurations were attained via
brute-force experimentation.

Decision making can be regarded as a classification prob-
lem. GSWITCH builds a classifier for each pattern. The clas-
sification process can be formulated as f (R) = OPT . For
example, the output OPT here in the directional classifier can
be either push or pull. The CART (Classification and Regres-
sion Tree) algorithm is used to generate the decision tree. We
choose it as our learning model for two main reasons. First,
this model is easy to convert the resulting rules to if-else sen-
tences, which is convenient for transplanting them to diverse
platforms and integrating them with other runtime systems.
Second, the model is easy to understand and interpret while
its prediction overhead is low. However, the decision-tree

207

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Ke Meng, Jiajia Li, Guangming Tan, Ninghui Sun
P

e
rc

e
n

ta
g

e
(%

)

(a) E iap (b) Vap (d) Eap (f) GI(e) E

(1e5)

a(c) Her

Figure 12. The distribution of the optimal strategy with different parameter values, where the y-axis shows the percentage of
each parameter falling into its value intervals.

model is prone to overfitting. To improve the generality of the
model, we tailor the generated decision tree and keep the its
height as low as possible.

expand<push, LB>(...){

...

for u in neighbor(v)

 compAtomic(u, wa_of(v), g);

...

}

expand<push, CM>(...){

...

load blocksize edges of v

...

}

expand<push, CM>(...){

...

for v in AS<Queue>

 vmsg = emit(v, NULL, g);

...

}

expand<push, CM>(...){

...

if(Fused==True)

 write u to AS directly

...

}

Push
Pull

CM
WM
TWC
STRICT

Bitmap

Unsorted Queue
Sorted Queue

Remain
Increase
Decrease

Fused
Standalone

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Direction Load Balance A.S. Format Stepping Kernel Fusion

filter<push>(...){

for v in active V:

 if priority(v) > th

 write v to AS

...

}

Non-selected strategy Selected strategy

Figure 13. The kernel searching process of the selector along
with some interpretable rules in the decision path of one
iteration.

0.22

0.59

1.61

38.7

58.5

61.8

0.97

0.20

0.46

0.82

4.74

15.5

27.2

0.68

0.21

0.40

0.76

2.03

17.7

30.4

0.68

0.21

0.40

0.54

1.50

17.9

29.7

0.82

97.0

98.6

96.5

58.8

1.80

0.38

0.39

49.5

50.4

50.4

49.2

33.5

0.86

0.40

44.4

46.3

44.9

44.8

31.3

2.01

0.39

124

123

126

122

71.3

2.74

0.40

1

2

3

4

5

6

7

TWC WM CM STRICT TWC WM CM STRICT

Push Pull

Gswitch Best

0.20

0.40

0.54

1.50

1.80

0.38

0.39

0.20

0.40

0.54

1.50

1.80

0.38

0.39

Gswitch Best

∑ 162 49.7 52.2 51.1 354 234 214 569 5.21 5.21

lvl

Figure 14. The runtime of different strategies of BFS for
graph orkut. "Gswitch" indicates the predicted strategies of
GSWITCH, "Best" indicates the true optimal strategies.

4.5 Kernel Searching

In the low-level implementation, the parameterized kernels
are described as C++ templates. Some patterns (e.g., P1: di-
rection) are implemented as standalone kernels, while others
(e.g., P2: active set formats) are implemented as a combina-
tion of branches and conditions. In total, we had 12 standalone
kernels supporting 156 implementation variants. In each itera-
tion, we needed to choose a filter primitive from 12 candidates
and one expand primitive from 144 candidates.

We made decisions following a given order and each pat-
tern had one classifier. Figure 13 illustrates the kernel search-
ing process for one iteration of BFS. We first determine the
direction, because the workloads in push and pull are com-
pletely different. Load-balancing strategies are then consid-
ered, followed by the active set format. We finally decide
the stepping configuration as well as whether to enable the
kernel fusion. Figure 14 shows the searching path of the
graph orkut for the BFS algorithm along the dimensions of
the direction and the load-balancing. In this case, GSWITCH

chooses the optimal strategy in each iteration.

Table 2. Representative graphs for benchmarking.

Graphs Vertices Edges Max Degree Domain

soc-orkut 3M 212.7M 27,466 SN
soc-pokec 1.6M 61M 20,518 SN

web-uk-2005 129K 23M 850 WG
web-wikipedia-2009 1.8M 9M 2,623 WG

kron_g500-log21 2.1M 182.1M 213,904 GG
rgg_n_2_24 16.8M 265.1M 40 GG

roadNet-CA 1.9M 5.5M 121 RN
roadNet-TX 1.4M 3.8M 12 RN

sc-msdoor 415K 19.8M 76 SC
sc-ldoor 952K 42M 76 SC

Graphs domains are: SN: Social Network, WG: Web Graph, GG: Generated
Graph, RN: Road Network, SC: Scientific Computing.

5 Evaluation

5.1 Experimental Setup

Platform. We ran all experiments on two systems, both on
Linux servers with 2.10GHz E5–2620 v2 Intel Xeon CPUs
and 48 GB of main memory. One had an Nvidia K40m GPU
with 12 GB of global memory, and the other had an Nvidia
P100 GPU with 16 GB of global memory. We compiled all
the GPU programs using NVIDIA’s nvcc compiler (version
7.5.17) and the -O3 flag.

Dataset. We randomly chose 1,288 graphs from the net-
work repository [1] 3. Half of them (644) were used as the

3All graphs were transformed into undirected ones.

208

Gswitch PPoPP ’19, February 16–20, 2019, Washington, DC, USA

Table 3. The evaluation time of GSWITCH vs. other GPU graph processing libraries and hardcoded implementations.

Runtime (ms) [lower is better]

Social Network Web Graph Generated Graph Road Network Scientific Computing

Alg. Lib. orkut pokec web-uk-05 web-wp-09 kron-21 rgg_n24 roadnNet-CA roadNet-TX msdoor ldoor

B
FS

Enterprise 30.7 11.2 3.1 87 10 - - 47 44 68
Gunrock 6.1 12 1.6 25 4.2 606 104 82 42 64
Gswitch 5.5 3.8 1.2 18 2.9 344 39 47 23 33

C
C

GPUCC 84 21 5.7 14 128 - 9.1 6.7 6.3 13
Gunrock 161 38 50 36 236 305 17 13 17 40
Gswitch 111 35 3.9 11 89 143 6.1 4.7 3.9 7.5

PR

WS-VR 16567 (79) 2718 (51) 116 (27) 408 (49) 6600 (35) 7769 (67) 61 (52) 43 (51) 253 (60) 421 (58)
Gunrock 4069 (22) 733 (21) 70 (22) 1420 (24) 3009 (19) 1533 (19) 190 (21) 134 (21) 54 (18) 107 (18)
Gswitch 2201 (22) 433 (21) 59 (22) 117 (24) 1759 (19) 1011 (19) 32 (20) 20 (20) 41 (18) 84 (18)

SS
SP

Frog 2424 534 35 436 847 - 44 28 199 363
Gunrock 1096 385 29 112 248 99663 179 196 175 582
Gswitch 407 144 16 83 247 2772 84 90 46 83

B
C GPUBC 286 46 7.6 100 57 1298 194 182 87 250

Gunrock 427 92 11 88 371 1669 116 227 62 98
Gswitch 85 28 2.9 55 91 916 78 101 56 79

The numbers in brackets are the numbers of iterations. As Gunrock updates its code continuously, some performance results we reproduced for it are inconsistent
with the results of the original paper [58] (e.g., on rgg_n24) but consistent with the results of the authors’ more recent paper [59].

training set for model generation, while the rest were used as
the evaluation set. The evaluation set has no overlap with the
training set. Ten-fold cross-validation was used to evaluate
the accuracy of the model. As shown in Table 2, we chose 10
representative graphs from the evaluation set to analyze.

Baseline. GSWITCH was compared with several state-of-
the-art programmable GPU-based graph processing frame-
works/libraries. According to the latest results in [2, 59],
Gunrock [58] delivered relatively better performance than
the others owing to its continuous evolution. We compared
our method with Gunrock on all test cases. For each graph
algorithm, we selected a specialized, optimized implementa-
tion from other frameworks/libraries that beats Gunrock in
some cases, which were Enterprise [33], GPUCC [53], WS-
VR [26], Frog [50] and GPUBC [47] for BFS, CC, PR, SSSP
and BC, respectively.

5.2 Overall Performance

Table 3 shows the performance comparison of the graph li-
braries as described in Section 5.1. For the BFS benchmark,
Gunrock, GSWITCH, and the hand-tuned version of Enter-
prise enabled the direction-switching and idempotence opti-
mization in BFS. However, Gunrock needed user-provided
tuning parameters, such as do_a and do_b to decide when
to switch. These parameters can vary significantly for differ-
ent graphs. For example, Gunrock’s BFS achieved its best
performance on graph soc-orkut when do_a = 0.12 and
do_b = 0.1, while on graph roadNet-CA, the best set-
ting was do_a = 1 and do_b = 10. The Enterprise adopted
static rule-based switching that led to suboptimal results
in some cases, for instance, on graphs soc-orkut and

web-wikipedia-2009. For the CC benchmark, our method
beat all the programmable GPU graph libraries largely due to
the transition of the active set format. GSWITCH was slower
than GPUCC in some cases because the latter used specific op-
timizations, which can not be generalized. For the PageRank
benchmark, each library had a different implementation but
used the same terminal condition. WS-VR used the pull mode
and the WM load-balancing strategy for all cases, whereas
Gunrock used the push mode and the LB [13] load-balancing
strategy for all cases. By contrast, GSWITCH used differ-
ent strategies for different inputs. For the SSSP benchmark,
our dynamic stepping optimization reduced the number of
touched edges significantly compared to the static ∆-stepping
version. Frog performed well on some graphs because it used
an asynchronous algorithm that convergences more quickly.
For the BC benchmark, both the GPUBC and Gunrock used
a push-based implementation, while GSWITCH performed
faster than Gunrock due to the generalized directional opti-
mization.

Figure 15 shows the performance of GSWITCH compared
with that of Gunrock on K40m (a) and P100 (b) on the eval-
uation set. On K40m, the results show that the average per-
formance of GSWITCH was approximately 2.5∼4.6× faster
than Gunrock on average, and it achieved positive speedups
in about 84%∼96% of the cases. On P100, we retrained the
model to test the portability of GSWITCH. The results show
that GSWITCH was about 2∼3.3× faster than Gunrock on
average and 94%∼99% of the cases were positive. GSWITCH

can thus choose the suitable strategies automatically, while
Gunrock relies on user-provided tuning parameters that are
frequently unavailable in real-world situations.

209

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Ke Meng, Jiajia Li, Guangming Tan, Ninghui Sun
N

v
id

ia
 K

4
0

N
v
id

ia
 P

1
0

0

 BFS

(a)

(f)

Datasize(nnz)

Average

Runtime

Gunrock:

Gswitch:

41.2ms

15.4ms

88.1% positive

Datasize(nnz)

Average

Runtime

Gunrock:

Gswitch:

38.7ms

13.2ms

97.5% positive

(b)

CC

(g)

Datasize(nnz)

Average

Runtime

Gunrock:

Gswitch:

9.6ms

3.6ms

95.3% positive

Datasize(nnz)

Average

Runtime

Gunrock:

Gswitch:

3.9ms

1.2ms

99.6% positive

(c)

PR

(h)

Datasize(nnz)

Average

Runtime

Gunrock:

Gswitch:

114.4ms

24.7ms

96.1% positive

Datasize(nnz)

Average

Runtime

Gunrock:

Gswitch:

30.9ms

9.6ms

96.8% positive

(d)

 SSSP

(i)

Average

Runtime

Gunrock:

Gswitch:

399.8ms

162.6ms

84.5% positive

Datasize(nnz)

Datasize(nnz)

Average

Runtime

Gunrock:

Gswitch:

162.6ms

82.1ms

94.7% positive

(e)

(j)

BC

Datasize(nnz)

Average

Runtime

Gunrock:

Gswitch:

86.4ms

32.4ms

88.8% positive

Datasize(nnz)

Average

Runtime

Gunrock:

Gswitch:

65.2ms

22.3ms

97.3% positive

4.8K 530M 4.8K 530M 4.8K 530M

4.8K 530M 4.8K 530M 4.8K 530M 4.8K 530M

4.8K 530M 4.8K 530M

4.8K 530M

Figure 15. Performance improvement normalized to Gunrock on both K40m and P100 GPUs for all the five graph algorithms.

5.3 Effect of Individual Patterns

P1

P1+P2

P1+P2+P3

P1+P2+P3+P4

P1+P2+P3+P4+P5

GSWITCH baseline

Gunrock

BFS-orkut BFS-msdoor

CC-orkut CC-msdoor PR-orkut PR-msdoor

SSSP-orkut SSSP-msdoor BC-orkut BC-msdoor

N
o

rm
a
li

ze
d

 P
e
rf

o
rm

a
n

ce
N

o
rm

a
li

ze
d

 P
e
rf

o
rm

a
n

ce
N

o
rm

a
li

ze
d

 P
e
rf

o
rm

a
n

ce

N
o

rm
a
li

ze
d

 P
e
rf

o
rm

a
n

ce
N

o
rm

a
li

ze
d

 P
e
rf

o
rm

a
n

ce

Figure 16. The incremental perfomance of GSWITCH com-
pared with Gunrock.

To further understand the improvement in performance ef-
fected by each pattern, we illustrate the incremental speedups
of a scale-free graph (soc-orkut) and a mesh-like graph
(msdoor) in Figure 16. We used Gunrock as the static op-
timal version of each algorithm. The results show that the
GSWITCH baseline (the non-switching version) delivers a
similar performance to that of the Gunrock implementation.
Therefore, the superiority of GSWITCH in performance over
Gunrock is mainly owing to dynamic switching. Moreover,
the importance of the different algorithmic patterns on perfor-
mance improvement varied from algorithm to algorithm. For
traversal-based algorithms such as BFS and BC, the direc-
tional optimization (P1) yielded an approximately 2× bump

Overhead Filter Expand

BFS PR CC SSSP BC

R
u

n
ti

m
e
 B

re
ak

d
o
w

n

O
ve

rh
e
ad

 p
e
r

It
e
ra

ti
o

n
 (

µ
s)

0

1

0

1100

200

0

100%

6%

BFS PR CC SSSP BC

200

0

100

81

96

156

120 121

Figure 17. The normalized time breakdown of five bench-
marks and the overhead of dynamical switching on
soc-orkut.

in performance. The active set format (P2) brought about a
10% performance improvement on dense workloads. Load
balancing (P3) is important for scale-free graphs, where the
workload of each iteration varies significantly. Stepping op-
timization (P4) profiled in only monotonic algorithms, and
the kernel fusion (P5) reduced the filter time, which is the
bottleneck in mesh-like graphs.

5.4 Accuracy and Overhead

Each record contained 21 features and one label showing the
optimal strategy as described in Section 3. GSWITCH had
a corresponding classifier for each pattern to decide which
strategy to choose. We statistically analyzed the accuracy of
each pattern during the online decision making. The accura-
cies were 98%, 97%, 85%, 82% and 94% for the five patterns,
respectively. It is interesting to note that GSWITCH achieved
good performance even though the learning model could not
correctly predict in some cases. More features or a more com-
plex model can improve accuracy, but will also increase the
runtime of feature extraction and training.

Figure 17 shows the runtime breakdown for the five bench-
marks. For edge-centric algorithms such as CC, the active

210

Gswitch PPoPP ’19, February 16–20, 2019, Washington, DC, USA

set is large. Thus the Filter and Expand steps cost similar
time. For applications such as PR and BC, which have more
edges to process, the Expand step dominates. The overhead in
GSWITCH includes collecting the runtime characteristics and
making the decisions. As described in Section 4.3, the feature
vector can be collected efficiently without extra computation,
which cost 58∼120 µs in each iteration. The overhead of dy-
namic switching in GSWITCH was affordable, as it cost at
most 6% of total runtime.

6 Related Work

GSWITCH was developed as an auto-tuner to implement
adaptive graph algorithms. In contrast to traditional auto-
tuners [16, 60], it derives from the emerging algorithmic auto-
tuning approaches [5, 14, 32, 36]. For the optimization of
graph processing algorithms, its design and implementation
share with and are inspired from past work. We summarize re-
lated work to clarify the common features with other work and
highlight GSWITCH’s superiority in implementing a highly
efficient graph algorithm library.

First, a large number of hardwired GPU implementations
provide enough references for the kernel library of the GSWITCH

auto-tuner. We refer them to variants of training and search-
ing optimization on GPUs. For example, Merrill et al.’s BFS
algorithm [41] proposed an adaptive load-balanced strategy to
process a frontier with a thread, a warp, or a CTA, according to
the number of neighbors of the given vertex. Enterprise [33]
implements the direction-optimized BFS with streamlined
GPU thread scheduling. Verstraaten et al. [56] implemented
the directional optimization using a model-driven approach.
Soman et al. [53] implemented the CC algorithm with edge-

centric abstraction and accelerated the root finding procedure
with the pointer jumping technique. Davidson et al.’s [13]
SSSP algorithm uses a near-far approach to reduce the num-
ber of touched edges during the traversal, trading parallelism
for work-efficiency. Mclaughlin and Bader [40] implemented
an efficient BC algorithm to solve the load imbalance issue
in threads. A straightforward combination of these optimiza-
tion methods fails to achieve better performance. GSWITCH

leverages a machine learning model to determine a proper
configuration.

Second, several studies have discussed the trade-off among
performance tuning strategies. Unfortunately, they are con-
fined to only a specific graph algorithm. For example, Beamer
et al.’s work [7] first introduced the directional optimization
in an implementation of BFS on CPUs. Nasre et al. [44]
analyzed the trade-offs between data-driven and topology-
driven approaches. Hassaan et al.’s work [21] discussed the
pros and cons of the ordered and unordered implementations
of irregular algorithms and attempted to balance parallelism
with work-efficiency. Inspired by these individual efforts,
GSWITCH goes further to examine the correlation among
multiple algorithms in terms of tuning. The key point is that

our extracted algorithmic patterns have not been revealed in
previous work.

Last, Gunrock [58] integrated the above-mentioned tuning
strategies to implement a number of graph primitives. To some
extent, this applies common tuning strategies to different
primitives. However, the optimization depends on the users’
priori knowledge. It is a static configuration that may become
suboptimal. GSWITCH breaks the barrier by automatically
building a better algorithm by assembling strategies at runtime
owing to the algorithmic patterns.

7 Conclusion

In this work, we proposed GSWITCH, an adaptive perfor-
mance tuning system for graph processing algorithms. Its
novelty is in a set of algorithmic patterns that naturally en-
able the adoption of a machine learning model. The results
of evaluations show that GSWITCH yields better performance
than the best configurations of four other state-of-the-art GPU
graph processing libraries. This work showcases algorithmic
auto-tuning techniques. We advocate that more research ef-
fort should be put into advancing algorithmic auto-tuning,
especially for input-sensitive workloads such as graph and
sparse tensor algorithms. However, our patterns are not fully
complete yet. We believe that many opportunities and open
research questions persist for extracting additional patterns.

8 Acknowledgments

We thank all reviewers for constructive comments that helped
us further clarify this paper. This research was funded by The
National Key Research and Development Program of China
(2016YFB0201305, 2016YFB0200803, 2016YFB0200300),
the National Natural Science Foundation of China under grant
nos. (61521092, 91430218, 31327901, 61472395, 61432018).
This research was also funded by the US Department of En-
ergy, Office for Advanced Scientific Computing (ASCR) un-
der Award No. 66150: "CENATE: The Center for Advanced
Technology Evaluation". Pacific Northwest National Labora-
tory (PNNL) is a multiprogram national laboratory operated
for DOE by Battelle Memorial Institute under Contract DE-
AC05-76RL01830.

References
[1] 2017. Network Repository. http://networkrepository.com/networks.

php

[2] 2018. Comparison with Other Engines. https://gunrock.github.io/

docs/engines_topc.html

[3] September 2016. nvgraph. https://developer.nvidia.com/nvgraph

[4] September 2017. graph500. http://www.graph500.org/

[5] Jason Ansel, Cy P. Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman P. Amarasinghe. 2009. PetaBricks: a lan-
guage and compiler for algorithmic choice. In Proceedings of the 2009

ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009. 38–49.
https://doi.org/10.1145/1542476.1542481

211

PPoPP ’19, February 16–20, 2019, Washington, DC, USA Ke Meng, Jiajia Li, Guangming Tan, Ninghui Sun

[6] Arash Ashari, Naser Sedaghati, John Eisenlohr, Srinivasan
Parthasarathy, and P. Sadayappan. 2015. Fast sparse matrix-
vector multiplication on GPUs for graph applications. In High

Performance Computing, Networking, Storage and Analysis, SC14:

International Conference for. 781–792.
[7] Scott Beamer, Krste Asanović, and David Patterson. 2013. Direction-

optimizing breadth-first search. Scientific Programming 21, 3-4 (2013),
137–148.

[8] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. 2017.
Groute: An Asynchronous Multi-GPU Programming Model for Irreg-
ular Computations. In ACM Sigplan Symposium on Principles and

Practice of Parallel Programming. 235–248.
[9] Maciej Besta, MichaÅĆ Podstawski, Linus Groner, Edgar Solomonik,

and Torsten Hoefler. 2017. To Push or To Pull: On Reducing Commu-
nication and Synchronization in Graph Computations. In The Interna-

tional Symposium. 93–104.
[10] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality.

Journal of mathematical sociology 25, 2 (2001), 163–177.
[11] Sergey Brin and Lawrence Page. 2012. Reprint of: The anatomy of a

large-scale hypertextual web search engine. Computer networks 56, 18
(2012), 3825–3833.

[12] Jee W Choi, Amik Singh, and Richard W Vuduc. 2010. Model-driven
autotuning of sparse matrix-vector multiply on GPUs. In ACM sigplan

notices, Vol. 45. ACM, 115–126.
[13] Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens.

2014. Work-Efficient Parallel GPU Methods for Single-Source Short-
est Paths. In IEEE International Parallel and Distributed Processing

Symposium. 349–359.
[14] Yufei Ding, Jason Ansel, Kalyan Veeramachaneni, Xipeng Shen, Una-

May OâĂŹReilly, and Saman Amarasinghe. 2015. Autotuning algo-
rithmic choice for input sensitivity. In ACM SIGPLAN Notices, Vol. 50.
ACM, 379–390.

[15] Jens Domke, Torsten Hoefler, and Wolfgang E Nagel. 2011. Deadlock-
free oblivious routing for arbitrary topologies. In Parallel & Distributed

Processing Symposium (IPDPS), 2011 IEEE International. IEEE, 616–
627.

[16] Matteo Frigo and Steven G Johnson. 2005. The design and implemen-
tation of FFTW3. Proc. IEEE 93, 2 (2005), 216–231.

[17] Evangelos Georganas, Aydin Buluç, Jarrod Chapman, Leonid Oliker,
Daniel Rokhsar, and Katherine Yelick. 2014. Parallel de bruijn graph
construction and traversal for de novo genome assembly. In Proceedings

of the International Conference for High Performance Computing,

Networking, Storage and Analysis. IEEE Press, 437–448.
[18] Abdullah Gharaibeh, Lauro BeltrÃčo Costa, Elizeu Santos-Neto, and

Matei Ripeanu. 2017. A yoke of oxen and a thousand chickens for
heavy lifting graph processing. In International Conference on Parallel

Architectures and Compilation Techniques. 345–354.
[19] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and

Carlos Guestrin. 2012. PowerGraph: Distributed Graph-Parallel Com-
putation on Natural Graphs.. In OSDI, Vol. 12. 2.

[20] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and
Margaret Martonosi. 2016. Graphicionado: A high-performance and
energy-efficient accelerator for graph analytics. In Microarchitecture

(MICRO), 2016 49th Annual IEEE/ACM International Symposium on.
IEEE, 1–13.

[21] Muhammad Amber Hassaan, Martin Burtscher, and Keshav Pingali.
2011. Ordered vs. unordered: a comparison of parallelism and work-
efficiency in irregular algorithms. Acm Sigplan Notices 46, 8 (2011),
3–12.

[22] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, and P
Sadayappan. 2017. MultiGraph: Efficient Graph Processing on GPUs.
In Parallel Architectures and Compilation Techniques (PACT), 2017

26th International Conference on. IEEE, 27–40.
[23] Sungpack Hong, Kyun Kim Sang, Tayo Oguntebi, and Kunle Olukotun.

2011. Accelerating CUDA graph algorithms at maximum warp. Acm

Sigplan Notices 46, 8 (2011), 267–276.
[24] Rashid Kaleem, Anand Venkat, Sreepathi Pai, Mary Hall, and Keshav

Pingali. 2016. Synchronization Trade-Offs in GPU Implementations of
Graph Algorithms. In Parallel and Distributed Processing Symposium,

2016 IEEE International. 514–523.
[25] Jeremy Kepner, Peter Aaltonen, David Bader, Aydin Buluç, Franz

Franchetti, John Gilbert, Dylan Hutchison, Manoj Kumar, Andrew
Lumsdaine, Henning Meyerhenke, et al. 2016. Mathematical founda-
tions of the GraphBLAS. In High Performance Extreme Computing

Conference (HPEC), 2016 IEEE. IEEE, 1–9.
[26] Farzad Khorasani, Rajiv Gupta, and Laxmi N. Bhuyan. 2016. Scalable

SIMD-Efficient Graph Processing on GPUs. In International Confer-

ence on Parallel Architecture and Compilation. 39–50.
[27] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N. Bhuyan.

2014. CuSha:vertex-centric graph processing on GPUs. In Proceedings

of the 23rd international symposium on High-performance parallel and

distributed computing. 239–252.
[28] John Kloosterman, Jonathan Beaumont, Mick Wollman, Ankit Sethia,

Ron Dreslinski, Trevor Mudge, and Scott Mahlke. 2015. WarpPool:
sharing requests with inter-warp coalescing for throughput processors.
In Proceedings of the 48th International Symposium on Microarchitec-

ture. ACM, 433–444.
[29] Jérôme Kunegis and Julia Preusse. 2012. Fairness on the web: Alter-

natives to the power law. In Proceedings of the 4th Annual ACM Web

Science Conference. ACM, 175–184.
[30] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. 2012. Graphchi:

Large-scale graph computation on just a pc. USENIX.
[31] Da Li and Michela Becchi. 2013. Deploying Graph Algorithms on

GPUs: An Adaptive Solution. In IEEE International Symposium on

Parallel & Distributed Processing. 1013–1024.
[32] Jiajia Li, Guangming Tan, Mingyu Chen, and Ninghui Sun. 2013.

SMAT: an input adaptive auto-tuner for sparse matrix-vector multi-
plication. In ACM SIGPLAN Notices, Vol. 48. ACM, 117–126.

[33] Hang Liu and H. Howie Huang. 2015. Enterprise: breadth-first graph
traversal on GPUs. In International Conference for High PERFOR-

MANCE Computing, Networking, Storage and Analysis. 68.
[34] Junhong Liu, Xin He, Weifeng Liu, and Guangming Tan. [n. d.].

Register-Aware Optimizations for Parallel Sparse Matrix-Matrix Multi-
plication. International Journal of Parallel Programming ([n. d.]).

[35] Junhong Liu, Xin He, Weifeng Liu, and Guangming Tan. 2018.
Register-based Implementation of the Sparse General Matrix-matrix
Multiplication on GPUs. SIGPLAN Not. 53, 1 (Feb. 2018), 407–408.
https://doi.org/10.1145/3200691.3178529

[36] Yixun Liu, Eddy Z Zhang, and Xipeng Shen. 2009. A cross-input
adaptive framework for GPU program optimizations. In Parallel & Dis-

tributed Processing, 2009. IPDPS 2009. IEEE International Symposium

on. IEEE, 1–10.
[37] Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny Bickson,

Carlos E. Guestrin, and Joseph Hellerstein. 2014. GraphLab: A New
Framework For Parallel Machine Learning. Computer Science (2014).

[38] Yulong Luo, Guangming Tan, Zeyao Mo, and Ninghui Sun. 2015.
FAST: A fast stencil autotuning framework based on an optimal-
solution space model. In Proceedings of the 29th ACM on International

Conference on Supercomputing. ACM, 187–196.
[39] Grzegorz Malewicz, Matthew H. Austern, Aart J. C Bik, James C. Dehn-

ert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel:
a system for large-scale graph processing. In ACM SIGMOD Interna-

tional Conference on Management of Data. 135–146.
[40] Adam Mclaughlin and David A. Bader. 2015. Scalable and High

Performance Betweenness Centrality on the GPU. In High Performance

Computing, Networking, Storage and Analysis, SC14: International

Conference for. 572–583.
[41] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scal-

able GPU graph traversal. Acm Sigplan Notices 47, 8 (2012), 117–128.

212

Gswitch PPoPP ’19, February 16–20, 2019, Washington, DC, USA

[42] Ulrich Meyer and Peter Sanders. 2003. ∆-stepping: a parallelizable
shortest path algorithm. Journal of Algorithms 49, 1 (2003), 114–152.

[43] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Atomic-
free irregular computations on GPUs. In The Workshop on General

Purpose Processor Using Graphics Processing Units. 96–107.
[44] Rupesh Nasre, Martin Burtscher, and Keshav Pingali. 2013. Data-driven

versus topology-driven irregular computations on GPUs. In Parallel &

Distributed Processing (IPDPS), 2013 IEEE 27th International Sympo-

sium on. IEEE, 463–474.
[45] Yuechao Pan, Yangzihao Wang, Yuduo Wu, Carl Yang, and John D

Owens. 2017. Multi-GPU graph analytics. In Parallel and Distributed

Processing Symposium (IPDPS), 2017 IEEE International. IEEE, 479–
490.

[46] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream:
Edge-centric graph processing using streaming partitions. In Proceed-

ings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles. ACM, 472–488.
[47] Ahmet Erdem SariyÃijce, Kamer Kaya, Erik Saule, and ÃIJmit V

ÃĞatalyÃijrek. 2013. Betweenness centrality on GPUs and heteroge-
neous architectures. Advances in Journalism & Communication 01, 4
(2013), 50–53.

[48] Naser Sedaghati, Te Mu, Louis-Noel Pouchet, Srinivasan Parthasarathy,
and P Sadayappan. 2015. Automatic selection of sparse matrix repre-
sentation on GPUs. In Proceedings of the 29th ACM on International

Conference on Supercomputing. ACM, 99–108.
[49] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten

Schwan. 2015. GraphReduce: processing large-scale graphs on
accelerator-based systems. (2015), 1–12.

[50] Xuanhua Shi, Junling Liang, Sheng Di, Bingsheng He, Hai Jin, Lu
Lu, Zhixiang Wang, Xuan Luo, and Jianlong Zhong. 2015. Optimiza-
tion of asynchronous graph processing on GPU with hybrid coloring
model. In Acm Sigplan Symposium on Principles & Practice of Parallel

Programming. 271–272.
[51] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He, Bo

Liu, and Qiang-Sheng Hua. 2018. Graph processing on GPUs: a survey.
ACM Computing Surveys (CSUR) 50, 6 (2018), 81.

[52] Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. Acm Sigplan Notices 48, 8
(2013), 135–146.

[53] Jyothish Soman, Kothapalli Kishore, and P J Narayanan. 2010. A fast
GPU algorithm for graph connectivity. (2010), 1–8.

[54] Nikita Spirin and Jiawei Han. 2012. Survey on web spam detection:
principles and algorithms. ACM SIGKDD Explorations Newsletter 13,
2 (2012), 50–64.

[55] Bryan Thompson, Bryan Thompson, and Bryan Thompson. 2014. Map-
Graph: A High Level API for Fast Development of High Performance
Graph Analytics on GPUs. In The Workshop on Graph Data Manage-

ment Experiences and Systems. 1–6.
[56] Merijn Verstraaten, Ana Lucia Varbanescu, and Cees de Laat. 2017.

Using Graph Properties to Speed-up GPU-based Graph Traversal: A
Model-driven Approach. arXiv preprint arXiv:1708.01159 (2017).

[57] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan
Amiri Sani. 2017. Graspan: A single-machine disk-based graph sys-
tem for interprocedural static analyses of large-scale systems code. In
Proceedings of the Twenty-Second International Conference on Archi-

tectural Support for Programming Languages and Operating Systems.
ACM, 389–404.

[58] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D. Owens. 2015. Gunrock: a high-performance graph
processing library on the GPU. In Acm Sigplan Symposium on Princi-

ples & Practice of Parallel Programming. 265–266.
[59] Yangzihao Wang, Yuechao Pan, Andrew Davidson, Yuduo Wu, Carl

Yang, Leyuan Wang, Muhammad Osama, Chenshan Yuan, Weitang
Liu, Andy T Riffel, et al. 2017. Gunrock: GPU graph analytics. ACM
Transactions on Parallel Computing (TOPC) 4, 1 (2017), 3.

[60] R Clint Whaley and Jack J Dongarra. 1998. Automatically tuned linear
algebra software. In Proceedings of the 1998 ACM/IEEE conference on

Supercomputing. IEEE Computer Society, 1–27.
[61] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo

Chen. 2015. SYNC or ASYNC: time to fuse for distributed graph-
parallel computation. In ACM Sigplan Symposium on Principles and

Practice of Parallel Programming. 194–204.
[62] Da Yan, Yingyi Bu, Yuanyuan Tian, Amol Deshpande, et al. 2017. Big

graph analytics platforms. Foundations and Trends® in Databases 7,
1-2 (2017), 1–195.

[63] Xiuxia Zhang, Guangming Tan, Shuangbai Xue, Jiajia Li, Keren Zhou,
and Mingyu Chen. 2017. Understanding the GPU Microarchitecture to
Achieve Bare-Metal Performance Tuning. In Proceedings of the 22Nd

ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP ’17). ACM, New York, NY, USA, 31–43. https:

//doi.org/10.1145/3018743.3018755

[64] Yue Zhao, Jiajia Li, Chunhua Liao, and Xipeng Shen. [n. d.]. Bridging
the gap between deep learning and sparse matrix format selection.

[65] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified Graph
Processing on GPUs. IEEE Transactions on Parallel & Distributed

Systems 25, 6 (2014), 1543–1552.
[66] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma.

2016. Gemini: A Computation-Centric Distributed Graph Processing
System.. In OSDI. 301–316.

213

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Graph Algorithms
	2.2 Motivation

	3 Exploring Algorithmic Patterns
	4 Implementation of Gswitch
	4.1 Gswitch Overview
	4.2 Programming APIs
	4.3 Feature Extraction
	4.4 Model Generation
	4.5 Kernel Searching

	5 Evaluation
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Effect of Individual Patterns
	5.4 Accuracy and Overhead

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

