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ABSTRACT
Vertex-centric graph processing is employed by many pop-
ular algorithms (e.g., PageRank) due to its simplicity and
efficient use of asynchronous parallelism. The high compute
power provided by SIMT architecture presents an opportu-
nity for accelerating these algorithms using GPUs. Prior
works of graph processing on a GPU employ Compressed
Sparse Row (CSR) form for its space-efficiency; however,
CSR suffers from irregular memory accesses and GPU un-
derutilization that limit its performance. In this paper, we
present CuSha, a CUDA-based graph processing frame-
work that overcomes the above obstacle via use of two novel
graph representations: G-Shards and Concatenated Win-
dows (CW). G-Shards uses a concept recently introduced for
non-GPU systems that organizes a graph into autonomous
sets of ordered edges called shards. CuSha’s mapping of
GPU hardware resources on to shards allows fully coalesced
memory accesses. CW is a novel representation that en-
hances the use of shards to achieve higher GPU utilization
for processing sparse graphs. Finally, CuSha fully utilizes
the GPU power by processing multiple shards in parallel on
GPU’s streaming multiprocessors. For ease of programming,
CuSha allows the user to define the vertex-centric compu-
tation and plug it into its framework for parallel processing
of large graphs. Our experiments show that CuSha provides
significant speedups over the state-of-the-art CSR-based vir-
tual warp-centric method for processing graphs on GPUs.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
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1. INTRODUCTION
The need for efficient large scale graph processing has

grown due to the importance of applications involving graph
mining and graph analytics. However, using GPUs for ef-
ficient graph processing remains a challenging open prob-
lem. Even though GPUs provide a massive amount of par-
allelism with the potential to outperform CPUs, the SIMD
architecture demands repetitive processing patterns on reg-
ular data which is contrary to the irregular nature of graphs.
This leads to the problems of irregular memory accesses and
underutilization of GPUs; thus limiting the performance of
graph algorithms on GPUs.

Existing graph processing techniques [10, 12, 21] primarily
rely on the Compressed Sparse Row (CSR) representation
of graphs because CSR consumes minimal storage space.
However, accesses involving a node’s neighbors lead to poor
locality causing large amounts of random input-dependent
memory references, popularly known as non-coalesced ac-
cesses. Also, these techniques are inherently fraught with
GPU underutilization caused by workload imbalance result-
ing from mapping of irregular graphs to the GPU’s symmet-
ric hardware architecture.

In this paper we present CuSha1, a framework for pro-
cessing graphs on GPUs, that overcomes the drawbacks as-
sociated with the CSR representation. We recognize and ex-
plore the potential of a recently introduced representation
for efficient disk based graph processing, known as shards
[14]. Shards distribute graph data in a manner that places
edges and vertices required by a subset of computation con-
tiguously in memory. G-Shards adapts the shard based rep-
resentation to efficiently process graphs on GPUs. In G-
Shards each shard becomes a workload for a GPU thread
block and multiple thread blocks are processed in parallel.
Within each block, entries of a shard (representing edges)
are processed in parallel by the threads. By mapping shards
to blocks in this manner, we leverage the parallelism in the
computation involving both vertices and edges. Even though
G-Shards provides better locality, it is sensitive to the nature
of input graphs. For large sparse graphs – large real world
graphs are often sparse – the workloads assigned to warps
inside a block become too small causing threads within the
block to remain idle leading to GPU underutilization. To ef-
ficiently process sparse graphs, we propose a modification of
G-Shards called Concatenated Windows (CW). CW repre-
sentation concatenates multiple computation windows from
shards so that GPU threads are highly utilized.

1Available at http://farkhor.github.io/CuSha.
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We have developed a CUDA based prototype of the CuSha
graph processing framework that internally makes use of G-
Shards and CW representations. CuSha relies on an itera-
tive vertex-centric model where a given compute function is
iteratively applied to each vertex in the graph until a con-
vergence condition is met. This allows developers to easily
program graph applications using CuSha – programmer pro-
vides simple processing functions which deal with a vertex
and its neighbors and the framework automatically paral-
lelizes the computation over the entire input graph. As op-
posed to the Bulk Synchronous Parallel (BSP) model [26],
CuSha provides asynchronous execution that lets updated
vertex values to be visible during the same iteration; hence
enabling faster convergence for iterative graph algorithms.

The key contributions of this work are as follows:

• We recognize the potential of shards and introduce
an effective mapping of shards to various GPU sub-
components via the G-Shards representation. On av-
erage, our approach improves memory load and store
efficiency by nearly 26% and 52% respectively.

• We propose Concatenated Windows, an extension built
upon G-Shards to leverage better locality. On average,
for large sparse graphs, CW improves GPU utilization
by 57%.

• We implemented CuSha, a vertex-centric framework
that internally uses G-Shards and Concatenated Win-
dows to represent graphs. CuSha allows non-expert
developers to quickly implement graph algorithms on
GPUs without worrying about the inner details related
to parallelization and synchronization.

• We demonstrate that CuSha outperforms state-of-the-
art warp-centric algorithm [12] across wide range of
benchmarks and large real world input graphs. For
PageRank, average speedup of 7.21x is observed across
the input graphs.

The rest of the paper is organized as follows. Section 2
overviews and evaluates state-of-the-art CSR-based virtual
warp-centric method using several graph applications and
large real world graphs. Section 3 presents the graph repre-
sentations we proposed (G-Shards and Concatenated Win-
dows) to overcome drawbacks of CSR. Section 4 presents
details of the CuSha framework including the iterative ex-
ecution model and the easy to use programming interface.
Experimental evaluation is presented in Section 5. Sections 6
and 7 present related work and conclusion.

2. MOTIVATION: LIMITATIONS OF CSR
Representing graphs in memory to efficiently process them

on GPUs has been a challenging task. Consider examples of
some real world graphs shown in Table 1 whose degree distri-
bution is shown in Figure 1. As we can see, these graphs are
usually sparse and their sizes are large involving processing
over millions of vertices and edges. The latter makes it in-
feasible to store the graph in the space inefficient adjacency
matrix representation. Hence, prior graph processing ap-
proaches [22, 8, 4] primarily rely on the Compressed Sparse
Row (CSR) representation because of its compact nature.
For any given vertex, the CSR representation allows fast ac-
cess to its incoming/outgoing edges along with the addresses
of source/destination vertices at the other end of these edges.
The representation mainly consists of 4 arrays:

Graph Edges Vertices

LiveJournal [17] 68 993 773 4 847 571
Pokec [25] 30 622 564 1 632 803

HiggsTwitter [7] 14 855 875 456 631
RoadNetCA [17] 5 533 214 1 971 281
WebGoogle [17] 5 105 039 916 428

Amazon0312 [16] 3 200 440 400 727

Table 1: Real-world graphs used in the experiments.
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Figure 1: Degree distribution for graph vertices.

• VertexValues: VertexValues[i] (0 ≤ i < n) represents
the value of vertex vi.

• SrcIndxs: SrcIndxs[i] (0 ≤ i < m) represents for edge
ei, the index of the source vertex in VertexValues. The
incoming edges for a given vertex are stored in consec-
utive locations of this array.

• InEdgeIdxs: InEdgeIdxs[n] = m. InEdgeIdxs[i] (0 ≤
i < n) represents the starting index of a sub-array
Ei of SrcIndxs. The end of this sub-array Ei can be
determined by the entry at i + 1. Ei combined with
SrcIndxs represents the incoming edges for node ni.

• EdgeValues: EdgeValues[i] (0 ≤ i < m) represents the
value of the edge ei.

The neighborhood of vertex ni can be determined by look-
ing at locations of VertexValues which are represented by
the sub-array starting at SrcIndxs[InEdgeIndxs[i]] and end-
ing at SrcIndxs[InEdgeIndxs[i + 1]] and the edge weights
can be determined by the sub-array of EdgeValues starting
at InEdgeIndxs[i] and ending at InEdgeIndxs[i+1]. Figure 2
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Figure 2: An example graph and its CSR representation.

shows an example of a graph and its CSR representation us-
ing its incoming edges. As we can see, the neighborhood of
vertex 2 (shown in green) is represented by VertexValues[1]
and VertexValues[7] and the sub-array EdgeValues[4:5].

To process graphs on GPUs, Virtual Warp-Centric tech-
nique [12] has been shown to perform better than other tech-
niques like [10]. Here, the physical warp is broken into 2,
4, 8 or 16 smaller virtual warps to control the trade-off be-
tween GPU underutilization and path divergence. Process-
ing is done iteratively such that each iteration is performed
by a separate GPU kernel call. In each iteration, a virtual
warp handles the computation of a set of vertices. For each
vertex, threads within the virtual warp process the vertex
neighbors in parallel; each of its incoming edges is read and
processed by a separate thread in the virtual warp. Then,
parallel reduction technique [11] is used to calculate the new
vertex value. Even though Virtual Warp-Centric method
achieves faster graph processing compared to other tech-
niques, its performance is limited by two major phenomena:
high non-coalesced memory accesses; and high GPU under-
utilization & intra-warp path divergence. We elaborate upon
these drawbacks next.

Non-Coalesced Accesses: As discussed, SrcIndxs[i] and
SrcIndxs[i + 1] represent non-consecutive indices in Vertex-
Values array. Hence, parallel reading of these values by
threads in a virtual warp leads to random non-coalesced
memory accesses requiring multiple inefficient memory trans-
actions. Note that a major portion of graph processing is
reading these vertex structures over and over again, making
the problem very significant. Table 2 shows the average effi-
ciency of memory accesses for different applications. Global
memory access efficiency essentially tells how well coalesced
global accesses are. Such low percentages of efficiency in-
dicates that a great number of accesses were fulfilled using
greater than minimal number of transactions due to poor
locality of data of interest.

Underutilization & Intra-warp Divergence: Graph
processing is highly sensitive to the degrees of vertices in
the input graph. Processing of a low-degree vertex causes
threads within the virtual warp to remain idle, leading to
GPU underutilization. If we select a smaller virtual warp
size to decrease underutilization, different amounts of com-
putation load for threads inside the physical warp cause
intra-warp path divergence. Figure 1 shows that real world
graphs have a mix of low and high degree vertices. Ta-
ble 2 shows that the warp execution efficiency is quite low
for eight graph applications on different input graphs. High
intra-warp divergence and GPU underutilization limit warp
execution efficiency; thus, degrading the overall performance
of the GPU kernel.

Application Global Warp

Name Memory Execution

Accesses

Breadth-First-Search (BFS) 12.8%-15.8% 27.8%-38.5%

Single Source Shortest Path (SSSP) 14.0%-19.6% 29.7%-39.4%

PageRank (PR)[23] 10.4%-14.0% 25.3%-38.0%

Connected Components (CC) 12.7%-20.6% 29.9%-35.5%

Single Source Widest Path (SSWP) 14.5%-20.0% 29.7%-38.4%

Neural Network (NN)[3] 13.5%-17.8% 28.2%-37.4%

Heat Simulation (HS) 14.5%-18.1% 27.6%-36.3%

Circuit Simulation (CS) 12.0%-18.8% 28.4%-35.5%

Table 2: CSR-based Virtual Warp-Centric method [12] for
graphs in Table 1: Minimum and maximum efficiency of
global memory accesses and warp execution across all itera-
tions between all graphs.

In conclusion, even though CSR representation is a pop-
ular choice because of its space-efficiency, high frequency of
non-coalesced memory accesses because of poor locality and
path divergence because of variable degree distribution of
real graphs, significantly limit its performance while pro-
cessing graphs on GPUs. In addition, the user is always
trapped in a trade-off between intra-warp path divergence
and GPU underutilization which has a different best con-
figuration for different graphs. This motivates the need to
explore novel graph representations that are GPU friendly
and allow faster processing.

3. CUSHA GRAPH REPRESENTATIONS
In this section we discuss two graph representations that

result in improved coalescence in memory accesses and high
GPU utilization and hence achieve higher performance.

3.1 G-Shards
Representing a graph with shards has been shown to im-

prove I/O performance for disk based graph processing on a
shared memory system [14]. Since shards allow contiguous
placement of the graph data required by a subset of compu-
tations, G-Shards uses the shard concept to secure benefits
from coalesced accesses.

G-Shards presents a graph G as a set of shards where
each shard is an ordered list of incoming edges and each
edge e = (u, v) in the shard is represented by a 4-tuple:

• SrcIndex : Index of the source vertex u

• SrcValue: Content of source vertex u

• EdgeValue: Content or weight of the edge e

• DestIndex : Index of the destination vertex v

The set of shards used to represent a graph G exhibit the
following properties:

• Partitioned : V is partitioned into disjoint sets of ver-
tices and each set is represented by a shard such that
it stores all the edges whose destination is in that set.

• Ordered : The edges in a shard are listed based on in-
creasing order of their SrcIndex.

Figure 3(a) shows G-Shards representation for the graph
shown in Figure 2(a). We divide the vertex-set into two
groups so that Shard-0 has the list of edges whose destina-
tion is between 0 to 3 and Shard-1 has the list of edges whose
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in Figure 2(a).
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Figure 3: G-Shards representation providing coalesced memory accesses.

destination is between 4 to 7. Note that within Shard-0 (and
Shard-1 ), the edges are sorted based on SrcIndex.

To facilitate efficient processing of graphs on GPU us-
ing shards, G-Shards also maintains a separate array named
VertexValues which allows quick access to values of vertices.
Throughout the computation. VertexValues[i] represents
the most updated value of vertex vi.

Each shard is processed by a block in the GPU in 4 steps.
In step 1, the threads fetch the updated vertex values from
the VertexValues array to the shared memory of the block.
Consecutive threads of the block read consecutive elements
of VertexValues array; hence load requests coalesce into min-
imum number of transactions. In step 2, using the fetched
values, block threads process edges inside the shard in par-
allel. Figure 3(b) shows consecutive threads of the block
read consecutive shard entries residing in global memory
thus providing coalesced global memory loads. In step 3,
the threads write back the newly computed values to the
VertexValues array. This step is done in a similar manner as
step 1 except that reads are replaced by writes. Thus, global
memory stores in this step, similar to global loads in step
1, are satisfied by minimum number of write transactions
in memory controller. Step 4 (write-back stage) performs
the remaining task which is to propagate computed results
to other shards SrvValue array. To have coalesced global
memory accesses in write-back stage as well, we assign each
warp in the block to update necessary SrvValue elements in
one shard. Because of aforementioned Ordered property of
shards, elements in one shard that need to be read and writ-
ten by another shard are arranged contiguously. Figure 3(c)
shows consecutive threads inside a warp read consecutive
SrcIndex elements inside another shard and write to con-
secutive SrcValue elements; therefore memory accesses are
coalesced.

Thus, we observe that shard processing by threads of a
block on GPU involves fully coalesced global memory reads
and writes during all steps. Accesses to VertexValues in
steps 1 and 3, reading shard elements in step 2, and updating
regions of other shards in step 4 all become coalesced.

Each shard region whose elements need to be accessed and
updated together by another shard is called a computation

window. A computation window Wij , is the set of entries
in shard j that are involved during processing of shard i
such that, each edge in Wij has SrcIndex in the range of
vertex indices associated with shard i. This means that the
source vertices of all the edges in Wij belong to the vertex-
range a to b if shard i represents edges whose destination
vertices belong to the same range a to b. As an example,
different colors for entries in Figure 3(a) distinguish different
computation windows; the windows W0j are represented in
red (first two elements of shard-0 and first four elements
of shard-1) and windows W1j are represented in green for
0 ≤ j < 2. Intuitively, for a constant k, if number of shards
is p, the collection of edges in windows Wkj , 0 ≤ j < p,
completely represents the sub-graph induced over the subset
of vertices associated with shard k.

3.2 Concatenated Windows (CW)
G-Shards representation on GPU provides coalesced global

memory accesses to neighbor’s contents which was not achiev-
able by CSR. However, the performance can be limited by
various characteristics of input graphs. First, imbalanced
shard sizes can cause inter-block divergence. We found that
this effect is insignificant because of the abundance of shards
to be processed that keeps the Streaming Multiprocessors
busy. Second, unbalanced window sizes can cause intra-
block/inter-warp divergence; however, due to similar reason,
we conclude that its impact is insignificant too. Finally,
sparse graphs lead to small window sizes which cause GPU
underutilization. This is mainly because most of the threads
within the warp are idle when entries for the computation
window are being processed by other threads. This makes
G-Shards representation on GPUs sensitive to window sizes;
in particular, smaller window sizes lead to inefficient write-
back of updated values in the windows.

Next we show that the window size is mainly determined
by the size of the input graph, its sparsity, and the num-
ber of vertices assigned to shards. Let us consider a graph
G = (V,E) to be represented by |S| shards. The average

shard size (the number of edges in the shard) is |E|
|S| . Since

each shard has at most |S| windows (one for each shard), the

average window size becomes |E|
|S|2 . Assuming that a shard
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Figure 4: Concatenated Windows Representation and its Avoidance of GPU underutilization in presence of small windows.

is assigned at most |N | vertices, |S| = d |V |
|N|e. Hence, the av-

erage window size is approximately |E||N|2
|V |2 . Thus, the win-

dows become smaller as the graph becomes sparser. Also,
the quadratic term in the denominator indicates that the
windows rapidly become smaller as the number of vertices
in the graph increases.

We develop the Concatenated Windows representation to
address the above issue. To avoid GPU underutilization
induced by large sparse graphs, CW collocates computation
windows. For a given shard i, a Concatenated Window CWi

is defined as a list of SrcIndex elements of all computation
windows Wij , ordered by j, as shown in Figure 4(a). Here,
we retain the original representation of shards, but separate
out the SrcIndex entries to order them differently. SrcIn-
dex entries for shard i in CW representation can be created
by concatenating SrcIndex in all Wij in G-Shards repre-
sentation. Hence, a directed graph is represented as a set
of shards, each of them associated with a separate SrcIn-
dex array. Each shard is an ordered list of incoming edges
where each edge is now represented by a 3-tuple: SrcValue,
EdgeValue, and DestIndex. The set of shards is Partitioned
and Ordered as described in the previous section. Note that
by separating out SrcIndex array from the rest of the shard,
we break the association between SrcIndex and SrcValue
entries which is required to write-back the updated values.
Therefore, to facilitate fast access of SrcValue entries using
SrcIndex entries, we use an additional Mapper array.

Processing graphs using Concatenated Windows, similar
to G-Shards representation, takes 4 steps with a difference
in 4th step (write-back stage). As Figure 4(b) shows, a
thread is assigned to every entry of SrcIndex. Using the
entries in SrcIndex and Mapper arrays, the thread updates
corresponding SrcValue entries in the shard. By concatenat-
ing small windows to form a larger set, consecutive threads
within the block continuously process consecutive entries,
thus improving GPU utilization for large sparse graphs.

Figure 4(c) shows the Concatenated Windows represen-
tation for the graph shown in Figure 2(a). As we can see,
the SrcIndex columns are separately ordered compared to
the rest of the shards. There are six entries in SrcIndex

(shown in red) associated with Shard-0 representing values
from CW0. The first two entries come from W00 and the
rest come from W01. The eight entries in SrcIndex (shown
in green) are associated with Shard-1 and represent values
from CW1. The first five come from W10 and the rest come
from W11.

By retaining the basic representation of G-Shards, we
leverage the locality of data required by each computation
set. By changing the ordering of the SrcIndex column using
Concatenated Windows, we benefit from higher utilization
of threads in warps, thus achieving best of both worlds.

4. CUSHA FRAMEWORK
In this section we first describe how CuSha executes iter-

ative parallel graph algorithms. Then we show that CuSha
makes various applications easy to program.

Iterative parallel graph processing in CuSha. The
parallel execution framework of CuSha implements itera-
tive parallel graph processing where each iteration performs
three phases: gather/read, update/compute and scatter/write.
CuSha’s computational model is largely based on the read-
compute-write iterative processing mechanism where the com-
pute phase is further split into two phases.

Figure 5 shows the pseudo-code for iterative processing.
The host continuously launches new GPU kernels until the
algorithm converges to a stable solution. At the end of each
iteration, the host and the device implicitly synchronize us-
ing a cudaMemcpy that copies is converged back to CPU-
side (line 29). After each iteration, the CPU determines
whether or not the next iteration should be performed by
launching another GPU kernel.

Each shard is completely processed by one GPU block.
For each shard, a values updated flag resides in the shared
memory and indicates whether or not the values were up-
dated. It is initially set to false (line 5) by one of the
threads in the block. Appropriate Vertex, Edge and Stat-
icVertex structures are initialized where the StaticVertex
structure refers to properties of the vertex that remain con-
stant throughout the execution.
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0. is_converged = false;
1. while (!is_converged) {
2. is_converged = true;
3. parallel-for shard s in shards {
4. shared Vertex local_vertices[N];
5. shared values_updated = false;
6. offset = s.ID * N;
7. Vertices = VertexValues+offset;

/* 1st stage */
8. parallel-for vertex index v in s {
9. init_compute( local_vertices+v,

Vertices+v );
10. }
11. synchronize; //synchronizes block threads

/* 2nd stage */
12. parallel-for edge index e in s {
13. compute( s.SrcValue+e, s.SrcValueStatic+e,

s.EdgeValue+e,
local_vertices+s.DestIndex[e]-offset );

14. }
15. synchronize; //synchronizes block threads

/* 3rd stage */
16. parallel-for vertex index v in s {
17. if ( update_condition

( local_vertices+v, Vertices+v ) ) {
18. Vertices[v] = local_vertices[v];
19. values_updated = true;
20. }
21. }
22. synchronize; //synchronizes block threads

/* 4th stage */
23. if( values_updated ) {
24. w = window_set_from_all_shards(s);

//Windows in all the shards for shard-k
25. write_back( local_vertices, w );
26. is_converged = false;
27. }
28. }
29. barrier;
30. }

Figure 5: Graph processing procedure in CuSha.

In the first stage, consecutive threads initialize local vertices
array from consecutive VertexValues array elements in the
global memory (line 9) thus providing fully coalesced mem-
ory accesses.

The second stage mainly involves invoking the compute
method with the appropriate parameters for shards. Global
memory access pattern in this stage is depicted in Figure 3(b).
Since multiple threads can simultaneously modify the same
shared memory location, the user-provided compute func-
tion must be atomic with respect to updating the destina-
tion vertex. Note that the atomic operation will be inexpen-
sive mainly because it is a shared memory update and hence,
only can affect other threads inside the same streaming mul-
tiprocessor, leaving the threads in other streaming multi-
processors unaffected. Furthermore, the lock contention is
low because of the size of shards, allowing these operations
to be performed almost independently with respect to each
other. Also, since the order of these invocations is non-
deterministic, the compute function must be both, commu-
tative and associative.

In the third stage, the threads invoke the update condition
method (lines 17 - 19). If a true value is returned by this
method, the threads update the contents of VertexValues
and values updated is set. Note that the update condition
method can also be used to perform computations unique to
each vertex. In this case, the computation logic can be split
across the compute and update condition methods such that

0. typedef struct Edge { unsigned int Weight; } Edge;
1. typedef struct Vertex { unsigned int Dist; } Vertex;
2. __device__ void init_compute(

Vertex* local_V, Veretx* V ) {
3. local_V->Dist = V->Dist;
4. }
5. __device__ void compute(

Vertex* SrcV, StaticVertex* SrcV_static,
Edge* E, Vertex* local_V) {

6. if (SrcV->Dist != INF)
7. atomicMin ( &(local_V->Dist),

SrcV->Dist + E->Weight );
8. }
9. __device__ bool update_condition(

Vertex* local_V, Vertex* V ) {
10. return ( local_V->Dist < V->Dist );
11. }

Figure 6: SSSP implementation in CuSha.

the compute method mainly leverages edge-level parallelism
and the update condition method leverages vertex-level par-
allelism.

In the last stage, if values updated flag is set, windows
in all the shards are updated with newly computed val-
ues (line 25) and one of the threads inside the block sets
the is converged flag. With G-Shards representation, the
threads of a block are grouped into warps which iterate
through the corresponding windows in all the shards (Figure
3(c)). As we discussed in Section 3.2, although the accesses
are coalesced in this case, the technique is susceptible to
GPU underutilization when windows are small. With CW
representation, the threads of a block read the SrcIndex and
Mapper array and appropriately update the windows in all
shards (Figure 4(b)). Even though the memory accesses are
not fully coalesced in this case, it requires the same number
of memory transactions as in G-Shards representation with
the added benefit of utilizing all threads.

Selecting shard size. As we know, processing graphs us-
ing G-Shards and CW representations is sensitive to win-
dow sizes which, in turn, is dependent on the size of shards.
Hence, during initialization, CuSha determines the number
of vertices assigned to shards for each input graph using av-

erage window size formula: |E||N|2
|V |2 derived in Section 3.2.

From the architecture standpoint, |N | is limited by the size
of shared memory; to achieve maximum theoretical occu-
pancy and to fully utilize the SM resources, |N | is dependent
on the number of blocks residing on a single SM. For exam-
ple, if a SM has 48KB shared memory and we wish to have
two blocks residing in it at the same time, each block can be
assigned up to 24KB of shared memory. Assuming that ver-
tex value is 4 bytes, |N | can at most be 6K. Similarly, with
four blocks on one SM, |N | can at most be 3K. Choosing the
largest value for |N | (6K in the above example) and hence,
having a block with a lot of threads increases the likelihood
of conflicts during atomic operations due to limited number
of shared memory lock indices. Hence, for a given input
graph, CuSha first calculates |N | by assuming the average
window size to be 32 (equal to the warp size). Then, it de-
termines block size to be the nearest value to the calculated
|N | that utilizes all available shared memory quota for the
block on the SM. This allows CuSha to generate the set of
shards that is best suited for each input graph.

Programming applications using CuSha. The above
computational model enables users to easily implement a
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typedef typedef typedef __device__ void __device__ void __device__ bool

Benchmark struct struct struct init_compute( compute(Vertex* SrcV, update_condition(

Vertex { StaticVertex { Edge { Vertex* local_V, StaticVertex* SrcV_static, Vertex* local_V,

}Vertex; }StaticVertex; }Edge; Veretx* V){} Edge* E,Vertex* local_V){} Vertex* V){}

unsigned local_V->Level if(SrcV->Level!=INF) return(local_V->Level

BFS int =V->Level; atomicMin(&(local_V->Level) < V->Level);

Level; ,SrcV->Level+1);

unsigned unsigned local_V->Dist if(SrcV->Dist!=INF) return(local_V->Dist

SSSP int int =V->Dist; atomicMin(&(local_V->Dist) < V->Dist);

Dist; Weight; ,SrcV->Dist+E->Weight);

float unsigned int local_V->Rank unsigned int nbrsNum= local_V->rank=

Rank; NbrsNum; =0; SrcV_static->NbrsNum; (1-DAMPING_FACTOR)+local_V

PR if(nbrsNum!=0)atomicAdd ->rank*DAMPING_FACTOR;

(&(local_V->rank), return(fabs(local_V->

SrcV->Rank/nbrsNum); rank-V->rank)>TOLERANCE);

unsigned local_V->Cmpnent atomicMin(&(local_V->Cmpnent) return(local_V->Cmpnent

CC int = V->Cmpnent; ,SrcV->Cmpnent); < V->Cmpnent);

Cmpnent;

unsigned unsigned local_V->BWidth if(SrcV->BWidth!=0) return(local_V->BWidth

SSWP int int =V->BWidth; atomicMax(&(local_V->BWidth) > V->BWidth);

BWidth; Width; ,min(SrcV->BWidth,E->Width));

float float local_V->x atomicAdd(&(local_V->x) local_V->x=

NN x; Weight; =0; ,SrcV->x*E->weight); tanh(local_V->x);

return(fabs(local_V->x

- V->x)>TOLERANCE);

float Q; float local_V->Q=V->Q; atomicAdd(&(local_V->Q_new) bool B=fabs(local_V->Q-

HS float coeff; local_V->Q_new ,(SrcV->Q-local_V->Q) local_V->Q_new)>TOLERANCE;

Q_new; =local_V->Q; *E->coeff); if(B) local_V->Q=

local_V->Q_new; return B;

float V; float G; local_V->V=0; float G=E->G; if(V->GsumOrA){ local_V->

float local_V-> atomicAdd(&(local_V->V) GsumOrA=1; local_V->V=V->V;

GsumOrA; GsumOrA=0; ,SrcV->V*G); return false;} else if(

CS atomicAdd(&(local_V local_V->GsumOrA){ local_V->V

->GsumOrA),G); /= local_V->GsumOrA; local_V->

GsumOrA=0; return(fabs(

local_V->V-V->V)>TOLERANCE);}

else return false;

Table 3: Implementation of various benchmarks in CuSha.

wide range of graph processing algorithms. As an example,
let us consider the implementation of Single Source Short-
est Path (SSSP) algorithm. The vertex-centric approach
for SSSP is to iteratively compute the value for each vertex
based on the minimum sum of its neighbor’s value and the
corresponding edge weight. Figure 6 presents the structure
of a vertex and the functions required to compute SSSP on a
graph. Every vertex holds an integer (initially set to a very
large number representing ∞) standing for the shortest dis-
tance from the source (line 0). Source vertex value is set to 0.
At the beginning of each iteration, the init compute method
loads the most updated vertex values into the block’s shared
memory. The compute function sets the distance of a ver-
tex by atomically choosing the minimum of the calculated
distances. The update condition signals the caller to execute
the next iteration if the new distance of the vertex is smaller
than its old value. As we can see, the user only has to pro-
vide the init compute, compute, and update condition meth-
ods along with the required structures; hence making it eas-
ier to code graph processing algorithms using CuSha. Also,
the commonalities among various algorithms allow users to
quickly implement different algorithms by simply modifying
the existing ones. Table 3 presents 8 graph processing al-

gorithms we implemented using CuSha alongside variables
for structures and instructions for three functions used by
these algorithms. Note that having arrays of structure in
older generations of CUDA devices could limit the effective
bandwidth due to strided distribution of elements. How-
ever, simultaneous accesses to structure elements alongside
the introduction of global L2 cache in newer CUDA-enabled
GPUs significantly diminishes the impact of strided accesses.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of our CuSha

framework using the eight graph applications listed in Ta-
ble 2 and six publicly available [15] real-world graphs listed
in Table 1. The graphs cover a broad range of sizes and
sparsity and come from different real-world origins. Live-
Journal and Pokec are directed social networks which rep-
resent friendship among the users. HiggsTweet is a social
relationship graph among twitter users involved in tweet-
ing about the discovery of Higgs particle. RoadNetCA is
the California road network in which the roads are repre-
sented by edges and the vertices represent the intersections.
WebGoogle is a graph released by Google in which vertices
represent web pages and the directed edges are hyperlinks
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BFS SSSP PR CC SSWP NN HS CS

LiveJournal
CuSha-CW 166 346 709 190 531 203 386 855
CuSha-GS 170 414 885 195 683 197 465 929
VWC-CSR 280-420 770-1075 2814-3503 264-396 1346-1954 3872-6568 458-647 984-1423

Pokec
CuSha-CW 70 143 255 103 137 3202 246 186
CuSha-GS 63 138 267 86 134 3278 244 175
VWC-CSR 125-172 283-357 1539-3246 109-135 310-375 678-827 313-385 190-246

HiggsTwitter
CuSha-CW 59 130 345 72 94 246 150 96
CuSha-GS 61 127 375 71 89 246 143 89
VWC-CSR 76-241 175-556 682-2750 67-164 113-325 224-713 112-319 70-171

RoadNetCA
CuSha-CW 286 384 54 435 1026 247 43 2472
CuSha-GS 432 647 122 897 1905 328 41 2521
VWC-CSR 655-5727 710-6731 103-521 747-5665 2071-15500 308-1984 76-253 4634-31792

WebGoogle
CuSha-CW 28 41 69 29 74 115 84 98
CuSha-GS 27 42 73 26 77 125 83 116
VWC-CSR 100-138 138-208 181-306 63-123 247-373 133-196 148-213 159-197

Amazon0312
CuSha-CW 19 36 44 17 44 40 47 504
CuSha-GS 24 45 46 18 52 49 55 509
VWC-CSR 35-53 80-117 87-157 17-55 79-121 48-83 67-117 621-940

Table 4: CuSha-CW, CuSha-GS, and VWC-CSR running times on different algorithms and inputs. Reported times include
host-device data transfers and are in milliseconds.

CuSha-GS CuSha-CW
over VWC-CSR over VWC-CSR

Averages Across Input Graphs

BFS 1.94x−4.96x 2.09x−6.12x
SSSP 1.91x−4.59x 2.16x−5.96x
PR 2.66x−5.88x 3.08x−7.21x
CC 1.28x−3.32x 1.36x−4.34x
SSWP 1.90x−4.11x 2.19x−5.46x
NN 1.42x−3.07x 1.51x−3.47x
HS 1.42x−3.01x 1.45x−3.02x
CS 1.23x−3.50x 1.27x−3.58x

Averages Across Benchmarks

LiveJournal 1.66x−2.36x 1.92x−2.72x
Pokec 2.40x−3.63x 2.34x−3.58x
HiggsTwitter 1.14x−3.59x 1.14x−3.61x
RoadNetCA 1.34x−8.64x 1.92x−12.99x
WebGoogle 2.41x−3.71x 2.45x−3.74x
Amazon0312 1.37x−2.40x 1.57x−2.73x

Table 5: Speedup Ranges of CuSha-GS and CuSha-CW over
VWC-CSR Configurations.

connecting those pages. Amazon0312 is Amazon’s product
co-purchasing network collected on March 2, 2003. In this
graph, vertices are products and an edge between vertices in-
dicates that the two products were frequently co-purchased.

The experiments were performed on a system with Nvidia
GeForce GTX780 which has 12 SMX multiprocessors and 3
GB GDDR5 RAM. On the host side, there is an Intel Core
i7-3930K Sandy Bridge CPU with 12 cores (hyper-threading
enabled) operating at 3.2 GHz clock frequency. PCI Express
3.0 lanes operating at 16x speed transfer data between the
host DDR3 RAM (CPU side) and the device RAM (GPU
side). The benchmarks were evaluated using CUDA 5.5 on
Ubuntu 12.04, Kernel v3.5.0-45. All the programs were com-
piled with the highest optimization level flag (-O3).

5.1 Performance Analysis
To evaluate the effectiveness of graph processing on CuSha

we compare the performance of following techniques:

• CuSha-GS: This is our Cusha framework when using
G-Shards representation;

CuSha-GS CuSha-CW
over MTCPU-CSR over MTCPU-CSR

Averages Across Input Graphs

BFS 2.41x−10.41x 2.61x−11.38x
SSSP 2.61x−12.34x 2.99x−14.27x
PR 5.34x−24.45x 6.46x−28.98x
CC 1.66x−7.46x 1.72x−7.74x
SSWP 2.59x−11.74x 3.03x−13.85x
NN 1.82x−19.17x 1.97x−19.59x
HS 1.74x−7.07x 1.80x−7.30x
CS 2.39x−11.06x 2.49x−11.55x

Averages Across Benchmarks

LiveJournal 4.1x−26.63x 4.74x−29.25x
Pokec 3.26x−15.19x 3.2x−14.89x
HiggsTwitter 1.23x−5.30x 1.23x−5.34x
RoadNetCA 1.95x−9.79x 2.95x−14.29x
WebGoogle 1.95x−9.79x 2.95x−14.29x
Amazon0312 1.65x−6.27x 1.88x−7.20x

Table 6: Speedup Ranges of CuSha-GS and CuSha-CW over
MTCPU-CSR Configurations.

• CuSha-CW: This is our CuSha framework when us-
ing CW representation;

• VWC-CSR: This is virtual warp-centric [12] tech-
nique using CSR representation. We considered vir-
tual warp sizes of 2, 4, 8, 16, and 32; and

• MTCPU-CSR: This is the multi-threaded CPU im-
plementation using the CSR representation built using
pthreads such that each thread is assigned to a group
of vertices that are adjacent to each other in the CSR
representation. We considered the runs with 1, 2, 4,
8, 16, 32, 64, and 128 threads on the 12-core host pro-
cessor with hyper-threading enabled.

Speedups. Table 4 shows raw processing time (including
host-device data transfers) of CuSha-CW, CuSha-GS, and
VWC-CSR. These times are presented as ranges (min - max)
because VWC-CSR is run for several configurations as its
performance varies with chosen virtual warp sizes. From
this table we can get the speedups of CuSha over VWC-
CSR. When averaging speedups across all benchmarks and
inputs, CuSha-GS provides speedups in range of 1.72x -
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4.05x while CuSha-CW provides speedups in range of 1.89x
- 4.89x over VWC-CSR. Table 5 shows the speedup ranges
separately for each benchmark when averaged across all in-
puts and then separately for each input graph when averaged
over all benchmarks. We observe that CuSha outperforms
VWC-CSR across all benchmarks and all inputs with max-
imum improvements observed for PageRank (PR) program
and RoadNetCA input graph. We also observe that both G-
Shards and Concatenated Windows contribute substantially
to the resulting speedups. For example, for PageRank, max-
imum speedup observed using CuSha-GS is 5.88x and this
increases to 7.21x when CuSha-CW is used.

Results in Table 6 demonstrate CuSha’s substantial per-
formance improvements over MTCPU-CSR. The maximum
speedups correspond to the single-threaded CPU implemen-
tation while the minimums correspond to use of best number
of CPU threads. Best configuration varies from one bench-
mark and graph combination to another. When averaging
speedups across all benchmarks and inputs, CuSha-GS pro-
vides speedups in range of 2.57x - 12.96x while CuSha-CW
provides speedups in range of 2.88x - 14.33x over MTCPU-
CSR. Highest speedups were observed for PageRank pro-
gram and the largest input graph LiveJournal.

Data transfer times between the host and the device have
been included in the results reported in Table 5 and Table 6.

CuSha-CW CuSha-GS Best VWC-CSR
LiveJournal 929.1 M 692.2 M 272.4 M
Pokec 1009.9 M 942.2 M 269.7 M
HiggsTwitter 378.8 M 323.9 M 208.8 M
RoadNetCA 19.9 M 13.0 M 8.5 M
WebGoogle 242.7 M 243.1 M 52.5 M
Amazon0312 208.8 M 149.4 M 89.8 M

Table 7: Traversed Edges Per Second (TEPS) for BFS with
CuSha-CW, CuSha-GS, and VWC-CSR using the best con-
figuration for each graph.

TEPS data for BFS traversal. Table 7 shows number
of Traversed Edges Per Second (TEPS) in BFS for CuSha-
CW, CuSha-GS, and VWC-CSR with the best performance
handpicked by running it with different virtual warp sizes.
As the table shows, CuSha can be up to 5 times better than
the best VWC-CSR. CuSha provides performance gain over
VWC-CSR by eliminating non-coalesced accesses and thread
divergence, which will be further explored in this section.

Figure 7 shows the number of vertices updated during
BFS traversal iteration by iteration over time for CuSha-CW
and CuSha-GS, and for VWC-CSR with the warp size ex-
hibiting best performance. Processing with CuSha-CW and
CuSha-GS usually includes more iterations than VWC-CSR
because G-Shards and CW contain more than one version
of vertex values; unlike CSR that only stores one version of
it. On the other hand, iterations take much less time with
G-Shards and CW because of the GPU-friendly representa-
tion. Faster iterations in G-Shards and CW result in much
quicker convergence of BFS in all the graphs.

Global memory and warp execution efficiency. The
speedups of CuSha over VWC-CSR observed can be ex-
plained by studying the improvements in global memory ac-
cesses and warp execution efficiencies. As we had shown
earlier, these efficiencies are quite low for VWC-CSR. Fig-
ure 8 compares the average global memory store efficiency,
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Figure 7: BFS traversal for CuSha-CW and CuSha-GS, and
for VWC-CSR with the best handpicked virtual warp size.
Each point stands for an iteration.

the average global memory load efficiency, and the average
warp execution efficiency of VWC-CSR with best configura-
tion, CuSha-GS, and CuSha-CW while processing LiveJour-
nal graph.

The global memory store efficiency is the ratio of the
global memory store throughput achieved by the program to
the global memory store throughput that is actually needed
by the program. It indicates how well the threads within a
kernel write to the global memory: a high value shows that
more store operations are fulfilled with coalesced writes. The
average of this value across all kernel iterations during a run
is the average global memory store efficiency. As we can
see, VWC-CSR has a very low average global memory store
efficiency (1.93% on average) because when the warp needs
to update the vertex content, only one thread inside the vir-
tual warp is active and writing to memory. On the other
hand, CuSha-GS and CuSha-CW have a much higher aver-
age global memory store (27.64% for G-Shards and 25.06%
for CW) because updates to vertex contents are done in par-
allel by multiple threads.

The global memory load efficiency indicates the ratio of
achieved global memory load throughput to required load
throughput. Compared to CuSha, VWC-CSR achieves lower
global memory load efficiency (28.18% on average) mainly
because of non-coalesced accesses. CuSha-GS and CuSha-
CW achieve 80.15% and 77.59% global memory load effi-
ciency on average, respectively. For both CuSha-GS and
CuSha-CW, the average global memory load is higher than
store mainly because of the heavy, but coalesced, memory
reads of shard entries.
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Figure 8: Average profiled efficiencies of CuSha-GS and
CuSha-CW vs. best VWC-CSR configuration on LiveJour-
nal graph.

Finally, the warp execution efficiency is defined as the
ratio of the average active threads in a warp to the max-
imum possible active threads in a warp per multiproces-
sor. It indicates how well GPU hardware resources are uti-
lized. Figure 8 shows that the VWC-CSR has a much lower
warp execution efficiency (34.48% on average) compared to
CuSha (88.90% for G-Shards and 91.57% for CW on aver-
age) mainly due to the impact of different number of neigh-
bors in VWC-CSR. Since CuSha organizes graph edges in
large shards, this effect is heavily reduced.

Memory occupied by different graph representations.
Next we evaluate the cost of using G-Shards and CW rep-
resentations in terms of increased memory requirement and
copying time over CSR.

Figure 9 shows minimum, average, and maximum space
consumed by CSR, G-Shards, and CW representations for
each input graph, across all benchmarks and normalized
with respect to the CSR average for each benchmark. G-
Shards and CW take 2.09x and 2.58x more space, on aver-
age, than CSR. G-Shards representation adds an overhead
of about (|E|−|V |)×size of(V ertex)+|E|×size of(index)
bytes over CSR. For CW, this overhead increases by |E| ×
size of(index) bytes. Even though the overhead is input
dependent, technological advancements allow us to leverage
reasonably large RAM on the GPU which can easily fit most
real world graphs. If graphs do not fit in the GPU RAM, a
multi-streamed procedure should be incorporated to overlap
computation and data transfer.

Figure 10 breaks the total time, taken by all the bench-
marks on LiveJournal input, down into the time taken by:
1) H2D copy - time to copy graph from CPU side memory to
GPU global memory; 2) GPU Computation - time to process
the graph on GPU; and 3) D2H copy - time to copy the re-
sults back from GPU global memory to CPU side memory.
We can see that CuSha takes more H2D copy time com-
pared to VWC-CSR mainly because of the space overheads
involved in using G-Shards and CW. However, computation
friendly representations of G-Shards and CW allow faster
processing, which in turn significantly improves the overall
performance. D2H copy only involves the final vertex values
and hence, is negligible. Also, CuSha-CW takes more time
to copy compared to CuSha-GS because of the additional
mapper array.
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Figure 9: Memory occupied by each graph using CSR, G-
Shards, and CW representations over all benchmarks – val-
ues are normalized with respect to CSR average. Numbers
in the figure are maximums in each case.
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Figure 10: Time breakdown: device-to-host copy time, GPU
execution time, and host-to-device copy back time on Live-
Journal. VWC-CSR has the best configuration.

5.2 Sensitivity Analysis of CW
In this section we study the sensitivity of CuSha-CW

across different input graph characteristics. To create the
graphs used in this study we use the SNAP graph library [2]
and the RMAT [5] model that generates scale free graphs
which resemble the characteristics of real-world graphs such
as power-law graphs.

Figure 12 shows the total running time normalized with
respect to the shortest time for SSSP on CuSha with nine
synthetically-created RMAT graphs across range of different
sizes and sparsities. It confirms the sensitivity of G-Shards
representation to the graph size, the graph sparsity, and the
number of vertices assigned to a shard (|N |). We discuss
each of these parameters with the help of Figure 11 which
shows the distribution of window sizes in different scenarios.

Graph size: Increasing the number of edges and vertices in
the graph causes the frequency of small windows to increase
(see Figure 11(a)). This makes the G-Shards representation
more vulnerable to graph size compared to CW. This can be
seen in Figure 12: processing time with G-Shards more than
doubles from 67 8 graph with |N | = 3k to 134 16 graph with
|N | = 3k while with CW it increases by 1.6x.

Sparsity : Figure 11(b) shows that by increasing graph spar-
sity, the number of windows with size close to zero increases.
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Figure 11: Frequency of window sizes (from 0 to 128) having different RMAT input graphs. |N | is the number of vertices
assigned to a shard. A i j graph has around i million edges and j million vertices.
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Figure 12: Normalized CuSha running time configured to
use G-Shards and CW against RMAT graphs having differ-
ent shard sizes in SSSP benchmark. In the figure, a i j graph
has around i million edges and j million vertices. Numbers
close to x axis are number of vertices assigned to a shard.

G-Shards representation is more sensitive to small sized win-
dows compared to CW, i.e., as graphs become sparser, the
performance of G-Shards degrades rapidly compared to CW.
In Figure 12, the G-Shards processing time doubles from
67 4 graph with |N | = 3k to 67 16 graph with |N | = 3k
while CW processing time increases only slightly.

Vertices assigned to shard (|N |): Larger |N | reduces the
number of shards and increases their size. As a result, larger
|N | increases the size of windows as shown in Figure 11(c).
Hence, while processing very sparse graphs using G-Shards,
it is crucial to have a large value for |N |. Comparatively,
CW is not heavily impacted when |N | is small as shown
with the biggest and sparsest graphs in Figure 12.

We further compared CW sensitivity with VWC-CSR’s.
Figure 13 presents the speedup of CW over VWC-CSR on
RMAT graphs. It shows that with increasing size and spar-
sity of the RMAT graph, CW’s superiority over VWC-CSR
increases. It also reveals the performance change of VWC-
CSR method when different warp sizes are employed. It is
evident from the figure that different graphs with different
characteristics require different configuration of VWC-CSR
for best performance.
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Figure 13: CW speedups over VWC-CSR with virtual warp
sizes 2, 4, 8, 16, and 32 against RMAT graphs in SSSP
benchmark. CW has |N | = 3k. In figure above, a i j graph
has around i million edges and j million vertices.

6. RELATED WORK
Using GPUs for high performance graph processing was

first introduced in [10]. Since then CSR has been the most
popular representation to store graphs on GPU. Even though
efforts have been spent to minimize path divergence as in [12]
and minimize load imbalance as in [21], the CSR represen-
tation inherently suffers from poor locality [18].

Apart from having virtual warps, [12] offers deferring out-
liers and dynamic workload distribution techniques in order
to reduce intra-warp divergence and achieve a balanced load
for different warps. However, the improvements achieved by
these two methods are limited because of the heavyweight
atomic operations on global memory. The technique pre-
sented in [28] tries to balance the load in graphs represented
in CSR by reorganizing the vertices and putting them in
three bins. Based on the size of these bins, appropriate
number of GPU threads are assigned to process these bins,
hence providing a balanced workload distribution.

In [9], TOTEM abstracts away development complexity
and reduces communication overhead for processing graphs
by message aggregation in a heterogeneous many-core sys-
tem. Another hybrid CPU-GPU method that improves the
efficiency of BFS is presented in [13]. During the initial
phases when there are fewer number of vertices to be pro-
cessed, the CPU performs the computation. Later, when
the number of vertices to be processed becomes larger, the
computation is moved onto the GPU. Authors also propose
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a read-queue hybrid technique that switches the processing
scheme based on the size of next level in BFS. [1], [21] and
[19] are various multi-core CPU and GPU works that employ
queues to handle vertices that should be explored in the next
level. The technique presented in [21] efficiently computes
the prefix sum for scatter offset in parallel to produce global
computation frontier queues. Even though using frontiers
is still susceptible to input-dependent non-coalesced mem-
ory accesses, the GPU underutilization is eliminated by this
technique. CuSha is a framework that supports a broader
range of graph algorithms compared to such problem-specific
queue-based solutions for BFS.

Medusa [30] is a generalized GPU-based graph processing
framework that focuses on abstractions for easy program-
ming and scaling to multiple GPUs. CuSha primarily fo-
cuses on exploring new graph representations to allow faster
graph processing. Apart from CSR, various other graph
representations have been proposed that are typically bene-
ficial for targeted applications. For instance, [20] introduces
a novel idea of using sparse bit vectors, a structure similar
to linked list. However, this representation is highly space
inefficient and is only beneficial for morph algorithms when
data access patterns exhibit spatial locality.

Dymaxion [6] is an API to improve memory access pat-
terns on GPUs. It uses two fundamental techniques to lever-
age high memory coalescing:

• Data restructuring: Although this method is effec-
tive and quite common [24], its use in Dymaxion is
limited to predictable data patterns, such as transfor-
mation of two-dimensional matrices from row-major
order to column-major order or vice versa.

• Memory remapping: Allows efficient accessing of
data elements via an intermediate mapping function.
It is similar to CuSha’s CW method.

In [29], authors present data reordering and job swap-
ping techniques to remove GPU memory access irregular-
ities. Data reordering, similar to data restructuring, reposi-
tions elements of an array to minimize required global mem-
ory transactions. In job swapping, threads exchange work
in order to achieve more coalesced memory accesses. It is
usually done using reference redirection, which is similar
to memory remapping. Despite their benefits for applica-
tions with regular chunkable input data, irregular and un-
predictable dependency between real-world graph elements
makes it costly to employ these techniques for graph appli-
cations.

Recently, Wu et al. classified and analyzed few fundamen-
tal methods to minimize non-coalesced memory accesses in
[27]. CuSha employs three of these techniques:

• Duplication: Vertices and destination indices are du-
plicated for edges.

• Reordering: Edges within the shards are sorted based
on their source indices.

• Sharing: Irregular memory accesses are confined to
fast shared memory in the GPU.

7. CONCLUSION
In this paper, we first recognized the use of shards for

efficient graph processing on GPUs through coalesced mem-
ory accesses and introduced G-Shards: a graph represen-

tation that effectively maps shards to various GPU sub-
components. We also proposed a novel representation named
Concatenated Windows to eliminate GPU underutilization
for very large and sparse graphs. Finally, we built CuSha,
a framework to enable users to easily define vertex-centric
algorithms for processing large graphs on GPU. CuSha in-
ternally relies on both G-Shards and Concatenated Win-
dows and exposes necessary functions to be provided by the
users. CuSha achieves substantial speedups over the fine-
tuned state-of-the-art virtual warp-centric method. We be-
lieve that increasing amount of shared memory per SM along
with performance enhancements of shared memory atomic
operations in upcoming CUDA devices will further enhance
the superiority of our two newly introduced representations.
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APPENDIX
A. VIRTUAL WARP-CENTRIC METHOD

Figure 14 shows the pseudo-code for Virtual Warp-Centric
(VWC) method. Similar to CuSha, it performs each itera-
tion of the vertex-centric algorithm in a single GPU kernel
call. During the kernel, the GPU assigns one virtual warp

0. is_converged = false;
1. while (!is_converged) {
2. is_converged = true;
3. parallel-for virtual warp VW{
4. allVWs = blockDim / VW.size;
5. shared Vertex old_V[allVWs];
6. shared Vertex local_V[allVWs];
7. shared Vertex outcome[blockDim];
8. shared unsigned int edges_start[allVWs];
9. shared unsigned int nbrs_size[allVWs];
10. if ( virtual_lane_ID == 0 ) {
11. edges_start[VW.ID] = InEdgeIdxs[VW.ID];
12. nbrs_size[VW.ID] = InEdgeIdxs[VW.ID+1]

- edges_start[VW.ID];
13. old_V[offset] = VertexValues[VW.ID];
14. InitCompute( local_V+offset,

old_V+offset );
15. }
16. parallel-for Nbr in neighbors of vertex

with index VW.ID{
17. edge_index = Nbr+edges_start[VW.ID];
18. Nbr_index = SrcIndex[edge_index];
19. Compute( VertexValues+Nbr_index,

VertexValuesStatic+Nbr_index,
EdgeValues+edge_index, outcome+Nbr );

20. ParallelReduction(outcome,nbrs_size[VW.ID],
local_V+offset,Nbr);

21. }
22. if ( virtual_lane_ID == 0 &&

UpdateCondition ( local_V+offset,
old_V+offset ) ) {

23. VertexValues[VW.ID]=local_V[offset];
24. is_converged = false;
25. }
26. }
27. barrier;
28. }

Figure 14: Graph processing procedure in virtual warp-
centric method using CSR representation.

to process a single vertex (line 3). One virtual lane within
the virtual warp retrieves the starting address for the incom-
ing edges array and the number of neighbors and then, calls
the InitCompute function (lines 10-15). Next, the threads
within the virtual warp are assigned to process the neighbors
(line 16) using the Compute function (line 19). Parallel re-
duction [11] computes the final value of the vertex assigned
to the virtual warp (line 20). Finally, one virtual lane in the
virtual warp performs the UpdateCondition function and up-
dates the source vertex, if necessary (lines 22-25).

Our implementation of VWC requires only one thread in-
side the virtual warp to perform the Single Instruction Sin-
gle Data (SISD) phases as opposed to [12] in which all the
threads execute these phases. Therefore, it avoids possible
bank conflicts and serialization of write instructions in the
shared and global memory respectively.
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