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Abstract—Most GPU-based graph systems cannot handle
large-scale graphs that do not fit in the GPU memory. The
ever-increasing graph size demands a scale-up graph system,
which can run on a single GPU with optimized memory access
efficiency and well-controlled data transfer overhead. However,
existing systems either incur redundant data transfers or fail to
use shared memory. In this paper we present Graphie, a system
to efficiently traverse large-scale graphs on a single GPU. Graphie
stores the vertex attribute data in the GPU memory and streams
edge data asynchronously to the GPU for processing. Graphie’s
high performance relies on two renaming algorithms. The first
algorithm renames the vertices so that the source vertices can
be easily loaded to the shared memory to reduce global memory
accesses. The second algorithm inserts virtual vertices into the
vertex set to rename real vertices, which enables the use of
a small boolean array to track active partitions. The boolean
array also resides in shared memory and can be updated in
constant time. The renaming algorithms do not introduce any
extra overhead in the GPU memory or graph storage on disk.
Graphie’s runtime overlaps data transfer with kernel execution
and reuses transferred data in the GPU memory. The evaluation
of Graphie on 7 real-world graphs with up to 1.8 billion edges
demonstrates substantial speedups over X-Stream, a state-of-the-
art edge-centric graph processing framework on the CPU, and
GraphReduce, an out-of-memory graph processing systems on
GPUs.

Index Terms—Graph Traversal; GPUs; Out-Of-Memory Pro-
cessing; Data Transformation

I. INTRODUCTION

Graphs are used in various domains, such as machine

learning, social networking, and bioinformatics, thanks to

their flexible modeling capability. With ever-increasing graph

sizes, it becomes critical to improve the performance of graph

processing, because a Breadth-First Search (BFS) run on a

real-world graph in a high-end system may take more than 10

minutes [1]. Scaling up the performance of graph processing

is however challenging due to the well-known random access

problem[1]–[3] and dramatic frontier change across phases of

the same application and across inputs.

To accelerate large-scale graph analytics, researchers have

proposed many scale-out and scale-up graph processing sys-

tems on CPUs [4]–[10]. PowerGraph [7] considers the power-

law distribution of vertex degrees and implements a vertex-cut

‡The work was conducted as a graduate student at Colorado School of
Mines.

partitioning method to reduce inter-machine communication

and improve load balance. PowerLyra [10] further improves

the performance by selectively applying vertex-cut and edge-

cut approaches that match the characteristics of different parts

of the graph. Although those distributed graph systems pro-

vide impressive performance, users may still prefer a single-

machine based graph system, which is easy to manage and un-

derstand [11]. GraphChi [11] is the first graph system that can

process large-scale graphs with decent performance on a single

machine. X-Stream [1] proposes the edge-centric processing

model which sequentializes accesses to edge data. Galois [12]

implements a high-performance data-centric infrastructure to

support existing graph processing domain-specific languages.

With the increasing popularity of GPU computing, scaling

up graph processing on a single GPU also attracted substantial

attention [13]–[16]. CuSha [2] implements G-Shard, a similar

data structure as used in GraphChi, which optimizes memory

coalescing. Gunrock [17] provides a set of high-level primi-

tives, which demonstrate an order of magnitude speedup over

PowerGraph. Unfortunately, neither CuSha nor Gunrock can

process graphs that do not fit in the GPU memory. However,

many real-world graphs have billions of edges, and the size of

the edge data alone (e.g., 11 GB for the Twitter graph used in

this work) can be easily larger than the limited GPU memory

size (e.g., 6GB for the Nvidia Titan GPU).

In this paper, we focus on large-scale graph traversals, such

as BFS and Connected Components (CC), which most existing

GPU-based graph systems cannot handle. We face three major

challenges. First, a traversal touches a large amount of data but

performs little computation. For example, prior work shows

that the ratio between data transfer time and kernel execution

time on real-world graphs can be up to 2 [18], indicating that

data transfer may dominate the execution. Second, the random

access problem leads to poor GPU memory efficiency, and

meanwhile makes it hard to leverage shared memory. Third,

the frontier (the set of active vertices) of a graph traversal

changes throughout the execution depending on the topology

of the graph.

GraphReduce [19] and GTS [18] are two existing GPU-

based graph systems that claim to be able to process out-

of-memory graphs, which do not fit into the GPU memory.

But neither of them well addresses all three challenges. For
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example, GraphReduce heavily optimizes for GPU memory

access efficiency. It uses the Compressed Sparse Column

(CSC) format for the gather phase and Compressed Sparse

Row (CSR) format for the scatter phase. Transferring both

CSC and CSR data contains substantial redundancy, which

worsens the GPU memory pressure and lengthens data transfer

time. GTS can adapt to the dynamic frontiers and avoid

redundant data transfers. In addition, its slotted page format

helps improve load balance and memory coalescing. But GTS

fails to exploit shared memory, and its graph representation is

rarely seen in the graph processing field.
In this paper, we present Graphie, the first GPU-based

graph system that addresses all the three challenges of large-

scale graph traversal. It overcomes the GPU memory capacity

limitation and can efficiently process graphs with billions of

edges. Graphie uses one of the most popular graph formats,

edge list, and divides it into partitions. It keeps the vertex

attribute data in the GPU memory, and streams the edge

partitions to the GPU. Unlike current systems (e.g., GraphRe-

duce), Graphie does not introduce any redundancy besides the

edge data. Its optimized performance comes from one key

idea: vertex renaming. The renaming has two rounds powered

by two algorithms. Once the first-round renaming is done,

Graphie allows efficient use of shared memory to accelerate

vertex attribute data accesses, as well as improving memory

coalescing. After the second-round renaming, Graphie can use

a small boolean array to keep track of the partitions that

contain active vertices as source vertices and hence should

be transferred to the GPU. Graphie stores the boolean array in

shared memory, and updates its elements in constant time,

which is infeasible without renaming. Graphie hides data

transfer overhead through asynchronous streaming and avoids

redundant data transfers by reusing edge partitions already

resident in the GPU memory. These techniques combined to-

gether make Graphie substantially outperform X-Stream (up to

98X performance improvement), a state-of-the-art edge-centric

graph processing framework on the CPU. We cannot directly

compare the performance with GraphReduce [19], which is a

similar system but is not released to public. However, although

our used GPU is just slightly more powerful than the GPU

used in the GraphReduce work (details in Section VI), on

the same set of non-trivial graphs used by GraphReduce, the

results of Graphie demonstrate up to 179X speedup over the

results reported for GraphReduce.
We make the following contributions in this paper:

• We propose two renaming algorithms to improve large-

scale graph traversal’s performance on GPUs. The first

algorithm enables efficient use of shared memory for

accessing vertex attribute data. The second enables the

use of a small boolean array in shared memory to track

the active partitions that should be transferred to the GPU.

Neither algorithm introduces any space overhead in the

GPU memory or in the graph storage on disk.

• We propose an asynchronous edge streaming runtime,

which hides data transfer overhead and efficiently reuses

transferred data across super steps.
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Fig. 1: Vertex-centric vs. edge-centric graph processing.

• We integrate the renaming algorithms and the runtime

into a GPU-based graph system named Graphie, which

supports expressive graph algorithm programming and

the traversal of graphs with billions of edges.

• We evaluate Graphie on 7 real-world and synthetic

graphs used in various studies. The results show that

Graphie produces up to 98X speedup over X-Stream.

When processing small graphs, Graphie’s performance

is comparable to CuSha, a high-performance GPU-based

system to process in-memory graphs.

II. BACKGROUND AND MOTIVATION

This section first provides the background of the vertex-

centric and edge-centric graph processing models, and explains

the reason for Graphie to choose the edge-centric model.

It then presents the high-level framework to process out-of-

memory graphs on GPUs. It motivates the work by describing

the performance issues an optimizing graph system must

address.

A. Graph processing models and data organization

There exist many models for single-machine large-scale

graph processing, such as vertex-centric [11], edge-centric [1],

data-centric [12], path-centric [20], and matrix-based [21]

models. We limit the discussion to the vertex-centric model,

represented by GraphChi [11], and the edge-centric model,

represented by X-Stream [1], because they are extensively

studied and implemented in many systems. Figure 1 (a) shows

the high-level workflow of the vertex-centric model, which

divides the vertices into vertex partitions. During the process-

ing of each vertex partition, the accesses to the vertices have

good spatial locality, while the accesses to the in edge and

out edge are random. Alternatively, the edge-centric model,

shown in Figure 1 (b), divides the edges into partitions and

enables sequential accesses to edges. However, the accesses

to vertices are random as a downside. Because the number of

edges is typically much larger than the number of vertices,

the edge-centric model, by sequentializing the accesses to

edges, outperforms its counterpart as demonstrated by multiple

systems [1], [18], [22].

B. Out-of-memory graph traversals on GPUs

GPUs have been successfully used for in-memory graph

traversals [14], [17], [23]. The graph data only need to be

copied at the beginning of the processing, whose overhead is

amortized to the many phases of traversals. Once the whole

graph data are readily available in the GPU memory, systems
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TABLE I: Datasets Used in The Experiments

Name Vertices Edges
cage15[24] 5.1M 99.1M
kron g500 logn21[25] 2.1M 182.1M
nlpkkt160[26] 8.3M 221.1M
orkut[27] 3.1M 117.2M
uk-2002[28] 18.5M 298.1M
friendster[27] 124.8M 1,806.1M
twitter[29] 61.6M 1,468.4M

such as CuSha [2] or GunRock [17], can provide up to two

orders of magnitude performance improvement over state-

of-the-art CPU-based graph systems. However, GPUs have

limited main memory. A modern GPU, such as Nvidia Titan

Z, is only equipped with 6GB memory, while many real-world

graphs have billions of edges and are hence too large to fit in

the GPU memory. Table I shows 7 graphs used in this paper,

which are used by other studies [1], [18], [19]. Suppose an

edge needs 8 bytes, 4 bytes for the source vertex ID and

4 bytes of the destination vertex ID. The graph friendster’s

topology data (i.e., edges) alone need 14GB memory space.

Since the execution also needs to store the vertex attributes and

possibly edge weights, the actual memory requirement can be

significantly larger.

Algorithm 1 shows the basic workflow to process

out-of-memory graphs on a GPU. The function

ProcessGraphOnGPU runs on the CPU and takes a

graph G stored in the CPU memory as the input. It initializes

the vertex attribute array V A CPU and copies it to the GPU

memory. The assumption is that the GPU memory is large

enough to hold the vertex attribute array, which is true for

most real-world graphs [2], [18], [19]. The graph’s edge data

are divided into partitions (i.e., G.edge partitions). The size

of the partitions is chosen such that a partition can reside

in the GPU memory together with the vertex attribute array

V A GPU . Each iteration of the while loop represents a

super step, whose finishing point implicitly indicates a global

synchronization. The loop body transfers the edge partitions

one by one and invokes a kernel to process the transferred

edge partitions to update the attribute array. Note that the

edge partitions are read-only and can be safely overwritten

after being processed. The kernel function PartitionKernel
launches as many threads as the number of edges in the

partition. One thread corresponds to one edge and calls

the update device function if the edge’s source vertex is

active. The update function may update the attribute data

of the destination vertex. If an update happens, we say the

destination vertex is activated. Both GTS and GraphReduce

implement a similar workflow.

a) Example: Figure 2 shows an example graph and its

edge partitions. The graph has 8 vertices and 16 edges. Each

edge partition has 4 edges. We do not assume the edges are

sorted, because the input graphs may not have been pre-

processed. Suppose vertex 5 is the root node for a BFS

traversal. When the execution starts, it is the only active

vertex. We further suppose each kernel invocation launches

Algorithm 1: Basic workflow to process out-of-memory

graphs on the GPU.

1 //G is the input Graph

2 Function ProcessGraphOnGPU(G)
3 V A CPU ← init vertex attr(G)
4 while not finished do
5 trans data(V A GPU, V A CPU,CPUToGPU)
6 foreach EP CPU in G.edge partitions do
7 trans data(EP GPU,EP CPU,CPUToGPU)
8 PartitionKernel <<< ... >>>

(EP GPU, V A GPU, ...)

9 trans data(V A CPU, V A GPU,GPUToCPU)
10 return V A CPU

11 Function PartitionKernel(edge partition)
12 tid← get thread id()
13 e← edge partition[tid]
14 if e.src is active then
15 Up(V A[e.dst], V A[e.src])

one single thread block of 4 threads to process the transferred

edge partition. When processing the third edge partition, the

first thread would activate vertex 1. The GPU can successfully

process this graph if the memory is large enough to hold the

vertex attribute data (8 variables) and one edge partition (4

edges). In the remainder of the paper, whenever this example

is used, we have the same assumption about the thread block

size and the partition size. We also assume the thread block

can only load 4 vertices to the shared memory, which can be

viewed as software-controlled cache.

Algorithm 1 shows that to improve the performance we

should reduce the data transfer overhead (line 7) and/or

improve the kernel’s performance (line 8). We next present the

challenges of achieving these goals using the example shown

in Figure 2.

b) Issue 1, dynamic frontiers: Graph traversals typically

have complicated behaviors depending on the algorithm and

graph topology. Specifically, the number of active vertices (i.e.,

the frontier) and their distribution in the vertex set may vary

dramatically across super steps. For example, BFS starts with

one active vertex (i.e., the root vertex) and in each super step

activates a new set of vertices which are just discovered in

this step. Connected component, on the other hand, has all

vertices as active vertices at the beginning of the execution.

The number of active vertices decreases towards the end of

the execution. In the context of graph traversals on the GPU,

the transfer of an edge partition is redundant if none of its

edges are out-edges of active vertices. For instance, Figure 2

shows that in the second super step of a BFS run with vertex

6 as the root, the second edge partition contains all the out-

edges of the activated vertex (i.e., vertex 1), and hence is the

only one that should be transferred to the GPU for optimized

performance.

Current graph systems that support out-of-memory graph

processing on GPUs solve this problem by keeping track of
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Fig. 2: An example graph and its partitioned edge list.

the active vertices via a boolean array. The size of the array

is the number of vertices in the input graph, because any

vertex may be active for the next super step. This approach

has three drawbacks. First, despite contributing nothing to the

real computation, this meta array stays in the GPU memory

and incurs non-trivial space overhead (e.g., 124.8MB for

friendster). Second, the array needs to be copied back to the

CPU at the end of each super step, causing time overhead on

the critical path. Third, the array is too large to fit in GPU’s

shared memory. As such, every update causes one extra GPU

main memory access to update the corresponding boolean

variable.

c) Issue 2, memory access inefficiency: GPU kernel’s

performance highly relies on memory access efficiency. There

are two major ways to improve the efficiency. First, if the

threads running on the same SIMD unit access nearby memory

locations, the memory accesses may be coalesced to reduce

the number of memory transactions. Second, if the threads

of the same thread block repeatedly access the same memory

location, the data element at that location should be fetched to

shared memory for those threads to quickly access. A naive

implementation of Algorithm 1 fails to exploit either memory

coalescing or shared memory. Random vertex accesses, which

occur during processing each partition, leads to excessive

uncoalesced memory transactions. The randomness also com-

plicates the use of shared memory, which needs heavyweight

pre-processing to figure out the set of accessed vertices, easily

offsetting the benefit.

In the next two sections, we propose several techniques

to address these two issues, followed by the presentation of

the Graphie framework that integrates these techniques for

efficient large-scale graph traversal.

III. OPTIMIZING KERNEL EXECUTION THROUGH VERTEX

RENAMING

This section discusses the inadequacy of existing solutions

to the performance issues described in last section. It presents

two vertex renaming algorithms to improve memory access

efficiency and to efficiently determine the active partitions that

should be transferred. The section explains why the renaming

process does not introduce any space overhead in the GPU

memory.

A. Improving GPU memory access efficiency

A naive solution to improving the memory access efficiency

problem is to sort the edges by source vertex ID. Figure 3 (a)

shows the sorted edge list of the example in Figure 2. We note

that the sorting improves the performance of the accesses to

the source vertices because of enhanced locality but with the

accesses to the destination vertices remaining random.

It may seem after the sorting, the distinct source vertices

can be loaded into the shared memory to reduce main memory

accesses. However, although the number of distinct vertices is

up to the number of edges in the partition, the gap between

the first source vertex ID and the last source vertex ID can

be larger than the number of vertices that can be loaded to

shared memory. The reason is that many vertices whose IDs

are in between do not have out-going edges. As Figure 3 (a)

shows, the second partition has three distinct vertices, but the

gap is 4. Recall that we assume the shared memory used by

one thread block can hold up to 4 vertices, so we cannot load

5 vertices (2–6) to the shared memory. Therefore, even with

the sorted edges, it still requires a non-trivial pre-processing

phase to figure out the distinct source vertices (i.e., vertices 1,

2 and 5 in the example).

To address these problems, we propose a renaming tech-

nique which not only improves memory coalescing but also

makes using shared memory straightforward. The renaming

process happens after the edges are sorted by source vertex.

Algorithm 2 shows how the technique works through two

functions: RenameForMemory to rename the vertices and

PartitionKernelV 2 to demonstrate the convenient use of

shared memory. The idea of RenameForMemory is to pack

the vertices into contiguous values where the vertices with

nonzero out degree occupy the lower indices. It first scans

the edges to compute the out-going degree for each vertex

(line 4). It then uses an array new to old to compute the

new IDs for the vertices. After the first for loop, the vertex

of the ID given by new to old[i] should have the new ID i.
To quickly access the new ID given the old ID, we use an

array old to new, whose ith element is the new ID of the ith
vertex in the original graph (lines 10). Finally, the out-edges

of each vertex are sorted by destination (line 13–15), which

improves the spatial locality of accessing destination vertices,

thus improving memory coalescing.

After the edges are renamed and reordered,

PartitionKernelV 2 shows the convenient use of shared

memory in the kernel. Since the IDs of the source vertices of

the edges are contiguous, we easily calculate the number of

distinct source vertices in each partition based on the source

vertex IDs of the first edge and the last edge (line 21). We

only load the attribute variables of the distinct source vertices

to shared memory (lines 24 and 25) followed by a thread

block-level barrier to avoid data races. The update function

Up accesses the attribute variables of the source vertices in

the shared memory (lines 28), which may significantly reduce

the number of global memory accesses because those source

vertices may have many out-going edges.
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Fig. 3: Illustration of the renaming process.

Once the processing on the GPU finishes, we transfer the

vertex attribute array (V A GPU ) back to the CPU to store

in the array V A CPU . However, because the vertices are

renamed, we need to map the updated attribute data to the

corresponding vertices. The problem can be easily solved,

because we maintain the mapping in the array new to old
obtained in RenameForMemory. The ith attribute variable

V A CPU [i] should belong to the vertex of ID new to old[i]
in the original graph.

d) Example: Figure 3 (b) shows the renamed and re-

ordered graph data of the example graph after being processed

by Algorithm 2 (first-round renaming). Vertex 3 and 4 in

the original graph have new IDs 6 and 7 (i.e., the largest

IDs), respectively, because they do not have out-going edges.

Correspondingly, the IDs of vertex 5–7 in the original graph

are reduced by 2. Observe that the source vertices of the

edges are contiguous and that the out-going edges of the

same source vertex are sorted by destination vertex ID. Unlike

Figure 3 (a), we can now easily compute the number of distinct

source vertices of the second partition thanks to the source ID

contiguity.

e) Analysis: RenameForMemory runs online or of-

fline on the CPU to pre-process the edge data. It requires the

edges to be sorted by source ID, but most systems demand

a similar sorting process (e.g., GraphChi and GTS). The

rationale of the pre-processing is that it is done just once

and the cost can be amortized over many runs with different

inputs such as different roots for BFS or with different

algorithms on the same graph. In RenameForMemory,

each state before the final sorting (line 13) takes linear

time in terms of the number of vertices or the number of

edges. The sorting stage takes O(N ×Δlog(Δ)), where Δ is

the maximum outdegree. Therefore, RenameForMemory’s

worst complexity is O(M +N ×Δlog(Δ)), where M is the

number of edges. If we assume Δ to be the average degree

multiplied by a constant, the complexity can be estimated

as O(M + N × (M/N) × log(M/N)) = O(Mlog(M/N)),
which is less than sorting the edge list, which takes (i.e.,

O(Mlog(M))). Moreover, Algorithm 2 does not incur any

extra space overhead in the GPU or extra storage overhead in

the disk.

Algorithm 2: Renaming vertices to improve memory

access efficiency.

1 //G is the input graph

2 //N is the number of vertices

3 Function RenameForMemory(G)
4 out degrees← ComputeOutDegrees(G)
5 new to old← {0, 1, ..., N − 1}
6 foreach id in new to old do
7 if out degrees[id] = 0 then
8 move id to the end of new to old

9 for i← 0 to N − 1 do
10 old to new[new to old[i]]← i

11 foreach e in G.edges do
12 e.src← old to new[e.src];

e.dst← old to new[e.dst];

13 foreach v in G.vertices do
14 if out degrees[v.id] �= 0 then
15 Sort v’s outgoing edges by destination

16 //BS is the thread block size

17 //SV A is an array in the shared memory

18 Function PartitionKernelV2(EP , V A)
19 tid← get thread id()
20 start vertex← EP [0].src
21 num distinct srcs← EP [BS− 1].src−EP [0].src

22 e← edge partition[tid]
23 //Load attributes of distinct vertices to shared memory

24 if tid < num distinct srcs then
25 SV A[tid]← V A[start vertex+ tid]

26 Barrier() //synchronize threads to avoid data race

27 if e.src is active then
28 Up(V A[e.dst], SV A[e.src− start vertex])
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Algorithm 3: Renaming vertices to efficiently activate

partitions.

1 //G is the graph produced by Algorithm 2

2 //N is the number of vertices

3 // P is the number of partitions

4 //num virtual vertices is an array of size P initialized

to all 0’s

5 //new ids is initialized as {0, 1, ..., N − 1}
6 Function RenameForActivePartitions(G)
7 //SZ sotres the number of distinct source vertices for

all partitions

8 traverse partitions to compute SZ
9 compute SZ max //the maximum number in SZ

10 for i← 0 to P − 1 do
11 num virtual vertices← SZ max− SZ[i]

12 pre sum←
InclusiveScan(num virtual vertices)

13 append 0 at the front of pre sum
14 for i← 0 to P − 1 do
15 foreach v ∈ EP [i].distinct source vertices do
16 new ids[v.ID]←

new ids[v.ID] + pre sum[i]

17 foreach vertex v without out-going edges do
18 new ids[v.ID]← new ids[v.ID]+pre sum[P ]

19 foreach e in G.edges do
20 e.src← new ids[e.src];

e.dst← new ids[e.dst];

21 //activated is an array of size P in the shared memory

initialized to all False
22 //OV is the number of vertices that have out-going edges

Function PartitionKernelV3(EP , V A)
23 tid← get thread id()
24 start vertex← EP [0].src
25 num distinct srcs← EP [BS− 1].src−EP [0].src
26 e← edge partition[tid]
27 if e.src < OV then
28 src offset← pre sum[e.src/SZ max]

29 if e.dst < OV then
30 dst offset← pre sum[e.dst/SZ max]

31 else
32 dst offset← pre sum[P ]

33 if tid < num distinct srcs then
34 SV A[tid] =

V A[start vertex+ tid− src offset]

35 Barrier() //synchronize threads to avoid data race

36 if e.src is active then
37 if Up(V A[e.dst− dst offset], SV A[e.src−

start vertex]) and e.dst < OV then
38 activated[e.dst/SZ max]← True

B. Efficiently Activating Partitions

Recall that graph traversals have dynamic frontiers, and only

the edge partitions that contain one or more vertices in the

dynamic frontier should be transferred to the GPU to save

data transfer time. As discussed in Section II-B, both GTS

and GraphReduce uses an array of size N (i.e., the number

of vertices) to record which vertices are in the frontier for the

next super step, which burdens the GPU memory and increases

data transfer cost. Worse, the array is too large to benefit from

shared memory. To address this problem, the ideal solution is

to have a small boolean array (also called a tag array), of size

P the number of partitions, on the GPU to track the partitions

that contain active vertices as source vertices. For example, for

the graph shown in Figure 3 (b), we only need a boolean array

of size 4 (instead of 16 in existing systems). If only vertex 2 is

activated in the current super step, the boolean array should be

{False, T rue, False, False}. After processing this array, the

CPU knows that only partition 2 should be transferred to the

GPU in the next super step, as it contains all the out-going

edges of the vertex 2. However, computing which partition

contains the activated vertex involves searching and needs

O(logP ) time. Since the overhead occurs every time a vertex

is updated, this approach may perform worse than the existing

approach of maintaining a large boolean array.

We propose a technique to further rename the vertices

based on the renamed graph produced by Algorithm 2. Al-

gorithm 3 shows the process of reducing the cost of figuring

out the activated partition to one single division operation.

The essential idea is to insert virtual vertices, which do not

need storage, to the source vertex sets of partitions, so that

the IDs of distinct source vertices of each partition fall into

ranges of the same size. Lines 8 and 9 calculate for each

partition the difference between its number of distinct source

vertices and the maximum number of distinct vertices across

partitions. Num virtual vertices of size P maintains the

numbers of virtual vertices that should be inserted. Pre sum,

computed via an inclusive scan on num virtual vertices,

stores the total number of inserted virtual vertices before each

edge partition. With 0 appended at the front, pre sum[P ]
is now the total number of inserted virtual vertices. The

vertex IDs of the source vertices of each partition i should

be increased by pre sum[i] to reflect the number of inserted

virtual vertices before them. Similarly, the IDs of the vertices

without out-going edges should be increased by pre sum[P ].
The renaming of the IDs in edge data is the same as in

Algorithm 2.

We next show how the renaming enables constant time

update of the boolean array activated in the new kernel func-

tion PartitionKernelV 3. Recall that the size of activated
is equal to P , the number of partitions, and hence the array

is usually small enough to be stored in shared memory. One

key difference from PartitionKernelV 2 in Algorithm 2 is

that when the attribute array is accessed, the index should be

decreased by an offset (lines 34 and 37). The offset equals

the number of inserted virtual vertices before the partition
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that contains the vertex as a source vertex. Lastly, if the

update function returns true, meaning that the destination

vertex (e.dst) is updated, and the updated vertex has out-going

edges, the partition that contains it as a source vertex should

be activated. The ID of that partition can be easily calculated

as e.dst/SZ MAX , a tremendous improvement over naive

searching.

f) Example: Figure 3 (c) shows the renamed graph by

Algorithm 3 based on Figure 3 (b). Partition 2 has 3 distinct

source vertices, the largest among all the partitions. All the

other partitions only have 1 distinct source vertex. Hence,

we insert 2 virtual vertices in each of the source vertex set

of partition 1, 3, and 4. Suppose a thread processes edge

(5, 3) and needs to update vertex 3. It writes vertex 3’s new

value to V A[3− 2] (i.e., V A[1]). The ID of the partition that

contains 3 is easily computed as 3/3 = 1. The boolean variable

activated[1] is then assigned to True.

g) Analysis: We stress that although Algorithm 3 may

insert a large number of virtual vertices, it, like Algorithm 2,

does not introduce extra space overhead in the GPU memory,

because we only need N elements in the attribute array. All the

steps of RenameForActivePartitions, including the nested

loop (lines 14–16), can be implemented in linear time. Thus,

the time complexity is O(M).

IV. MINIMIZING DATA TRANSFER OVERHEAD THROUGH

ASYNCHRONOUS EDGE STREAMING

This section presents the techniques used by Graphie to

reduce data transfer overhead through asynchronous edge

streaming.

Graph traversals are memory-intensive with very low arith-

metic intensity. As such, the data transfer of a partition may

take longer than its processing on the GPU. Fortunately,

modern GPUs support parallel command queues (e.g. Hyper-

Q in Nvidia GPUs [30]), which allow overlapping between

kernel execution and data transfer. Graphie leverages this

capability to hide edge partition transfer overhead as shown

in Figure 4. After initializing the vertex attribute array (V A),

Graphie divides the remaining GPU memory into K partition

buffers, where K is the number of streams, unless the user

explicitly specifies the partition size. Graphie takes turns to

use the streams to transfer the edge partitions to the GPU.

In each stream, a kernel invocation command always follows

a data transfer command to process the transferred partition.

The commands sent to the same command queue are executed
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Fig. 4: Asynchronous edge streaming through parallel com-

mand queues. DT , CQ, and PB represent data transfer,

command queue and partition buffer, respectively.

sequentially. Current Nvidia GPUs support up to 32 command

queues. If more streams are used, some streams will be

serialized to use the same command queue. Hence, Graphie

uses 32 streams by default unless specified otherwise.

Section III-B described the renaming technique to efficiently

identify the activated partitions to process in the next super

step. Graphie’s runtime makes sure that only activated parti-

tions are transferred. While this optimization greatly reduces

the data transfer overhead when the number of activated

partitions is small, redundant transfer may still occur if the

activated partition is already in the GPU memory. Suppose the

average number of activated partitions in each super step is A.

On average, the percentage of redundant partition transfers can

be estimated as A×K
P , which can be non-trivial if the graph

size is not dramatically larger than the GPU memory size.

Because of the FIFO property of the command queue, it is

obvious that the last processed partition by each queue can

be reused in the next super step. However, to reuse those

partitions, it is critical to not overwrite them before processing

them. Graphie solves this problem by first processing the

partitions that are activated and also resident in the GPU

memory. For each of such partitions, Graphie inserts only the

kernel invocation command to the queue which handled that

partition in the last super step.

V. GRAPHIE SYSTEM

A. Graphie workflow
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Fig. 5: The workflow of Graphie.

We integrate all the proposed techniques in the Graphie

system, whose workflow is shown in Figure 5. The circled

numbers represent different steps. Graphie reads edge data

in text or binary format (step 1). It stores the edge data in

an edge list, which is processed by the renaming engine for

renaming and partitioning (step 2). Note that the renaming

engine can work online or offline. For each edge partition,

Graphie uses one array to store the source vertex IDs and

one array to store the destination vertex IDs. Graphie uses

one more array to store the weight data if there is any. Such

a design choice is to improve memory coalescing, which is

used in many other GPU-based systems. The runtime engine

reads all edge partitions in the CPU memory (step 3). In each

super step, it transfers edge partitions to the GPU and invokes

kernels to process the partitions (step 4). At the end of each

super step, it copies back the flag array (i.e., activated in

Algorithm 3). If any partition is activated, it starts another

super step that consists of steps 4 and 5. Once it detects no

active partitions, the output vertex attribute array is remapped

to the original vertex ids to cope with renaming.
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B. Programming interface

Graphie provides a generic kernel, which implements the

PartitionKernelV 3 function in Algorithm 3. It invokes two

device functions that the user must implement. The first device

function is Initialize V A, which should initialize the vertex

attribute array. The implementation is application dependent.

For example, for BFS V A[root] should be initialized to 0,

while all other elements should be initialized as positive

infinity. The second device function is Up, which processes

an edge if the source vertex is active, and returns true if the

destination vertex of the edge is updated (i.e., activated). For

BFS, the destination vertex is updated if its distance (i.e.,

V A GPU [e.dst]) is larger than the distance of the source ver-

tex plus one (i.e., V A GPU [e.src] + 1 < V A GPU [e.dst]).
On the CPU side, the user needs to specify which partitions

are active and hence should be processed on the GPU in the

first super step. For example, the partition that contains the

root vertex should be active for BFS, while all the partitions

should be active for CC.

C. Selecting partition size

As discussed in Section IV, Nvidia GPUs support up to 32

parallel command queues. We use GS, V S, AS to denote the

size of the GPU memory, the size of the vertex data, and size

of the flag array, respectively. Given 32 streams, the partition

size can be computed as (GS−V S−AS)/32. However, this

partition size does not address the various properties of graphs.

For small graphs, the whole graph may fit in one partition.

As such, it only uses one stream and does not leverage the

concurrency of the command queues. The kernel computation

starts after the whole graph is transferred, wasting the oppor-

tunity to overlap transfer and compute. It is also possible that

a traversal only accesses a subset of the edges. In this case,

transferring the whole graph is not necessary. Due to these

reasons, Graphie chooses partition size as ES/32, where ES
is the edge data size, to fully utilize all the available command

queues and avoid unnecessary data transfer. For large graphs,

it may be infeasible to support (GS − V S − AS)/32 as the

partition size. Recall that during partitioning, Graphie inserts

virtual vertices to the source vertex sets for renaming, which

increases the largest vertex ID. Because Graphie uses 32 bits to

store the vertex ID, a small partition size may cause an integer

overflow problem. Therefore, Graphie chooses the smallest

partition that does not overflow the 32-bit integer. Note that we

can simply address the problem by using 64-bit representation

for vertex IDs. However, we then increase the edge data size

by 2 times, leading to increased data transfer overhead. It is

our future work to understand the trade-off between the vertex

representation and partition size.

VI. EXPERIMENTAL EVALUATION

This section evaluates the performance of Graphie by com-

paring it with existing systems and quantifies the effectiveness

of the proposed optimization techniques. Before presenting

the results, we introduce the experiment settings and the

methodology for the experiments.

TABLE II: GPU Specifications

Titan Z (half) Tesla K20c

GPU architecture Kepler (GK110B) Kepler (GK110)

Num. of SMX 14 13

Memory 6GB GDDR5 5GB GDDR5

Memory bandwidth 288 GB/S 208 GB/S

Num. of CUDA cores 2,688 2,496

Theoretical throughput 4,494 GFLOPS 3,524 GFLOPS

A. Experiment setting

h) Environment: Our system has an Intel Xeon (E7-

4830v3, 2.1GHz) 12-core CPU with Hyperthreading disabled.

The main memory of the system is 256GB (16x16GB DDR3

modules at 1866MHz). We use the NVCC compiler version

7.5.17 (g++ version 4.8.4) with O3 to compile all the pro-

grams. The operating system is Ubuntu Linux 14.04 with

Linux kernel version 3.13. The GPU is a NVIDIA Titan Z

containing 2 GPU dies each with 6GB of memory. In all the

experiments, we only use one GPU, and hence the device

memory is limited to 6GB. Table II shows the specification

of a single die of the GPU.

i) Datasets and applications: We evaluate the perfor-

mance of Graphie using three graph traversal algorithms:

• Breadth-First Search (BFS)

• Connected Components (CC)

• Single-Source Shortest Path (SSSP)

The BFS algorithm traverses the vertices of the graph in

order to compute unweighted distances of all vertices from

a root vertex. In SSSP the weights are considered and the

cost of the cheapest path (in terms of the sum of the weights

of its constituent edges) from a root to every vertex is

returned. For BFS and SSSP, we always select a vertex in the

largest connected component as the root. The CC algorithm

finds connected subgraphs of maximal size and returns the

component id for each vertex.

We experiment with 7 real-world and synthetic graphs as

shown in Table I. Cage15 is an undirected graph describing

DNA electrophoresis, 15 monomers in polymer. Kron g500-

logn21 (Kron) is a synthetic graph used in the DIMACS

competition. Nlpkkt160 (Nlpktt) is a graph generated by a

symmetric indefinite KKT matrix when solving a 3D PDE-

constrained optimization problem. Orkut and Friendster are

graphs from online gaming and social networks. The graph

uk-2002 was obtained from a crawl of the .uk domain in 2002.

Twitter is a subgraph of the Twitter follower graph.

j) Compared systems and methodology: We com-

pare Graphie with three graph systems: X-Stream [1],

CuSha [2], and GraphReduce [19]. X-Stream is a state-of-

the-art edge-centric graph system. Its superior performance

over GraphiChi [11], a vertex-centric graph system, is reported

in several studies [1], [19]. To make fair comparisons, we

allocate enough main memory for X-Stream to load the entire

graph. We exclude the IO time, and only measure the graph

processing time. CuSha is a high performance GPU-based

graph system to process in-memory graphs. For both CuSha

and Graphie, we measure the elapsed time between the point

the first data transfer from the CPU to the GPU starts and the
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point the final result data transfer from the GPU to the CPU

finishes. GraphReduce is an out-of-memory graph processing

system on GPUs, which is also based on edge streaming like

Graphie. Unfortunately, GraphReduce is not released to public.

We can hence only reference to the reported execution times

(data transfer + kernel execution) in [19] on the same set of

graphs to make rough comparisons. Note that the reported

results in [19] are obtained on an Nvidia Tesla K20c GPU.

Table II shows the specification comparison between K20c

and the Titan GPU used for Graphie. Both GPUs are based

on the Kepler architecture. The Titan GPU has slightly larger

main memory (6GB vs. 5GB) and a larger number of CUDA

cores (2,688 vs. 2,496).

B. Overall results

Table III summarizes the execution times of Graphie and

the three compared systems. N/A for GraphReduce means the

corresponding graph is not used in [19]. O.O.M for CuSha

means the graph is too large to fit in the GPU memory. We

notice that CuSha can only process 4 of the 7 graphs because

of the in-memory processing design. It cannot process uk-

2002, though the graph’s size (3.3GB) is less than the GPU

memory. The reason is that CuSha needs to transform the

original graph to the G-Shard representation, which incurs

non-trivial space overhead. The transformed graph does not

fit in the GPU.

Figure 6 shows the substantial speedups of Graphie over X-

Stream. The most significant improvements are for Friendster,

which is the largest graph we experiment with. Graphie

accelerates CC on the graph by 98X, bringing down the

execution time from 1224.5 seconds from X-Stream to only

12.5 seconds. On average, Graphie achieves 7.2X, 15.5X,

and 20.3X speedups for BFS, SSSP, and CC, respectively.

The results demonstrate the power of using GPUs to process

large-scale graph traversals and Graphie’s lightweight but

efficient design to match the GPU programming model and

architecture.

For Orkut, Cage15, and Kron, Graphie outperforms CuSha

for 7 out of the 9 runs. The results are impressive because

Graphie is designed for large-scale graph traversal, while

CuSha is heavily optimized for in-memory graph processing.

Graphie benefits from asynchronous edge streaming and its

concise graph representation, while CuSha’s G-Shard format

introduces space overhead and makes it hard to use streams.

For Nlpkkt, CuSha produces superior performance, because

the graph has a very large diameter, which has been shown to

cause performance problems for the edge-centric model.

It is worth stressing that the execution times for GraphRe-

duce are reported in [19]. Observe that Graphie reduces the

execution times of GraphReduce by up to 99.4% (CC on

nlpkkt160) by using a GPU whose theoretical throughput is

only 28% higher than that of the GPU used by GraphReduce.

Moreover, GraphReduce categorizes the graphs as out-of-

memory graphs, because it needs both the CSR and CSC

representations of the graph. Thanks to the concise edge
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partition representation, Graphie can easily fit all these graphs

in the GPU memory using less than 4GB GPU memory.

C. Breakdown of the optimization benefits

To understand the performance contributions from the pro-

posed techniques, we use OPT1 to represent the optimizations

(i.e., shared memory use + only transferring active partitions)

enabled by Algorithm 3 and OPT2 to represent the opti-

mization to reuse partitions in the GPU memory. Figure 7

demonstrates the execution time savings from OPT1 and OPT2

with the naive implementation as the baseline, which does not

use shared memory and transfers all partitions in each super

step. In all the runs, asynchronous streaming is enabled, and

we will analyze its benefit in Section VI-D. The results show

22%–27% average execution time reductions from OPT1 for

the three algorithms. The largest performance gain is from

the CC execution on Twitter, showing 80% reduction of the

execution time (i.e., a 5X speedup). But some executions, such

as the three runs on Nlpkkt, just show trivial performance

improvement, because most of the time all the partitions are

active. OPT2 also dramatically improves the performance with

average execution time reductions between 28% and 38%

across the three algorithms. We observe non-trivial reductions

for all runs, confirming the importance of reusing partitions in

the GPU memory. Working together, OPT1 and OPT2 reduce

the execution time of the naive implementation by an average

of 61% for BFS, 62% for SSSP, and 55% for CC across the

inputs.

To explain the results we just discussed, we show in Figure 8

the number of active partitions and the number of transferred

partitions across super steps for 2 out-of-memory graphs

and 2 in-memory graphs. The numbers of active partitions

may change dramatically because of the dynamic frontier

property of graph traversal algorithms. The patterns for BFS

and CC are however very different. BFS starts with 1 active
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TABLE III: Execution times of Graphie and the compared systems.

Runtime for Graph (in seconds)
Application Framework cage15 friendster kron g500-logn21 nlpkkt160 orkut twitter uk-2002

bfs

Graphie 0.63 16.44 0.59 6.11 0.21 5.42 4.3
X-Stream 3.2 927.78 3.33 15.24 2.27 48 10.64

GraphReduce 18 N/A 4 60 6 N/A 49
CuSha 0.45 O.O.M. 0.98 2.57 0.38 O.O.M. O.O.M.

cc

Graphie 0.23 12.46 0.48 1.02 0.26 4.21 5.04
X-Stream 5.43 1224.52 6.5 21.84 6.23 64.45 28.73

GraphReduce 41 N/A 9 183 16 N/A 162
CuSha 0.6 O.O.M. 1.13 1.26 0.6 O.O.M. O.O.M.

sssp

Graphie 0.24 29.24 1.67 7.03 0.6 14.67 11.73
X-Stream 4.52 2601.75 9.36 35.98 7.78 930.52 63.04

GraphReduce 25 N/A 7 92 10 N/A 80
CuSha 0.57 O.O.M. 1.07 1.53 0.67 O.O.M. O.O.M.
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Fig. 8: The number of active partitions vs. the number of transferred partitions.

partition, which contains the root vertex. The number of active

partitions increases because more vertices and hence partitions

are activated. The number decreases at the end of the execution

because most of the vertices have been processed. Note that

the number of active partitions may remain the same across

super steps. It does not mean the corresponding frontiers have

the same size. A partition is active even if it only contains

one single active source vertex. Therefore, the minimum and

the maximum sizes of the frontier to make all partitions active

are P and N , respectively, which demonstrate a huge gap. The

CC algorithm starts with all partitions being active, and the

number of active partitions decreases along the execution. The

decrease can be fast (e.g., for Twitter) or slow (e.g., for Kron)

depending on the topology of the graph.

The number of transferred partitions is always equal to or

less than the number of active partitions. For the latter, Graphie

further improves performance by avoiding the transfer of

partitions already in the GPU memory. For the two in-memory

graphs, Orkut and Kron, the gap between the two curves is

large, because the transferred partitions are never overwritten

and hence can be reused if needed. For the BFS runs, Graphie

does not transfer any more partitions after the 5th super step,

because the transferred partitions already contain all the source

vertices reachable from the root vertex. The CC runs behave

very differently. All the partitions are transferred in the first

super step, and thus the whole graph is in the GPU memory for

later execution. For the out-of-memory graphs, Friendster and

Twitter, the gap between the two curves is smaller, because

the GPU memory is not large enough to hold all the partitions

and some partitions may be transferred multiple times.

D. Results on asynchronous streaming
Figure 9 shows the performance benefit from asynchronous

edge streaming. We observe that for all the 4 graphs and 3

algorithms, using a larger number of streams improves perfor-

mance in most cases. Friendster can only leverage 16 streams,

because Graphie has to use a large enough partition size to

avoid the integer overflow problem discussed in Section V-C.

For the other three graphs, Graphie produces more than 2X

performance improvement by using 32 streams. The speedup

is much worse than linear, because the streams contend to use

the PCIe bus and the same set of GPU cores.

E. Overhead of the renaming processes
As pointed out in Section III, the renaming process only

needs the input graph rather than any runtime parameters (e.g.,

root vertex ID for BFS) and hence can be performed offline.

Table IV shows the overhead of the two rounds of renaming

in seconds. For all graphs, the first-round renaming is more

expensive than the second-round renaming, which aligns well

with the analysis in Section III. We note that the overall

overhead from renaming for the two out-of-memory graphs

(i.e., Friendster and Twitter) is oftentimes negligible compared

to the execution time of X-Stream.

VII. RELATED WORK

To handle large-scale graphs, researchers have designed

many distributed graph processing frameworks [4], [5], [7]–
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Fig. 9: Performance improvement when using multiple streams.

TABLE IV: The overhead of renaming in seconds.

Graph Round 1 Round 2
Cage15 1.28 0.95
Kron 6.51 1.63
Nlpkkt 2.95 2.35
Orkut 2.3 4.26
Uk-2002 6.02 2.67
Friendster 4.48 2.1
Twitter 3.99 1.35

[10] , most requiring the entire graph data, edges and vertex,

to reside in main memory during execution. But as several

studies have shown [1], [11], [12], [21], [31], [32] a single-

machine based system can dramatically reduce management

overhead while still providing decent performance. Graphie’s

design philosophy aligns well with those studies.

Graph processing on GPUs has also been extensively stud-

ied from various aspects, including synchronization trade-

off [33], data-driven models [14], dynamic graphs [13], graph

optimizing compilers [15], [23], and efficient primitives [17].

All those studies assume the input graph fits in the GPU

memory, and the research focus is on reducing synchronization

overhead or reducing control and memory divergence. Some

studies use multiple GPUs to accelerate graph processing. To

name a few, Ben-Nun et al. [34] proposed GRoute, which

supports efficient asynchronous multi-GPU programming to

handle irregularity in graph processing. Liu et al. [35] dramat-

ically improved concurrent BFS on up to 112 GPUs. Khorasani

et al. [36] improved inter-GPU communication compared with

Medusa [37] and TOTEM [38].

Merrill and others [39] first demonstrated that GPU-based

graph traversals can perform substantially better than the CPU-

based counterparts. The major idea is to use pre-fix sum to

efficiently manage fine-grained tasks. Our work uses pre-fix

sum to track the mapping between renamed vertices and their

attribute data in the GPU memory. Moreover, their work,

like CuSha [2], assumes the graph fits in the GPU. Liu and

Huang further improved BFS’s performance of in-memory

graphs on GPUs through a set of techniques for load balancing

and direction optimization. It is unclear whether the proposed

techniques work well for out-of-memory graphs on a single

GPU.

GraphReduce [19] can process out-of-memory graphs on a

single GPU. It optimizes memory coalescing through using

two different formats, the benefit of which can be easily

cancelled by the redundant data transfers. We show in this

paper that Graphie can directly work on edge lists and its

renaming and reordering techniques do not introduce any

extra space overhead. Further, GraphReduce does not reuse

the already transferred data in the GPU when processing

large-scale graphs. GTS [18] can also process out-of-memory

graphs on GPUs. It leverages slotted page format, which is not

popular in the graph processing area. GTS does not use shared

memory for accessing vertex data or keeping track of updated

vertices. Graphie efficiently tracks the active partitions using

shared memory, which involves negligible transfer overhead

for the meta flag array.

Several works took advantage of both the CPU and GPU

to process graphs. Kaleem et al. [40] proposed a scheduling

algorithm to improve load balance between the CPU and

GPU. Zhang et al. [41] improved scheduling by matching

the irregularity of the tasks and the processor characteristics.

Gharaibeh et al. [38] designed a framework to seamlessly

use both processors to accelerate graph processing. Our work

focuses on only the GPU, but the result shows that Graphie

is usually more than 10X faster than the CPU-based system,

indicating the small potential of using the CPU besides the

GPU.

Researchers have applied different data reorganization tech-

niques to improve the performance of irregular applications

for SIMD-based architectures. Wu et al. [42] studied the

complexity of data reorganization for optimized GPU memory

accesses and proposed several algorithms to strike different

trade-offs. Fauzia et al. [43] implemented a tool to automati-

cally characterize uncoalesed memory accesses and transform

the data to reduce the degree of divergence. Ren et al. [44]

reorganized the tree data structure to improve the performance

of CPU vectorization. Jiang et al. [45] studied the reuse of

reorganized data for dynamic irregular applications.

VIII. CONCLUSION

In this paper, we presented Graphie, a GPU-based graph sys-

tem to perform large-scale graph traversals. Graphie leverages

asynchronous edge streaming to stream edge partitions to the

GPU to hide data transfer overhead. Different from existing

systems with a similar architecture, Graphie improves perfor-

mance of graph traversal through a novel renaming technique.

The renaming process consists of two rounds to enable the

convenient use of shared memory and efficient activation of

edge partitions, which does not introduce any extra overhead

in the GPU memory or in disk. We evaluated Graphie on 7

graphs with up to 1.8 billion edges, and showed that Graphie

substantially outperforms X-Stream and GraphReduce.
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