
Red Fox: An Execution Environment for Relational Query
Processing on GPUs

Haicheng Wu
Georgia Institute of Technology

hwu36@gatech.edu

Gregory Diamos
NVIDIA

gdiamos@nvidia.com

Tim Sheard
Portland State University

sheard@cs.pdx.edu

Molham Aref
LogicBlox Inc.

molham.aref@logicblox.com

Sean Baxter Michael Garland
NVIDIA

{sbaxter,mgarland}@nvidia.com

Sudhakar Yalamanchili
Georgia Institute of Technology
sudha.yalamanchili@ece.gatech.edu

ABSTRACT

Modern enterprise applications represent an emergent ap-
plication arena that requires the processing of queries and
computations over massive amounts of data. Large-scale,
multi-GPU cluster systems potentially present a vehicle for
major improvements in throughput and consequently over-
all performance. However, throughput improvement using
GPUs is challenged by the distinctive memory and computa-
tional characteristics of Relational Algebra (RA) operators
that are central to queries for answering business questions.

This paper introduces the design, implementation, and
evaluation of Red Fox, a compiler and runtime infrastruc-
ture for executing relational queries on GPUs. Red Fox is
comprised of i) a language front-end for LogiQL which is a
commercial query language, ii) an RA to GPU compiler, iii)
optimized GPU implementation of RA operators, and iv) a
supporting runtime. We report the performance on the full
set of industry standard TPC-H queries on a single node
GPU. Compared with a commercial LogiQL system imple-
mentation optimized for a state of art CPU machine, Red
Fox on average is 6.48x faster including PCIe transfer time.
We point out key bottlenecks, propose potential solutions,
and analyze the GPU implementation of these queries. To
the best of our knowledge, this is the first reported end-to-
end compilation and execution infrastructure that supports
the full set of TPC-H queries on commodity GPUs.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—query process-
ing, relational databases; D.3.4 [Programming Languages]:
Processors—code generation, compilers, run-time environ-
ments
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1. INTRODUCTION
The enterprise software stack is a collection of infrastruc-

ture technologies supporting bookkeeping, analytics, plan-
ning, and forecasting applications for enterprise data. The
task of constructing these applications is challenged by the
increasing sophistication of the analysis required and the
enormous volumes of data being generated and subject to
analysis. Consequently, there is a growing demand for in-
creased productivity in developing applications for sophisti-
cated data analysis tasks such as optimized search, proba-
bilistic computation, and deductive reasoning. This demand
is accompanied by the exponential growth in the target data
sets and commensurate demands for increased throughput
to keep pace with the growth in data volumes. While pro-
gramming languages and environments have emerged to ad-
dress productivity and algorithmic issues, the ability to har-
ness modern high performance hardware accelerators such
as Graphics Processing Units (GPUs) is nascent at best.
This is impeded in large part by the semantic gap between
programming languages, models, and environments designed
for productivity, and GPU hardware optimized for massive
parallelism, speed, and energy efficiency.

Towards this end we propose a system called Red Fox that
combines the productivity of declarative languages with the
throughput performance of modern high performance GPUs
to accelerate relational queries. Queries and constraints in
the system are expressed in a high-level logic programming
language called LogiQL [18]. The relational data is stored as
a key-value store [31] to support a range of workloads corre-
sponding to queries over data sets. The target systems are
cloud systems comprising high performance multicore pro-
cessors accelerated with general-purpose graphics processing
units (GPGPUs or simply GPUs). Our baseline implemen-
tation executes on stock multicore blades that employs a
runtime system that parcels out work units (e.g., a relational
query over a data partition) to cores and manages out-of-
core datasets. The envisioned accelerated configuration em-
ploys GPUs attached to the node that can also execute such
work units where a relational query is comprised of a mix
of relational algebra, arithmetic, and logic operators. The
challenge is that while such queries appear to exhibit sig-
nificant data parallelism, this parallelism is generally more
unstructured and irregular than encountered in traditional

44



scientific computations. The result is significant algorithmic
and engineering challenges to harnessing the throughput ca-
pabilities of GPUs.

In Red Fox, an application is specified in LogiQL [18],
a declarative programming model for database and busi-
ness analytics applications. This development model for en-
terprise applications combines transactions with analytics,
by using a single expressive, declarative language amenable
to efficient evaluation schemes, automatic parallelization,
and transactional semantics. The application then passes
through a series of compilation stages that progressively low-
ers LogiQL into primitive operators, primitive operators into
computation kernels, and finally kernels are translated into
binaries that are executed on the GPU. A set of algorithm
skeletons for each operator is provided as a CUDA template
library to the compiler. During compilation, the skeletons
are instantiated to match the data structure format, types,
and low level operations used by a specific operator. The
application is then serialized into a binary format that is
executed on the GPU by a runtime implementation.

Two major components of the execution addressed by Red
Fox are: i) the management of large data sets whose size ex-
ceeds available memory; ii) the efficient and effective compi-
lation of relational queries operating over data partitions to
make use of the throughput of GPUs. This paper describes
our implementation of the latter. The system is evaluated
on the full set of TPC-H benchmark queries executing on
an NVIDIA GPU. The main contribution of this paper is a
solution for effectively mapping full queries and query plans
to GPUs and an implementation, demonstration, and eval-
uation of the solution. More specifically,

1. An extensible compilation and execution flow for exe-
cuting queries expressed in declarative/query languages
on processors implementing the bulk synchronous par-
allel execution model - specifically GPUs.

2. An engineering design that supports portability across
multiple front-end languages and multiple back-end
GPU architectures. This is achieved via two standard-
ized interfaces.

• Query Plan: A query plan format that decouples
the language front-end from compiler optimiza-
tions making it possible to integrate other lan-
guage front-ends, e.g., SQL or NoSQL.

• Kernel IR [10]: An Internal Representation (IR)
of operators implemented on the GPU that forms
an interface with which to integrate i) machine-
specific optimizers and ii) different GPU language
implementations for operators, e.g., OpenCL or
CUDA (we currently support CUDA).

3. Experiences and insights from the integration of an in-
dustrial strength declarative language front-end that
can share program analysis information and query plans
with an optimizing back-end. Specifically,

• maintenance of control flow and dependency in-
formation for exploitation of parallelism in GPUs.

• maintenance of functional dependency informa-
tion for exploitation in the definition and use of
keys and indices.

• relationships between query plan implementations
and microarchitectural features such as register
files, shared memory, parallelism, etc.

4. The first infrastructure to the best of our knowledge
that compiles and executes the complete TPC-H bench-
mark on GPUs. It is available as an open source back-
end (query plan to GPU executable).

The following section provides some background informa-
tion . Section 3 provides an overview of the major modules
while the detailed implementation challenges and solutions
are provided in Section 4. Section 5 is a presentation and
analysis of the results of the implementation of the TPC-H
benchmarks on a state of the art NVIDIA GPU accelera-
tor. The paper ends with a description of related work in
Section 6 and some concluding remarks in Section 7.

2. BACKGROUND

2.1 Relational Algebra Primitives
Database programming languages are mainly derived from

primitive operations common to first order logic. They are
also declarative, in that they specify the expected result of
the computation rather than a list of steps required to de-
termine it. Due to their roots in first order logic, many
database programming languages such as SQL and Datalog
can be mostly or completely represented using Relational
Algebra (RA) [6]. RA itself consists of a small number
of fundamental operations, including PROJECT, SELECT,
PRODUCT, SET operations (UNION, INTERSECT, and
DIFFERENCE), and JOIN. These fundamental operators
are themselves complex applications that are composed of
multi-level algorithms and complex data structures. Given
kernel-granularity implementations of these operations it is
possible to compile many high level database applications
into a Control-Flow Graph (CFG) of RA kernels.
RA consists of a set of fundamental transformations that

are applied to sets of primitive elements. Primitive elements
consist of n-ary tuples that map attributes to values. Each
attribute consists of a finite set of possible values and an
n-ary tuple is a list of n values, one for each attribute. An-
other way to think about tuples is as coordinates in an n-
dimensional space. An unordered set of tuples of this type
specifies a region in this n-dimensional space and is termed
a “relation”. Each transformation in RA performs an oper-
ation on a relation, producing a new relation. Many opera-
tors divide the tuple attributes into key attributes and value
attributes. In these operations, the key attributes are con-
sidered by the operator and the value attributes are treated
as payload data that are not considered by the operation.

2.2 LogiQL
LogiQL is a variant of Datalog [18], with extensions (ag-

gregations, arithmetic, integrity constraints and active rules)
to support the development of an entire enterprise applica-
tion stack: from user-interface controls, to workflow involv-
ing complex business rules, to sophisticated analysis over
data. The declarative nature of LogiQL is the key reason
for its suitability for rapid application development. LogiQL
is a logic programming language, where computations over
data are expressed in terms of logical relations among sets of
data: e.g., conjunctions, implications, etc. Internally, rela-
tional data are organized as a key-value store. Compared to
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popular imperative programming languages such as Java or
C++, LogiQL abstracts away much detail about the actual
execution of a program from application developers: devel-
opers only specify logical relationships between data. Com-
pared to emerging distributed programming languages for
GPUs such as Map-Reduce [14], LogiQL expresses a richer
set of relational and database operations that are cumber-
some to implement in Map-Reduce.

2.3 General Purpose GPUs
The use of programmable GPUs has appeared as a poten-

tial vehicle for an order of magnitude or more performance
improvement over traditional CPU-based implementations
for large footprint relational query processing. This expecta-
tion is motivated by the fact that GPUs have demonstrated
significant performance improvements for data intensive sci-
entific applications and the recent emergence of GPU ac-
celerated cloud infrastructures for small and medium en-
terprises such as Amazon’s EC-2 with GPU instances [1].
Current EC2 Quadruple Extra Large GPU instances cost
$2.10 per hour, and Quadruple Extra Large CPU instances
cost $1.30 per hour. Nominally, it is expected that if GPU
implementations can provide significant speedup in excess
of 2.1/1.3 relative to CPU implementations, enterprises will
have a strong motivation to move to GPU-accelerated clus-
ters if the software stacks can accommodate mainstream de-
velopment infrastructures - a major motivation for the con-
tributions of this paper. A further motivation for the use
of GPU accelerators is their energy efficiency. GPU-based
systems occupy top 11 spots in the latest Green 500 list [33].

The current implementation targets NVIDIA GPUs and
therefore we adopt the terminology of the bulk synchronous
execution model [35] underlying NVIDIA’s CUDA language.
Figure 1 shows an abstraction of NVIDIA’s GPU architec-
ture and execution model. A CUDA application [25] is com-
posed of a series of multi-threaded data parallel kernels.
Data-parallel kernels are composed of a grid of parallel work-
units called Cooperative Thread Arrays (CTA) which in turn
consist of an array of threads that may periodically syn-
chronize at CTA-wide barriers. In the processors, threads
within a CTA are grouped together into logical units known
as warps that are mapped to single instruction stream multi-
ple data stream (SIMD) units called stream multiprocessors
(SMs). Hardware warp and thread scheduling hides mem-
ory and pipeline latencies. Global memory is used to buffer
data between CUDA kernels as well as to communicate be-
tween the CPU and GPU. Each SM has a shared scratch-pad
memory with allocations for each CTA and can be used as
a software controlled cache. Registers are privately owned
by each thread to store immediately used values.

Performance is maximized when all of the threads in the
warp take the same path through the program. However,
when threads in a warp do diverge on a branch, i.e., differ-
ent threads take different paths, performance suffers because
the execution of two paths is serialized. This is referred to as
branch divergence. Memory divergence occurs when threads
in a single warp experience different memory-reference la-
tencies and the entire warp has to wait until all memory
references are satisfied.

Kernels are compiled to Parallel Thread eXecution (PTX),
a virtual Instruction Set Architecture (ISA) that is realized
on NVIDIA GPUs [26]. This PTX representation is a RISC
virtual machine similar to LLVM [21] that is amenable to
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Figure 1: NVIDIA GPU Architecture and Execu-
tion Model.

classical compiler optimization. Based on CUDA, NVIDIA
also distributes an open source template library–Thrust [4]
which is very similar to the C++ Standard Template Li-
brary (STL) library and provides high performance parallel
primitives such as SET operations. While the current imple-
mentation is based on CUDA, the use of bulk synchronous
parallel model permits relatively straightforward support for
industry standard OpenCL [20].

3. SYSTEM OVERVIEW
The major software and hardware modules are described

in the following.

3.1 Platform
The current non-accelerated software system executes on

stock cloud platforms comprised of multicore blades, e.g.,
Amazon EC2 [1]. This paper targets such platforms ac-
celerated by NVIDIA GPUs. Our current system compiles
queries operating over a data partition (a work unit) and dis-
patches them for execution on the cores. The longer term
vision is to extend this dispatch capability to use GPU accel-
erators in addition to host cores. This paper only deals with
the GPU compilation of queries in the context of this execu-
tion model while a discussion of the impact of this capability
in the larger system is provided in Section 5.
The results in this paper are reported for a standalone

GPU implementation. The overall organization of Red Fox
is illustrated in Figure 2. A LogiQL program is parsed and
analyzed by the language front-end to produce an IR of the
query plan that represents a plan of execution for a set of
dependent and interrelated RA and arithmetic operators.
The RA-Kernel compiler instantiates the query plan with
executable CUDA implementations that are stored in the
primitive library and converts it to the Kernel IR [10] which
is serialized into the binary that is executed by the runtime.

The two IRs insulate the major components - the front-
end, compiler and runtime. This is to support the longer
term goal of easier migration to other language front-ends
and GPU backends (e.g., OpenCL). Collectively, these com-
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Figure 2: Red Fox Platform Diagram.

ponents implement a complete compilation chain from a
LogiQL source file to a GPU binary.

3.2 LogiQL Query
The abstractions and declarative nature of LogiQL en-

able the generation of high performance evaluation plans
for LogiQL programs. A LogiQL program’s data flow is
made explicit through the logical relations used to define
data. Furthermore, well-defined properties associated with
logical relations, such as commutativity and associativity of
conjunctions, readily expose data parallelism in LogiQL pro-
grams. Lastly, the limited number of control operators (e.g.,
one sequencing operator), makes it easy to construct a finite
Data-Flow Graph (DFG) and CFG.

Listing 1 is a simple example of a LogiQL program that
classifies even and odd numbers, which will be used through-
out this paper. A LogiQL file contains a number of declara-
tions (lines 1, 5, 10, and 14) stating the type of relations and
definitions (lines 12 and 15) stating how they are computed.
For example, line 1 states that data type of number is 32-bit
integer. Line 12 states that if m is odd and the next number
after m is n, then n is even; similarly, Line 15 expresses that
a number next to an even number is itself odd. Together,
they provide a recursive definition of the two relations.
Line 2, 3, 6, 7, 11 explicitly assign initial data to number,
next, and even. A LogiQL program starts with the initial
data and iteratively derive facts for the other relations until
it cannot derive any new facts. Note that if there are mul-
tiple rules having the same relation in the head, then the
union of the derived data is computed. For example, even
will contain 0 (as per Line 11) and other even numbers as
of Line 12.

1 number (n) −> i n t32 (n) .
2 number (0 ) .
3 number (1 ) .
4 // o ther number f a c t s e l i d e d f o r b r e v i t y
5 next (n ,m) −> i n t32 (n) , in t32 (m) .
6 next (0 , 1) .
7 next (1 , 2) .
8 // o ther next f a c t s e l i d e d f o r b r e v i t y
9

10 even (n) −> i n t32 (n) .
11 even (0 ) .
12 even (n) <− number (n) , next (m, n) , odd (m) .
13
14 odd (n) −> i n t32 (n) .
15 odd (n) <− next (m, n) , even (m) .

Listing 1: LogiQL Query Example
The LogiQL front-end has two steps. In the first step, it

parses a LogiQL source file into an Abstract Syntax Tree
(AST) that stores information about relations and language
clauses that operate on them. Clauses that contain multiple

Query 
Plan

Variables CFG

BB1:
pre_odd := odd
pre_even := even

odd := MapJoin next even {x1}

Key

int32

even Key

int32

next Key

int32

Value

int32

BB2:
m_1 := MapFilter next 

{x0, x1}->{x1, x0}
j_1 := MapJoin number m_1

{x1,x0}
even := MapJoin j_1 odd {x1}

BB3:
if pre_odd == odd?

BB4:
pre_even == even?

Y

N

odd

BB5:
HALT

Y

NKey

int32

pre_even Key

int32

m_1 Key

int32

Value

int32

pre_odd

j_1 Key

int32

Value

int32

Figure 3: Example of a Query Plan (union of even

and odd is omitted for brevity).

compound operations are broken down into atomic opera-
tions that can be executed individually. A list of all rela-
tions and their associated types is stored in this represen-
tation along with a DFG of operations. In the second step,
the front-end translates from the AST into RA operators.
It performs a simple mapping from each LogiQL atomic op-
eration to a series of abstract RA operators. Relations are
also translated into equivalent types. All of this information
is stored in a query plan.

3.3 Query Plan
The query plan is generated by the LogiQL front-end and

mainly contains two parts. The first part is the declarations
of relations and the second part is a CFG of RA and other
(e.g., arithmetic, aggregation, and string) operators.
Figure 3 shows the query plan of the above LogiQL query

example. The variables part lists all the used tuples (not sin-
gle scalars) and the data types of each associated attribute.
The CFG part is comprised of basic blocks and each ba-
sic block has several commands. Commands include i) RA
and aggregation operations; ii) data movement commands
to make a duplicate of a variable; iii) conditional and un-
conditional jumps to select the next basic block to execute;
iv) HALT command to terminate the execution. Most of the
work is performed by the relational operations. The MapFil-
ter command is a combination of SELECT, PROJECT and
arithmetic/string functions that is used by LogiQL. Sim-
ilarly, the MapJoin command is a combination of JOIN,
PROJECTION and arithmetic/string function. MapFilter
and MapJoin will be further decomposed into operators in a
later compilation stage. Moreover, recursive definitions are
translated into loops in the query plan.

3.4 Kernel IR
The Kernel IR is adapted from [10] and represents a pro-

gram as a CFG of side-effect-free kernels that operate on
managed variables. The compiler maps RA operations to
kernels and intermediate data structures to kernel variables.
A runtime system is responsible for scheduling kernels on
processors subject to control and data dependencies. It is
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Kernel
 IR

Kernel
Variables

Kernel
CFG

BB1:
COPY(pre_odd,odd){PTX}
COPY(pre_even,even){PTX}
JOIN_PARTITION(next,even){PTX}
JOIN_COMPUTE(next,even){PTX}
JOIN_GATHER(temp_odd){PTX}

PROJECT(odd,temp_odd){PTX}

int32

even int32

next int64

BB2:
PROJECT(m_1,next){PTX}
JOIN_PARTITION(number,m_1){PTX}
JOIN_COMPUTE(number,m_1){PTX}
JOIN_GATHER(temp_j_1){PTX}
PROJECT(j_1,temp_j_1){PTX}
JOIN_PARTITION(j_1,odd){PTX}
JOIN_COMPUTE(j_1,odd){PTX}
JOIN_GATHER(temp_even){PTX}
PROJECT(even,temp_even){PTX}

BB3:
if pre_odd == odd?

BB4:
pre_even == even?

Y

N

odd

BB5:
HALT

Y

N

int32

pre_even int32

m_1 int64

pre_odd

j_1 int64

int32temp_odd

int64temp_j_1

int32temp_odd

Figure 4: Example of Kernel IR (union of even and
odd is omitted for brevity).

also responsible for materializing variables and moving them
between address spaces in a heterogeneous system.

This high level representation lends itself to common pro-
gram analysis and optimizations. For example, kernels can
be scheduled statically subject to dependencies, and mem-
ory storage can be time multiplexed between variables using
liveness information that directly falls out of the dataflow
arcs between producing and consuming kernels.

Kernels can represent arbitrary operations. The compiler
specializes skeleton implementations of RA algorithms first
into templated CUDA source code, and then into a PTX ker-
nel which is finally embedded in the Kernel IR. Kernels are
executed on the GPU hardware by first using the NVIDIA
compiler to lower PTX to the native GPU ISA, and then by
using the NVIDIA driver to launch the kernel.

Figure 4 is an example of translated Kernel IR. Operators
in the query plan are broken into several Kernels. Some tem-
porary variables are added to store the intermediate data.

To support devices other than NVIDIA GPUs, the kernels
can be implemented in OpenCL. The back-end runtime can
then be modified to launch kernels by calling the OpenCL
runtime APIs instead of the CUDA driver APIs. These are
engineering rather than conceptual challenges and we are
working towards such OpenCL support in Red Fox.

4. IMPLEMENTATION

4.1 LogiQL Front-end
LogiQL front-end translates a LogiQL query into an GPU-

executable query plan. Figure 5 shows the compilation flow
of the front-end.

In the first stage of the compilation, the front-end parses
a LogiQL query consisting of a set of clauses, declarations
and constraints and builds an AST. In this process, types
are strictly checked after parsing. The strong typing disci-
pline of LogiQL guarantees that well typed LogiQL queries
do not fail at runtime due to type errors. A complete set

Parsing
Type

Checking
LogiQL 
Queries

AST
Generating

AST

Query Plan
Generating

Query
Plan

Optimization

Pass
Manager

1st Stage 2nd Stage

Figure 5: Compilation Flow of Red Fox Front-end.

of type annotations for all LogiQL predicates and variables
appearing in the query is added to the original query as a
part of this process. In the odd-even classification example,
any attempts to derive strings or float data into the integer
only predicates (e.g., odd) is statically rejected, allowing the
query evaluator to optimize the storage representation and
selection of primitive operators without the need for the run-
time to check at every step that correct values are used. The
type checker also performs sound type inference, minimizing
the amount of type annotations and declarations needed in
the source query while preserving safety.

After type checking, high-level syntactic features (includ-
ing disjunctive formulas, recursive definitions, complex ex-
pressions, automatic primitive operator overloading and con-
versions) are de-sugared into a core logical language. This
language consists of an ordered set of executable logical
clauses in dependency/execution order thus specifying high-
level control flow. Within clauses, arithmetic and string op-
erators are checked to ensure that no iteration over poten-
tially infinite tuple spaces can occur, guaranteeing termina-
tion. Further simplification and optimization steps include
common subexpression elimination, clause and predicate in-
lining, and generation of alternate indexes. The temporary
result of the first stage is an intermediate AST containing
information about the types and binding sites of variables,
and information about control flow and potential parallelism
as illustrated in Listing 2.

1 Clauses1 :
2 number (0 ) . number (1 ) . number (2 ) .
3 number (3 ) . number (4 ) . number (5 ) .
4 next (0 , 1 ) . next (1 , 2 ) . next (2 , 3 ) .
5 next (3 , 4 ) . next (4 , 5 ) .
6 even (0 ) .
7
8 Clauses2 { r e c u r s i v e } :
9 for a l l { i n t32 (n) }

10 odd (n) <− e x i s t s { i n t32 (m) }
11 next (m, n) , even (m) .
12 for a l l { i n t32 (n) }
13 even (n) <− e x i s t s { i n t32 (m) }
14 number (n) , next (m, n) , odd (m) .
15
16 Dependencies :
17 Clauses2 <− Clauses1 .

Listing 2: AST Example
There are two clauses in Listing 2. The first clause con-

tains data initializations of number, next, and even. The
second clause describes how to compute even and odd. The
first clause can be done in parallel since the initializations
are independent of each other. The second clause should
be computed recursively because odd and even are mutually
dependent. Clause 1 should be computed before Clause 2
because the computation of even and odd relies on number
and next.
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Operator Skeleton: (RA, SORT, UNIQUE, etc.)

Tuple Operation (Insert, Extract, Combine)

Storage (Key-Value Store )

Figure 6: Three Layer Design of RA-Kernel Com-
piler.

The second stage is to i) map the predicates into tuple
formats; ii) translate the clauses into a sequence of RA op-
erations that can run on the GPU. The ordering of Clause1,
Clause2, and the implicit control flow of Clause2 is made
explicit in a static, single assignment style. Figure 3 is an
example of translated query plan before any optimization.
In this example, The data initialization part is omitted in the
Figure. The recursive part is converted into loops over the
section and checks for changes in the output relations after
each iteration. Inside each basic block of Figure 3, the op-
erators are ordered to respect the dependence requirements.

The end of the second stage is a pass manager which con-
trols the transformation and analysis passes that run over
the query plan IR. Currently, supporting passes include com-
mon (sub)expression elimination, several statistical passes
and type inference passes which assign types and properties
(e.g., uniqueness) to intermediate results. More relational
and compiler optimizations will be added in the future.

4.2 RA-Kernel compiler
The RA-Kernel compiler translates a query plan to an

executable GPU implementation exported in the Kernel IR
format. The core part of the compiler is the primitive li-
brary. The job of the rest is to map the variables/operators
in the query plan to data structure/CUDA implementation
stored in the library. The primitive library, as shown in Fig-
ure 6 is comprised of three layers - i) the bottom layer deals
with relation storage, ii) the middle corresponds to low level
tuple operations that directly operate on tuple data, and iii)
the top layer encompasses operator skeletons.

Relations are stored as key-value store. Both keys and
values are represented by densely packed arrays of tuples. If
the PROJECT operators change the key of a relation, the
key tuple array and value tuple array will be reorganized to
reflect the change. Figure 7 is an example of physical tuple
data layout in the GPU memory. The padding zeros are used
to pack the tuple data to the nearest 2n byte boundary (n
is the smallest integer necessary to store the tuple) to align
the data storage and ease the system design. The tuple size
is templated and the current system supports up to 1024-bit
tuples which is very easy to be extended if needed. Strings
are stored separately in string tables with several string ta-
bles used to store different length strings. Only the string
starting addresses are stored in the tuples. For example, if
attribute 3 of Figure 7 is a string less than 32 characters,
all the string contents in attribute 3 are stored in a string
table whose entry has 32 bytes. The pointers to each en-
try are stored in the tuples rather than the string contents.
The entry size of the largest string table is 128 bytes. If
the string length is larger than 128 bytes or unknown be-
forehand, strings are stored in the 128-byte string table and
one string might occupy multiple entries. A helper kernel is
designed to set up the string tables.

Low level tuple operators are called by the operator skele-
tons to manipulate tuples. These low level operations par-
tially isolate the algorithm design and data storage and ease
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Figure 7: Example of Tuple Storage.

Diamos et al. [9] SELECT, PROJECT, PRODUCT

ModernGPU [3] JOIN, SORT

Thrust [4] SET family, UNIQUE, AGGREGATION

Table 1: Algorithm Sources for Primitives.

modification and optimization. Currently, RA operators
uses three tuple operations: i)Insert: insert an attribute
into the tuple; ii)Extract: extract an attribute from the tu-
ple; and iii) Combine: combine two tuples by concatenating
their value attributes which is used by the JOIN operator.

Finally, as to mapping the operators, a compound op-
erator in a query plan such as MapFilter or MapJoin is
decomposed into SELECT or JOIN, PROJECT and arith-
metic/string operators. Furthermore, SORT operators are
added when some operators need sorted inputs. Currently,
JOIN, AGGREGATION, and SET family require sorted in-
puts because of the chosen algorithm (introduced later in
this subsection). Similarly, UNIQUE operators are added
when the output data are required to retain uniqueness.
All operators are implemented using various algorithm

skeletons that allow the same high level algorithm to be
readily adapted to operations over complex data types. This
approach is commonly used in compilers for high level do-
main specific languages such as Copperhead [5], Optix [28].

Currently every operator has one corresponding algorithm
implementation. More algorithms will be added in the fu-
ture. Red Fox uses the algorithms designed by Diamos et
al. [9] for PROJECT, PRODUCT, and SELECT. SORT and
JOIN algorithms are from ModernGPU library [3] which are
both based on the merge path algorithm framework [13].
The JOIN implementation is a variant of sort-merge join
optimized for GPUs. As far as we know, all of the above
algorithms are one of the most efficient in their categories.
They make trade-offs between computation complexity and
memory access efficiency and scale well with high through-
put. Operators such as SET family, UNIQUE, and AG-
GREGATION (thrust::reduce by key) use implementations
from NVIDIA’s Thrust library. The remaining operators
such as arithmetic (including datetime support), string op-
erations (e.g., string append and substring) are data parallel
operations and are re-implemented. Table 1 summarizes the
algorithms stored in the primitive library and the source of
the implementation.

Algorithm skeletons are CUDA implementations of op-
erators that are templated on the tuple type and possibly
the lower level operation type as well (e.g., comparison in
SELECT). Once a operator has been mapped to a skele-
ton, the skeleton is instantiated for the data types of the
relation, and the low level operations performed in the case
of SELECT and PROJECT. Operators from Diamos et al.
and ModernGPU library use the same three stage design
(partition, compute, and gather) in the algorithms. Some
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Execution Time (seconds)
Query GPU GPU CPU CPU

# (w/ PCIe) (w/o PCIe) Parallel Serial

Q1 0.33 0.28 2.76 18.60
Q2 0.03 0.03 0.41 2.35
Q3 0.19 0.16 2.88 4.74
Q4 0.11 0.09 0.34 2.59
Q5 0.17 0.15 1.19 19.68
Q6 0.17 0.14 0.91 11.50
Q7 0.12 0.09 0.62 4.87
Q8 0.35 0.32 1.17 12.25
Q9 0.27 0.23 2.00 132.7
Q10 0.44 0.42 0.75 9.35
Q11 0.03 0.03 0.27 2.76
Q12 0.25 0.22 1.31 10.54
Q13 0.08 0.06 0.60 2.38
Q14 0.70 0.68 0.82 3.22
Q15 0.09 0.06 0.59 2.11
Q16 0.02 0.02 1.21 4.65
Q17 0.17 0.15 0.19 43.12
Q18 0.04 0.03 0.51 4.86
Q19 0.68 0.63 1.80 40.67
Q20 0.06 0.03 0.27 21.57
Q21 0.18 0.16 2.25 18.32
Q22 0.02 0.02 0.78 2.97

Total 4.49 3.96 23.65 375.89

Table 3: TPC-H Performance (SF 1).

11.7% of the total execution time. Several queries (Q15,
Q18, and Q20) spend more than 33% of their time in PCIe
transfers - motivating pipelined execution of PCIe transfers
and GPU computation.

The Power metric and Price/Performance metric are two
standard reporting conventions [8] required by the TPC-
H organization. The TPC-H power metric 1 (the higher,
the better) measures the raw performance. It reports how
many queries the system can execute back to back in one
hour, i.e. the reverse of the query execution time geometric
mean. The value of the power metric for Red Fox is 28,371
QphH@1GB (w/ PCIe), or 34,402 QphH@1GB (w/o
PCIe). The TPC-H Price/Performance metric (the lower,
the better) is the unit cost for performance. For Red Fox,
the number is about 0.08 USD/QphH@1GB, (w/ PCIe),
or 0.07 USD/QphH@1GB (w/o PCIe). It is difficult
to directly compare these values to commercial benchmark
records [7] since i) they report aggregate values across full
systems (min 100GB) and ii) this paper is about the effec-
tiveness of mapping relational queries to utilize the compute
throughput GPUs. Therefore we report speedups relative
to a single node implementation of the commercial LogiQL
system in Section 5.2, i.e., the accelerated system. The last
two columns of Table 3 lists the TPC-H performance of a
CPU-based system which will be discussed in Section 5.2.

Due to space limitations, we cannot provide a full char-
acterization for each query. Instead, we provide the overall
performance analysis and use some queries as examples. The
performance breakdown of each query will be listed in our
website together with their query plans.

Figure 10 shows the frequency of occurrence of each primi-
tive (top part) and execution time breakdown (bottom part)
across all the queries. The bar “others” includes arithmetic
operation, string operation, string table setting up, etc. SORT
is split into two parts: SORT JOIN and SORT AGG. The
former is the sorting before the JOIN and the latter is the

1TPC-H Power@Size = 3600 * SF /
(
∏

22

i=1
TQi

)1/22
[8].
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Figure 10: Operator Frequency (top) and Perfor-
mance Break Down (bottom).

sorting before AGGREGATION. It should be noted that
Q14 and Q19 have more operators and longer execution time
than the other queries so that they take a higher portion of
impact in Figure 10 than the other queries. Overall, the
most widely used operator is PROJECT, followed by JOIN,
and SELECT. SORT JOIN is called about half as frequent
as JOIN because one or both inputs of the JOINs are al-
ready sorted. This also happens to AGGREGATION and
SORT AGG. The least occurring operators are SET DIF-
FERENCE and UNIQUE since only a few queries use them.
SET INTERSECTION is never called.
Each bar in the bottom part of Figure 10 represents the

percentage of time spent in an operator across all 22 queries.
Overall, most of the execution time is spent in SORT JOIN
(59%), JOIN (15%) and SELECT(12%). Therefore these op-
erators deserve more attention in algorithm optimization on
GPUs. Especially for the sort-merge join algorithm used in
the paper, the sorting part takes much longer time than the
merging part. Furthermore, although PROJECT and SE-
LECT are used frequently, the percentage of execution time
is relatively small. They are not computationally intensive.
Consequently early ordering of SELECT and PROJECT op-
erators in a query plan can significantly reduce the run time
of downstream operators like JOIN and SORT by pruning
data set sizes while also being computationally simple and
embarrassingly parallel (across tuples).

5.2 Performance Comparison
The execution performance on GPUs is compared to that

of the commercial LogiQL implementation, LogicBlox 4.0
on CPUs [18]. We use stock compilation without specific
optimizations manually or otherwise targeted to TPC-H.
We execute all 22 queries in one Amazon EC2 instance
cr1.8xlarge [1] (2× Intel Xeon E5-2670, 16 cores in total)
with 32 threads to parallelize the query processing. The
overall cost of this instance is about 6,000 USD excluding
the network and software cost, which is 2.5x as expensive
as the tested GPU system. Two Xeon E5-2670 CPUs cost
about 3,000 USD which is three times of the price of the
GTX Geforce Titan card. The theoretical memory band-
width of the Xeon CPU is 51.2 GB/s which is about 17% of
that of the GPU device used in the evaluation.
The fourth column of Table 3 lists the absolute execution

time of the commercial system. Figure 11 shows the relative
speedup of individual queries achieved by Red Fox compared
with this system for SF 1 databases. It should be noted that
the baseline commercial system employs novel optimizations
that produces very efficient and often optimal or near op-
timal query plans for CPUs. The query plans produced by
GPU are not fully optimized and do not employ such in-
dustrial strength query plan optimizations. Thus, we view
the speedup estimates as conservative. Section 5.3 discusses
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Figure 11: Comparison between Red Fox and paral-
lel build of LogiQL (SF 1).

in greater detail aspects of improvements for GPUs that we
have learned as a consequence, and which can produce ad-
ditional factors of performance improvement.

In Figure 11, GPU performs better than CPU for all
queries. Q16 and Q22 have higher speedup in GPU than
the other queries. One common feature of these two queries
that distinguishes them from the rest is that they concen-
trate on string processing upon a large number of different
short strings (less than or equal to 128 bytes). Q16 has three
SELECTs doing regular expression searches (string notlike).
Q22 focuses on substring and string matching. The CPU
system utilizes the STL and BOOST library to perform the
string operation. In GPU, tuples are mapped to threads so
that each thread performs the required string operation on
one string. For example, in the case of regular expression
search each thread performs the same search pattern upon
its own string. Thus, the GPU threads may follow differ-
ent code path depends on the string contents which vary
a lot. Severe branch and memory divergence are expected.
The throughput of normal SELECTs for integer compari-
son is larger than 100GB/s. However, the throughputs of
three SELECTs of Q16 are much smaller, i.e. 22GB/s,
17GB/s, and 5GB/s (the difference is caused by search pat-
tern, string length, string content, etc.). Even then, Red
Fox still outperforms the CPU system which is also limited
by low branch prediction accuracy and CPU cache misses.
Q10, Q14 and Q17 have relatively smaller speedup which is
less than 2x. The unoptimized query plan is the main rea-
son. Section 5.3 will analyze the impact in more detail and
discuss future improvements.

The last two bars in Figure 11 compare the TPC-H power
metric between different execution configurations. The power
metric for the parallel CPU system is 4,380 QphH@1GB.
Red Fox is 6.45x faster if including PCIe time or 7.86x
faster if just comparing the processor computation time. As
to the TPC-H Price/Performance metric, the difference be-
tween the CPU and GPU would be 15.48x or 18.86x includ-
ing or excluding PCIe. If only considering the cost of the
processors, GPU is 19.35x or 23.58x more cost efficient.

For completeness, Figure 12 includes the performance com-
parison between Red Fox and the sequential build of LogiQL
4.0 which runs one query on a single core of CPU because
often database systems map one query to one thread when
concurrently processing queries, i.e., in throughput opti-
mized CPU designs. The last column of Table 3 is the raw
performance data of the sequential CPU system. The CPU
configuration of the sequential experiment is an Intel i7-920
with 12GB memory. Please note that the CPU is not as
powerful as the server class CPU used in the parallel exper-
iment. Overall on average, Red Fox is 65.92x faster with
PCIe or 79.94x faster without PCIe.
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Figure 12: Comparison between Red Fox and se-
quential build of LogiQL (SF 1).

5.3 Analysis and Future Improvement
In terms of opportunities for improvement, we first note

that Red Fox currently does not include some standard op-
timizations utilized in the database community. Simply re-
ordering the positions of operators in the query plan can
significantly improve the performance. In Figure 9(b), we
manually i) move the SELECT operator to the beginning
of the query; ii) perform the aggregations as soon as all the
data are ready and discard these data immediately after ag-
gregation. The result is that the memory footprint of Q1
was reduced by half (due to reduction in size of intermedi-
ate data) and the execution time excluding PCIe transfer
becomes 0.16 seconds which is 1.8X faster than the original.

Moreover, SORT is the most time consuming operator
that needs to be further optimized. First, grouping the JOIN
operations by key attribute can minimize the number of in-
tervening SORTs required. In the three queries that have
the lowest speedup against the CPU (Q10, Q14, and Q17),
these unnecessary SORTs occupies 40%, 26%, and 44% re-
spectively of their total GPU execution time. Second, some
primitive implementations do not require pre-sorting such
as the hash join operator [19]. Third, for different data dis-
tributions or key value sizes, other SORT algorithms may
perform better. For example, radix sort [30] may perform
better when sorting small key size arrays.

More broadly, we identify several hardware and software
issues that are related to performance.

GPU DRAM System: Simple operators such as SE-
LECT and PROJECT are already memory bound [9]. Com-
plex operators such as JOIN [3] are not completely memory
bound yet, but most of the computations address calcula-
tions and shared memory accesses, not floating point. Im-
proving the SM performance (e.g., shared memory band-
width, integer instruction throughput) for these operators
can improve performance up to the point of saturating mem-
ory bandwidth. As to DRAM latency, it is less important
than capacity or bandwidth because the contiguous tuple
storage and the large amount of data make it relatively easy
to hide.

SM Microarchitecture: The instruction mix in database
primitives is comprised mainly of integer and load/store in-
structions with relatively smaller percentage of floating point
operations. Control and memory divergence occurs when
searching or comparing data but their cost is not as sig-
nificant as moving data. The goal of increasing the occu-
pancy is to saturate SM utilization or DRAM bandwidth
since the basic strategy of RA primitive design is to increase
core utilization until SMs are saturated or the operations
are memory bound. Thus, the shared memory and register
files should be large enough to buffer the computation data
especially in the cases when intermediate tuple sizes become
large. Consequently, some emphasis on reducing tuple size
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when feasible is important for achieving high occupancy for
given shared memory and register file sizes.

Data movement: Consider Q1 that reads/writes 20GB
from/into GPU memory. Suppose the memory bandwidth
is 200GB/s, transferring these data would take 0.1 seconds
which is about 1/3 of the total GPU computation time. In
relational queries, data movement cost is amplified by the
relatively fine grained nature of RA operators. Employing
variants of classical loop fusion optimizations to kernels, e.g.,
multi-predicate join operations, can improve performance.

In this accelerator configuration, the GPU performs op-
erations over partitioned data sets and logically appears as
a faster core to the host runtime. However, the runtime
must account for the cost of data transfer. Thus, intelli-
gent workload partitioning schemes (CPU vs. GPU) will
have to make the decisions as to when accelerator usage is
productive as a function of query plan and input data set
characteristics. With appropriate changes in cost, the model
applies to fused parts where the CPU and GPU share the
same memory hierarchy such as in AMD Fusion or Intel’s
Haswell. Finally, another approach to addressing the mem-
ory limitation of discrete parts is the use of global virtual
address spaces (e.g., CUDA UVA). In this case, data move-
ment is not managed by the application programmer, but
rather by the system software/compiler.

6. RELATED WORK
Previous GPU-related database research [12, 16, 34, 19,

17, 9, 3] focused on implementations of primitives. RA prim-
itives have been difficult to implement on GPUs because of
i) irregular structure in the memory access patterns; ii) fine
grained parallelism with low arithmetic density (ops/mem-
ory access), and iii) non-obvious or low data locality. These
previous works achieved several factors of speedup in com-
parison with their CPU counterparts and some are used in
Red Fox.

However, the system level research of executing queries
on GPUs is still in the early stage. When executing a com-
plete query, the above problems are amplified because many
of primitives are involved. Pioneering early work in GPU
database systems was GPUQP, developed by He et al [15]
which has started to migrate to OpenCL [40]. However,
they were not addressing runtime issues necessary to man-
age the execution of full scale queries and its interaction
with compilation, reporting results for two TPC-H queries.
Subsequently, Fang et al. designed several data compression
schemes based on GPUQP to reduce the PCIe data transfer
for database queries [11]. Bakkum et al. also tried to run
full queries on GPUs but with a very different approach [2].
They modified the virtual machine infrastructure of SQLite
to use GPUs to execute SQLite opcodes (not RA primitives).
While novel, it had not yet matured to complex operators
(e.g., not supporting JOIN). Recently, Yuan et al. [39] built
a column-store GPU query engine for data warehouse work-
loads and tested it with Star Schema Benchmark [27]. Their
system lacks a runtime system and a flexible infrastructure
(e.g., two IRs in Red Fox). Their optimization suggestions
are also valuable for improving Red Fox and similar infras-
tructures. Martinez [22] et al. designed a Datalog engine
for GPUs and could run it with simple queries. Compared
with their work, LogiQL is more expressive and Red Fox
uses more efficient primitive design and can support more
complex queries. Rauhe [29] et al. designed a multi-level

parallelism framework to execute relational queries in GPUs
and tested with only seven TPC-H queries due to the lack of
support of functions such as string operations. GPU threads
execute the programs adopted from their earlier CPU im-
plementation upon a portion of the data. The results com-
puted by the GPU threads are aggregated inside the CTAs
and then across the CTAs by another kernel. Their method
did not optimize for GPUs and had problems such as load
balance. Sitaridi et al. [32] proposed a method to create
optimum query plans for executing selection having com-
pound conditions in GPUs and planed to extend it to other
primitives in the future. Their work can be integrated to
Red Fox to optimize the front-end. Mostak et al. [23] built
a GPU accelerated database system, MapD, specialized for
geography map queries. As to using multiple GPU devices
running over large amount of data, Young et al. proposed
to use a runtime and user-level library, Oncilla, to manage
multiple GPU devices’ memory for large data warehousing
applications [38].

Ngamsuriyaroj et al. [24] reported small scale TPC-H per-
formance on MySQL cluster which is one to two orders of
magnitude slower than this work (it is using older processor
technology). Finally, while the TPC-H website [7] lists and
ranks reported large scale performance, none of the reference
platforms use GPUs.

7. CONCLUSION
This paper presents the design of a GPU compiler/run-

time framework for a high level declarative language com-
monly used for database and business analytics applications.
The context is that of a cloud system where individual nodes
are accelerated with GPUs and where the runtime system is
targeted to multicore execution of queries over partitioned
data sets and uses the GPU logically as a high speed accel-
erator core. This paper focuses on the compilation of indus-
trial strength queries represented by the full TPC-H bench-
mark onto GPUs. Comparison with multithreaded host im-
plementations demonstrates significant computing speedup
is feasible for a declarative programming model for database
and business analytics. The language is progressively parsed
and lowered through a series of RA representations that
eventually are mapped to PTX kernels embedded in a Kernel
IR that is executed by an implementation of the runtime on
a high-end discrete GPUs. We report its performance on the
full set of TPC-H queries which to the best of our knowledge
is the first such implementation for GPUs. When compared
with a CPU-based commercial parallel system, GPU system
is also 6.48x faster if including PCIe or 7.86x faster if ex-
cluding PCIe. We also provide analysis of the performance,
the lessons learned and future directions.
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