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ABSTRACT
In this paper, we show how we use Nvidia GPUs and host CPU
cores for faster query processing in a DB2 database using BLU Ac-
celeration (DB2's column store technology). Moreover, we show
the benef ts and problems of using hardware accelerators (more
specif cally GPUs) in a real commercial Relational Database Man-
agement System (RDBMS).We investigate the effect of off-loading
specif c database operations to a GPU, and show how doing so re-
sults in a signif cant performance improvement. We then demon-
strate that for some queries, using just CPU to perform the entire
operation is more benef cial. While we use some of Nvidia's fast
kernels for operations like sort, we have also developed our own
high performance kernels for operations such as group by and ag-
gregation. Finally, we show how we use a dynamic design that can
make use of optimizer metadata to intelligently choose a GPU ker-
nel to run. For the f rst time in the literature, we use benchmarks
representative of customer environments to gauge the performance
of our prototype, the results of which show that we can get a speed
increase upwards of 2x, using a realistic set of queries.
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1. INTRODUCTION
In-memory columnar relational database management systems

(RDBMSes) have been shown to be very performant for analytic
query processing, as they can use the massive parallel processing
of multi-core processors to quickly respond to user queries. As a re-
sult, in-memory columnar RDBMSes exist from multiple vendors,
including HP (Vertica), SAP (HANA), Microsoft (SQL Server) and
IBM (DB2). It has also been shown that hardware accelerators like
GPUs, FPGAs and custom design ASICSs can be used to improve
the performance of various applications [4, 5, 6, 7, 9, 11, 12, 13,
16, 24] . With that understanding, we have demonstrated two main
achievements from our work. The f rst is to show that we can im-
prove DB2 BLU query performance by using Nvidia GPUs. Im-
proving performance through the use of a hardware accelerator re-
quires some major changes in the software. As a result, our second
achievement is the illustration of some of the challenges that arise
when integrating such accelerators into a commercial database.
GPUs, such as those from Nvidia, are programmable hardware

accelerators that provide massive parallel computing power. While
GPUs have traditionally been used mostly for graphical applica-
tions, today's database applications (such as DB2 BLU) can exploit
GPUs to off oad CPU computing intensive operations to run on the
GPUs. The main goals of using GPUs for query processing in DB2
BLU are:

• Utilizing the massive parallel computing capability of GPU
for DB2 engine operations that can be executed in parallel,
thus reducing the runtime of such queries.

• Freeing up CPU cycles by off-loading CPU intensive opera-
tions to run in the GPU. The savings in CPU cycles can be
applied to other running tasks in the system. This benef ts
multiple concurrent user scenarios where the CPU savings
from one query (while running in the GPU) can be applied to
other running queries.

The amount of speed up we can achieve by using GPUs depends
on the complexity of the operation, the size of the data, as well as
the percentage of time the query spends within the costly operations
such as sort, group by, aggregation, and join over the entire query.
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Using GPUs to improve the performance of specif c database op-
erations such as sort [6, 9, 11, 22], join[12, 13, 14], indexing[16,
17], compression[8, 19], and selection[10, 25] have been studied in
various literature. Also techniques in [20] can be utilized for GPU
aggregation operations. Moreover, [23] shows how GPUs can pro-
vide a cost-effective computing platform to support processing of
large amounts of data streamed into a push-based database system.
Based on this, the authors also provide some recommendations on
how to design a query processing engine for such systems that run
on GPUs. In [26] the authors show very preliminary work on a
kernel- adapter based database engine named OmniDB which uses
both the CPU and the GPU for query processing. [15] designs a
database system that can eff ciently exploit highly heterogeneous
hardware environments. The main contributions of our paper, in
relation to previous work, are:

1. Performance benef ts to using GPUs in conjunction with
CPUs- We demonstrate a design that uses both Nvidia GPUs
and CPU cores for fast processing of database operations
such as group by, aggregation and sort. In our design we
show a hybrid approach that performs portions of the query
processing in the CPU, and then uses the GPU to process
certain compute intensive parts of the query.

2. Eff cient integration of the Nvidia GPU to DB2 BLU run
time- One of the main bottlenecks in hardware accelerating
our queries is in coming up with a data format that the accel-
erators can process eff ciently. This requires copying data to
the hardware accelerator's memory, which would be the pri-
mary penalty to be paid. In our design however, we ensure
we have the same number of data copies in our prototype as
in the original DB2 BLU product. We also design our GPU
kernels such that they can process DB2 BLU data with min-
imum conversion cost.

3. Using heuristics to intelligently process queries- That is, at
runtime we can decide to use either the CPU, GPU, or both.
We also use the meta-data which is generated during initial
processing of query at DB2 BLU runtime, to tune/optimize
the size of data structures on the GPU on-chip memory. To
the best of our knowledge, none of the existing approaches
use runtime meta-data to tune the size of data structures on
the GPU.

4. Multiple group by/aggregation GPU kernels- In our de-
sign we have different group by/aggregation kernels while
functionally these kernels perform the same operation, each
kernel suits a specif c type of query. None of the existing
techniques allows an accelerator kernel to be dynamically se-
lected at runtime. We have implemented a software modera-
tor that can intelligently make this decision at runtime based
on factors such as the number of groups, the number of pay-
loads, and the ratio of rows to number of groups. Moreover,
if we have enough compute resources and memory on the
GPU, we can use more than one kernel to execute the same
query at the same time.

5. Scheduling tasks across multiple GPUs- We have built a
simple scheduler which lets the DB2 BLU run time schedule
tasks on the different GPUs. The scheduler takes into ac-
count parameters such as the resources required by the task
and the resources currently available by each of the GPUs.
This allows for f exibility in terms of hardware conf gura-
tions, as the GPUs do not need to be homogenous in their
specif cations.

The rest of this paper is organized as follows. In section 2 we
discuss how we have changed the DB2 BLU engine to add support
for Nvidia GPUs. Section 3 explains how we use a hybrid design to
use both CPU and GPU for sorting. Fast group by/aggregation GPU
kernels are studied in section 4. Section 5 shows our performance
result on some standard benchmarks. Finally, section 6 concludes
with our thoughts on the future of GPU acceleration in databases.

2. DB2 BLUWITHGPU INFRASTRUCTURE
In order to integrate the Nvidia GPUs to DB2 BLU, we need to

make infrastructure changes in the DB2 BLU runtime code. The
main components that are added to the DB2 BLU engine are: 1)
memory management unit 2) support for multiple GPU devices 3)
performance monitoring. We will brief y describe all three compo-
nents in the following section.

2.1 Memory Management Unit
In this section we explain the changes we have made in DB2

BLU memory management unit to add GPU support.

2.1.1 Device Memory Reservation
Device memory reservation is important when there are multiple

concurrent tasks (threads or processes) that request device memory
from the same GPU device at the same time. If there are multi-
ple concurrent tasks all entering GPU kernel execution at the same
time, the contention for device memory between these tasks could
lead to a memory allocation error during task execution. In such
a scenario, the calling function would have to enter the expensive
error code path to handle the out of memory error and roll back the
operation to a consistent point, and then retry the operation. More-
over, implementing a memory reservation system would allow a
GPU operation to complete if it could successfully satisfy all of its
memory needs up front. We have implemented a simple memory
reservation approach in which we track device memory usage by
all consumers on a given GPU device, such that a task can query
and reserve memory up front before proceeding to run the devices
kernel code. Once the GPU kernel code execution is f nished, the
reserved memory is released for use by other tasks. If a task fails
to reserve the memory, it can then either 1) wait until device mem-
ory becomes available or 2) fall back and run the task on the CPU
(host).

2.1.2 Host Memory Registration
Data transfers (memory copying) between the host and the GPU

device can be very expensive if the memory is not registered (pinned)
with the GPU device up front. If the host memory is registered
with the GPU device, then the speed of data transfers from regis-
tered host memory can be more than 4X faster than the speed of
data transfer from unregistered memory using PCI-e gen 3. For
this reason, all memory that is allocated for GPU operations is pre-
registered with the GPU device(s) during the DB2 BLU start up
phase. Registering the individual memory block can be very expen-
sive. As a result, it is preferable to avoid the registration on each
invocation of the kernel call. With our approach, the registration
of all required memory is thus performed up front, using a single
large memory segment. This allows subsequent memory requests
on each kernel invocation to be accommodated through an alloca-
tion from this single large (registered) memory segment. When the
GPU kernel f nishes its work and returns, the allocated memory is
returned to the free pool of registered memory.

1952



2.2 Support for Multiple GPU Devices
Our design supports multiple GPU devices by distributing work-

load to all of the available devices. To allow for good distribution,
we must f rst track the number of outstanding jobs that are currently
executing on the GPU devices, as well as track the amount of avail-
able memory on each device. In addition, we know the amount of
memory that each kernel invocation call needs in advance. This
can be calculated using the type of the query, size of the input data,
and size of the internal data structures needed in the GPUs memory
to perform the operation. After calculating the total memory size
that a kernel invocation needs, we consult the GPUs to see if any of
them has enough free resources to execute the given kernel call.
Supporting multiple GPU devices is highly important for 1) large

workloads where the data set exceeds any single device's mem-
ory limit, and 2) scenarios in which multiple concurrent users are
running on the system. In the case of large workloads, the input
data is partitioned (typically using range partitioning) into multiple
smaller chunks, and these smaller chunks are sent to some number
of available GPU devices, to be operated on concurrently. The re-
sults are then merged together in the f nal step and returned back
to the user. In the case of multiple concurrent users whose queries
are able to exploit the GPUs, the set of queries can be scheduled to
run on all GPUs and therefore fully utilize all available resources
on the host.

2.3 Performance Monitoring
Monitoring the time spent inside the GPU and the time spent

transferring data to and from the GPU is very important. This pro-
f ling information is mainly used to tune the kernel code in an effort
to improve performance. In addition, this monitoring information
can be used to optimize the implementation and therefore reduce
the amount of data transferred between the host and the GPU de-
vice.
While there are existing tools (such as Nvidia's nvidia-smi tool)

to monitor overall GPU performance and memory usage, they can-
not prof le detailed information about a GPU that is integrated to
an existing application, which is the case in our implementation.
As a result, we were forced to implement our own performance
monitoring tooling. Our performance monitoring tool for the GPU
is integrated with the existing DB2 BLU performance monitoring
infrastructure and provides detailed information about the GPU re-
lated calls and kernels. This monitoring tooling was then used to
tune the performance of the GPU kernels so that they could be com-
pared with their CPU implementations.

3. OFFLOADING SORT DATA TO GPU
The DB2 BLU sort code receives incoming tuples for each col-

umn that is to be sorted. These tuples are stored in memory in a
structure known as the Sort Data Store (SDS), which we refer to
as the SDS buckets. Data in the SDS buckets remains unmodif ed
and never moves during the sort. Since these tuples could be quite
large, we do not want our swap operations during the sorting phase
to have to move them around in memory. Instead, we have an in-
termediate structure that we call the partial key buffer.
Each partial key buffer entry consists of a 4 byte key and a 4

byte payload. The key is a partial binary sortable representation
of the column that is being sorted, and subsequent fetches of the
next partial key may be required to determine the f nal ordering.
The payload is a pointer into the SDS bucket for the corresponding
tuple. The payload is able to grow larger than 4 bytes, in cases
where 4 bytes is not enough to address the number of rows in the
SDS buckets.

DB2 BLU sort uses a job queuing system to represent each sort-
ing task. Initially there is only one job, which represents the entire
data set. When a job is started, it is taken off the queue and the
host will generate (in parallel) a set of partial keys and payloads
and populate the partial key buffer with this information. The DB2
BLU engine then determines if the job is a candidate for a GPU
sort, based on the number of tuples in the job. For instance, if the
number of input tuples is very small, there is no benef t in forward-
ing the sort job over to the GPU because the combined cost of the
transfer time plus processing time overshadows the performance
savings we would have gained from using the GPU to sort the job.
Though multiple threads are used to generate partial keys and

payloads on the host side, only a single thread is needed to dis-
patch the job to the GPU. As explained in section 2-2, a scheduling
algorithm is used to determine the GPU to which the job will be
dispatched. Once a CPU thread has been chosen to dispatch the
job to the GPU, the remaining CPU threads for this job are released
since their work is complete. These released threads will process
the next available job on the queue. We use the GPU Duane sort
kernel[18] provided by Nvidia to perform the sort operation in the
GPU. When the GPU returns from processing, it will have sorted
the partial key buffer based upon the 4-byte partial key. This of
course does not represent a completely sorted data set, since all we
know up to this point is a partial ordering based upon the f rst 4
bytes. If there exists more than one tuple for which the f rst 4 bytes
are identical, the next set of partial keys needs to be generated. We
call such a group of tuples a duplicate range, which the GPU iden-
tif es for us. A new job is created for each duplicate range and is
placed on the job queue. The sort is complete when there are no
more jobs on the queue.
The job queuing system that we have in place is f exible to al-

low for concurrent jobs to be executed both by the GPU and the
CPU. This allows for a truly hybrid sorting system and lets the host
perform sorting where it does not make sense for the GPU to do
so, such as for a small number of rows. This also facilitates load
balancing where more threads can be directed at certain jobs.
Another feature of our sort design is that it is not dependent on

the data type of the column being sorted, as we have transformed
the underlying type into a binary stream that is sorted on 4 bytes
at a time. Moreover, we have a merge free sort algorithm that uses
both the CPU and GPU for sorting. Merging is a very costly step
in all the sort algorithms that have a merge step. In our design, we
remove the merging step by making conf ict free partitions before
sending sort jobs to the GPU.

4. GROUP BY / AGGREGATION
We have designed a hybrid hash-based group by/aggregation al-

gorithm that utilizes features of DB2 BLU and Nvidia GPUs for
fast query processing. Group by/aggregation can be very costly in
all RDBMSes when there are a large number of grouping columns/
keys and/or aggregation functions. However, for queries with a
small number of input rows, using the GPU would be slower when
compared to using only the CPU. One of the advantages of our de-
sign is that we can dynamically decide where to execute a group
by/aggregation query based on its runtime features. In order to
have these features, we made changes in the execution chain of
group by/aggregation queries.
In all hardware accelerators, there are a limited (but usually large)

number of compute resources. Knowing the query requirements in
advance has a lot of benef ts. We can 1) check to see if we have
enough free resources on the GPU to execute the same query with
different types of kernels 2) choose a suitable GPU kernel dynam-
ically at run time. In addition, if we have enough resources on the
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Figure 1: DB2-BLU Group by/Aggregation chain

GPU, we can run the query concurrently on two or more different
kernels. This helps us f nd out the fastest kernel for a specif c query.
We can then stop the other kernel(s) as soon as one of the kernels
f nishes its job. This would give us more opportunity for faster
processing of the query 3) add feedback logic to the design that
informs a software moderator about the computation of the query
using a specif c kernel. The moderator can then learn over time
which of the kernels to use, given a specif c type of query. This
feature is not yet implemented. Hence, we make use of metadata
that is generated by the DB2 BLU runtime to accelerate query pro-
cessing on the GPU. Such metadata includes the exact number of
tuples, the estimated number of groups, and the number of aggre-
gation functions. This information can help us call different kernels
at runtime based on the type of the query.
In addition, this metadata allows us to optimize the size of the

data structures we use in the GPU. This is very important because,
as described, the GPU memory is very limited when compared to
the host machine. The main data structure that we use to process
the group by/aggregation queries in the hardware accelerator is a
global hash table in the GPU memory. In our design we use the
estimated number of groups to set the size of this hash table. If we
do not know the number of groups then we need to set the size of
hash table to be as big as the number of input rows which is much
larger than number of groups in most queries. We describe our
design in four main parts: 1) Changes we have made to the DB2
BLU runtime to integrate the GPU 2) The GPU run time 3) The
group by kernels 4) The aggregation functions.

4.1 Eff cient Integration of GPU to DB2 BLU
Runtime

Figure 1 shows the group by/aggregation chain in DB2 BLU.
In the current design, group by/aggregation is performed in two
phases. In the f rst phase, parallel threads read data from DB2 BLU
tables and perform different operations on the data as depicted in
f gure 1. When the f rst step f nishes, the f nal result is merged into
a global hash table. The description of the different evaluators is as
follows[21]:
LCOG, LCOV: Load grouping keys and payloads
CCAT: Concatenate keys for queries that group by on more than
one column
HASH: Hash function that receives grouping keys and returns a
hashed value
LGHT: First phase of BLU group by that creates groups in local
hash tables
AGGD, SUM, CNT: Apply different aggregation functions

In our new design, as depicted in f gure 2, we moved some of
these evaluators to the GPU and also added some new evaluators.
As you can see, the LGHT and all aggregation functions are com-
pletely removed from the DB2 BLU group by evaluator chain. This
is because we perform all of these operations in the GPU. We use

CPU threads to load data and then use a simple hash function and
KMV[2] algorithm to estimate the number of groups. We will use
this estimate to tune the size of the GPU data structures.
Instead of having an LGHT evaluator, we have a simple MEM-

CPY evaluator that copies data to the pinned memory on the host
machine. As explained, transfers to/from the GPU on-chip memory
should be through the pinned memory because of its faster speed.
After data is copied to the pinned memory, one of the CPU threads
will call the GPU to perform the rest of operations. When the
GPU f nishes its job, the result will be ready in the pinned memory.
Details are in the next section. Moreover, we use input from the
DB2 optimizer to choose a suitable group by/aggregation chain.
The optimizer can provide some information like the number of
groups/input rows before we start processing the group by chain.
If the number of rows or groups (from the optimizer estimates)
is smaller than a predef ned threshold (T1), we perform the entire
computation in the host (i.e. in CPU, not GPU) using the DB2 BLU
chains depicted in f gure 1. This optimization can be very benef -
cial for very small queries with small numbers of rows or groups.
For these small queries, the cost of sending data to the GPU can be
much more than the speed up we achieve by using the GPU. As a
result, it is more suitable to perform the entire computation on the
CPU for such small queries.
In contrast, if the number of rows is larger than a specif c thresh-

old T1 while the number of groups is also larger than a threshold
T2, we want to perform the entire computation on the GPU. This
set of queries is very common and the GPU can be eff ciently used
to improve the performance of these types of queries. We would
like to emphasize that for queries with a very small number of rows
or groups, the CPU is already very fast so there is no need to use
the accelerator. As previously mentioned, we still use part of the
original DB2 BLU group by chain to pass data to the accelerator,
but the main computation is performed on the hardware accelera-
tor. If the number of input rows is very large(larger than T3), the
data will not f t in accelerator memory. In this case we will need
to partition the data and use both the CPU and the GPU for query
processing. In our current implementation, all of the large queries
are processed in the CPU. This is depicted in f gure 3.

4.2 GPU Runtime
If it is decided that a query is to be executed on the GPU, only

one of the CPU threads will launch the GPU runtime. As depicted
in f gure 2, by this time all data have gone through the HASH eval-
uator. The HASH evaluator and KMV[2] algorithm together can
help us to come up with a good estimate for the number of groups.
Moreover, the exact number of input rows and aggregate functions
is already determined by this point. All of the metadata is sent to
the GPU runtime.
In the GPU, we use a hash based algorithm to perform the group

by/aggregation operation. The details of the various group by and
aggregation kernels are described in sections 4-3 and 4-4. In all of
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these hash based algorithms the size of the hash table is an impor-
tant parameter that affects the performance of the system. Mean-
while, the estimated number of groups can be used to tune the size
of the hash table. We also have an error detection code-path, so
if the estimated number of groups is not correct (smaller than the
exact number of groups) we could still process the query.
A moderator called the GPU moderator allows us to select an

appropriate hardware accelerator kernel. The best kernel would be
the one that can f nish the computation in the fastest time using
the fewest resources. However, there could be cases that the avail-
able resources on the GPU(compute resources, memory, cache, etc)
is greater than what the query needs. For such scenarios, we can
run the query using multiple kernels concurrently and then stop the
computation in all kernels as soon as one of the kernels f nishes
its job. Furthermore, if we have multiple kernels running and the
GPU becomes resource constrained (perhaps because new queries
are sent to the GPU), we can terminate the kernels which have made
the least amount of progress.

4.3 Group By Kernels
As explained, we use a hash based algorithm to perform the

group by/aggregation operations in the GPU. We can have differ-
ent implementations of hash-based algorithms based on: 1) number
of input rows 2) estimated number of groups 3) number of aggre-
gation functions. In the following we explain three different hash
based group by/aggregation algorithms and show how we use them
based on meta-data that the DB2 optimizer provides.

4.3.1 First Kernel: Regular Queries
These are queries that have neither a very small number of groups

nor a large number of groups. They also do not have a very large
number of aggregation functions. For these kinds of queries we use
hash based group by/aggregation algorithm. We use the meta-data
provided by the DB2 optimizer to set the size of global hash table
in the GPU device memory to be slightly larger than the estimated
number of groups. Each entry in the input table has one group-
ing key and can have N different payloads and corresponding N
aggregation functions. The f rst step is to initialize the hash table
using the size of the grouping keys and payloads, and also the type

of aggregation functions. The data in the hash table should be 1,
2, 4, 8 or 16 byte aligned (Nvidia GPU requirement), so we may
need to do some padding at the end of each row in the hash table.
To initialize the hash table as quickly and as eff ciently as possi-
ble, we create a hash table mask based on the size of the payloads
and aggregation functions and then use parallel CUDA threads to
copy that mask to the hash table. The initial value for the grouping
portion of the mask is a sequence of Fs. If the size of the group-
ing key is M bits, then we will have M/4 Fs as the initial value of
the grouping key in the mask. Then the initial value of payloads
in the mask is determined based on payload type and the corre-
sponding aggregation function. For instance, if we have a payload
of type 32bit integer and SUM as the aggregation function for that
payload, the initial value in the mask would be 0(32bits). As an
example for a query like: Select SUM(C1), MAX(C2), MIN(C3)
from table1 group by(C1) where C1 and C2 are 64 bit integers and
C3 is 32 bit integer, the mask would be: FFFFFFFFFFFFFFFF,0,-
9223372036854775808,2147483647,0Where -9223372036854775808
is the smallest 64 bit integer number (initial value to performMAX(C2))
and 2147483647 is the largest 32 bit integer(initial value to perform
MIN(C3)). The 0s at the end are added for padding. After f nding
the mask, parallel threads will copy that to the hash table in parallel
as it is shown in table 1.
After initializing the hash table, we launch CUDA threads to read

data from the input table in parallel and insert groups to the hash
table. Each CUDA thread reads a row and then uses a hash function
and the grouping key to f nd the insertion location in the hash table.
If the corresponding entry in the hash table is empty we use atomic
operations to insert the key. In case the entry is occupied, we try
to insert the key to the next empty slot in the hash table. If the
keys are less than 64 bit, we use CUDA atomicCAS to insert the
key. This guarantees that 2 different CUDA threads do not over-
write the same hash entry. If the key size is larger than 64 bit,
we can not use CUDA atomic operations any more so we try to
acquire a lock to get access to the entry and then insert the key. The
hash function we use when the key size is larger than 64 bit is the
Murmur hashing algorithm [3]. For keys smaller than 64 bit we
use a mod hash function. We perform the aggregation right after
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Table 1: Parallel insertion to the hash table

C1(64bit) SUM(C1)(64bit) MAX(C2)(64bit) MIN(C3)(32bit) Padding(32bit)
FFFFFFFFFFFFFFFF 0 -9223372036854775808 2147483647 0
FFFFFFFFFFFFFFFF 0 -9223372036854775808 2147483647 0

... ... ... ... ...
FFFFFFFFFFFFFFFF 0 -9223372036854775808 2147483647 0

the insertion/f nding of grouping key in the hash table. If a thread
discovers a key is already in the hash table, it updates the payload
entries by applying the corresponding aggregation functions. We
use either atomic operation or locks for that, as we will explain in
section 4-4.

4.3.2 Second Kernel: Small Number of Groups
Queries with a very small number of groups are very common

in real customer benchmarks. For example, grouping the employ-
ees of a company by their birth month would yield 12 unique val-
ues. However, if the number of input rows is large, processing such
queries could be very costly. Moreover, Nvidia GPUs have Stream-
ing Multiprocessors(SMX) where each SMX has its own 64KB
conf gurable shared memory/L1 cache. We use this shared mem-
ory to perform partial grouping for queries with small numbers of
groups. In order to have more space to keep groups/aggregated val-
ues in shared memory, we conf gure the shared memory/L1 cache
to have 48KB as shared memory and 16KB as L1 cache.
Our algorithm has 2 main steps where in the f rst step, we per-

form a hash-based group by in the shared memory of the GPU using
small hash tables that f t in the shared memory of GPU. This is sim-
ilar to what we explained in section 4-3-1. Following that, the small
hash tables in shared memory are merged to a global hash table in
device memory. The main idea is to perform as many operations
as we can in shared memory and then if it gets full, we can merge
the partial result into a global hash table in the device memory. The
reason we need to merge the result in the device memory is because
the hash tables in different SMXs shared memories are totally sep-
arate. Basically, different threads perform group by in parallel on
different chunks of input table tuples and generate partial group by
results in the shared memory of different SMXs. Afterward the
partial results are aggregated into the global hash table in device
memory. The GPU runtime moderator will execute this kernel for
all queries with small numbers of groups.

4.3.3 Third Kernel: Large Number of Aggregation
Functions

The main structure of this kernel is the same as the one we ex-
plain in 4-3-1. This means that we use a hash table in the device
memory of the GPU and then threads try to insert grouping keys
into the hash table in parallel. However, the main difference is in
the way that we perform the aggregation. Our experiments show
that if the number of aggregation functions is large (more than 5),
using atomic operations to perform these functions one by one can
be time consuming. Moreover, as mentioned for some data types
like 128bit Integer or Decimal data type, there is no CUDA atomic
call, so we have to use locks. However, getting and releasing locks
per aggregation operation can be costly when the number of ag-
gregation functions is large. The other scenario in which the f rst
kernel performs poorly is cases in which the ratio of number of
rows/number of groups is small. As a result, the contention is very
low and the cost of acquiring/releasing locks per aggregation func-
tion or atomic operation is high. For these kinds of queries we use a
global lock approach where each thread locks the entire row of the

hash table after it f nds out that its key matches the key in the cor-
responding hash table entry. After getting the lock, the thread goes
through all the aggregation functions and applies them one by one.
Finally, the thread releases the lock so other threads that want to
update the same hash table row can acquire the lock. If both 1) the
number of aggregation functions is large 2) number of rows/number
groups is small, this kernel would have very good performance.

4.4 Aggregations
As explained, aggregation happens immediately after we f nd a

group in which a grouping key belongs to. This means that the
same thread goes through all the aggregation functions and cor-
responding values in the hash table (and the input table row) and
applies all the functions one by one. We use 2 main approaches
to perform the aggregation: 1) Atomic CUDA calls: For large sets
of data types and aggregation functions, we can use CUDA atomic
function calls. This includes some common data types like 32bit,
64 bit integer and f oat and aggregation functions like Min, Max,
Sum and Count. We can also use atomicCAS to perform atomic
operations on 128bit double or 128bit integer data types as ex-
plained in Nvidia documents [1]. 2) Locks: For some data types
like f xed/variable size string that can have sizes larger than 128bit,
we have to use locks. This is because we do not have the sup-
port from Nvdia hardware/software to perform the atomic opera-
tion. As a result, the threads need to acquire a lock f rst, apply
the aggregation function, and then f nally release the lock so that
other threads can use it. While with this approach we can function-
ally perform group by/aggregation queries that have large sizes on
GPU, the performance is lower than the other data types because
acquiring/releasing locks is very costly operation. As described in
section 4-3-3, we can optimize this for some queries by locking per
row instead of per payload.

5. PERFORMANCE RESULTS
In this section we describe some performance results we have

achieved with our prototype. We have run unmodif ed customer
representative benchmarks using a commercial RDBMS (DB2 BLU)
off oading processing to a GPU. We believe this is the f rst time that
such a test has been attempted. We will describe these benchmarks,
show the performance numbers with and without GPU accelera-
tion, and also study the performance of running a subset of the
queries from these benchmarks on the GPU. Our tests are run on
an IBM Power S824 system with 2 sockets (24 cores running SMT
4 for a total of 96 hardware threads, running at 3.92GHz), 512GB
RAM, Ubuntu 14.04 LTS for the ppc64le architecture. We also
have 2 NVIDIA K40 cards on the box. Each K40 has around 3000
cores and 12G of memory. Transfers to/fromGPU are through PCI-
e gen3.

5.1 Benchmarks

5.1.1 BD Insights Workload Description
Big Data Insights or BD Insights is a workload developed by
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Figure 4: Store Sales fact table

IBM to model a day in the life of a customer representative business
intelligence application.
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Figure 5: Complex queries in BD Insight benchmark

Database description: The data generator and database schema
itself are derived from the industry TPC-DS Benchmark Standard
(tpc.org). It represents a retail business and stores information
about its merchandise sales through (1) its brick and mortar stores,
(2) its online stores, and (3) through its catalog. The database also
tracks customer demographic information, merchandise returns, in-
ventory, and sales promotions amongmany other data points. There
are seven fact tables in total and seventeen dimension tables in the
schema. Figure 4 shows the star schema surrounding one of the
fact tables which is called Store Sales in the database (representing
merchandise sales from the brick & mortar stores).
BD Insights user description: The BD Insights workload has a

separation of query types for three classes of typical business ana-
lytics users:

1. Returns Dashboard Analysts (Simple Queries): These users
investigate the rate of merchandise returns and impact on the
bottom line of the business. The queries can be characterized
as short running against a narrow range of data, and likely to
access a fact table.

2. Sales Report Analysts (Intermediate Queries): These users
are generating sales reports to understand the prof tability of
their retail enterprise. The queries used can be characterized
as being intermediate in complexity with a broader range of
data accessed.

3. Data Scientists (Complex Queries): These users are hand
crafting deep-dive analytic queries that answer questions iden-
tif ed by sales report analysts and the returns dashboard ana-
lysts. The queries can be characterized as long running and
complex using complicated SQL constructs over a large or
full data range.

Overall, the BD Insights workload contains 100 distinct queries:
5 are complex, 25 are intermediate, and 70 are simple. The work-
load can be run in several modes with both single user and varying
multi-user combinations using the Apache JMETER load driver as
a front-end client. For the purposes of this test, the interest was
in whether the GPU acceleration modif cations in DB2 would be
able to functionally handle all of the queries, and then determine
the query performance. The database was sized at 100GB so that
it could fully f t in main memory, and would not overwhelm the
memory available on the GPU cards.

5.1.2 Cognos ROLAP
Cognos ROLAP is an IBM internal analytical benchmark which

simulates the core Business Intelligence(BI) workload from IBM
Cognos suite. The Cognos ROLAP workload's schema and data
generator are derived from the TPC-DS Benchmark Standard. In
this particular instance, the queries were run against a BD Insights
generated database. The Cognos ROLAP query set is composed of
46 complex analytical queries (a mix of join, group by, and sort),
some of which include OLAP functions like RANK() that drive
SORT. While the DB2 BLU engine is able to run all 46 queries,
the prototype was only able to run 34 queries of these queries as
the memory in the K40 GPU is limited, and 12 of the queries had
memory requirements which exceeded the memory available.

5.2 Queries execution on the DB2 BLU with
GPU

In this section we measure the performance of running BD In-
sight and Cognos ROLAP queries on DB2 BLU with GPU.

5.2.1 BD Insights Queries
Figures 5 and 6 show the execution of complex and intermedi-

ate queries on the GPU. The numbers in the Y axis of both charts
shows the end to end execution time of the query i.e. what a real
user would see. As you can see, our DB2 BLU with GPU proto-
type has done a good job of improving the performance of complex
queries. The complex queries are heavy queries that have costly
operations like join, group by, aggregation, sort, predicate evalua-
tion, etc. The current prototype performs the bulk of each query
in the CPU and only a subset on the GPU. With that in mind, we
are able to improve the total execution time of complex queries by
20% which is promising for this type of benchmark.
However, the performance of our prototype is very close to base-

line (DB2 BLU without GPU) as depicted in f gure 5. This may
sound disappointing at f rst glance. However, after looking at the
SQL of all these queries we found out that: 1) they have a small
number of Group by, aggregation and sort queries 2) the execu-
tion time of most of the intermediate query is already very short in
the baseline (the average query execution time is 30 sec). So there
is really not much room for improvement for this set of queries.
Moreover, if we off oad the Group by, aggregation, and sort com-
ponents of these queries to the GPU, the execution time of all the
queries will be larger than the baseline. This is because by off oad-
ing such small components, we will incur the relatively higher cost
of transferring data to and from the GPU. However, using the opti-
mizations explained in sections 3 and 4, we can f nd out about these
short queries in advance and try to process them in the CPU instead
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Figure 6: Intermediate queries in BD Insight Benchmark
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Figure 7: Query execution time for Cognos ROLAP benchmark
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Figure 8: Concurrent query execution

of GPU. As a result, our prototype has performed well by keeping
the execution time of all of these queries very close to the baseline.
The remaining queries in the benchmark are simple queries that are
very short (average is 150ms) and we do not send them to the GPU
at all.

5.2.2 Cognos ROLAP
The Cognos ROLAP queries were run in two different modes: a

serial run which aims to measure the query execution time, and a
concurrent run where throughput was measured. Again, we com-
pared our prototype (using GPU) with the standard DB2 BLU as

the baseline (no GPU used). Table 2 shows the average serial exe-
cution of all 34 queries, with and without GPU. We run each query
5 times to eliminate the variation and get the average. As you can
see, our GPU enabled prototype was able to save more than 8% of
the total execution time. Figure 7 shows the per-query times dur-
ing the run. Most of the queries take less time when GPU is used
compared to the run with no GPU. The benef t of GPU off oading
is apparent with longer running queries, but there is no benef t for
shorter running queries (e.g. Q1 and Q4).

Table 2: Total query execution time for ROLAP benchmark

GPU On(ms) GPU Off(ms) GPU Gain
517133 474084 8.33%

We also measured the system throughput by running concur-
rent queries. Each connection thread continuously executed all the
34 Cognos ROLAP queries sequentially, and throughput (queries
per Hour) is compared in Table 3. The throughput results show
that the GPU benef ts are more pronounced in multi-user environ-
ments, rather than with higher degrees of parallelism. This is ex-
plainable because a single request launches a CUDA kernel and
the parallelism in the GPU will be independent of the DB2 paral-
lelism. However, more concurrent users means more parallel run-
ning CUDA kernels. So long as the GPUs have enough capacity to
execute these kernels, DB2 can use the CPU capacity made avail-
able by off oading work to the GPUs.

 

Figure 9: GPU utilization
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Table 3: Throughput(Query/Sec for ROLAP benchmark)

#stream #degree GPU On GPU Off GPU Gain
1 24 403.96 385.51 4.79%
1 48 584.25 557.63 4.77%
1 64 630.9 602.1 4.78%
2 24 682.85 620.53 10.04%
2 48 868.09 773.46 12.23%
2 64 930.1 803.1 15.81%

5.3 Concurrent Query Execution
As already explained, we just run a subset of operations on the

GPU in the current stage of our prototype i.e. queries that have
group by, aggregation and sort operations. In order to better show
how the GPU can help in accelerating the queries, we pick a set of
queries where these three operations are represented heavily, mod-
erately, or not at all. This test shows BLU with GPU accelera-
tion handling cases of industry standard benchmark queries, hand-
crafted queries that would push the GPU to its limits, and queries
where DB2 would decide to not use the GPU at all. It is a multi-
user test to take advantage of CPU off oading and be more repre-
sentative of real world workloads. The test was constructed us-
ing JMETER to have f ve thread groups of two threads each and
thus 10 total users. The f rst three thread groups consist of com-
plex queries sourced from the Cognos ROLAP workload that uses
the GPU moderately (i.e. moderate use of group by, Aggregation
and SORT processing) and a single BD Insights simple query that
would not use the GPU. The fourth thread group consisted of two
BD Insights complex queries (Complex Q1 and Q3) which would
use the GPU moderately and one of the BD Insights simple queries
which would not use the GPU. The f fth group contained two hand
written queries that would perform group by and SORT on a large
grouping set.
Figure 8 shows the elapsed time of running these queries with

and without GPU. As you can see we can get almost a 2x speed up
by using the GPU. This test demonstrates the impact of GPU accel-
eration for DB2 BLU analytic processing. The GPU heavy queries
add a lot of processing cost to separate the groups and perform the
aggregation for each group, as there are as many groups as there
are rows in the table. Using a GPU kernel, this was off oaded and
parallelized on an execution unit (2x K40s) that generally had the
capacity to handle this type of work. The NVIDIA Tesla K40 has
2880 CUDA cores available for parallel batch jobs of a specif c na-
ture (like group by), whereas the S824 had 24 cores that needed
to handle all DB2 BLU processing. The GPU moderate queries
would show about 15% benef t in standalone mode. The benef t
comes from more parallelism in the CUDA kernel function than
having DB2 sub-agent parallelism, which could be restricted due
to degree, workload management, and CPU capacity. The Non-
GPU queries performed similarly in both conf gurations, as would
be the expectation. That leaves the majority of the benef t being
due to off oad.
In f gure 9 we show the memory utilization for both GPUs that

we have on our POWER 8 machine during the execution of queries.
The GPUmemory utilization characteristics for this workload shows
a very spiky pattern. Clearly there is room for more GPU off-load,
but it is also clear that at many points the workload is near GPU
memory capacity. There were candidate queries for this test that
were avoided simply due to the GPU memory restrictions, and no
good way of handling them alternatively at the time.

6. CONCLUSION AND FUTUREWORK
In this paper, we have shown how we can improve the query

processing time in DB2 BLU by using Nvidia GPUs. Moreover,
we have provided realistic customer benchmarks on a commercial
RDBMS with GPU acceleration, which has not been done before.
We show a hybrid design that uses both CPU and GPUs for fast
query processing. In our design we off oad specif c compute in-
tensive operations like group by, aggregation and sort to GPU. Our
main goals in doing this are: 1) To accelerate the computation of
those specif c operations 2) To free up the CPU so that we can use it
for other tasks. However, our experiments show that it is not always
benef cial to off oad the operations to the GPU, because small data
sets will perform optimally in the CPU. We have also discussed the
necessary changes in the DB2 BLU runtime to integrate the GPUs.
These changes included adding memory management, scheduling
algorithms, and integration code for sort, group by, and aggrega-
tion operations. While we used Nvidia's fast sort kernel, we have
also designed our very own group by/aggregation kernels. We show
how we can use meta-data to tune the size of data structures in the
GPU memory. As the memory in GPU is very limited, tuning the
size of data structures is very important. Moreover, we demon-
strated how we use meta-data to choose between these different
kernels at run time to achieve the best performance.
Our performance results show a realistic representation of using

GPU in a real RDBMS commercial tool. We show that the perfor-
mance improvement was very signif cant for some queries, moder-
ate for some other queries, and there were also queries that did not
perform better when executed in the GPU. As mentioned, so far we
have kernels for operations like group by, aggregation and sort. As
one of our next steps, we would like to study the performance of
other compute intensive operations (like join) on the GPU.
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