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ABSTRACT
We present new algorithms for performing fast computa-
tion of several common database operations on commod-
ity graphics processors. Specifically, we consider operations
such as conjunctive selections, aggregations, and semi-linear
queries, which are essential computational components of
typical database, data warehousing, and data mining appli-
cations. While graphics processing units (GPUs) have been
designed for fast display of geometric primitives, we utilize
the inherent pipelining and parallelism, single instruction
and multiple data (SIMD) capabilities, and vector process-
ing functionality of GPUs, for evaluating boolean predicate
combinations and semi-linear queries on attributes and exe-
cuting database operations efficiently. Our algorithms take
into account some of the limitations of the programming
model of current GPUs and perform no data rearrange-
ments. Our algorithms have been implemented on a pro-
grammable GPU (e.g. NVIDIA’s GeForce FX 5900) and
applied to databases consisting of up to a million records.
We have compared their performance with an optimized im-
plementation of CPU-based algorithms. Our experiments
indicate that the graphics processor available on commodity
computer systems is an effective co-processor for performing
database operations.
Keywords: graphics processor, query optimization, selec-
tion query, aggregation, selectivity analysis, semi-linear query.

1. INTRODUCTION
As database technology becomes pervasive, Database Man-

agement Systems (DBMSs) have been deployed in a wide
variety of applications. The rapid growth of data volume
for the past decades has intensified the need for high-speed
database management systems. Most database queries and,
more recently, data warehousing and data mining applica-
tions, are very data- and computation-intensive and there-
fore demand high processing power. Researchers have ac-
tively sought to design and develop architectures and algo-
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rithms for faster query execution. Special attention has been
given to increase the performance of selection, aggregation,
and join operations on large databases. These operations
are widely used as fundamental primitives for building com-
plex database queries and for supporting on-line analytic
processing (OLAP) and data mining procedures. The effi-
ciency of these operations has a significant impact on the
performance of a database system.

As the current trend of database architecture moves from
disk-based system towards main-memory databases, appli-
cations have become increasingly computation- and memory-
bound. Recent work [3, 21] investigating the processor and
memory behaviors of current DBMSs has demonstrated a
significant increase in the query execution time due to mem-
ory stalls (on account of data and instruction misses), branch
mispredictions, and resource stalls (due to instruction de-
pendencies and hardware specific characteristics). Increased
attention has been given on redesigning traditional database
algorithms for fully utilizing the available architectural fea-
tures and for exploiting parallel execution possibilities, min-
imizing memory and resource stalls, and reducing branch
mispredictions [2, 5, 20, 24, 31, 32, 34, 37].

1.1 Graphics Processing Units
In this paper, we exploit the computational power of graph-

ics processing units (GPUs) for database operations. In the
last decade, high-performance 3D graphics hardware has be-
come as ubiquitous as floating-point hardware. Graphics
processors are now a part of almost every personal computer,
game console, or workstation. In fact, the two major com-
putational components of a desktop computer system are its
main central processing unit (CPU) and its (GPU). While
CPUs are used for general purpose computation, GPUs have
been primarily designed for transforming, rendering, and
texturing geometric primitives, such as triangles. The driv-
ing application of GPUs has been fast rendering for visual
simulation, virtual reality, and computer gaming.

GPUs are increasingly being used as co-processors to CPUs.
GPUs are extremely fast and are capable of processing tens
of millions of geometric primitives per second. The peak
performance of GPUs has been increasing at the rate of
2.5 − 3.0 times a year, much faster than the Moore’s law
for CPUs. At this rate, the GPU’s peak performance may
move into the teraflop range by 2006 [19]. Most of this per-
formance arises from multiple processing units and stream
processing. The GPU treats the vertices and pixels consti-
tuting graphics primitives as streams. Multiple vertex and



pixel processing engines on a GPU are connected via data
flows. These processing engines perform simple operations
in parallel.

Recently, GPUs have become programmable, allowing a
user to write fragment programs that are executed on pixel
processing engines. The pixel processing engines have di-
rect access to the texture memory and can perform vector
operations with floating point arithmetic. These capabil-
ities have been successfully exploited for many geometric
and scientific applications. As graphics hardware becomes
increasingly programmable and powerful, the roles of CPUs
and GPUs in computing are being redefined.

1.2 Main Contributions
In this paper, we present novel algorithms for fast com-

putation of database operations on GPUs. The operations
include predicates, boolean combinations, and aggregations.
We utilize the SIMD capabilities of pixel processing engines
within a GPU to perform these operations efficiently. We
have used these algorithms for selection queries on one or
more attributes and generic aggregation queries including
selectivity analysis on large databases.

Our algorithms take into account some of the limitations
of the current programming model of GPUs which make it
difficult to perform data rearrangement. We present novel
algorithms for performing multi-attribute comparisons, semi-
linear queries, range queries, computing the kth largest num-
ber, and other aggregates. These algorithms have been im-
plemented using fragment programs and have been applied
to large databases composed of up to a million records. The
performance of these algorithms depends on the instruction
sets available for fragment programs, the number of frag-
ment processors, and the underlying clock rate of the GPU.
We also perform a preliminary comparison between GPU-
based algorithms running on a NVIDIA GeForceFX 5900 Ul-
tra graphics processor and optimized CPU-based algorithms
running on dual 2.8 GHz Intel Xeon processors.

We show that algorithms for semi-linear and selection
queries map very well to GPUs and we are able to ob-
tain significant performance improvement over CPU-based
implementations. The algorithms for aggregates obtain a
modest gain of 2 − 4 times speedup over CPU-based imple-
mentations. Overall, the GPU can be used as an effective
co-processor for many database operations.

1.3 Organization
The rest of the paper is organized as follows. We briefly

survey related work on database operations and use of GPUs
for geometric and scientific computing in Section 2. We give
an overview of the graphics architectural pipeline in Section
3. We present algorithms for database operations includ-
ing predicates, boolean combinations, and aggregations in
Section 4. We describe their implementation in Section 5
and compare their performance with optimized CPU-based
implementations. We analyze the performance in Section 6
and outline the cases where GPU-based algorithms can offer
considerable gain over CPU-based algorithms.

2. RELATED WORK
In this section, we highlight the related research in main-

memory database operations and general purpose computa-
tion using GPUs.

2.1 Hardware Accelerated Database Opera-
tions

Many acceleration techniques have been proposed for data-
base operations. Ailamaki et al. [3] analyzed the execution
time of commercial DBMSs and observed that almost half
of the time is spent in stalls. This indicates that the perfor-
mance of a DBMS can be significantly improved by reducing
stalls.

Meki and Kambayashi used a vector processor for accel-
erating the execution of relational database operations in-
cluding selection, projection, and join [24]. To utilize the
efficiency of pipelining and parallelism that a vector pro-
cessor provides, the implementation of each operation was
redesigned for increasing the vectorization rate and the vec-
tor length. The limitation of using a vector processor is that
the load-store instruction can have high latency [37].

Modern CPUs have SIMD instructions that allow a single
basic operation to be performed on multiple data elements
in parallel. Zhu and Ross described SIMD implementation
of many important database operations including sequential
scans, aggregation, indexed searches, and joins [37]. Consid-
erable performance gains were achieved by exploiting the in-
herent parallelism of SIMD instructions and reducing branch
mispredictions.

Recently, Sun et al. present the use of graphics processors
for spatial selections and joins [35]. They use color blending
capabilities available on graphics processors to test if two
polygons intersect in screen-space. Their experiments on
graphics processors indicate a speedup of nearly 5 times on
intersection joins and within-distance joins when compared
against their software implementation. The technique fo-
cuses on pruning intersections between triangles based on
their 2D overlap and is quite conservative.

2.2 General-Purpose Computing Using GPUs
In theory, GPUs are capable of performing any computa-

tion that can be mapped to the stream-computing model.
This model has been exploited for ray-tracing [29], global
illumination [30] and geometric computations [22].

The programming model of GPUs is somewhat limited,
mainly due to the lack of random access writes. This limi-
tation makes it more difficult to implement many data struc-
tures and common algorithms such as sorting. Purcell et al.
[30] present an implementation of bitonic merge sort, where
the output routing from one step to another is known in
advance. The algorithm is implemented as a fragment pro-
gram and each stage of the sorting algorithm is performed
as one rendering pass. However, the algorithm can be quite
slow for database operations on large databases.

GPUs have been used for performing many discretized
geometric computations [22]. These include using stencil
buffer hardware for interference computations [33], using
depth-buffer hardware to perform distance field and proxim-
ity computations [15], and visibility queries for interactive
walkthroughs and shadow generation [12].

High throughput and direct access to texture memory
makes fragment processors powerful computation engines for
certain numerical algorithms, including dense matrix-matrix
multiplication [18], general purpose vector processing [36],
visual simulation based on coupled-map lattices [13], linear
algebra operations [17], sparse matrix solvers for conjugate
gradient and multigrid [4], a multigrid solver for boundary
value problems [11], geometric computations [1, 16], etc.



3. OVERVIEW
In this section, we introduce the basic functionality avail-

able on GPUs and give an overview of the architectural
pipeline. More details are given in [9].

3.1 Graphics Pipeline
A GPU is designed to rapidly transform the geometric

description of a scene into the pixels on the screen that con-
stitute a final image. Pixels are stored on the graphics card
in a frame-buffer. The frame buffer is conceptually divided
into three buffers according to the different values stored at
each pixel:

• Color Buffer: Stores the color components of each
pixel in the frame-buffer. Color is typically divided
into red, green, and blue channels with an alpha chan-
nel that is used for blending effects.

• Depth Buffer: Stores a depth value associated with
each pixel. The depth is used to determine surface
visibility.

• Stencil Buffer: Stores a stencil value for each pixel.
It is called the stencil buffer because it is typically
used for enabling/disabling writes to portions of the
frame-buffer.

Figure 1: Graphics architectural pipeline overview: This

figure shows the various units of a modern GPU. Each unit

is designed for performing a specific operation efficiently.

The transformation of geometric primitives (points, lines,
triangles, etc.) to pixels is performed by the graphics pipeline,
consisting of several functional units, each optimized for per-
forming a specific operation. Fig 1 shows the various stages
involved in rendering a primitive.

• Vertex Processing Engine: This unit receives ver-
tices as input and transforms them to points on the
screen.

• Setup Engine: Transformed vertex data is streamed
to the setup engine which generates slope and initial
value information for color, depth, and other param-
eters associated with the primitive vertices. This in-
formation is used during rasterization for constructing
fragments at each pixel location covered by the prim-
itive.

• Pixel Processing Engines: Before the fragments
are written as pixels to the frame buffer, they pass
through the pixel processing engines or fragment pro-

cessors. A series of tests can be used for discarding a

fragment before it is written to the frame buffer. Each
test performs a comparison using a user-specified re-
lational operator and discards the fragment if the test
fails.

– Alpha test: Compares a fragment’s alpha value
to a user-specified reference value.

– Stencil test: Compares the stencil value of a
fragment’s corresponding pixel with a user-specified
reference value.

– Depth test: Compares the depth value of a frag-
ment to the depth value of the corresponding pixel
in the frame buffer.

The relational operator can be any of the following : =, <,
>, ≤, ≥, and 6=. In addition, there are two operators, never

and always, that do not require a reference value.
Current generations of GPUs have a pixel processing en-

gine that is programmable. The user can supply a custom
fragment program to be executed on each fragment. For ex-
ample, a fragment program can compute the alpha value of
a fragment as a complex function of the fragment’s other
color components or its depth.

3.2 Visibility and Occlusion Queries
Current GPUs can perform visibility and occlusion queries

[27]. When a primitive is rasterized, it is converted to frag-
ments. Some of these fragments may or may not be written
to pixels in the frame buffer depending on whether they pass
the alpha, stencil and depth tests. An occlusion query re-
turns the pixel pass count, the number of fragments that
pass the different tests. We use these queries for performing
aggregation computations (see Section 4).

3.3 Data Representation on the GPUs
Our goal is to utilize the inherent parallelism and vector

processing capabilities of the GPUs for database operations.
A key aspect is the underlying data representation.

Data is stored on the GPU as textures. Textures are 2D
arrays of values. They are usually used for applying images
to rendered surfaces. They may contain multiple channels.
For example, an RGBA texture has four color channels -
red, blue, green and alpha. A number of different data for-
mats can be used for textures including 8-bit bytes, 16-bit
integers, and floating point. We store data in textures in the
floating-point format. This format can precisely represent
integers up to 24 bits.

To perform computations on the values stored in a tex-
ture, we render a single quadrilateral that covers the win-
dow. The texture is applied to the quadrilateral such that
the individual elements of the texture, texels, line up with
the pixels in the frame-buffer. Rendering the textured quadri-
lateral causes a fragment to be generated for every data
value in the texture. Fragment programs are used for per-
forming computations using the data value from the texture.
Then the alpha, stencil, and depth tests can be used to per-
form comparisons.

3.4 Stencil Tests
Graphics processors use stencil tests for restricting com-

putations to a portion of the frame-buffer based on the value
in the stencil buffer. Abstractly, we can consider the stencil
buffer as a mask on the screen. Each fragment that enters



the pixel processing engine corresponds to a pixel in the
frame-buffer. The stencil test compares the stencil value of
a fragment’s corresponding pixel against a reference value.
Fragments that fail the comparison operation are rejected
from the rasterization pipeline.

Stencil operations can modify the stencil value of a frag-
ment’s corresponding pixel. Examples of such stencil oper-
ations include

• KEEP: Keep the stencil value in stencil buffer. We
use this operation if we do not want to modify the
stencil value.

• INCR: Increment the stencil value by one.

• DECR: Decrement the stencil value by one.

• ZERO: Set the stencil value to zero.

• REPLACE: Set the stencil value to the reference
value.

• INVERT: Bitwise invert the stencil value.

For each fragment there are three possible outcomes based
on the stencil and depth tests. Based on the outcome of the
tests, the corresponding stencil operation is performed:

• Op1: when a fragment fails the stencil test,

• Op2: when a fragment passes the stencil test and fails
the depth test,

• Op3: when the fragment passes the stencil and depth
tests.

We illustrate these operations with the following pseudo-
code for the StencilOp routine:

StencilOp( Op1, Op2, Op3)

if (stencil test passed) /* perform stencil test */
/* fragment passed stencil test */
if(depth test passed) /* perform depth test */

/* fragment passed stencil and depth test */
perform Op3 on stencil value

else
/* fragment passed stencil test */
/* but failed depth test */
perform Op2 on stencil value

end if
else

/* fragment failed stencil test */
perform Op1 on stencil value

end if

4. BASIC DATABASE OPERATIONS USING
GPUS

In this section, we give a brief overview of basic database
operations that are performed efficiently on a GPU. Given
a relational table T of m attributes (a1, a2, ..., am), a basic
SQL query is in the form of

SELECT A

FROM T

WHERE C

where A may be a list of attributes or aggregations (SUM,
COUNT, AVG, MIN, MAX) defined on individual attributes,
and C is a boolean combination (using AND, OR, EXIST,
NOT EXIST) of predicates that have the form ai op aj

or ai op constant. The operator op may be any of the
following: =, 6=, >,≥, <,≤. In essence, queries specified in
this form involve three categories of basic operations: pred-
icates, boolean combinations, and aggregations. Our goal
is to design efficient algorithms for performing these opera-
tions using graphics processors.

• Predicates: Predicates in the form of ai op constant
can be evaluated via the depth test and stencil test.
The comparison between two attributes, ai op aj , can
be transformed into a semi-linear query ai − aj op 0,
which can be executed on the GPUs.

• Boolean combinations: A boolean combination of pred-
icates can always be rewritten in a conjunctive normal
form (CNF). The stencil test can be used repeatedly
for evaluating a series of logical operators with the in-
termediate results stored in the stencil buffer.

• Aggregations: This category includes simple operations
such as COUNT, SUM, AVG, MIN, MAX, all of which
can be implemented using the counting capability of
the occlusion queries on GPUs.

To perform these operations on a relational table using
GPUs, we store the attributes of each record in multiple
channels of a single texel, or the same texel location in mul-
tiple textures.

4.1 Predicate Evaluation
In this section, we present novel GPU-based algorithms for

performing comparisons as well as the semi-linear queries.

4.1.1 Comparison between an Attribute and a Con-
stant

We can implement a comparison between an attribute
“tex” and a constant “d” by using the depth test function-
ality of graphics hardware. The stencil buffer can be config-
ured to store the result of the depth test. This is important
not only for evaluating a single comparison but also for con-
structing more complex boolean combinations of multiple
predicates.

To use the depth test for performing comparisons, at-
tribute values need to be stored in the depth buffer. We
use a simple fragment program for copying the attribute
values from the texture memory to the depth buffer.

A comparison operation against a depth value d is imple-
mented by rendering a screen filling quadrilateral with depth
d. In this operation, the rasterization hardware uses the
comparison function for testing each attribute value stored
in the depth buffer against d. The comparison function is
specified using the depth function. Routine 4.1 describes
the pseudo-code for our implementation.

4.1.2 Comparison between Two Attributes
The comparison between two attributes, ai op aj , can

be transformed into a special semi-linear query (ai − aj op
0), which can be performed very efficiently using the vector
processors on the GPUs. Here, we propose a fast algorithm
that can perform any general semi-linear query on GPUs.



Compare( tex, op, d )
1 CopyToDepth( tex )
2 set depth test function to op
3 RenderQuad( d )

CopyToDepth( tex )

1 set up fragment program

2 RenderTexturedQuad( tex )

ROUTINE 4.1: Compare compares the attribute values
stored in texture tex against d using the comparison function
op. CopyToDepth called on line 1 copies the attribute values in
tex into the depth buffer. CopyToDepth uses a simple fragment
program on each pixel of the screen for performing the copy oper-
ation. On line 2, the depth test is configured to use the compar-
ison operator op. The function RenderQuad(d) called on line
3 generates a fragment at a specified depth d for each pixel on
the screen. Rasterization hardware compares the fragment depth
d against the attribute values in depth buffer using the operation
op.

Semi-linear Queries on GPUs
Applications encountered in Geographical Information Sys-
tems (GIS), geometric modeling, and spatial databases de-
fine geometric data objects as linear inequalities of the at-
tributes in a relational database [28]. Such geometric data
objects are called semi-linear sets. GPUs are capable of fast
computation on semi-linear sets. A linear combination of m
attributes is represented as:

i=m
∑

i=1

si · ai

where each si is a scalar multiplier and each ai is an attribute
of a record in the database. The above expression can be
considered as a dot product of two vectors s and a where
s = (s1, s2, ..., sm) and a = (a1, a2, ..., am).

Semilinear( tex, s, op, b )
1 enable fragment program SemilinearFP(s, b)
2 RenderTexturedQuad( tex )

SemilinearFP( s, op, b)

1 a = value from tex

2 if dot( s, a) op b

3 discard fragment

ROUTINE 4.2: Semilinear computes the semi-linear query
by performing linear combination of attribute values in tex and
scalar constants in s. Using the operator op, it compares the the
scalar value due to linear combination with b. To perform this
operation, we render a screen filling quad and generate fragments
on which the semi-linear query is executed. For each fragment,
a fragment program SemilinearFP discards fragments that fail
the query.

Semilinear computes the semi-linear query:

(s · a) op b

where op is a comparison operator and b is a scalar con-
stant. The attributes ai are stored in separate channels in
the texture tex. There is a limit of four channels per texture.
Longer vectors can be split into multiple textures, each with
four components. The fragment program SemilinearFP()
performs the dot product of a texel from tex with s and
compares the result to b. It discards the fragment if the
comparison fails. Line 2 renders a textured quadrilateral

using the fragment program. Semilinear maps very well
to the parallel pixel processing as well as vector processing
capabilities available on the GPUs. This algorithm can also
be extended for evaluating polynomial queries.

EvalCNF( A )
1 Clear Stencil to 1.
2 For each of Ai, i = 1, .., k
3 do
4 if ( mod(i, 2) ) /* valid stencil value is 1 */
5 Stencil Test to pass if stencil value is equal to 1
6 StencilOp(KEEP,KEEP,INCR)
7 else /* valid stencil value is 2 */
8 Stencil Test to pass if stencil value is equal to 2
9 StencilOp(KEEP,KEEP,DECR)
10 endif
11 For each Bi

j , j = 1, .., mi

12 do
13 Perform Bi

j using Compare

14 end for
15 if ( mod(i, 2)) /* valid stencil value is 2 */
16 if a stencil value on screen is 1, replace it with 0
17 else /* valid stencil value is 1 */
18 if a stencil value on screen is 2, replace it with 0
19 endif
20 end for

ROUTINE 4.3: EvalCNF is used to evaluate a CNF ex-
pression. Initially, the stencil is initialized to 1. This is used
for performing TRUE AND A1. While evaluating each formula
Ai, Line 4 sets the appropriate stencil test and stencil operations
based on whether i is even or odd. If i is even, valid portions
on screen have stencil value 2. Otherwise, valid portions have
stencil value 1. Lines 11 − 14 invalidate portions on screen that
satisfy (A1 ∧ A2 ∧ ... ∧Ai−1) and fail (A1 ∧ A2 ∧ ... ∧ Ai). Lines
15 − 19 compute the disjunction of Bi

j for each predicate Ai. At

the end of line 19, valid portions on screen have stencil value 2
if i is odd and 1, otherwise. At the end of the line 20, records
corresponding to non-zero stencil values satisfy A.

4.2 Boolean Combination
Complex boolean combinations are often formed by com-

bining simple predicates with the logical operators AND,

OR, NOT. In these cases, the stencil operation is specified
to store the result of a predicate. We use the function Sten-
cilOp (as defined in Section 3.4) to initialize the appropriate
stencil operation for storing the result in stencil buffer.

Our algorithm evaluates a boolean expression represented
as a CNF expression. We assume that the CNF expression
has no NOT operators. If a simple predicate in this ex-
pression has a NOT operator, we can invert the comparison
operation and eliminate the NOT operator. A CNF expres-
sion Ck is represented as A1 ∧A2 ∧ ...∧Ak where each Ai is
represented as Bi

1 ∨ Bi
2 ∨ ... ∨ Bi

mi
. Each Bi

j , j = 1, 2, .., mi

is a simple predicate.
The CNF Ck can be evaluated using the recursion Ck =

Ck−1 ∧ Ak. C0 is considered as TRUE. We use the pseu-
docode in routine 4.3 for evaluating Ck. Our approach uses
three stencil values 0, 1, 2 for validating data. Data values
corresponding to the stencil value 0 are always invalid. Ini-
tially, the stencil values are initialized to 1. If i is the iter-
ation value for the loop in line 2, lines 3 − 19 evaluate Ci.
The valid stencil value is 1 or 2 depending on whether i is
even or odd respectively. At the end of line 19, portions on
the screen with non-zero stencil value satisfy the CNF Ck.
We can easily modify our algorithm for handling a boolean
expression represented as a DNF.



Range Queries
A range query is a common database query expressed as a
boolean combination of two simple predicates. If [low, high]
is the range for which an attribute x is queried, we can eval-
uate the expression (x ≥ low) AND (x ≤ high) using Eval-
CNF. Recent GPUs provide a feature GL EXT Depth boun-

ds test [8], useful in accelerating shadow algorithms. Our
algorithm uses this feature for evaluating a range query effi-
ciently. The pseudo-code for our algorithm Range is given
in Routine 4.4. Although a range query requires the evalu-
ation of two simple predicates, the computational time for
our algorithm in evaluating Range is comparable to the
time required in evaluating a single predicate.

Range( tex, low, high )

1 SetupStencil()

2 CopyToDepth( tex )

3 Set depth bounds based on [low, high]

4 Enable depth bounds test

5 RenderQuad(low)

6 Disable depth bounds test

ROUTINE 4.4: SetupStencil is called on line 1 to enable
selection using the stencil buffer. CopyToDepth called on line 2
copies the attribute values in tex into the depth buffer. Line 3
sets the depth bounds based on [low, high]. The attribute values
copied into the depth buffer and falling within the depth bounds
pass the depth bounds test. Lines 4−6 perform the depth bounds
test. The stencil is set to 1 for the attributes passing the range
query and 0 for the other.

4.3 Aggregations
Several database operations aggregate attribute values that

satisfy a condition. On GPUs, we can perform these opera-
tions using occlusion queries to return the count of records
satisfying some condition.

4.3.1 COUNT
Using an occlusion query for counting the number of records

satisfying some condition involves three steps:

1. Initialize the occlusion query

2. Perform the boolean query

3. Read back the result of the occlusion query into COUNT

4.3.2 MIN and MAX
The query to find the minimum or maximum value of an

attribute is a special case of the kth largest number. Here,
we present an algorithm to generate the kth largest number.

k-th Largest Number
Computing the k-th largest number occurs frequently in sev-
eral applications. We can utilize expected linear time se-
lection algorithms such as QuickSelect [14] to compute
the k-th largest number. Most of these algorithms require
data rearrangement, which is extremely expensive on cur-
rent GPUs because there is no functionality for data writes
to arbitrary locations. Also, these algorithms require evalu-
ation of conditionals and may lead to branch mispredictions
on the CPU. We present a GPU-based algorithm that does
not require data rearrangement. In addition, our algorithm
exhibits SIMD characteristics that exploit the inherent par-
allelism available on the GPUs.

Our algorithm utilizes the binary data representation for
computing the k-th largest value in time that is linear in the
number of bits.

KthLargest( tex, k )

1 b max = maximum number of bits in the values in tex

2 x = 0

3 for i = b max-1 down to 0

4 count = Compare( tex, ≥, x +2i )

5 if count > k - 1

6 x = x +2i

7 return x

ROUTINE 4.5: KthLargest computes the k-th largest at-
tribute value in texture tex. It uses b max passes starting from
the MSB to compute the k-th largest number. During a pass i, it
determines the i-th bit of the k-th largest number. At the end of
b max passes, it computes the k-th largest number in x.

The pseudocode for our algorithm KthLargest is shown
in routine 4.5. KthLargest constructs in x the value of the
k-th largest number one bit at a time starting with the most
significant bit (MSB), b max-1. As an invariant, the value of
x is maintained less than or equal to the k-th largest value.
Line 4 counts the number of values that are greater than or
equal to x + 2i, the tentative value of x with the ith bit set.
This count is used for deciding whether to set the bit in x

according to the following lemma:
Lemma 1: Let vk be the k-th largest number in a set of

values. Let count be the number of values greater than or

equal to a given value m.

• if count > k − 1 : m ≤ vk

• if count ≤ (k − 1) : m > vk

Proof: Trivial.

If count > k − 1 then the tentative value of x is smaller
than the k-th largest number. In this case, we set x to the
tentative value on line 6. Otherwise the tentative value is
too large so we leave x unchanged. At the end of line 6, if
the loop iteration is i, the first i bits from MSB of x and vk

are the same. After the last iteration of the loop, x has the
value of the k-th largest number. The algorithm for the k-th
smallest number is the same, except that the comparison in
line 5 is inverted.

4.3.3 SUM and AVG
An accumulator is used to sum a set of data values. One

way of implementing an accumulator on current GPUs is
using a mipmap of a floating point texture. Mipmaps are
multi-resolution textures consisting of multiple levels. The
highest level of the mipmap contains the average of all the
values in the lowest level, from which it is possible to re-
cover the sum by multiplying the average with the number
of values. A fragment program must be used to create a
floating-point mipmap. Computing a floating-point mipmap
on current GPUs tends to be problematic for three reasons.
Firstly, reading and writing floating-point textures can be
slow. Secondly, if we are interested in the sum of only a
subset of values, e.g. those that are greater than a given
number, then introduce conditionals in the fragment pro-
gram. Finally, the floating point representation may not
have enough precision to give an exact sum.

Our accumulator algorithm avoids some of the problems
of the mipmap method. We perform only texture reads



which are more efficient than texture writes. Moreover, we
calculate the precise sum to arbitrary precision and avoid
conditionals in the fragment program. One limitation of the
algorithm is that it works only on integer datasets, although
it can easily be extended to handle fixed-point datasets.

Accumulator( tex )
1 alpha test = pass with alpha ≥ 0.5
2 sum = 0
3 for i = 0 to b max do
4 enable fragment program TestBit(i)
5 initialize occlusion query
6 RenderTexturedQuad( tex )
7 count = pixel count from occlusion query
8 sum + = count ∗2i

9 return sum

TestBit(i)

1 v = value from tex

2 fragment alpha = frac(v /2(i+1))

ROUTINE 4.6: Accumulator computes the sum of attribute
values in texture tex. It performs b max passes to compute the
sum. Each pass computes the number of values with i-th bit set
and stores it in count. This count is multiplied with 2i and added
to sum. At the end of the b max passes, the variable sum aggre-
gates all the data values in the texture.

Accumulator sums the values stored in the texture tex

utilizing the binary data representation. The sum of the
values xj in a set X can be written as:

|X|
∑

j=0

xj =

|X|
∑

j=0

k
∑

i=0

aij2
i

where aij ∈ {0, 1} are the binary digits of xj and k is the
maximum number of bits used to represent the values in X.
Currently, no efficient algorithms are known for summing
the texels on current GPUs. We can, however, quickly de-
termine the number of texels for which a particular bit i is
set. If we reverse the order of the summations, we get an
expression that is more amenable to GPU computation:

k
∑

i=0

2i





|X|
∑

j=0

aij





The inner summation is simply the number of xj that have
the ith bit set. This summation is the value of count cal-
culated on lines 4-6 where we render a quad textured with
tex.

The fragment program TestBit ensures that only frag-
ments corresponding to texels with the ith bit set pass the
alpha test. Determining whether a particular bit is set is
trivial with bit-masking operations. Since current GPUs do
not support bit-masking operations in fragment programs,
we use an alternate approach. We observe that an integer x
has its ith bit equal to 1 if and only if the fractional part of
x/2i+1 is at least 0.5. In TestBit, we divide each value by
2i+1 and put the fractional part of the result into the alpha
channel. We use the alpha test for rejecting fragments with
alpha less than 0.5. It is possible to perform the comparison
and reject fragments directly in the fragment program, but
it is faster in practice to use the alpha test. Pseudocode for
our algorithm is shown in the routine 4.6.

Accumulator can be used for summing only a subset of
the records in tex that have been selected using the stencil

buffer. Attributes that are not selected fail the stencil test
and thus make no contribution to the final sum. We use the
Accumulator algorithm to obtain SUM. AVG is obtained
by computing SUM and COUNT, and computed as AVG =
SUM/COUNT.

5. IMPLEMENTATION & PERFORMANCE
We have implemented and tested our algorithms on a high

end Dell Precision Workstation with dual 2.8GHz Intel Xeon
Processors and an NVIDIA GeForceFX 5900 Ultra graph-
ics processor. The graphics processor has 256MB of video
memory with a memory data rate of 950MHz and can pro-
cess upto 8 pixels at processor clock rate of 450 MHz. This
GPU can perform single-precision floating point operations
in fragment programs.

5.1 Benchmarks
For our benchmarks, we have used a database consisting

of TCP/IP data for monitoring traffic patterns in local area
network and wide area network and a census database [6]
consisting of monthly income information. In the TCP/IP
database, there are one million records in the database. In
our experiments, each record has 4 attributes,
(data count, data loss, flow rate, retransmissions).

Each attribute in the database is stored in as a floating-
point number encoded in a 32 bit RGBA texture. The video
memory available on the NVIDIA GeForce FX 5900 graph-
ics processor can store more than 50 attributes, each in a
texture of size 1000 × 1000, amounting to a total of 50 mil-
lion values in the database. We transfer textures from the
CPU to the graphics processor using an AGP 8X interface.

The census database consists of 360K records. We used
four attributes for each record of this database. We have
benchmarked our algorithms using the TCP/IP database.
Our performance results on the census data are consistent
with the results obtained on the TCP/IP database.

5.2 Optimized CPU Implementation
We implemented the algorithms described in section 4 and

compared them with an optimized CPU implementation.
We compiled the CPU implementation using Intel compiler
7.1 with full compiler optimizations 1. These optimizations
include

• Vectorization: The compiler detects sequential data
scans and generates code for SIMD execution.

• Multi-threading: We used the compiler switch -QPa-

rallel to detect loops which may benefit from multi-
threaded execution and generate appropriate thread-
ing calls. This option enables the CPU implementa-
tion to utilize hyper-threading technology available on
Xeon processors.

• Inter-Procedural Optimization (IPO): The com-
piler performs function inlining when IPO is enabled.
It reduces the function call branches, thus improving
its efficiency.

For the timings, we ran each of our tests 100 times and
computed the average running time for the test.

1http://www.intel.com/software/products/compilers/
techtopics/compiler_optimization_71.pdf



Figure 3: Execution time of a predi-

cate evaluation with 60% selectivity by a

CPU-based and a GPU-based algorithm.

Timings for the GPU-based algorithm

include time to copy data values into the

depth buffer. Considering only compu-

tation time, the GPU is nearly 20 times

faster than a compiler-optimized SIMD

implementation.

Figure 4: Execution time of a range

query with 60% selectivity using a GPU-

based and a CPU-based algorithm. Tim-

ings for the GPU-based algorithm in-

clude time to copy data values into the

depth buffer. Considering only compu-

tation time, the GPU is nearly 40 times

faster than a compiler-optimized SIMD

implementation.

Figure 5: Execution time of a multi-

attribute query with 60% selectivity for

each attribute and a combination of

AND operator. Timei is the time to per-

form a query with i attributes. We show

the timings for CPU and GPU-based im-

plementations.

Figure 2: Plot indicating the time taken for copying data

values in a texture to the depth buffer.

5.3 GPU Implementation
Our algorithms described in Section 4 are implemented

using the OpenGL API. For generating the fragment pro-
grams, we used NVIDIA’s CG compiler [23]. As the code
generated by the compiler is often sub-optimal, we exam-
ined the assembly code generated by the current compiler
and reduced the number of assembly instructions to perform
the same operation.

For the counting operations, we chose to use GL NV occl-

usion query for image-space occlusion queries. These queries
can be performed asynchronously and often do not add any
additional overhead.

5.4 Copy Operation
Various database operations, such as comparisons, selec-

tion, etc, require the data values of an attribute stored in
the depth buffer. For these operations, we copy the corre-
sponding texture into the depth buffer. A fragment program
is used to perform the copy operation. Our copy fragment
program implementation requires three instructions.
1. Texture Fetch: We fetch the texture value correspond-
ing to a fragment.
2. Normalization: We normalize the texture value to the
range of valid depth values [0, 1].
3. Copy To Depth: The normalized value is copied into
the fragment depth.

Figure 2 shows the time taken to copy values from textures
of varying sizes into the depth buffer. The figure indicates

an almost linear increase in the time taken to perform the
copy operation as a function of the number of records. In
the future, it may be possible to copy data values from tex-
tures directly to a depth buffer and that would reduce these
timings considerably. Also, the increase in clock rates of
graphics processors and improved optimizations to perform
depth buffer writes [26] could help in reducing these timings.

5.5 Predicate Evaluation
Figure 3 shows a plot of the time taken to compute a single

predicate for an attribute such that the selectivity is 60%.
In our experiments, we performed the operation on the first
attribute of each record in the database. The plot compares
a compiler-generated SIMD optimized CPU code against a
simple GPU implementation. The GPU timings include the
computational time for evaluating the predicate, as well as
the time taken to copy the attribute into the depth buffer.
We observe that the GPU timings are nearly 3 times faster
than the CPU timings. If we compare only the computa-
tional time on the GPU, we observe that the GPU imple-
mentation is nearly 20 times faster than the SIMD optimized
CPU implementation.

5.6 Range Query
We tested the performance of Range by timing a range

query with 60% selectivity. To ensure 60% selectivity, we
set the valid range of values between the 20th percentile
and 80th percentile of the data values. Again, in our tests,
we used the data count as our attribute. Figure 4 com-
pares the time taken for a simple GPU implementation and
a compiler-optimized SIMD implementation on CPU. In the
GPU timings, we included the time taken for the copy oper-
ation. We observe that overall the GPU is nearly 5.5 times
faster than the CPU implementation. If we consider only the
computational time on GPU and CPU, we observe that the
GPU is nearly 40 times faster than the compiler optimized
CPU implementation.

5.7 Multi-Attribute Query
We have tested the performance of our hardware-based

multi-attribute queries by varying the number of attributes
and also the number of records in the database. We used
queries with a selectivity of 60% for each attribute and ap-
plied the AND operator on the result for each attribute. In



Figure 7: Time to compute k-th largest

number on the data count attribute. We

used a portion of the TCP/IP database

with nearly 250K records.

Figure 8: Time taken to compute the

median using KthLargest and QuickS-

elect on varying number of records.

Figure 9: Time taken to compute the

K-th largest number by the two imple-

mentations.

Figure 6: Execution time of a semi-linear query using four

attributes of the TCP/IP database. The GPU-based imple-

mentation is almost one order of magnitude faster than the

CPU-based implementation.

our tests, we used up to four attributes per query. For each
attribute in the query, the GPU implementation copies the
data values from the attribute’s texture to the frame-buffer.
Figure 5 shows the time taken by the GPU and CPU respec-
tively, to perform multi-attribute queries with the varying
number of attributes and records. The timings indicate that
the GPU implementation is nearly 2 times faster than the
CPU implementation. If we consider only the computational
times on the GPU by ignoring copy times, we observe that
the GPU is nearly 20 times faster than the optimized CPU
implementation.

5.8 Semi-linear Query
We performed a semi-linear query on the four attributes

by using a linear combination of four random floating-point
values and compared it against an arbitrary value. Figure 6
summarize our timings for various number of tests on GPU
and CPU. In our tests, we observe that the GPU timings
are 9 times faster than an optimized CPU implementation.

5.9 K-th Largest Number
We performed three different tests to evaluate our Kth-

Largest algorithm on GPU. In each of these tests, we com-
pared KthLargest against a CPU implementation of the
algorithm QuickSelect [14]. In our experiments, we used
the data count attribute. This attribute requires 19 bits to
represent the largest data value and has a high variance.
Test 1: Vary k and compute the time taken for Kth-
Largest and QuickSelect. The tests were performed on
250K records in the database. Figure 7 shows the timings
obtained using each of the implementations. This plot in-
dicates that time taken by KthLargest is constant irre-

spective of the value of k and is an interesting character-
istic of our algorithm. On an average, the GPU timings
for our algorithm are nearly twice as fast in comparison to
the CPU implementation. It should be noted that the GPU
timings include the time taken to copy values into the depth
buffer. Comparing the computational times, we note that
the average KthLargest timings are 3 times faster than
QuickSelect.
Test 2: In these tests, we compared the time taken by
KthLargest and QuickSelect to compute a median of a
varying number of records. Figure 8 illustrates the results of
our experiments. We observe that the KthLargest on the
GPU is nearly twice as fast as QuickSelect on the CPU.
Considering only the computational times, we observe that
KthLargest is nearly 2.5 times faster than QuickSelect.
Test 3: We also compared the time taken by KthLargest
and QuickSelect for computing a median with on data val-
ues with 80% selectivity. Figure 9 indicates the time taken
by KthLargest and QuickSelect in computing the me-
dian as a function of the number of records. Our timings
indicate that KthLargest with 80% selectivity requires ex-
actly the same amount of time as performing KthLargest
with 100% selectivity. We conclude from this observation
that the use of a conditional to test for valid data has al-
most no effect on the running time of KthLargest. For the
CPU timings, we have copied the valid data into an array
and passed it as a parameter to QuickSelect. The timings
indicate that the total running time is nearly the same as
that of running QuickSelect with 100% selectivity.

5.10 Accumulator
Figure 10 demonstrates the performance of Accumula-

tor on the GPU and a compiler-optimized SIMD implemen-
tation of accumulator on the CPU. Our experiments indicate
that our GPU algorithm is nearly 20 times slower than the
CPU implementation, when including the copy time. Note
that the CPUs have a much higher clock rate as compared
to the GPU.

5.11 Selectivity Analysis
Recently, several algorithms have been designed to im-

plement join operations efficiently using selectivity estima-
tion [7, 10]. We compute the selectivity of a query using
the COUNT algorithm (Section 4.3). To obtain the selec-
tivity count, image-space occlusion queries are used. We
performed the experiments described in Sections 5.5, 5.6,
5.7, 5.8. We observed that there is no additional overhead
in obtaining the count of selected queries. Given selected
data values scattered over a 1000 × 1000 frame-buffer, we



Figure 10: Time required to sum the values of an attribute

by the CPU and by the GPU-based Accumulator algorithm

can obtain the number of selected values within 0.25 ms.

6. ANALYSIS
In the previous section, we have highlighted the perfor-

mance of our algorithms on different database operations
and performed a preliminary comparison with some CPU-
based algorithms. In this section, we analyze the perfor-
mance of our algorithms and highlight the database oper-
ations for which the GPUs can offer considerable gain in
performance.

6.1 Implementing Basic Operations on GPUs
There are many issues that govern the performance of the

algorithms implemented on a GPU. Some of the upcoming
features in the next generation GPUs can improve the per-
formance of these algorithms considerably.
Precision: Current GPUs have depth buffers with a max-
imum of 24 bits. This limited precision can be an issue.
With the increasing use of GPUs in performing scientific
computing, graphics hardware developers may add support
for higher-precision depth buffers.
Copy Time: Several of our algorithms require data values
to be copied from the texture memory to the depth buffer.
Current GPUs do not offer a mechanism to perform this
operation efficiently and this operation can take a signifi-
cant fraction of the overall algorithm (e.g. algorithms for
relational and range queries). In the future, we can expect
support for this operation on GPUs which could improve
the overall performance.
Integer Arithmetic Instructions: Current GPUs do not
offer integer arithmetic instructions in the pixel processing
engines. In addition to database operations, several image
and video compression algorithms also require the use of
integer arithmetic operations. Fragment programs were in-
troduced in just the last few years. The instruction sets
for these programs are still being enhanced. The instruc-
tions for integer arithmetic would reduce the timings of our
Accumulator algorithm significantly.
Depth Compare Masking: Current GPUs support a bool-
ean depth mask that enables or disables writes to a depth
buffer. It is very useful to have a comparison mask specified
for the depth function, similar to that specified in the sten-
cil function. Such a mask would make it easier to test if a
number has i-th bit set.
Memory Management: Current high-end GPUs have up
to 512MB of video memory and this limit is increasing every
year. However, due to the limited video memory, we may not

be able to copy very large databases (with tens of millions
of records) into GPU memory. In such situations, we would
use out-of-core techniques and swap textures in and out of
video memory. Another related issue is the bus bandwidth.
Current PCs use an AGP8× bus to transfer data from the
CPU to the GPU and the PCI bus from the GPU to the
CPU. With the announcement of PCI-EXPRESS bus, the
bus bandwidth is going to improve significantly in the near
future. Asynchronous data transfers would also improve the
performance of these algorithms.
No Branching: Current GPUs implement branching by
evaluating both portions of the conditional statement. We
overcome this issue by using multi-pass algorithms and eval-
uating the branch operation using the alpha test or the
depth test.
No Random Writes: GPUs do not support random ac-
cess writes, which makes it harder to develop algorithms
on GPUs because they cannot use data rearrangement on
GPUs.

6.2 Relative Performance Gain
We have presented algorithms for predicates, boolean com-

binations and aggregations. We have also performed prelim-
inary comparison with optimized CPU-based implementa-
tions on a workstation with dual 2.8 GHz Xeon processors.
Due to different clock rates and instruction sets, it is difficult
to perform explicit comparisons between CPU-based and
GPU-based algorithms. However, some of our algorithms
perform better than others. We classify our algorithms into
three categories: high performance gain, medium perfor-
mance gain and low performance gain.

6.2.1 High Performance Gain
In these algorithms, we have observed an order of mag-

nitude speedup over CPU-based implementations. These in-
clude algorithms for semi-linear queries and selection queries.
The main reason for the improved performance are:

• Parallel Computation: GPUs have several pixel
processing engines that process multiple pixels in par-
allel. For example, on a GeForce FX 5900 Ultra we
can process 8 pixels in parallel and reduce the compu-
tational time significantly. Also, each pixel processing
engine has vector processing capabilities and can per-
form vector operations very efficiently. The speedup
in selection queries is mainly due to the parallelism
available in pixel processing engines. The semi-linear
queries also exploit the vector processing capabilities.

• Pipelining: GPUs are designed using a pipelined ar-
chitecture. As a result, they can simultaneously pro-
cess multiple primitives within the pipeline. The al-
gorithms for handling multiple-attribute queries map
well to the pipelined implementation.

• Early Depth-Culling: GPUs have specialized hard-
ware that early in the pipeline can reject fragments
that will not pass the depth test. Since the fragments
do not have to pass through the pixel processing en-
gines, this can lead to a significant performance in-
crease.

• Eliminate branch mispredictions: One of the ma-
jor advantages in performing these selection queries
on GPUs is that there are no branch mispredictions.



Branch mispredictions can be extremely expensive on
the modern CPUs. Modern CPUs use specialized sche-
mes for predicting the outcome of the branch instruc-
tion. Each branch mis-prediction can cost several clock
cycles on current CPUs. For example, on a Pentium
IV a branch misprediction can have a penalty of 17
clock cycles [25].

6.2.2 Medium Performance Gain
Several of our algorithms for database operations are only

able to use a subset of the capabilities of the GPUs. In these
cases, we have observed a speedup of nearly a factor of 2
to 4 times in comparison to an optimized-CPU implemen-
tation. For example, the KthLargest() routine exhibits
these characteristics. The speedup in the KthLargest()
is mainly due to the parallelism available in pixel process-
ing engines. Given the GPU clock rate and the number of
pixel processing engines, we can estimate the time taken to
perform KthLargest() under some assumptions. We as-
sume that there is no latency in the graphics pipeline and in
transmitting the pixel pass count from the GPU to the CPU.
On a GeForce FX 5900 Ultra with clock rate 450MHz and
processing 8 pixels per clock cycle, we can render a single
quad of size 1000×1000 in 0.278 ms. In our experiments, we
render 19 such quads to compute the k-th largest number.
Rendering these quads should take 5.28 ms. The observed
time for this computation is 6.6 ms, which indicates that we
are utilizing nearly 80% of the parallelism in the pipeline.
The observed timings are slightly higher due to the latencies
in transmitting the data from the GPU to the CPU and vice-
versa. A key advantage of our algorithm KthLargest() in
comparison with other parallel order statistic algorithms is
that it does not require any data rearrangement. Data rear-
rangements can be expensive when combined with branch-
ing.

6.2.3 Low Performance Gain
In some cases, we did not observe any gain over a CPU-

based implementation. Our GPU based Accumulator al-
gorithm is much slower than the CPU-based implementa-
tion. There are several reasons for this performance:

• Lack of Integer Arithmetic: Current GPUs do not
support integer arithmetic instructions. Therefore, we
used a fragment program with at least 5 instructions
to test if the i-th bit of a texel is 1. There are several
ways to implement such a feature in the hardware. A
simplest mechanism is to copy the i-th bit of the texel
into the alpha value of a fragment. This can lead to
significant improvement in performance.

• Clock Rate: Not only are we comparing two archi-
tectures with different instruction sets, but they also
have different clock rates. Our CPU implementation
used top-of-the-line dual Xeon processors operating at
2.8GHz. Each Xeon processor has four SIMD proces-
sors that can perform four operations in parallel. On
the other hand, the current GPU clock rate (450MHz)
is much lower than the CPU clock rate. It is possible
that the increasing parallelism in the GPUs and devel-
opment of new instruction sets for fragment programs
can bridge this gap in performance.

Our preliminary analysis indicates that it is advantageous
to perform selection and semi-linear queries on GPUs. In

addition, GPUs can also be used effectively to perform order
statistics algorithms.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented novel algorithms for per-

forming database operations on the GPUs. These include
algorithms for predicates, boolean combinations, and ag-
gregation queries. We have implemented these algorithms
on a state-of-the-art GPU and highlighted its performance
for following queries: relational query, range query, multi-
attribute query, semi-linear query, kth-largest number com-
putation, accumulator and selectivity analysis. We have also
performed preliminary comparisons with optimized imple-
mentations of CPU-based algorithms. In some cases, we
observed noticeable performance gain.

We have shown that GPUs are excellent candidates for
performing some of the databases operations. Some reasons
for this finding include:

• Commodity Hardware: High-end GPUs are freely
available on PCs, consoles and workstations. The cost
of a high-end GPU is typically less than the cost of a
high-end CPU (by a factor of two or more).

• Higher Growth Rate: Over the last decade the
growth rate of GPU performance has been higher than
that of CPUs. This trend is expected to continue for
the next five years or so. The performance gap be-
tween the CPUs and GPUs will probably increase con-
siderably and we can obtain improved performance for
database queries on the GPUs.

• Multiple Fragment Processors and Improved
Programmability: Current high-end GPUs already
have 8 fragment processors. This number is expected
to increase in the future. As the instruction sets of
fragment programs improve, the running time of many
of our algorithms will further decrease.

• Useful Co-Processor: Overall, the GPU can be used
as an effective co-processor along with the CPUs. It
is clear that GPU is an excellent candidate for some
database operations, but not all. Therefore, it would
be useful for database designers to utilize GPU capa-
bilities alongside traditional CPU-based code.

There are many avenues for future work. It is possible
to use new capabilities and optimizations to improve the
performance of many of our algorithms. Furthermore, we
would like to develop algorithms for other database opera-
tions and queries including sorting, join, and indexed search,
and OLAP and data mining tasks such as data cube roll
up and drill-down, classification, and clustering, which may
benefit from multiple fragment processors and vector pro-
cessing capabilities. We also plan to design GPU-based al-
gorithms for queries on more complicated data types in the
context of spatial and temporal databases and perform con-
tinuous queries over streams using GPUs.
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