
Database Compression on Graphics Processors

Wenbin Fang
Hong Kong University of
Science and Technology

wenbin@cse.ust.hk

Bingsheng He
Nanyang Technological

University

he.bingsheng@gmail.com

Qiong Luo
Hong Kong University of
Science and Technology

luo@cse.ust.hk

ABSTRACT
Query co-processing on graphics processors (GPUs) has become
an effective means to improve the performance of main memory
databases. However, this co-processing requires the data trans-
fer between the main memory and the GPU memory via a low-
bandwidth PCI-E bus. The overhead of such data transfer becomes
an important factor, even a bottleneck, for query co-processing per-
formance on the GPU. In this paper, we propose to use compres-
sion to alleviate this performance problem. Specifically, we im-
plement nine lightweight compression schemes on the GPU and
further study the combinations of these schemes for a better com-
pression ratio. We design a compression planner to find the optimal
combination. Our experiments demonstrate that the GPU-based
compression and decompression achieved a processing speed up
to 45 and 56 GB/s respectively. Using partial decompression, we
were able to significantly improve GPU-based query co-processing
performance. As a side product, we have integrated our GPU-
based compression into MonetDB, an open source column-oriented
DBMS, and demonstrated the feasibility of offloading compression
and decompression to the GPU.

1. INTRODUCTION
Graphics processors (GPUs) have become an emerging and pow-

erful co-processor for many applications including scientific com-
puting [12] and databases [11, 13, 18, 19]. The new-generation
GPU has an order of magnitude higher memory bandwidth and
higher GFLOPS (Giga FLoating point Operations Per Second) than
the multi-core CPU. For example, an NVIDIA GTX 280 card con-
tains 240 cores with a peak performance of 933 GLOPS and 141.7
GB/s memory bandwidth. Despite of the superb hardware perfor-
mance, GPU co-processing requires data transfer between the main
memory and the GPU memory via a low bandwidth PCI-E bus, e.g.,
with theoretical peak bandwidths of 4 and 8 GB/s on 16-lane PCI-
E v1.0 and v2.0, respectively. As a result, previous studies [18,
19] show that such data transfer can contribute to 15–90% of the
total time in relational query co-processing. Query co-processing
performance can be further improved if such data transfer time
is reduced. Compression has been long considered as an effec-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

tive means to reduce the data footprint in databases, especially for
column-oriented databases [1, 2, 5, 15, 26, 28]. In this paper, we
investigate how compression can reduce the data transfer time and
improve the overall query co-processing performance on column-
oriented databases.

Database compression has been extensively studied in column-
oriented databases (e.g., MonetDB/x100 [6] and C-store [25]). Most
of these systems adopt lightweight compression schemes, such as
dictionary encoding, instead of more sophisticated compression al-
gorithms such as gzip. With the lightweight compression schemes,
column-oriented databases efficiently utilize vectorized executions,
processing data tuples bulk-at-a-time or vector/array-at-a-time via
(de)compressing multiple tuples simultaneously [1, 26, 28]. How-
ever, due to the poor decompression performance on CPUs, current
systems often use a single compression scheme, even though cas-
caded compression (i.e., applying multiple lightweight compres-
sion schemes one after another on a data set) is potentially more
effective. For example, Harizopoulos et al. [15] showed that the
column-oriented DBMS with the combination of two lightweight
compression schemes hardly outperforms that with a single com-
pression scheme. Given the superb memory bandwidth and GLFOPS
of the GPU, we should revisit the commonly used lightweight com-
pression schemes as well as their combinations on the GPU. The re-
duced data footprint by cascaded compression in GPU co-processing
can potentially compensate the computational overhead.

We start our investigation with a recent column-oriented query
co-processor on the GPU, namely GDB [18]. We implement and
integrate nine common lightweight compression schemes into GDB.
All these schemes are optimized with the massive thread paral-
lelism and the memory locality of the GPU. We further investi-
gate the compression ratio, defined as the size of compressed data
divided by the size of original data, and the query processing per-
formance in GDB for different combinations of these compression
schemes.

Table 1 shows the compression ratio of a sorted column l partkey
from the decision support benchmark TPC-H under six different
combinations of compression schemes, along with the running time
of a selection with a 10% selectivity on this column in GDB. We
call a combination a compression plan. Compression schemes in a
plan are delimited by commas, and a subsequent scheme is applied
on the output of the preceding scheme. Some schemes may output
multiple columns. Therefore, we use nested brackets to represent
such cases. For example, “RLE, [[DELTA, NS] | NS]” denotes that
we first apply the compression scheme RLE, then we apply DELTA
followed by NS on one output column of RLE, and NS on the other
output column. “ϵ” denotes an empty plan which does not apply
any compression scheme. Readers can simply consider the com-
pression schemes such as RLE in a compression plan as placehold-

670

ers in Table 1. The details on individual compression schemes and
experimental setup can be found in Sections 3 and 5, respectively.

We make the following observations from Table 1: 1) For the
selection operation, some plans do not need decompression (e.g.,
plan A, B, and D), some with partial decompression (e.g., plan E),
and some with full decompression (e.g., plan C, and F). 2) Com-
pression plans containing multiple schemes may achieve a better
compression ratio than that of a single scheme (e.g., plan E is bet-
ter than plan A), or may not (e.g., plan A is better than plan C).
3) Scheme order in a plan matters. For example, plans E and F
contain the same set of schemes, but achieve different compression
ratios on the same column. 4) The same scheme can be applied for
multiple times in a compression plan (e.g., NS in plan E). 5) Com-
plex compression plans, e.g., E and F, do not necessarily improve
or slow down query processing performance.

As different combinations of compression schemes vary signif-
icantly in compression ratios and GPU query processing perfor-
mance, it is necessary and worthwhile to study cascaded compres-
sion on the GPU. In particular, we are facing two main technical
challenges when applying cascaded compression on GPU query
co-processing. First, as the search space contains a large num-
ber of combinations of schemes, how do we pick a feasible plan
that fulfills predefined goals, such as good compression ratio or
good (de)compression performance? Second, cascaded compres-
sion reduces the possibility of evaluating queries directly on the
compressed data, which induces the costly decompression. For ex-
ample, the compressed data may not be order preserving, so that a
range query cannot be evaluated on the compressed data.

To address these challenges, we develop a rule-based compres-
sion planner to automatically choose feasible compression plans
that are applicable to data with certain properties. For example,
some schemes require data to be sorted, so that they can effectively
reduce the data size. We also propose a compression-aware opti-
mizer to determine whether query evaluation should be done with
no, partial, or complete decompression. Our rule-based compression-
aware optimizer makes partial decompression possible. To facili-
tate the decision in picking the optimal compression plan, we take
the parallel execution mechanism of GPUs into consideration, and
develop an accurate cost model for GPU-based compression.

Compression on l partkey Table-scan on l partkey
Compression Plans Compression

Ratio
Decompression Time (ms)

A: RLE 6.68% No 8.30
B: NS 100% No 162.04
C: DELTA, NS 25% Full 119.62
D: RLE, [ϵ | NS] 4.16% No 6.39
E: RLE, [[DELTA,
NS] | NS]

1.67% Partial 5.31

F: DELTA, RLE,
[NS | NS]

3.33% Full 151.99

Table 1: Compression ratios and table-scan performance in
GDB.

We have conducted experiments on the performance of nine com-
pression schemes, and evaluated the effectiveness of the compres-
sion planner and the compression-aware optimizer with the TPC-H
benchmark. Our results show that the GPU-accelerated compres-
sion schemes are with a (de)compression bandwidth as high as 56
GB/s. In addition, the compression planner can effectively pro-
vide feasible compression plans. With partial decompression fa-
cilitated by the compression-aware optimizer, evaluating TPC-H
queries on GPUs can achieve an order of magnitude performance
speedup over MonetDB on an Intel quad-core CPU.

Organization. The remainder of this paper is organized as fol-
lows. In Section 2, we briefly introduce GPUs and CUDA, then

review the related work on database compression and GPU-based
co-processing. We present the implementation of GPU-based com-
pression schemes in Section 3, followed by cascaded compression
in Section 4. We present the experimental results in Section 5 and
conclude this paper in Section 6.

2. PRELIMINARY AND RELATED WORK
In this section, we briefly introduce GPUs and CUDA, the un-

derlying platform upon which our compression schemes are imple-
mented. Next, we review the related work on GPU-based query
processing and database compression.

2.1 GPUs and NVIDIA CUDA

Figure 1: The GPU Many-core Architecture.
GPUs, originally designed for graphics rendering tasks, have

evolved into massively multi-threaded many-core co-processors, as
illustrated in Figure 1, for general-purpose computing. The GPU
consists of many SIMD (Single Instruction, Multiple Data) multi-
processors, all sharing a piece of device memory.

CUDA, a general-purpose programming framework for NVIDIA
GPUs, exposes the hierarchy of GPU threads. GPU threads exe-
cute the same code of a kernel function concurrently on different
data. Warps, each of which consists of the same number of threads,
are scheduled across multiprocessors. Within each multiprocessor,
warps are further grouped into thread blocks. Threads in the same
thread block share resources on one multiprocessor, e.g., registers
and local memory (or called shared memory in NVIDIA’s term).

CUDA also exposes the memory hierarchy to developers. Mul-
tiprocessors share the device memory, which has a high bandwidth
and a high access latency. For example, NVIDIA GTX 280 GPU
has a device memory of size 1 GB, a bandwidth of 141 GB/s, and
a latency of 400 to 600 cycles. If threads in a half warp access
consecutive device memory addresses, these accesses are coalesced
into one memory access transaction. By utilizing the memory coa-
lesced access feature, we can significantly reduce the number of de-
vice memory accesses, and improve the memory bandwidth utiliza-
tion. Each multiprocessor also has a low-latency and small-sized
local memory, and accesses to the local memory must be explicitly
programmed through CUDA.

2.2 GPUbased Data Processing
Due to the massive parallelism, GPUs have demonstrated signifi-

cant speedup over CPUs on various query processing tasks, includ-
ing sorting [11], index search [22], join [19], selection and aggre-
gation [13]. In addition to relational query processing, GPUs have
been applied to other data management tasks, for example, data
mining [8, 10, 27], spatial databases [4], MapReduce [16], scatter/-
gather [17] and similarity joins [23]. GPU-based data compression
has been applied on the inverted index in information retrieval [9].
In comparison, we not only investigate individual GPU-accelerated
compression schemes for column-oriented databases, but also the
combinations of different schemes for reducing the overhead of
data transfer between the main memory and the GPU memory.

671

2.3 Database Compression
Compression is an effective method to reduce the data storage

and to improve query processing performance. In disk-based data-
bases, compression algorithms are typically computation-intensive,
and they trade more computation for better compression ratios,
since disk accesses are far slower than the CPU. Because the com-
pression algorithms are complex, the compressed data are often re-
quired to be fully decompressed for query processing.

As the price of main memory drops, machines tend to have large
amounts of main memory. Moreover, column-oriented databases
allow query processing to read only the required columns, instead
of the entire rows. Disk I/Os become less significant for such sce-
narios. As a result, studies on compression techniques in column-
oriented databases [1, 2, 5, 15, 20, 28] have focused on lightweight
schemes such as Run-Length-Encoding (RLE) that balance between
compression ratio and computational overhead. With these lightweight
compression schemes, most queries can be evaluated without de-
compression. In addition, lightweight compression can easily be
vectorized [1, 26, 28]. Although the combination of lightweight
schemes is undesirable on CPU-based column-oriented databases [15]
due to the computation overhead, the high memory bandwidth and
the high computation capability of GPUs make combinations of
multiple compression schemes practical. Moreover, compression
can benefit GPU query co-processing [18] by significantly reduc-
ing the overhead of data transfer between the main memory and the
GPU memory.

3. COMPRESSION ON THE GPU
In this section, we present our GPU-based implementation of

nine lightweight compression schemes. These schemes have been
commonly used in column-oriented databases, since most of them
support query processing on compressed data. While these schemes
have been investigated on the CPU in previous studies [1, 28], we
study them on the GPU architecture.

As the nine lightweight compression schemes we consider can be
efficiently vectorized [28], they fit well with the many-core SIMD
architecture of the GPU. Moreover, since data-parallel primitives
have been proposed as a systematic and efficient means to imple-
ment GPU-based query operators [18], we also implement the com-
pression schemes on the GPU with these primitives, specifically
Map, Scatter, and Prefix Sum. The input and output of these data-
parallel primitives are simply arrays on the GPU. The data layout
and data accesses are optimized with the GPU memory hardware
features, and the performance is tuned with the thread parallelism
of the GPU. We briefly introduce the three primitives as follows:

Map. Given an input array and a user-defined map function,
the output array is the result of applying the map function on each
element of the input array.

Scatter. Given an input array and an array of write positions, the
Scatter primitive writes the values in the input array to an output
array at positions given by the array of write positions.

Prefix Sum. Given an input array, the prefix sum is to output an
array of sums, with each sum obtained from adding up values in the
input array up to the position of the sum. We adopt both inclusive
and exclusive prefix sums. The difference between the two types
of prefix sum is whether the sum includes the element in the input
array corresponding to the position of the sum in the output array.
As such, the first element of the output array of exclusive prefix
sum is zero, and that of the inclusive prefix sum is the first element
of the input array.

We categorize the nine compression schemes into two groups,
namely Main Schemes and Auxiliary Schemes. The main schemes

reduce the data size, whereas the auxiliary schemes transform data
into formats that are suitable for main schemes to perform com-
pression. We present our primitive-based GPU implementation of
these compression schemes next.

3.1 Main Schemes
Null Suppression with Fixed Length (NS). NS is a variant of

the “fixed-length minimum bit” scheme, deleting leading zeros at
the most significant bits in the bit representation of each element [3].
NS encodes each element in the input array with the same number
of bits, and the number of bits required for the encoding is stored
in the database catalog. In our GPU-based NS encoding, we make
each output value byte-aligned for a good (de)compression perfor-
mance, because the GPU is byte addressable. For example, NS en-
codes two four-byte numbers {0x00000FFF, 0x00000009} as two
two-byte values {0x0FFF, 0x0009}. We use the Map primitive to
implement NS on the GPU, and encode the value in the minimum
number of bytes. If an encoded value is one byte (or two bytes), we
use the GPU-native type char (or short) for efficiency.

Null Suppression with Variable Length (NSV). NSV is a vari-
ant of “variable-length minimum bit” compression scheme [3]. NSV
is similar to NS in eliminating leading zeros at the most significant
bits. The difference is that NSV allows each value to be encoded
in a variable length, and that the length of each encoded value is
recorded as well as the encoded value itself. The lengths them-
selves are of the same size. For example, we encode a four-byte
integer into a byte-aligned value that can be of size of 1, 2, 3 or 4.
Thus, all lengths (sizes) are represented in two bits [1]. We use the
Map primitive to implement NSV, and store the encoded value and
length as two columns in each output element. Correspondingly, in
NSV decompression, we apply the exclusive prefix sum primitive
on the column of length to obtain the offset of each encoded value,
and then use the Map primitive to convert the encoded value into
the original value.

Dictionary (DICT). DICT is widely used in existing DBMSs,
e.g., Oracle [24] and MonetDB [7]. DICT is suitable for columns
that have only a small number of distinct values. It maintains a
dictionary of the distinct values in the database catalog for decom-
pression. As such, fast retrieval on the dictionary is critical for the
efficiency. In our GPU-based implementation, we load the dictio-
nary into the local memory of each GPU multiprocessor to enable
fast retrieval, and the (de)compression is a Map with the map func-
tion looking up the dictionary.

Bitmap (BITMAP). When a column has a very small number
of distinct values (e.g., gender), it is suitable to adopt the BITMAP
scheme to encode each distinct value as a bit-string. Each of such a
bit string has only one bit-1 and all other bits are 0. The position of
the bit-1 in a bit string differs by the distinct value it represents. For
example, BITMAP encodes the four two-byte numbers {0x00FF,
0x0009, 0x0009, 0x00FF} as two one-byte bit strings, {1001 0000,
0110 0000} (in big endian as on the GPU). The distinct values
0x00FF and 0x0009 and their corresponding bit-strings 10 and 01
are stored in the database catalog. Our GPU-based BITMAP is
implemented with the Map primitive.

Run-Length-Encoding (RLE). RLE represents values in each
run with a pair: (value, run length). We store the encoded values
and run lengths in two columns (arrays). In the decompression,
RLE constructs runs using the columns of values and run lengths.
We implement the GPU-based RLE in four steps. First, we iden-
tify boundaries between runs. A boundary is represented by a 1
between 0’s and we call this array of 0’s and 1’s a boundary ar-
ray. Second, we get the write positions for output data by applying
an exclusive prefix sum on the boundary array. Third, given the

672

write positions, we scatter both the values and the boundary po-
sitions. Finally, we compute each run length by substracting the
corresponding boundary position from the next boundary position.
This compression process is lock-free, which well exploits the mas-
sive parallelism of the GPU. The following example illustrates the
RLE compression procedure for compressing a column containing
nine values (“AAAABBCCC”):

Step 1, Map (find boundary of runs) --
INPUT/Uncompressed Column: A A A A B B C C C
OUTPUT/Boundary : 0 0 0 1 0 1 0 0 1
Step 2, Exclusive Prefix Sum --
INPUT/Boundary : 0 0 0 1 0 1 0 0 1
OUTPUT/Scatter Position : 0 0 0 0 1 1 2 2 2
Step 3, Scatter --
INPUT/Uncompressed Column: A A A A B B C C C
INPUT/Boundary : 0 0 0 1 0 1 0 0 1
INPUT/Scatter Position : 0 0 0 0 1 1 2 2 2
OUTPUT/Value Array : A B C
OUTPUT/Boundary Position : 4 6 9
Step 4, Map (calculate run lengths) --
INPUT/Boundary Position : 4 6 9
OUTPUT/Run Length : 4 2 3

A naive GPU-based implementation of GPU-based RLE decom-
pression is to use one GPU thread to decompress each run of values.
However, if data skew results in significant differences among run
lengths, load can be considerably unbalanced among threads. Such
load imbalance hurts the utilization of the GPU thread parallelism
and therefore has a negative performance impact. Thus, we design
a decompression algorithm that can efficiently handle data skew.
The algorithm works in four steps. First, we compute the boundary
positions of runs by applying an inclusive prefix sum on the run
lengths. Second, we generate the boundary array by setting 1’s in
the array at the corresponding boundary positions. Third, we com-
pute the write positions for output data by applying an inclusive
prefix sum on the boundary array. Finally, we scatter values to the
output value column. This procedure is also lock-free. Moreover,
in each step all GPU threads have the same amound of workload
regardless of data distribution. The decompression procedure is il-
lustrated as follows, with the same example (“AAAABBCCC”):

Step 1, Inclusive Prefix Sum --
INPUT/Run Length : 4 2 3
OUTPUT/Boundary Position : 4 6 9
Step 2, Scatter --
INPUT/Boundary Position : 4 6 (9)
OUTPUT/Boundary : 0 0 0 0 1 0 1 0 0
Step 3, Inclusive Prefix Sum --
INPUT/Boundary : 0 0 0 0 1 0 1 0 0
OUTPUT/Scatter Position : 0 0 0 0 1 1 2 2 2
Step 4, Scatter --
INPUT/Value Array : A B C
INPUT/Scatter Position : 0 0 0 0 1 1 2 2 2
OUTPUT/Uncompressed Column: A A A A B B C C C

3.2 Auxiliary Schemes
Frame-Of-Reference (FOR). FOR transforms each value in a

column into an offset from a base value. The base value of the col-
umn is often set to the smallest value in the column, and is stored in
the database catalog. The GPU-based FOR uses the Map primitive
to subtracte the base value from each array element. After applying
FOR, we can compress the encoded offsets by other main schemes,
such as NS and NSV.

Delta (DELTA). DELTA encodes a value in a column as the dif-
ference from the value at the preceding position. The first value
in the column is stored in the database catalog. The differences are
usually within a small value domain for a sorted column. The GPU-
based DELTA uses the Map primitive to perform compression, and
applies the inclusive prefix sum for decompression.

Separate (SEP). The Separate (SEP) scheme is to split a value
into multiple components, so that each component can be com-

pressed individually. For example, the Date type is usually rep-
resented as an integer in DBMSs, e.g., a four-byte integer in Mon-
etDB. It will be more compressible if we separate a date into day,
month, and year, each of which has a limited value domain. The
Map primitive is used for the GPU-based SEP implementation.

Scale (SCALE). The Scale scheme is to convert floating point
numbers into integers, when the integer precision is sufficient for
the application. For example, prices of $9.3 and $9.4 can be con-
verted to 93 and 94 through multiplying by a factor of 10, with the
factor 10 stored in the database catalog. We use the Map primitive
to implement the SCALE scheme.

In summary, we implement the nine lightweight compression
schemes using GPU-optimized data-parallel primitives, which have
been extensively tested and evaluated in previous studies [18, 19].
The high efficiency of individual GPU-based compression schemes
lay a foundation for the combination of multiple schemes on the
GPU. The following section explores cascaded compression.

4. CASCADED COMPRESSION
Based on the GPU-accelerated, individual compression schemes,

we further investigate the combinations of multiple compression
schemes (namely cascaded compression) on the GPU. The core
benefit of cascaded compression is to further reduce the data size
by applying more than one lightweight scheme. While cascaded
compression remains of low interest on the CPU, it appears promis-
ing to further alleviate the performance issues in data transfer and
query processing on the GPU.

The main question in cascaded compression is, given a num-
ber of individual compression schemes and a data set (a column),
how do we find a feasible and good combination of the individ-
ual schemes (compression plan)? Our answer to this question is
through a compression planner together with a cost model. In this
section, we first present our compression planner, and then describe
our cost model for GPU-based compression schemes.

4.1 Compression Planner
Hypothetically, a compression plan can consist of an arbitrary

combination of schemes, and each scheme can appear an arbitrary
number of times. Due to the combinatorical nature, the search
space of feasible plans is large. Consider the nine compression
schemes in our study. Even if we limit a compression plan to have
at most six component schemes, there will be

∑6
i=0 9

i, or 597,870
plan candidates. Therefore, effective pruning techniques are re-
quired to reduce the search space.

One important factor to consider in reducing the search space
for compression plans is data properties. Specifically, a compres-
sion scheme is effective only when certain data properties are satis-
fied. For example, RLE is effective when the average run length
in a column is large. Furthermore, certain properties of a col-
umn will change after compression. For example, after applying
RLE, the average run length becomes small and other properties
remain unchanged. Additionally, the goodness of a plan can be
measured with different criteria, for example, compression ratio,
(de)compression performance (cost), or a combination of multiple
factors.

Considering both data properties and plan goodness measures,
we design our compression planner consisting of two components:
a tactical planner and a strategic planner, as in the query optimiza-
tion in MonetDB [7]. The tactical planner uses a rule-based method
to automatically prune the search space for a predefined maximum
number of scheme candidates, and the strategic planner allows de-
velopers to specify their goals (measures for plan goodness).

The tactical planner prunes the space according to the rules on

673

data properties of the compression schemes. We identify the fol-
lowing five compulsory properties for a column:

Sorted. It indicates whether the column is sorted. RLE and
DELTA tend to be effective on sorted data.

Average run length. It is the average length of the runs in a
column, which is the key data property for RLE.

NumDistinct. It measures the number of distinct values in a
column. Both DICT and BITMAP work well with columns of a
small NumDistinct.

Value domain. It records the minimum number of bytes needed
to represent each value in the column. Value domain affects the
effectiveness of NS, NSV, and FOR.

Compound. It indicates whether a value in the column can be
divided into multiple components. This property is considered by
both SEP and SCALE.

In our implementation, for each column we record a property
list, containing the five properties of the column. Furthermore, we
maintain a compulsory property table (CPT) to record the rules of
the nine compression schemes on the five data properties. The tacti-
cal planner can then choose a set of compression scheme candidates
for a column by checking the property list of the data against the
rules in CPT. For the tactical plan to select a subsequent candidate
scheme to apply on the compressed data, we maintain another set of
rules in the transitional property table (TPT). The TPT rules spec-
ify the data properties resulted from the nine compression schemes.
Then, based on the new property list of the compressed data, the
planner iteratively finds new feasible plans of increasing number of
component schemes, until a predefined maximum number of plan
candidates is reached.

With feasible plan candidates resulted from the tactical planner,
the strategic planner chooses a final plan based on a goodness mea-
sure. A common goodness measure is the compression ratio, which
can be readily estimated using statistics from the database catalog.
Another goodness measure is the (de)compression performance, or
time cost. Other goodness measures are also possible, for exam-
ple, a weighted combination of compression ratio and time cost. In
our implementation, we support both compression ratio and time
cost as goodness measures. In the following, we describe our cost
model for estimating the time cost of GPU-based compression.

4.2 Cost Model
There has been little prior work on estimating the performance of

GPU-based program execution. The cost model in GDB [18] treats
the GPU as a black box, and uses a calibration-based method for
the cost estimation of GPU-based query processing. In comparison,
our cost model on GPU-based compression explicitly takes into ac-
count the GPU thread scheduling and memory access mechanisms.
This cost model requires no actual execution of the compression
algorithms, and works well on latest CUDA-enabled GPUs.

The main idea of our cost model is to estimate the execution time
of a compression algorithm by examining the code of the kernel
function and calculating its total workload given the statistics of the
data. This estimation is based on the parallel execution mechanism
of CUDA-based GPUs. Specifically, we perform our estimation
around the GPUs schedule unit, warp of threads. All warps take
the code of a kernel function to execute on the GPU. Active warps
running on one multiprocessor take turns for execution. A warp that
performs memory access causes context switch to execute another
warp. Figure 2 depicts warp scheduling on a multiprocessor. In the
figure, there are three active warps on a multiprocessor.

The maximum number of active warps allowed on a multiproces-
sor is determined by the hardware resource and the shared resource
usage on a multiprocessor. The number of active warps divided by

Notation Description
T The execution time of a kernel function.
Ta The execution time of a set of active warps.
Tl The total time of loading data from the device memory to

registers or the on-chip local memory in the active warps on
a multiprocessor.

Ts The total time of storing data from registers or the on-chip
local memory to the device memory in the active warps on a
multiprocessor.

Tc The total time of all context switchs in the active warps on a
multiprocessor.

To The total execution time of arithmetic GPU operations in the
active warps on a multiprocessor.

Tover The overlap time between memory loads and arithmetic op-
erations in the active warps on a multiprocessor.

Nw The total number of warps needed for the workload.
Na The total number of active warps across all multiprocessors.

Table 2: Notations for the cost model.

Warp 1

Warp 2

Warp 3

Timeline

Read from device memory

Write to device memoryArithmetic Operation

Context Switching

Figure 2: Warp scheduling on a multiprocessor.

the maximum number of active warps on a multiprocessor is called
occupancy, which can be obtained from the CUDA Occupancy Cal-
culator 1 for any GPU program at compilation time. Therefore we
can obtain the estimated number of active warps for a GPU pro-
gram at compilation time.

Table 2 shows the notation used in the cost model. The cost for
a kernel function is calculated in Equation (1). We assume active
warps of all multiprocessors complete at the same time. Thus, we
multiply the cost of all active warps across the GPU by the number
of times that inactive warps become active (Nw/Na).

(1) T = Ta ∗ (Nw/Na)

Equation (2) calculates the cost for one multiprocessor’s active
warps. First, we sum up the cost of memory accesses, the cost of
arithmetic operations, and the cost of context switches. Next, we
subtract the overlap between memory loads and arithmetic opera-
tions. This calculation takes into account the thread parallelism and
the memory latency.

(2) Ta = Tl + Ts + To + Tc − Tover

Since the kernel functions of the nine compression schemes are
simple, we can easily obtain the number of memory accesses and
the number of arithmetic operations by examining the assembly
source code, namely the PTX code of CUDA. One subtle point is
that, when estimating the time cost of memory accesses, we need
to consider whether the access pattern is coalesced or not. For non-
coalesced access, its time cost is worse than coalesced access by
a rather fixed factor dependent on the GPU model. In our experi-
ments with different GPU models, this factor is in the range of 2 to
1http://developer.download.nvidia.com/compute/cuda/CUDA Occupancy calculator.xls

674

16. We then pick the specific factor value for a given GPU model
and multiply Tl or Ts by this factor value for non-coalesced access.

5. EVALUATION
We implemented the GPU-based compression schemes in CUDA

2.3, and integrated our techniques into both GDB [18] and Mon-
etDB 5 [7]. We implemented the compression planner in Pro-
log, a general purpose logic programming language. We start with
evaluating the efficiency of compression and decompression of in-
dividual schemes on the GPU, and then the effectiveness of the
compression planner. Finally, we evaluate the efficiency of query
processing with cascaded compressions on GDB and MonetDB.

We conducted experiments on a Fedora 11 Linux PC with an
Intel Core2 Quad CPU running at 2.4 GHz, 2 GB RAM, and an
NVIDIA GTX 295 graphics card. According to our measurement,
the peak bandwidth of the PCI-E bus was 3.2 GB/s, that of the main
memory 2.5 GB/s, and that of the device memory 94.3 GB/s.

5.1 Performance of Compression Schemes
We used both TPC-H and synthetic data, stored in MonetDB, to

evaluate the GPU-based compression schemes.
We used columns from the TPC-H lineitem table at the scaling

factor 10, containing about 60 million tuples. Table 3 shows the
compression schemes on the columns in the lineitem table. We
concatenated four replicas of the original l returnflag column with
60 million char-type values, into the current l returnflag column, in
order to have roughly the same data size as the other columns (230
MB). We show the compression and decompression performance
of these columns in both measurement and estimation. The perfor-
mance in this experiment excludes the data transfer on the PCI-E
bus, as it is about compression and decompression only; the overall
query co-processing performance on compressed data is evaluated
in a separate set of experiments and includes data transfer. Ad-
ditionally, to understand the performance difference among these
compression schemes, we calculate the access size to include input
data, output data, and intermediate data.

We calcuate the (de)compression bandwidth as Suc/Tr , where
Suc is the input data size, and Tr is the running time. The band-
width of GPU-based compression and decompression is up to 45
and 56GB/s respectively. Note, the previous study [28] delivers a
peak compression bandwidth of 4.3 GB/s on an Intel Pentium 4
Xeon 3 GHz CPU. Our GPU-based compression schemes achieved
an order of magnitude higher bandwidth than their CPU-based coun-
terparts. Compared with the actual performance, the estimated per-
formance using our cost model was quite accurate in most cases.

 1

 2

 3

 4

 5

1 1e-1
1e-2

1e-3
1e-4

1e-5
1e-6

(D
e)

om
pr

es
si

on
 B

an
dw

id
th

 (
G

B
/s

)

Degree of skew

Compression Bw.
Decompression Bw.

Naive Decompression Bw.

Figure 3: RLE Performance as degree of skew decreases.
We next evaluated our skew handling technique in RLE. The

naive implementation used each GPU thread to uncompress a run.
We generated a synthetic sorted column of 50 million 4-byte in-
tegers, with a given degree of skew [21]. The degree of skew is
defined as Lunskewed / Lskewed , where Lskewed is the length of the
skewed run and Lunskewed is the length of the unskewed run. The

synthetic column includes a skewed run of length Lskewed and the
other runs of the same length Lunskewed , as unskewed. We set
Lskewed greater than Lunskewed so that the degree of skew falls in
the range (0.0, 1.0). The less the degree of skew value is, the more
skewed the data is. Figure 3 shows our skew-insensitive RLE im-
plementation significantly outperforms the naive implementation in
decompression, as the data becomes more skewed.

5.2 Compression planner
l partkey p partkey

Compression
Plan

Compression
Ratio

Generated
by our
Planner?

Compression
Ratio

Generated
by our
Planner?

A: RLE 6.68% yes 200% no
B: NS 100% no 75% yes
C: DELTA, NS 25% yes 25% yes
D: RLE, [ϵ | NS] 4.16% yes 125% no
E: RLE,
[[DELTA, NS] |
NS]

1.67% yes 50% no

F: DELTA, RLE,
[NS | NS]

3.33% no 0.0000625% yes

Table 4: Compression Plans on l partkey and p partkey.

We next evaluated the effectiveness of the compression plan-
ner, specifically the tactical planner. We generated compression
plan candidates of l partkey of the lineitem table and p partkey of
the part table. Both columns are sorted, with l partkey contain-
ing duplicates while p partkey containing unique values. We set
the maximum number of schemes in a plan to six. The tactical
planner automatically generated 17 candidates for l partkey, and 8
for p partkey, compared with 597,870 possible combinations. Ta-
ble 4 shows some of the candidates generated and some of those
that were pruned. The column generated by our planner indicates
whether the compression plan is generated by the tactical planner.
The tactical planner generated the candidates with the lowest com-
pression ratios for each column.

5.3 Query Processing with Cascaded Compres
sion

We evaluated the query processing performance of both GDB
and MonetDB with cascaded compression. First, we generated a
synthetic column α with 200 million sorted 4-byte integers, of an
average run length of 10, and performed a table-scan on this col-
umn with selectivity varied from 10% to 90%. In this experiment,
RLE achieved a compression ratio of 20% on α, whereas the com-
pression plan “RLE, [[DELTA, NS] | NS]” 5%. Next, we evaluated
two TPC-H queries.

5.3.1 Tablescan on Synthetic Data
In Figure 4(a), the table-scan on uncompressed data (NONE) has

the worst performance, because the amount of data transfer from
main memory to the device memory is large and so is the costly de-
vice memory access to the data. In particular, with NONE the un-
compressed data has to be split into multiple chunks, with each fit
in the device memory, in query processing. Compared with NONE,
SINGLE transfers compressed data, which is only 20query can be
directly evaluated on the compressed data, which results in much
fewer memory accesses. Finally, in CASCADED the amount of
data transfer is the least, only 5scheme in CASCADED requires
to partially decompress the data on the GPU. As a result, SINGLE
outperforms NONE by a factor of 5 to 6 whereas CASCADED
outperforms SINGLE only up to a factor of 2. In the time break-
down in Figure 4(b), CASCADED spent the least portion of the

675

Compression Decompression
Scheme Column Type Ratio Access size Running Time Estimated Time Access size Running Time Estimated Time

NS l quantity int(4 bytes) 25% 286 MB 5.09 ms 4.51 ms 286 MB 4.07 ms 3.83 ms
NSV l quantity int(4 bytes) 31% 415 MB 20.14 ms 19.19 ms 415 MB 18.36 ms 17.56 ms
DICT l shipmode string(8 bytes) 50% - - - 687 MB 12.07 ms 11.72 ms
RLE l partkey int(4 bytes) 6.6% 938 MB 86.70 ms 65.10 ms 702 MB 53.36 ms 32.05 ms

BITMAP l returnflag char(1 byte) 37.5% 315 MB 14.78 ms 25.03 ms 315 MB 12.54 ms 11.23 ms
FOR l shipdate date(4 bytes) - 458 MB 5.35 ms 5.02 ms 458 MB 5.39 ms 5.02 ms

DELTA l partkey int(4 bytes) - 458 MB 9.26 ms 8.62 ms 458 MB 10.31 ms 8.72 ms
SEP l discount float(4 bytes) - 687 MB 8.81 ms 7.80 ms 687 MB 10.72 ms 8.13 ms

SCALE l discount float(4 bytes) - 458 MB 5.40 ms 4.82 ms 458 MB 5.58 ms 5.21 ms

Table 3: Schemes on lineitem columns. MonteDB natively stores textual data by DICT, so there is no compression for DICT.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

10%
20%

30%
40%

50%
60%

70%
80%

90%

R
un

ni
ng

 T
im

e
(m

s)

Selectivity

None
Single

Cascaded

(a) Overall table-scan performance.

 0

 20

 40

 60

 80

 100

None Single Cascaded

%
 o

f t
ot

al

PCI-E I/O
Decompression
Query
Compression

(b) Time breakdown of GDB table-
scan, with selectivity 40%.

Figure 4: GDB table-scan performance on synthetic data.
NONE: on uncompressed data; SINGLE: on RLE-compressed
data; CASCADED: on data compressed by the plan “RLE,
[[DELTA, NS] | NS]”.

total time on PCI-E I/O and the most on query processing among
the three schemes. This breakdown suggests that it is worthwhile
to trade more computation for less PCI-E I/O and device memory
access in GPU-based query processing on compressed data.

 0

 500

 1000

 1500

 2000

 2500

 3000

10%
20%

30%
40%

50%
60%

70%
80%

90%

R
un

ni
ng

 T
im

e
(m

s)

Selectivity

None
Partial

CPUPartial
Full

CPUFull

(a) Overall table-scan performance.

 0

 20

 40

 60

 80

 100

None
Partial

CPUPartial

Full
CPUFull

%
 o

f t
ot

al

GPU Decompression
CPU Decompression
Query

(b) Time breakdown of MonetDB
table-scan, with selectivity 40%.

Figure 5: MonetDB table-scan performance on synthetic data.
None: on uncompressed data; Partial: partial decompression
on the GPU; CPUPartial: partial decompression on the CPU;
Full: full decompression on the GPU; CPUFull: full decom-
pression on the CPU.

Next we evaluate the cascaded compression with the CPU-based
query processing in MonetDB. The synthetic column is compressed
by the plan “RLE, [[DELTA, NS] | NS]”. Figure 5(a) compares the
table-scan performance of MonetDB in five cases. It shows that
only with GPU-based partial decompression can the CPU-based
query processing in MonetDB achieve a performance similar to
the native MonetDB on uncompressed data. CPU-based or GPU-
based full decompression, or CPU-based partial decompression all
slows down the native MonetDB. Nevetheless, if compression is
used in MonetDB, it is worthwhile to offload the decompression

to the GPU since both GPU-based partial and full decompression
significantly outperform their CPU-based counterparts, and in turn
improve the overall table-scan performance.

5.3.2 TPCH Queries

lineitem
Column Lowest-ratio Plan Ratio # of candidates

l extendedprice None 100% 0
l discount SCALE, NS 25% 42
l shipdate FOR, NS 50% 218
l partkey RLE, [[DELTA, NS] | NS] 1.67% 17
l quantity NS 25% 6

part
Column Lowest-ratio Plan Ratio # of candidates
p partkey DELTA, NS 25% 8

p type DICT, NS 9.9% 6

Table 5: Compression plans on columns in lineitem and part.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

CF/M
onetDB

CP/M
onetDB

F/M
onetDB

P/M
onetDB

F/GDB

P/GDB

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

)

Configuration

(a) Query 6

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

CF/M
onetDB

CP/M
onetDB

F/M
onetDB

P/M
onetDB

F/GDB

P/GDB

R
un

ni
ng

 T
im

e
(in

 s
ec

on
ds

) Decompression
Query Processing

(b) Query 14
Figure 6: TPC-H Queries on Compressed Columns. F: GPU-
based full decompression; P: GPU-based partial decompres-
sion; CF: CPU-based full decompression; CP: CPU-based par-
tial decompression.

We experiment on Query 6 and Query 14 (Appendix D) in TPC-
H with the scaling factor of 10, on MonetDB and GDB. Query 6
is a table-scan, and Query 14 is a join. Table 5 shows the columns
involved in the queries, and the corresponding compression plans
and compression ratios. Columns in lineitem and part are sorted on
l partkey and p partkey respectively. We chose the plan with the
lowest compression ratio from candidates generated by the com-
pression planner.

Figure 6 depicts the running time of the two queries each in six
different cases on MonetDB and GDB. Query 6 can be evaluated
directly on compressed data. In Query 14 l partkey compressed
in “NS, DELTA” can be partially decompressed avoiding decom-
pressing the most costly RLE, but p partkey has to be fully decom-
pressed. Two horizontal baselines are shown in the figure: the solid
line is the running time of MonetDB on uncompressed data, and the

676

dashed line the running time of GDB on uncompressed data. The
running time is broken into decompression time (including PCI-E
I/O) and query processing time.

As both queries exhibit the same relative performance among
the six cases, we discuss the results in Figure 6 without speci-
fying which query: (1) Both F/MonetDB and CF/MonetDB are
worse than the native MonetDB, whereas both CP/MonetDB and
P/MonetDB outperform the native MonetDB. This relative perfor-
mance suggests the importance of partial decompression in CPU-
based query processing. (2) F/MonetDB always outperforms CF/-
MonetDB, which indicates GPU-based decompression is effective
if full decompression in query processing is required. The time
breakdown shows that the GPU improves the decompression per-
formance by several times. (3) CP/MonetDB and P/MonetDB have
a similar performance in that the partial decompression time is neg-
ligible. (4) Full decompression almost doubles the native GDB
query processing time whereas the partial compression reduces it
by half. In summary, partial decompression improves both CPU
and GPU-based query processing performance, and the GPU greatly
accelerates decompression.

6. CONCLUSION
GPU co-processing has demonstrated significant performance

speedups on main memory databases. This paper further improves
the performance of such co-processing with database compression
techniques. Compression not only improves the query processing
performance, but also alleviates the overhead of data transfer on
the low-bandwidth PCI-E bus in GPU co-processing. Taking ad-
vantage of the GPU’s computation power, we consider cascaded
compression, which applies a sequence of lightweight compres-
sion techniques. We develop effective space pruning techniques to
find suitable compression plans, and utilize partial decompression
in query processing for efficiency. Our results demonstrate that our
compression schemes can reduce the data transfer overhead by over
90%, and improve the overall query processing performance by an
order of magnitude.

Acknowledgement
The authors thank the anonymous reviewers for their insightful sug-
gestions. Bingsheng He was supported by a visiting scholarship at
the Chinese University of Hong Kong. This work was supported
by grant 616808 from the Hong Kong Research Grants Council.

7. REFERENCES
[1] D. Abadi, S. Madden, and M. Ferreira. Integrating

compression and execution in column-oriented database
systems. In SIGMOD, 2006.

[2] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores
vs. row-stores: how different are they really? In SIGMOD,
2008.

[3] P. A. Alsberg. Space and time savings through large data
base compression and dynamic restructuring. Proceedings of
the IEEE, 1975.

[4] N. Bandi, C. Sun, D. Agrawal, and A. E. Abbadi. Hardware
acceleration in commercial databases: a case study of spatial
operations. In VLDB, 2004.

[5] C. Binnig, S. Hildenbrand, and F. Faerber. Dictionary-based
order-preserving string compression for main memory
column stores. In SIGMOD, 2009.

[6] P. Boncz, M. Zukowski, and N. Nes. Monetdb/x100:
Hyper-pipelining query execution. In CIDR, 2005.

[7] P. A. Boncz. Monet: A Next-Generation DBMS Kernel For
Query-Intensive Applications. PhD thesis, CWI, 2002.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and
K. Skadron. A performance study of general-purpose
applications on graphics processors using CUDA. In Journal
of Parallel and Distributed Computing, 2008.

[9] S. Ding, J. He, H. Yan, and T. Suel. Using graphics
processors for high performance ir query processing. In
WWW, 2009.

[10] W. Fang, M. Lu, X. Xiao, B. He, and Q. Luo. Frequent
itemset mining on graphics processors. In DaMoN, 2009.

[11] N. K. Govindaraju, J. Gray, R. Kumar, and D. Manocha.
Gputerasort: High performance graphics coprocessor sorting
for large database management. In SIGMOD, 2006.

[12] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha. A
memory model for scientific algorithms on graphics
processors. In Supercomputing, 2006.

[13] N. K. Govindaraju, B. Lloyd, W. Wang, M. Lin, and
D. Manocha. Fast computation of database operations using
graphics processors. In SIGMOD, 2004.

[14] G. Graefe and L. D. Shapiro. Data compression and database
performance. In Applied Computing, 1991.

[15] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden.
Performance tradeoffs in read-optimized databases. In
VLDB, 2006.

[16] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang.
Mars: a mapreduce framework on graphics processors. In
PACT, 2008.

[17] B. He, N. K. Govindaraju, Q. Luo, and B. Smith. Efficient
gather and scatter operations on graphics processors. In SC,
2007.

[18] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo,
and P. V. Sander. Relational query co-processing on graphics
processors. In TODS, 2009.

[19] B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju, Q. Luo,
and P. V. Sander. Relational joins on graphics processors. In
SIGMOD, 2008.

[20] A. L. Holloway and D. J. DeWitt. Read-optimized databases,
in depth. In VLDB, 2008.

[21] K. A. Hua and C. Lee. Handling data skew in multiprocessor
database computers using partition tuning. In VLDB, 1991.

[22] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen,
T. Kaldewey, V. W. Lee, S. A. Brandt, and P. Dubey. FAST:
fast architecture sensitive tree search on modern cpus and
gpus. In SIGMOD, 2010.

[23] M. D. Lieberman, J. Sankaranarayanan, and H. Samet. A fast
similarity join algorithm using graphics processing units. In
ICDE, 2008.

[24] M. Poess and D. Potapov. Data compression in oracle. In
VLDB, 2003.

[25] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: a column-oriented dbms. In VLDB, 2005.

[26] T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier,
and J. Schaffner. SIMD-scan: ultra fast in-memory table scan
using on-chip vector processing units. In VLDB, 2009.

[27] R. Wu, B. Zhang, and M. Hsu. GPU-accelerated large scale
analytics. Technical report, HP, 2009.

[28] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar
RAM-CPU cache compression. In ICDE, 2006.

677

APPENDIX
A. COMPRESSIONAWARE OPTIMIZER

Scheme Sorted Order-Preserving ...
NS No Yes ...
NSV No No ...
DICT No Yes ...
RLE Yes Yes ...
BITMAP No Yes ...
FOR No Yes ...
DELTA No No ...
SEP No No ...
SCALE No Yes ...

Table 6: Compressed-Data-Property Table (CDPT). For RLE,
the value column is sorted, but the run-length column is not.
We utilize the value column here.

Sorted Order-Preserving Table-scan
* No Query-inapplicable
* Yes Query-applicable

Table 7: Query-applicable Table (QAT) for Table Scan.

In this section, we illustrate how the compression-aware opti-
mizer works, and present an example with a table-scan query oper-
ator.

The cascaded compression can achieve a good compression ra-
tio, but it decreases the possibility for query operators to work di-
rectly on compressed data [1, 14]. We propose partial decompres-
sion execution for query processing on compressed data with cas-
caded compression.

We develop the compression-aware optimizer to determine query
plans that may involve none, partial, or full decompression. In par-
ticular, it decides whether to decompress data in certain compres-
sion schemes. For each compression scheme, s, we maintain a
Compressed-Data-Property Table (CDPT), in which each row con-
tains properties of the compressed data after applying s. For a
query operator O in the database, we construct a Query-Applicable
Table (QAT), in which each row contains a combination of com-
pressed data properties and whether such combination allows O to
directly work on the corresponding compressed column.

Suppose there is a sequence of compression schemes in a com-
pression plan: S1, S2, ..., Sn, which applies on a column accord-
ingly. To test whether the operator O can work on the compressed
column, we consider these compression schemes in the reverse or-
der in the compression plan, i.e., Sn, ..., S2, S1. In this order, we
query CDPT to obtain data properties of the compressed data, and
use the properties to query the QAT to obtain the applicability of
O on the compression scheme. We represent the applicability as a
Query Applicable bit (QA-bit), where a QA-bit one means that the
operator O can directly work on compressed data encoded by the
corresponding compression scheme, and a QA-bit zero otherwise.
Finally, we have a n-bit vector indicating the compression schemes
that O can operate on without decompression. With the bit-vector,
we turn all the bits on the right of the leftmost ‘0’ to be zero, mean-
ing that we need to decompress data by the last several schemes in
the compression plan. Thus, query processing is performed with
partial decompression upon cascaded compression. For example,
a bit-vector 1101, consisting the QA-bits for a plan of four com-
pression schemes, means that O can directly process the data com-
pressed by S1, S2, and S4. We only need to decompress data by
the schemes S4 and S3 before query processing.

Table 6 shows a Compressed-Data-Property Table (CDPT), con-
taining three properties for the compressed data by different com-
pression schemes. The Sorted property indicates whether the com-
pressed column is sorted or not. The Order-Preserving property
indicates whether the compressed column preserves the order of
values in uncompressed data, which is necessary for the table-scan
operator to apply predicates directly. There are other properties for
compressed data. However, a particular query operator may just use
some of them. Table 7 shows the Query-Applicable Table (QAT),
indicating whether a compressed column with certain properties
can be queried directly by the table-scan operator. The asterisk (*)
denotes that the property doesn’t matter for determining whether to
decompress.

Consider a column that is compressed by the plan “SCALE, NS,
DELTA, DICT”. We initialize a four-bit vector with all zeros. We
lookup the CDPT for DICT, obtaining the properties of the com-
pressed data by DICT. Then, we use the properties to query the
QAT, knowing that it is query-applicable. Therefore, we record the
4th bit of the bit vector as 1. Next, we lookup the CDPT for the
3rd scheme DELTA, and query the QAT, knowing that it is query-
inapplicable. Thus, we set the 3rd bit of the bit vector as 0. We
repeat such this process, and obtain a bit vector 1101. Then, we
convert all bits after the leftmost bit-0 to 0, and obtain the bit vec-
tor 1100. This indicates that we need to decompress the data by
DICT first, and DELTA next. At this point, we can directly use the
table-scan operator to query the data without further decompression
by NS and SCALE.

B. COMPRESSION PLANNER
Notation Description
RL Average Run Length
C The number of distinct values a column.
D The minimum number of bytes for representing a value.
P The number of parts that a value can be separated into.
S Whether or not the column is sorted.
M The maximum value in the compressed column.
== Equality operator.
= Assignment operator.

Table 8: Notations used in CPT and TPT.

Scheme Sorted Run
Length

Cardinality Value
domain

Compound

NS * * * D < 4 P == 1
NSV * * * D < 4 P == 1
DICT * * 50 ≤ C ≤

50K
* P == 1

RLE S == Yes RL ≥ 4 * * P == 1
BITMAP * * C < 50 * P == 1
FOR * * * D < 4 P == 1
DELTA S == Yes * * * P == 1
SEP * * * * P > 1
SCALE * * * * P > 1

Table 9: Compulsory-Property Table (CPT).

In this section, we describe the rules for current implementation
of the compression planner. Table 8 shows notations used in this
section. The numbers for cardinality in Table 9 and Table 10 are
adopted from Abadi et al. [1]. Unless otherwise specified, all ex-
amples are on a column containing 4-byte integers.

As discussed in Section 4.1, a compression scheme is applicable
to a given column, only when this column possesses compulsory
properties. Table 9 shows the compulsory properties for the nine

678

Scheme Sorted Run
Length

Cardina-
lity

Value domain Compo-
und

NS * * * D = 4 *
NSV S = No * C = ∞ D = 4 *
DICT * * C = ∞ D =

CEIL((log2 C)
/ 8)

*

RLE - - - - P = 2
BITMAP S = No * C = ∞ D = 4 *
FOR * * * * *
DELTA S = No * * D =

CEIL((log2M)
/ 8)

*

SEP * * * * *
SCALE * * * * P = 1

Table 10: Transitional-Property Table (TPT).

Column Sorted Run
Length

Cardina-
lity

Value domain Compo-
und

RLE
value
column

S = Yes RL = 1 * * P = 1

RLE
length
column

S = No RL = 1 * D =
CEIL((log2M)
/ 8)

P = 1

Table 11: RLE Transitional-Property Table (RLE TPT).

GPU-based compression schemes. The asterisk (*) means that the
property does not matter for the particular scheme.

After applying a scheme on a column, the properties of resulted
compressed data are determined according to the Transitional-Prop-
erty Table (TPT). The TPT of the nine compression schemes is
shown in Table 10. The asterisk (*) means the property remains
unchanged. Some compression schemes output multiple columns,
such as RLE. In this case, the compression scheme would have its
local TPT. Table 11 shows the RLE TPT, where the value column
and length column have separate rules for compressed data proper-
ties.

Let us consider a concrete example. Given a column with a car-
dinality of 60K, containing 10 million sorted 4-byte integers. The
compression planner would output the following compression plan
candidates:

1. RLE
2. RLE, [[DELTA, NS] | ϵ]
3. RLE, [[DELTA, NSV] | ϵ]
4. RLE, [ϵ | NS]
5. RLE, [ϵ | NSV]
6. RLE, [ϵ | [FOR, NS]]
7. RLE, [ϵ | [FOR, NSV]]
8. RLE, [[DELTA, NS] | [NS]]
9. RLE, [[DELTA, NS] | [NSV]]
10.RLE, [[DELTA, NS] | [FOR, NS]]
11.RLE, [[DELTA, NS] | [FOR, NSV]]
12.RLE, [[DELTA, NSV] | [NS]]
13.RLE, [[DELTA, NSV] | [NSV]]
14.RLE, [[DELTA, NSV] | [FOR, NS]]
15.RLE, [[DELTA, NSV] | [FOR, NSV]]
16.DELTA, NS
17.DELTA, NSV

For example, the third candidate shows that, RLE is applied on
the column first, resulting in a value column and a length column.
Then, DELTA and NSV are applied on the value column accord-
ingly, and the length column is not compressed.

Please note that, the rules (CPT and TPT) don’t need to be ex-
actly the same as ours, and they would be changed a little bit in
reality.

C. INTEGRATION INTO MONETDB

Goblin Database Kernel

Monet Assembly Language

 ...

GPU Compression

Library

Compression-aware

Optimizer

Whether to decompress?

Compression Planner

What compression plan?

GCompress
Module

BAT module BBP module

DBMS Task

Query Processing, Backup, View Materialization, ...

MonetDB Components

Contributions of this work

Applications based on our work

Figure 7: Integration of GPU compression into MonetDB.

Cascaded compression may not be attractive to query processing
on the CPU [15], because the computational overhead offsets the
gain in the effective usage of the buffer pool as well as the reduced
data footprint. That may be the major reason that popular column-
oriented databases such as MonetDB [7] and C-Store [25] do not
support cascaded compression. In this section, we consider the fea-
sibility of cascaded compression on those DBMSs, through offload-
ing the compression and decompression to the GPU. As a start, we
integrate our GPU-based compression techniques into MonetDB.

Figure 7 shows the architecture of MonetDB with the integra-
tion of our GPU-based compression techniques. At the bottom
level (in parallel with the MonetDB database kernel), we imple-
ment the GPU Compression Library, which provides CPU-callable
APIs. These APIs wrap GPU-based compression schemes and some
GPU-related runtime services, e.g., the GPU memory management.
As a caller to the GPU Compression Library, a new GCompress
Module is added to Monet Assembly Language (MAL) layer. The
GCompress module is similar to other MonetDB built-in modules
in the MAL layer, providing function wrappers to the upper level
components. Specifically, GCompress wraps the GPU Compres-
sion Library APIs to the compression planner and the compression-
aware optimizer. Through this integration, MonetDB is able to
utilize our GPU-based compression techniques, and to offload the
compression and decompression to the GPU.

We have implemented both the compression-aware optimizer and
the compression planner in Prolog. The advantage of using Prolog
is that the implementation is neat and highly extensible. The com-
pression planner for the nine compression schemes contains only
around 30 lines of source code.

D. TPCH QUERIES
We used the following two TPC-H queries in the performance

evaluation:
Query 6:
select

sum(l_extendedprice*l_discount) as revenue
from

lineitem
where

l_shipdate >= date ’[DATE]’
and l_shipdate < date ’[DATE]’ + interval ’1’ year
and l_discount between [DISCOUNT] - 0.01

and [DISCOUNT]+0.01

679

Gzip GPU Compression
Column Type Sorted Ratio Compression

Time
Decompression
Time

Plan Ratio Compression
Time

Decompression
Time

li partkey int(4 bytes) Yes 1.87% 3.67 s 1.46 s RLE, [[DELTA, NS] | NS] 1.67% 87.37 ms 53.96 ms
li quantity int(4 bytes) No 25.76% 36.01 s 2.24 s NS 25% 5.09 ms 4.07 ms
li discount float(4 bytes) No 17.9% 28.58 s 2.02 s SCALE, NS 25% 10.70 ms 9.82 ms
li shipmode string(8 bytes) No 14.41% 18.82 s 2.36 s DICT 50% - 12.07 ms
li returnflag char(1 byte) No 18.77% 36.88 s 2.24 s BITMAP 37.5% 14.78 ms 12.54 ms

Table 12: Gzip on the columns in lineitem table, with the scaling factor 10.

and l_quantity < [QUANTITY];

Query 14:
select

100.00 * sum(case
when p_type like ’PROMO%’
then l_extendedprice*(1-l_discount)

else 0
end) / sum(l_extendedprice*(1 - l_discount))
as promo_revenue

from
lineitem,
part

where
l_partkey = p_partkey
and l_shipdate >= date ’[DATE]’
and l_shipdate < date ’[DATE]’+interval ’1’ month;

E. EVALUATION ON GZIP
As a sanity check, we measured the performance and the com-

pression ratio of Gzip. Table 12 shows the comparison between
Gzip and GPU-based cascaded compression. Cascaded compres-
sion using lightweight schemes achieved a similar compression ra-
tio to Gzip on numeric data, but were less effective than Gzip on
character data. However, the GPU-based compression and decom-
pression was two to four orders of magnitude faster than the CPU-
based Gzip on all data types.

F. DISCUSSION
The performance of GPU-CPU co-processing depends on the

processing power and memory bandwidths of both processors as
well as the transfer bandwidth between the processors. Hardware
vendors have been increasing these bandwidths. The memory band-
widths of the CPU and the GPU are both increasing, for example,
Recent Intel Core i7 has a peak memory bandwidth of 32 GB/s
and NVIDIA GTX480 has a bandwidth 177 GB/s. Even though
the contribution of this paper is to enable cascaded compression on
the GPU in specific, we believe that the results in this paper are
applicable to many-core processors in general.

680

