
Database Analytics Acceleration using FPGAs
Bharat Sukhwani§, Hong Min§, Mathew Thoennes§, Parijat Dube§,

Balakrishna Iyer†, Bernard Brezzo§, Donna Dillenberger§, Sameh Asaad§

§
IBM T. J. Watson Research Center

Yorktown Heights, NY, 10598

†
IBM Santa Teresa Lab

555 Bailey Ave, San Jose, CA 95141

{bharats, hongmin, tardis, pdube, balaiyer, brezzo, engd, asaad}@us.ibm.com

ABSTRACT

Business growth and technology advancements have resulted in

growing amounts of enterprise data. To gain valuable business

insight and competitive advantage, businesses demand the

capability of performing real-time analytics on such data. This,

however, involves expensive query operations that are very time

consuming on traditional CPUs. Additionally, in traditional

database management systems (DBMS), the CPU resources are

dedicated to mission-critical transactional workloads. Offloading

expensive analytics query operations to a co-processor can allow

efficient execution of analytics workloads in parallel with

transactional workloads.

In this paper, we present a Field Programmable Gate Array

(FPGA) based acceleration engine for database operations in

analytics queries. The proposed solution provides a mechanism

for a DBMS to seamlessly harness the FPGA compute power

without requiring any changes in the application or the existing

data layout. Using a software-programmed query control block,

the accelerator can be tailored to execute different queries without

reconfiguration. Our prototype is implemented in a PCIe-attached

FPGA system and is integrated into a commercial DBMS

platform. The results demonstrate up to 94% CPU savings on real

customer data compared to the baseline software cost with up to

an order of magnitude speedup in the offloaded computations and

up to 6.2x improvement in end-to-end performance.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems];
H.2.4 [Database Management]: Systems

Keywords

Relational database, analytics, FPGA, acceleration

1. INTRODUCTION
We find ourselves, today, in the midst of the widespread

adoption of analytics in the business world. Whether it is to

stock store shelves just-in-time, set airline ticket prices to

maximize yield, or purchase hedge contracts on fuel prices

to make a transportation company’s forthcoming quarter’s

budget more predictable, rapid analysis of transactional

data in corporate database management systems has become

a business necessity. Snapshot warehousing, such as in [1],

is the existing practice where a snapshot of data is taken

from an online transaction processing (OLTP) system to a

warehouse system for decision support analysis.

Snapshot warehousing has been acceptable in the past when

updates to the database were infrequent. Performing

analysis on a month old, week old or day old snapshot of

business data was good enough for making executive

decisions pertaining to business. Interpersonal networking,

the empowering of individuals by personal communication

devices and the wide use of social media networking has

changed the dynamics of the marketplace. Increasingly,

businesses are finding themselves required to respond to

changes in market conditions in real time. For example, an

airline may have the luxury of no more than a few minutes

to respond to fare modifications by its competitor. Real

time analytics is the capability to process analytical queries

and other operations directly on transactional data.

Injecting expensive analytics query operations into the data

operating environment also poses challenges. One challenge

is that system resources such as CPU and I/O have to be

shared between transactional and analytical workloads.

Normally, transactional workloads have stringent Service

Level Agreements (SLAs); further, because these are

directly tied to revenue generation, they are often the

primary focus of the business. Analytical workloads need to

run against the same data without impacting the SLA of the

transaction workloads. Meeting this challenge requires

consideration of both CPU and I/O resource issues.

In this paper we focus on the CPU issue. We propose a

hardware acceleration approach that offloads and

accelerates some of the most CPU-intensive query

operations on an FPGA. Our architecture enables the FPGA

to retrieve DBMS in-memory data, which is mostly up-to-

date, perform expensive query operations, and send the

results back to the database engine. The accelerator has

been made customizable by architecting a query control

block, and making the FPGA logic behave as an interpreter

of the query control block. In this sense, one principle of

object oriented programming, late binding, has been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PACT’12, September 19–23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09...$15.00.

411

implemented on the FPGA, making it versatile for DBMS

queries. The presented work includes the following key

contributions:

• an architecture that integrates an FPGA into a host
system and processes data extracted from the memory
of a DBMS,

• the design and prototype of FPGA functions including
data decompression and predicate evaluation, both of
which consume considerable CPU cycles on
conventional processor architectures,

• a software integration approach that enables FPGA-
based acceleration for an existing DBMS,

• experimental and performance observations from our
integrated prototype.

The rest of the paper is organized as follows. Section 2

outlines the previous work. Section 3 introduces related

background information on database systems. In section 4,

we present the overview of our proposed architecture and

system integration. Section 5 describes the FPGA design of

the data decompression and predicate evaluation functions.

Section 6 describes software integration of the FPGA-based

accelerator into an existing DBMS system. Section 7

presents our experiments and results. Section 8 concludes

the paper with discussions and future work.

2. PREVIOUS WORK
Over the years, there have been many efforts to speed up

query processing in database management systems. As the

increase in the speed of processors diminishes each year,

further focus has been placed on parallelization techniques.

One approach is to increase the number of processors [2]

and threads [3] exploited by the DBMS. The problem here

lies in how to partition the data, metadata, updates and data

deltas to reduce memory conflicts and contention between

cores [4]. Moreover, suboptimal utilization of the cores in

large multi-core systems results in power inefficiencies [5].

Single Instruction Multiple Data (SIMD) operation

provides data level parallelism by processing multiple data

entities in a single instruction [6][7]. Effective SIMD

exploitation, however, requires the DBMS data to be laid

out in specific formats and packed tightly into 64 or 128 bit

registers. This requires extra processing or compilation for

each database table [6]. Further work has been done to

exploit Graphics Processing Units (GPUs) to aid database

sort operations [8]. GPUs offer a relatively fixed

architecture, however, leading to limitations similar to those

of SIMD architectures.

Prior work [9][10][11] use FPGAs for parallel query

processing. One of the differentiators of our work is the

enablement of FPGAs to execute different queries without

reconfiguration. This is different than the compilation-

based approach [12] which first compiles queries into a

hardware description and then synthesizes into FPGA

circuit.

Data warehouse appliances such as the Netezza

Performance Server [13] or the IBM DB2 Analytics

Accelerator (IDAA) [14] also use FPGAs to accelerate

query operations. In the former, the FPGA is in the I/O

path, hence requiring a write-through I/O protocol which

would increase the IOPS to unacceptable levels in an OLTP

system. In IDAA, data from an OLTP system is periodically

copied, which is appropriate for applications without

stringent real time analytics needs.

3. DBMS DATA PAGE PROCESSING

3.1 Relational Database Tables and Pages
In relational DBMS, records are stored in objects called

tables. Records are often referred to as rows, and record

attributes are called columns (or fields). Table 3-1 is a

simplified illustration of a three-row table with six attribute

columns (PhoneNumber, FirstName, LastName, Age, State,

SalesTotal($)) per row.

Table 3-1 Example “Customers” table

Phone
Number

First
Name

Last
Name

Age State SalesTotal($)

212-111-1111 Ann Smith 25 NY 250.54

212-111-0000 Steve Jones 31 NY 500.00

203-222-2222 Emily Brown 29 CT 900.01

Typically, the physical unit of storage and I/O processing of

a non in-memory database table is a page. All pages in a

table are the same size such as 4KB, 8KB, 16KB, 32KB

etc. A database has designated memory space, called buffer

cache or buffer pool (BP), for temporarily storing the data

pages. All relational data operations get the data pages from

the BP and the I/O operations between the BP and the disk

are managed transparently. When a page is updated,

including insertions and deletions, its BP image is

committed first, before eventually being written to the disk.

Enabling processing of the latest data in the BP is the main

reason that our accelerator is connected to the memory

instead in the I/O path, as is done in [13].

3.2 Page Format
In transactional database systems, data is typically stored in

a row-based layout where all the columns of a row are

stored in contiguous storage. A page is a collection of slots

that each contains a row [15]. At the end of a page, there is

an array whose entries contain the offsets of the rows within

the same page. The pair <pageID, slot number> is often

referred to as record ID (RID), which uniquely identifies a

row within a table. Figure 3-1 illustrates such page format.

When processing a row in a table, the corresponding page is

read from the buffer pool (if necessary, disk I/O is

involved) and the row offset is used to extract the row from

the page. If a row is deleted, its corresponding slot number

holds an invalid value.

412

Figure 3-1 Example page format

3.3 SQL Predicate Evaluation
Structured Query Language (SQL) has become the de facto

standard language for schema definition, data manipulation

and data query for relational DBMS. Large high throughput

enterprise class OLTP applications based on SQL power a

huge number of commercial applications today.

SQL predicate evaluation refers to the process of retrieving

those DBMS table rows that qualify under some criteria.

The query typically may require logical inequality or

equality comparisons of fields from records against

constants, or test set containment for a field in a record. For

example, the SQL statement “SELECT salesTotal FROM

Customer WHERE state =’NY’ AND age <30” asks for

sales dollar amount from all customers in state ‘NY’ that

are younger than 30 years old from the example Table 3-1.

Efficient access to one or few records is usually achieved in

DBMS by means of an I/O efficient B+ tree index data

structure based on the data retrieval key. B+ tree indexes

have also been explored to retrieve large number of records.

In a DBMS that supports OLTP and analytics

simultaneously, the indexes that support OLTP serve the

purpose to speed up OLTP. Any indexes that are intended

merely to speed up analytics, however, have a detrimental

impact on OLTP because insert, update, delete operations

on records could entail index updates, resultant CPU and

I/O consumption and hence impact on OLTP throughput. A

mechanism is needed to accelerate the evaluation of SQL

predicates on relational data without building B+ tree

indexes specifically to accelerate their execution.

3.4 Data Compression and Decompression
Since the early 90’s, data compression has been embedded

into DBMS [16]. Since OLTP applications typically only

access a single or a small number of related rows, good

OLTP systems select the database row as the unit of

compression. DBMS data structures allow database logic to

find the row; the DBMS merely decompressed the row

before processing it. In the absence of indexes, the DBMS

has to scan the table, decompress each row, and then apply

SQL predicates against the decompressed row. The

decompression technique built into the DBMS we worked

with is typical of common DBMS in that decompression

proceeds by taking some part of the input string and

matching it against strings in a dictionary and retrieving its

decompressed representation. Concatenating various

decompressed fragments reproduces the decompressed row.

From a processor CPU consumption perspective, predicate

evaluation against each row becomes an intensive operation

as the number of predicates increase, especially against a

very large number of rows. Furthermore, decompression,

being a per-byte operation, significantly increases required

CPU cycles. Reducing the cost of both predicate evaluation

and decompression on the processor executing OLTP is

critical to maintain OLTP performance.

4. DATABASE ACCELERATOR ON FPGA

- SYSTEM OVERVIEW
Figure 4-1 shows the high-level system architecture for the

FPGA-accelerated DBMS. The prototyped system is

implemented on a PCIe-attached FPGA card and is

integrated with a commercial database system. The FPGA

operates on DBMS’ in-memory data and writes the results

back into the host CPU’s main memory. Data is transferred

between the FPGA and the host using direct memory access

(DMA) operations. Once the DBMS sends a job request to

the FPGA, all the DMA operations are initiated by the

FPGA without any intervention from the host CPU.

Figure 4-1 System overview of the FPGA accelerator

The FPGA solution has been structured in a modular

fashion. There are two distinct pieces of logic that

implement the required functionality. The service layer

provides all of the logic that interfaces to the PCIe, DMA

engines and job management logic. The application logic

implements just the functions required to process database

queries on the FPGA. A set of well defined interfaces exists

between the two that include data buses for input and output

data, queues for DMA requests, and control signals.

On the host CPU, a job queue is maintained and the device

driver and service layer logic cooperate to dispatch the jobs

to the FPGA. Once a job has been dispatched, the service

layer passes the job structures to the application logic and

signals it to begin. From then on, the service layer only

processes the DMA requests and updates the status of the

jobs to the host. This structure allows the application logic

to be developed independent of the service layer.

To maximize the overall performance, the service layer

must perform data transfers at full PCIe bandwidth and the

application layer must process the data at the rate sustained

…. Row Count

00

Row # 3 Offset Row # 2 Offset Row # 1 Offset …

Row # 2 Row # 3 Row # 4

Row # 5

 Row # 1

….

Row Prefix

…

Page header

Row # 4 Offset

PCIe-attached FPGA card

Service Layer

PCIe
Gen2 x8

CPU Main

MemoryD
e
v
ic

e
 D

ri
v
e
r

+
 C

o
n

tr
o

l
Output

Buffers

Input

Buffers

Decompression +
Predicate

Evaluation

Application Logic

Input

Buffers

Output

Buffers

Host

PagePage

PCIe-attached FPGA card

Service Layer

PCIe
Gen2 x8

CPU Main

MemoryD
e
v
ic

e
 D

ri
v
e
r

+
 C

o
n

tr
o

l
Output

Buffers

Input

Buffers

Decompression +
Predicate

Evaluation

Application Logic

Input

Buffers

Output

Buffers

Host

PagePagePagePage

413

by the service layer. For our current bus interface, the peak

bandwidth is 3.2 GB/sec (16B at 200 MHz); maintaining

such rate is a challenge and must be addressed at all levels.

The first challenge is to maximize the available bus

bandwidth; this is addressed in a number of ways. First, a

set of job structures, which are passed to the application

logic, are created for each job; these specify the DMA

addresses of all the data for the job. Second, a set of queues

between the service layer and the application logic is

implemented that allow the application logic to queue up

DMA requests, thereby maximizing the use of the DMA

engines. Finally, multiple input and output buffers enable

double buffering, thereby completely hiding the host-FPGA

transfer latencies. With these techniques, we achieve a data

transfer rate of up to 2.7 GB/sec over the PCIe bus.

Next, the FPGA must consume the 16B of data delivered

every cycle. The predicate evaluation/decompression

engine is designed to consume 1B every clock cycle.

Replicating this engine sixteen times will enable the FPGA

to consume all data being delivered. For uncompressed

data, this results in a balance system. For compressed data,

however, creating a balanced system becomes more

difficult. For data compressed down to 40% of its original

size, for example, the 16 bytes transferred on the PCIe per

cycle expands to 40 bytes, consequently requiring a 2.5-fold

increase in the number of engines to sustain the

uncompressed bandwidth. Simply increasing the number of

parallel engines may require more logic resources than the

capacity of a given FPGA. Our FPGA design is thus

architected such that the number of engines can be traded

against the complexity of the query handled by each engine.

Thus for very high levels of compression, high throughput

can still be maintained, albeit for relatively simpler queries.

5. QUERY PROCESSING ON FPGA
The query processing engine on the FPGA is designed with

two goals in mind: to support the most common cases in the

target database system and to achieve maximum

performance from the available hardware resources.

Consequently, the size of the largest predicate supported,

the database page buffer size and the decompression

dictionary buffer size were chosen based on real-life

customer workloads. While these sizes are fixed in the

current design, supporting other sizes is trivial.

Figure 5-1 shows the overall architecture for database row

processing on FPGA. The design is architected to exploit

parallelism at various levels. The core computational unit is

a predicate evaluation unit (PE), which evaluates a single

predicate by comparing two up to 64-bit long quantities: a

stored predicate value supplied by the query and a row field

streamed in from main memory. All the predicates within a

row are evaluated concurrently by the multiple instances of

PEs inside a row scanner (Figure 5-4). The number of PEs

inside a row scanner is configurable at synthesis time.

Multiple database rows are processed concurrently using

parallel instances of row decompression and predicate

evaluation logic within a scan tile (see Figure 5-1).

Obtaining a balanced system with multiple parallel

execution units requires careful rate matching and data

staging. A scan tile forms a balanced unit for scanning the

rows. It encapsulates the entire design flow for scanning

database rows on the FPGA; the design can be scaled

simply by replicating the tiles.

A scan tile contains 8 row scanners, each preceded by a

decompressor, plus buffers to store the input and output

database pages, logic to extract the rows from the input

pages and logic to write the qualified rows in the output

buffers in a database-specific page format. Each input and

output page buffer is 4KB in size, to match the target

database page size. Each instance of the expansion

dictionary is 32 KB and is shared by two decompression

units; both have concurrent access to the dictionary using

two independent read ports.

Figure 5-1 Architecture for row processing on FPGA

A scan tile scans one database page at a time. More than

one page can be scanned in parallel by having multiple

independent scan tiles on the FPGA. Processing at full PCIe

bus bandwidth requires a minimum of two tiles, provided

the pages are uncompressed or have a small compression

ratio. Utilizing full bus bandwidth for highly compressed

pages would require larger number of parallel scan tiles.

For a given FPGA area, the number of tiles can be traded

against the number of PEs within each row scanner.

Depending on the query complexity and the compression

ratio, different hardware configurations can be used. In one

configuration, we instantiate 2 tiles for a total of 16 row

scanners, each with 64 PEs, thus decompressing 16 rows

concurrently and evaluating 1024 predicates in parallel. A

query with fewer predicates, on the other hand, can allow

more tiles and thus higher page-level parallelism. This

flexibility to exploit parallelism at different granularities is

an essential part of the design as it allows different database

queries to obtain the highest performance from the available

FPGA resources. Since generating an FPGA image is a

time-consuming process, we pre-generate FPGA bit files for

a variety of different hardware configurations and load the

one that is best-matched to the given workload, where a

workload is a collection of different queries.

3

2

1

R
o

w

E
x
tr

a
c
ti
o

n

Scan tile

…

7

6

1

0

C
y
c
lic

 S
w

it
c
h

P
a

g
e

F
o

rm
a

tt
in

g

7

6

1

0

C
y
c
lic

 S
w

it
c
h

Dictionary

Row
Decompressor 0

Row
Decompressor 1

Row
Scanner 1

0

Row
Scanner 0

…

In
p

u
t

P
a

g
e

B
u

ff
e

r
(4

K
B

)

O
u

tp
u

t
P

a
g

e

B
u

ff
e

r
(4

K
B

)

414

5.1 Row Decompression on FPGA
In our design, the compressed rows are decompressed on-

the-fly on the FPGA before being fed to the predicate

evaluation logic. Performing decompression on the FPGA

brings numerous benefits. First, database pages can be sent

directly from the host to the FPGA without the need to pre-

filter and decompress on the host. Secondly, offloading

decompression to the FPGA increases the amount of

computation per datum transferred to the FPGA. Thirdly,

efficient parallel hardware implementation of the

decompression algorithm results in improved performance.

Finally, transferring compressed rows increases the

“effective” PCIe transfer bandwidth. This is especially

important since the overall accelerator performance is often

limited by the available host-to-FPGA data transfer

bandwidth. Depending on the compression ratio,

transferring compressed rows increases the effective

bandwidth by a factor of 2 to 5.

Figure 5-2 Row decompression logic on FPGA

As mentioned in section 3, our target row decompression

algorithm performs dictionary-based expansion. A

compressed row consists of one or more 12-bit compressed

symbols (tokens); a symbol may either represent a character

of the uncompressed row or a pointer to a dictionary entry,

which in turn may contain up to 7 characters of the

uncompressed row. The decompression operation

essentially involves decoding all the compressed symbols in

a row and building the uncompressed row by stitching

together character data from each of them.

Row decompression logic on FPGA is shown in Figure 5-2.

During an initial setup phase, the expansion dictionary is

downloaded from the host into the dictionary buffers on the

FPGA. This is a one-time process; it need not be repeated

for each job, unless the table and hence the dictionary

changes. During the scan phase, as the database pages are

streamed to the FPGA, rows are extracted and stored in the

row buffer. This extra buffering is required for rate

matching between the decompressor and the row extraction

logic and to provide each decompressor instance dedicated

access to its respective rows in parallel to the rest. At the

output of the decompression logic is an uncompressed row

buffer which stores the decompressed rows. It provides a

variable-bytes write interface, from 1 to 7 bytes, to support

variable output rates from the decompressor.

A given database page may contain compressed rows mixed

with rows in raw form; the decompression logic thus works

in two modes – decompression mode and pass-through

mode. As a new row is fetched from the row buffer, the

header parser determines if the row is compressed or raw. If

raw, the row is simply passed along to the uncompressed

row buffer, two bytes per cycle. Even though a raw row can

be copied over faster, only two bytes are transferred per

cycle to keep a common read interface from the row buffer

for both raw data as well as compressed tokens. This

reduces extra multiplexing at the output of the row buffer.

Note that reading just 2 bytes a cycle does not cause any

starvation of the downstream predicate evaluation logic

since it consumes data at a rate of 1 byte per cycle.

For compressed rows, the tokenizer module fetches the

compressed token from the row buffer, one token at a time,

as requested by the controller FSM. For a character-type

token, the 8-bit character data is decoded from the token

and written into the uncompressed row buffer. For a

dictionary token, the controller reads the 8-byte entry from

the dictionary.

A dictionary entry can be unpreceded or preceded and is

decoded appropriately by the dictionary data decoder. An

unpreceded entry contains up to 7 bytes of data and a length

field. It is a terminal entry, indicating that the current token

has been fully decompressed. A preceded entry contains up

to 5 bytes of data and its length. Additionally, it contains a

pointer to the next chaining dictionary entry that must be

decoded to continue decompressing the current token, and

an offset that indicates the relative position of the data bytes

from the current entry within the complete uncompressed

data for the token. Decompression of a compressed token is

continued until an unpreceded entry is found, at which point

the next token is fetched from the row buffer.

Optimal implementation of the decompressor design on the

FPGA requires the operations described above to be staged

in pipelined fashion. This, however, presents a potential

problem – since the algorithm is not purely feed-forward, a

new token cannot be fetched until the previous one is

completely decompressed. Similarly, a new dictionary entry

cannot be read until the current one has been read and

decoded. These lead to empty cycles or bubbles between

consecutive token reads and dictionary reads. This is not a

problem as long as the average output rate of the

decompressor is higher than 1 byte per cycle, which is the

rate at which the predicate evaluation logic consumes data.

For data with a very high compression ratio, this rate is

easily achieved. For data with a lower compression ratio,

however, where each compressed token expands to a few

bytes, the average rate may drop below one byte per cycle,

leading to stalling of the predicate evaluation pipeline.

We address this issue by adding token prefetch logic in the

tokenizer, wherein the 8 next tokens are prefetched and

stored in a FIFO. With this approach, the next token is

Dictionary
Buffer

 (32 KB)
Uncomp

Row
Buffer

Row
Buffer

Tokenizer

12-bit

2B

Control FSM

Header
Parser

Dictionary
Data Decoder

Data selection
and alignment

GetNextToken
GetRawBytes

Length, Offset
Data

Char.
Decoder

1B-7B

Row Decompressor

415

ready for processing as soon as the current one is finished.

When the entire row is fully decompressed, any outstanding

tokens in the FIFO are flushed and a new set of tokens is

prefetched from the next compressed row. Figure 5-3 shows

the effect of adding the prefetch logic on the overall

pipeline utilization, for a specific real-life workload.

Adding the prefetcher results in a more than 50% reduction

in row decompression time; for the 165 byte long rows, the

average row decompression time is reduced from 190

cycles to 80 cycles, bringing the average decompressor

output rate well above the required 1 byte/cycle. Actual

savings and the average output rate, of course, are

dependent on the compression ratio and the number of

tokens to be analyzed to decompress a row of certain

length. The worst case of compression arises where a token

does not access the dictionary and simply generates a single

byte. With prefetching, such tokens can be processed in a

single cycle, thus maintaining a throughput of 1 byte/cycle.

Figure 5-3 Effect of prefetching on pipeline utilization

Note that similar optimization is not possible on the

dictionary read side since the reads from the dictionary are

not from sequential locations and depend on the value of

the pointer. This, however, is a concern only for the

dictionary tokens that generate three or fewer bytes of data.

Such tokens would appear in data with a very low

compression ratio and can potentially lead to sub-optimal

utilization of the predicate evaluation pipelines.

5.2 Predicate Evaluation on FPGA
Once the rows are decompressed, they are sent to

downstream predicate evaluation logic for filtering based

on the query predicates. A row scanner is used to evaluate

the database rows against the query (Figure 5-4). It consists

of a chain of independent predicate evaluation units and a

reduction network (RN). Each PE evaluates a single

predicate on a particular column of the database row. The

reduction network then reduces the outputs of the PEs, as

per the query, to a 1-bit qualify signal.

To evaluate a query on the FPGA, each PE must perform a

specific operation on specific bytes of the database row,

and the reduction network must combine the outputs of the

PEs in a certain manner. The operation to perform and the

fields to evaluate are specific to a given query and change

with the query. Generating a new FPGA hardware image

for each query and reprogramming the FPGA is not viable

since synthesis and place-and-route typically take hours to

finish. Reprogramming the FPGA with a pre-generated

FPGA image is plausible, though for queries that operate on

relatively small amounts of data, the reconfiguration time

may dominate the overall processing time. Moreover, even

a slight change in the query would require regeneration of

the FPGA image and reconfiguration of the FPGA.

Figure 5-4 Row scanner for evaluating database rows

To address this issue, we designed the row scanner such

that a given hardware image can be tailored to a variety of

different queries. To that end, each PE is designed to

perform 1 of 6 inequality operations; the actual operation to

be performed is chosen during the query load time.

Moreover, some of the PEs can also be disabled and

excluded from participating in the query. Similarly, the

reduction network is constructed as a binary tree of

reduction units. Each reduction unit is a 2 to 1 reducer

capable of performing one of 6 1-bit operations between the

two inputs: AND, OR, NOT a, NOT b, PASS a, or PASS b.

During the query load phase, the configuration options are

propagated down the PE chain and the reduction tree. PEs

are configured using 5 options: (i) enable, to indicate

whether the current PE is being used, (ii) predicate value,

the constant against which the row field is compared, (iii)

the inequality operation to be performed, (iv) offset of the

first byte of the desired field within the row and (v) length

of the field. A reduction unit has only one configuration

option: the operation to perform between two predicates.

During the scan phase, database rows are streamed over the

PEs, one byte per cycle. Streaming at a granularity of 1 byte

is essential since fields in a row can be of varying length

and may start at any byte position within the row. To reduce

the latency of evaluating a row, the streaming bytes are

broadcast to all the PEs as opposed to being rippled down

the chain. Further, they are also speculatively written into

the qualified row buffer; this write is later committed or

invalidated based on whether the row qualifies. Since

broadcasting requires large fan out, we use a register tree to

feed all the PEs concurrently while keeping the fan out low.

As the row is streamed in, each PE captures the required

bytes (using the start offset and length fields), evaluates its

respective predicate and outputs a 1-bit match/mismatch

signal. These funnel down the reduction network to

generate the row qualify signal. For PEs disabled during the

query load phase, the corresponding reduction unit either

disables itself (if both the PEs feeding into it are disabled)

or replaces the output from the disabled unit with the

default pertaining to the function programmed into the

reduction unit (e.g. 1 for an AND operation).

For an N-byte long row, it takes N + log2(nPE) cycles to

qualify the row, where nPE is the number of PEs in the row

Pipeline idle, waiting for
the next row to be

decompressed

No idle time
between two rows

Qualify

Query
Configuration

stream

Row
stream

PE1 PE2 PEn …

Reduction Network

1B

Qualified
Row

Buffer

Commit

416

scanner. At that point, the row, if qualified, is committed

into the qualified row buffer. The qualified rows from

different row scanners are copied over to the output page

buffer by the page formatting logic (see Figure 5-1), at a

rate of 16 bytes per cycle. Formatted pages are sent to the

host for further processing. Note that the FPGA returns the

rows in uncompressed form, for direct consumption by the

DBMS. This does not affect the processing rate on the

FPGA since the filtering of the database rows typically

results in lower bandwidth requirements on the return path.

6. SOFTWARE ENABLEMENT FOR FPGA

ACCELRATION
Enabling FPGA acceleration for a DBMS is an end-to-end

effort. One aspect of this effort is to restructure the data

flow. Secondly, the capability of transforming a DBMS

query into a format that the FPGA accelerator can interpret

for dynamic self-re-customization is also critical for

accelerating various workloads without the need for

reconfiguring the FPGA.

Figure 6-1 Block operation to enable FPGA acceleration

6.1 Block Level Data Operation
An important design aspect for integration performance is

to reduce the chattiness during the interactions between the

host and the accelerator. For this purpose, we introduce a

block level data operation within the DBMS query

processing engine. More specifically, a long running

predicate evaluation query is divided into multiple jobs for

an FPGA to process sequentially. Each job consists of a

number of data pages as input for the FPGA to read, and an

output buffer into which the FPGA writes the results. Both

data transferring actions are initiated by the FPGA.

Figure 6-1 illustrates the changes made for enabling the

block level data processing, as opposed to a traditional one

page or one row at a time processing flow. For FPGA

acceleration, a list of BP pages (addresses) is obtained by

the Data Service Layer in DBMS and read by the FPGA.

For output data from the FPGA, the DBMS pre-allocates a

large enough buffer that is filled by the FPGA engine with

its results. The data format in this output buffer conforms to

the structure that is understood by DBMS processing engine

for further downstream processing so additional data copy

and formatting software can be avoided.

6.2 DBMS-FPGA Communication Protocol
Communication between the DBMS and the FPGA is

achieved through a series of control blocks that are passed

from the host to the FPGA. These carry the necessary

information for describing the operations and data transfers.

6.2.1 DMA Addressing
Since the FPGA does not have direct addressability to host

memory, all in-memory data blocks and control information

blocks need to be transferred to the FPGA via DMA over

PCIe. When constructing the communication protocol

between software and the FPGA, the DMA addresses for

the memory are used instead of the host addresses, as

shown throughout this section.

6.2.2 Host Control Block
A query may be broken up into multiple jobs. A job is

submitted to the FPGA via a host control block (HCB),

which encapsulates the job information but is independent

of the application logic. The HCB is interpreted by the

service layer in the FPGA; it carries information such as

whether the current HCB is the last job in the queue, the

DMA address of the query control block (see 6.2.3), as well

as updatable fields indicating an active job’s status. A

queue of HCBs is maintained which allows more jobs to be

queued while a job is active on the FPGA. FPGA will

continue to the next job in the queue, if one is available,

when the current one is completed.

6.2.3 Query Control Block
A query control block (QCB) is a data structure that is used

to tailor the FPGA application logic to a specific query. To

address different invocation scenarios, we devise two

formats of the QCBs. Both formats contain an address list

of the input data pages to be processed and the address of

the output buffer. The first format, shown as QCB1 in

Figure 6-2, is used when the FPGA needs to interpret new

query instructions and customize its internal logic. It thus

also contains predicate function information and an address

list of the 8 4K dictionary pages to be loaded. When the

second format, shown as QCB2 in Figure 6-2, is used, the

FPGA performs the same task as in the previous job on a

different set of data. This saves the time needed to re-

customize the FPGA logic and reload the dictionary.

To process more data pages per job than the limit imposed

by a single QCB, a query control data continuation block

(QCDCB), shown in Figure 6-2, enables more input pages to

be chained to a job. The last entry in QCB’s data list points

to the next QCDCB when this is needed.

6.2.4 Query Mapping to FPGA Engines
To express predicate instruction to the FPGA, QCB1

contains a list of predicate function control blocks and a list

of reduction control blocks. A predicate function control

block, shown in Figure 6-3, is a 16 byte data structure that

has information on the column, the comparison operator

SQL
Service
Layer

Data
Service
Layer

Buffer
Service
Layer

4K page4K pageData

page

Addr of a list of pages

Application

a row

a Page

Disk

Result data in a buffer

D
a
ta

b
a
s
e
 M

a
n
a
g
e
m

e
n
t
S

y
s
te

m

(D
B

M
S

)
 FPGA

Card

SQL
Service
Layer

Data
Service
Layer

Buffer
Service
Layer

4K page4K pageData

page

Addr of a list of pages

Application

a row

a Page

Disk

Result data in a buffer

D
a
ta

b
a
s
e
 M

a
n
a
g
e
m

e
n
t
S

y
s
te

m

(D
B

M
S

)
 FPGA

Card

417

and the constant to compare against the column value that

personalizes each PE.

Reduction control blocks, logically structured as a tree for

the RN, contain the Boolean operations information among

the simple predicates in a complex predicate expression.

Figure 6-4 shows an example mapping of a predicate

expression to the PEs and the reduction network.

 Figure 6-2 Different formats of the query control block

Figure 6-3 16B predicate function control block

Figure 6-4 Mapping predicate expression to PE and RN

6.3 Transforming Query to QCBs
SQL provides rich syntaxes to express data relations.

Predicate expression are not limited to just comparisons and

Boolean operations. For example, expression “WHERE

state IN (‘NY’, ‘CT’) AND age between 20 AND 30” tests

set containment for field “state” and it can not be directly

mapped to PEs and RUs as is. However, existing SQL

parsing and transformation capabilities in the DBMS are

capable of converting the predicate into the comparison and

Boolean only expressions shown in Figure 6-4 and

representing it in an internal format [17]. A realistic

approach for query transformation integration is to inject

the FPGA QCB build function into the query processing

flow such that it can take advantage of the transformed

expression for its input. It is then straightforward for the

QCB build function to map the transformed expression to

predicate function control blocks and correct topology in

the reduction network.

7. EXPERIMENTS AND RESULTS
Our prototype is built upon a commercial DBMS running

on a 3.8GHz multi-core super scalar system. Our target

FPGA system is a PLDA XpressGX4LP card [18] with an

Altera Stratix IV GX530 FPGA. The card communicates

with the host system over a PCIe gen2 x8 interface.

Table 7-1 FPGA resource requirements

Tiles PEs Logic ALUTs Registers Memory Bits

16 9% 24637 (6%) 27338 (6%)

32 16% 39893 (9%) 48949(12%) 1

64 30% 70,240 (17%) 91114 (21%)

2179840 (10%)

16 19% 47,877 (11%) 54,318 (13%)

32 33% 76,681 (18%) 97,441 (23%) 2

64 59% 136149 (32%) 181750 (43%)

4359680 (21%)

16 38% 95,795 (23%) 108269 (25%)
4

32 66% 152,687(36%) 194416 (46%)
8,719,360 (41%)

Table 7-1 lists the FPGA resource requirements for the

different configurations of the database acceleration engine.

This does not include the service layer, which occupies a

fixed area of around 25% of the target FPGA. For a given

number of tiles, the logic requirements increase

proportionately with the number of PEs within a row

scanner, while the memory requirements remain unchanged.

Increasing the number of tiles, on the other hand, increases

the number of row scanners, leading to higher logic as well

as memory requirements. While the former is due to the

increased number of PEs, the latter results from having

more dictionary and data staging buffers. With 64 PEs per

row scanner, the current FPGA can support up to 2 tiles; 4

tiles can be instantiated with fewer PEs per scanner.

We now present the results of evaluating our FPGA-based

accelerator for database systems, using three metrics: CPU

savings, speedup on offloaded computations, and overall

end-to-end speedup. Additionally, we discuss the cost and

relative merit of invoking the FPGA kernel. In our

experimental workload, the data is derived from real

customer database tables, and the query operations include

decompression and predicate evaluation, which are two of

the most CPU intensive functions. Both the baseline and

hardware-accelerated versions of the code are single-

threaded and run on a single processor core. All the

measurements were taken with the data in buffer pools and

do not include disk I/O time. Measurements were taken

with both uncompressed and compressed rows; the

uncompressed row lengths for the two workloads evaluated

(customer 1 and customer 2 in Figure 7-2) are 165 bytes and

229 bytes, with the average compression space savings of

80% and 50% respectively.

CPU savings represent the CPU runtime reduction obtained

by offloading the computations from the CPU to the FPGA.

This is an important metric since it effectively represents

freeing-up of the CPU resources for online transaction

processing in real-time analytics systems. Figure 7-1 shows

the savings obtained while processing 468K database pages

of uncompressed data and 101K pages of compressed data

from customer 1 workload, for a range of data qualification

Work Description Block
(128B)

Output Data Control Block
(512B)

Data List Control Block

(3456B = 16B*216)

Work Description Block
(128B)

Predicate Function Control
Block (16B*128 = 2048B)

Output Data Control Block
(512B)

Data List Control Block
(1200B = 16B*75)

Reduction Control Block
(4-bits * 128 = 64B)

Dictionary List Control Block
(144B = 16B*9)

QCB1 QCDCBQCB2

Work Description Block
(128B)

Data List Control Block
(3968B = 16B*248)

Work Description Block
(128B)

Output Data Control Block
(512B)

Data List Control Block

(3456B = 16B*216)

Work Description Block
(128B)

Predicate Function Control
Block (16B*128 = 2048B)

Output Data Control Block
(512B)

Data List Control Block
(1200B = 16B*75)

Reduction Control Block
(4-bits * 128 = 64B)

Dictionary List Control Block
(144B = 16B*9)

QCB1 QCDCBQCB2

Work Description Block
(128B)

Data List Control Block
(3968B = 16B*248)

X - Disabled

(state = NY AND age > 20 AND age < 30) OR

(state = CT AND age > 20 AND age < 30)

A B C

D E F

PE4 PE5 PE6 PE7PE0 PE1 PE2 PE3

AND AND AND AND

AND AND

A B C X D E F X

OR
X - Disabled

(state = NY AND age > 20 AND age < 30) OR

(state = CT AND age > 20 AND age < 30)

A B C

D E F

PE4 PE5 PE6 PE7PE0 PE1 PE2 PE3

AND AND AND AND

AND AND

A B C X D E F X

OR

418

ratios. Note that the reduced CPU time shown for the

FPGA-assisted database system does not include the time

spent on the FPGA to perform the actual computations.

Figure 7-1 CPU savings obtained from FPGA offload

As shown, for compressed data, an 27.8% to 93.8%

reduction in CPU time is obtained, while the reduction is

between 14.7% and 67.9% for uncompressed data. This

difference is expected; for uncompressed data, no

decompression operation is involved, so the offload, and

hence the savings is smaller. Moreover, for both

compressed and uncompressed data, the savings are higher

when a smaller fraction of rows qualify. This is due to the

post-processing of the qualified data by the CPU, such as

moving data to application buffer. When a larger fraction of

rows qualify, there is more processing on the CPU and

hence lower overall CPU savings. Overall, both compressed

and uncompressed cases achieve significant saving of CPU

resources, which in turn can be diverted to OLTP work.

Next we compare the raw power of the FPGA to that of the

host processor in performing the same work, expressed in

Figure 7-2 in terms of ‘rows processed per second’, for

compressed and uncompressed data from two customer

workloads. Also shown is the effective uncompressed data

processing throughput achieved by the FPGA for each case.

The FPGA design was instantiated with 4 scan tiles, for a

total of 32 row scanners, and runs at 200 MHz. Note that

the processing rate shown here measures just the offloaded

computations and is thus independent of data characteristics

such as qualification ratio. These measurements do,

however, include the time for host-FPGA data transfers.

As shown, the FPGA achieves speedups of 10.7x and 6.7x

on compressed data, whereas the speedups on

uncompressed data are relatively modest. The reason is as

follows: for uncompressed data, the overall performance is

limited by the data transfer bandwidth; therefore, in this

case, the FPGA engines are starved and not fully utilized.

With uncompressed transfer bandwidth of 2.6GB/sec, the

design achieves pipeline utilization of just 37%. In other

words, the row scanners on the FPGA are idle for 63% of

the time, waiting for data. Transferring compressed data, on

the other hand, results in data expansion on the FPGA, thus

leading to higher effective uncompressed bandwidth,

thereby overcoming the effects of the PCIe limitation. For

customer 2 workload, where the data is compressed down

to 50%, the effective bandwidth is 4.8GB/sec and the

FPGA engines achieve 75.7% of their peak performance.

Here, all the available raw bandwidth has been utilized and

the overall performance is still limited by PCIe. For

customer 1 data, however, which is compressed down to

20%, the effective bandwidth is 6.8GB/sec with the actual

transfer bandwidth of just 1.5GB/sec. In this case, the

design achieves 98.5% pipeline utilization and the

performance is limited by the available FPGA resources.

As can be seen, compression plays an important role; due to

the high compression ratio, even a portion of the available

bus bandwidth is sufficient to saturate the predicate

evaluation engines on the FPGA. Higher PCIe utilization

and further performance improvement can be achieved by

instantiating more scan tiles on the FPGA. Data with a

smaller compression ratio, alternatively, can utilize higher

PCIe bus bandwidth to achieve high data processing rate.

Note that the actual and effective bandwidths for

uncompressed data are one and the same.

Figure 7-2 FPGA speedup over the baseline software

To evaluate the ultimate benefit of the proposed approach

to an end customer, we measure the improvements on the

end-to-end query response time. Figure 7-3 plots response

times for compressed and uncompressed data. The dataset

used is the same as that reported in Figure 7-1. The

measured time includes data transfer time, the time for pre

and post processing of the data on the host CPU and the

time spent on the FPGA accelerator.

Again, the end-to-end response time is dependent on the

filtering ratio, due to the post-processing of the qualified

data. For compressed data, the graph shows similar trend as

that for CPU savings – larger end-to-end speedups for

lower qualification ratio, with speedups in the range of 1.2x

to 6.2x for various filtering ratios. Uncompressed data, on

the other hand, does not show any improvement in response

time. This is mainly due to two reasons: first, the amount of

processing that is offloaded is not enough to amortize the

costs associated with invoking the FPGA routine and

second, the computation-only speedup obtained from the

FPGA is modest, as discussed earlier, due to the bus

CPU Time (Compressed)
27.8%

71.7%
80.4%87.7%90.2%93.8%

0

2

4

6

8

10

12

14

16

0.3 1.7 2.7 6 12 99.5

Rows qualified (%)

T
im

e
 (
s
e
c
)

Baseline w/ FPGA

CPU Time (Uncompressed) 14.74%

45.61%55.21%61.95%64.15%67.91%

0

2

4

6

8

10

12

14

0.3 1.7 2.7 6 12 99.5

Rows qualified (%)

T
im

e
 (
s
e
c
)

Baseline w/ FPGA

CPU Time (Compressed)
27.8%

71.7%
80.4%87.7%90.2%93.8%

0

2

4

6

8

10

12

14

16

0.3 1.7 2.7 6 12 99.5

Rows qualified (%)

T
im

e
 (
s
e
c
)

Baseline w/ FPGA

CPU Time (Uncompressed) 14.74%

45.61%55.21%61.95%64.15%67.91%

0

2

4

6

8

10

12

14

0.3 1.7 2.7 6 12 99.5

Rows qualified (%)

T
im

e
 (
s
e
c
)

Baseline w/ FPGA

Row Processing Rate

1.3x
1.2x

6.7x

10.7x

0

10

20

30

40

50

Customer 1 Customer 2

M
il
li
o
n
 r

o
w

s
/s

e
c
.

Baseline FPGA

Uncompressed Compressed Uncompressed Compressed

2.6 GB/sec

6.8 GB/sec

2.7 GB/sec

4.8 GB/sec

Customer 1 Customer 2

Row Processing Rate

1.3x
1.2x

6.7x

10.7x

0

10

20

30

40

50

Customer 1 Customer 2

M
il
li
o
n
 r

o
w

s
/s

e
c
.

Baseline FPGA

Uncompressed Compressed Uncompressed Compressed

2.6 GB/sec

6.8 GB/sec

2.7 GB/sec

4.8 GB/sec

Customer 1 Customer 2

419

bandwidth limitations. While the latter can be addressed by

tuning the current PCIe DMA interface or using a higher

bandwidth bus, addressing the former requires offloading

more computations to the FPGA. These include some of the

post processing operations performed by the CPU.

Nonetheless, the fact that there is no regression in response

time in the uncompressed case still makes offloading an

effective improvement due to CPU savings. More

importantly, the compressed data performance is

particularly significant in that most enterprise customers do

compress their large tables for storage savings.

Figure 7-3 Query response time improvement

As is clear from the above discussions, offloading the

decompression operation to the FPGA is crucial to

obtaining overall performance improvement. Our FPGA

design performs streaming, on-the-fly decompression of the

compressed rows, thereby offsetting PCIe bus bandwidth

limitations without incurring any performance penalties for

large, throughput-centric analytics workloads.

Finally, we discuss the overhead of calling the FPGA

routine. Since sending a query to the FPGA incurs some

start-up cost, we performed experiments to find the

minimum query data size needed to offset that cost and

obtain an overall performance benefit. In terms of absolute

time, the CPU cost for FPGA invocation is around 50 to

100 milliseconds on this processor. Based on our

experiments, this cost gets offset for tables with 4000 to

10,000 uncompressed pages or 400 to 1,000 compressed

pages. For smaller queries, invoking the FPGA routine does

not pay off and the original software path should be used

instead. A future work in deploying this acceleration

technology to DBMS is to enhance the query optimizer

such that it can select the appropriate execution path

between software and the acceleration based on database

statistics and the optimizer’s analysis of the query.

8. CONCLUSIONS AND FUTURE WORK
We have presented an FPGA-accelerated database system

for evaluating expensive analytics queries. The results show

up to 94% savings of CPU resources and up to an order of

magnitude speedup in the offloaded computations on the

tested workload. We presented a general approach for an

existing DBMS to seamlessly leverage the FPGA

accelerator and validated with a prototype that integrates

the accelerator into a commercial DBMS and achieves

significant end-to-end performance improvements.

As part of our future work, we are investigating offload of

other database computations to the FPGA to further

improve the overall performance. Moreover, in our current

work, we focused on the issue of CPU resources while

running analytics queries in parallel with mission-critical

transactional work. While CPU is the most critical resource

in such environments, in some cases, I/O resources can also

affect the overall performance. Addressing this also forms a

part of our future work.

9. REFERENCES
[1] http://www.teradata.com/
[2] Krueger, J., et. al. “Fast Updates on Read Optimized

Databases Using MultiCore CPUs” Proceedings of the
VLDB Endowment, Vol. 5, No. 1, August 2012.

[3] Low, B., Ooi, B., and Wong, C., “Exploration on Scalability
of Database Bulk Insertion with Multi-threading” Int. J. New
Computer Architectures and Their Applications, 2011.

[4] Horikawa, T., “An Unexpected Scalability Bottleneck in a
DBMS: A Hidden Pitfall in Implementing Mutual
Exclusion”, Parallel and Distributed Computing and
Systems, 2011.

[5] Scofield, T. C., et. al., “XtremeData dbX: An FPGA-Based
Data Warehouse Appliance” Computing in Science and
Engineering, IEEE 2010.

[6] Johnson, R., Raman, V., Sidle, R., Swart, G. “Rowwise
Parallel Predicate Evaluation” Proc. Int. Conf on VLDB’08.

[7] Zhou, J. and Ross, K. A., Implementing Database Operations
Using SIMD Instructions”, ACM SIGMOD, 2002, 145-156.

[8] Satish N., et. al., “Fast sort on CPUs and GPUs: a case for
bandwidth oblivious SIMD sort”. ACM SIGMOD, 2010.

[9] Leung, K., Ercegovac, M., and Muntz, R. “Exploiting
Reconfigurable FPGA for Parallel Query Processing in
Computation Intensive Data Mining Applications” In UC
MICRO Technical Report Feb. 1999.

[10] Mueller, R. and Teubner, J. “FPGA: What’s in it for a
Database?.” In ACM SIGMOD, 2009, 999-1004.

[11] Mueller, R., Teubner, J. and Alonso, G., “Data processing on
FPGAs”, Proceedings of the VLDB Endowment, v.2 n.1,
August 2009.

[12] Mueller, R., Teubner, J. and Alonso, G., “Glacier: a query-
to-hardware compiler”, In ACM SIGMOD’2010, 1159-1162.

[13] http://www.netezza.com/
[14] http://www-01.ibm.com/software/data/db2/zos/analytics-

accelerator
[15] Ramakrishnan, R., and Gehrke, J. Database Management

Systems. McGraw-Hill, 3rd edition.
[16] Iyer, B. and Wilhite, D. 1994. Data Compression Support in

Databases. In Proceedings of Int. Conf on VLDB.
[17] Lorie, R.A., and Nilsson, J.F.. 1979. “An access specification

language for a relational data base system”, IBM J. Res. Dev.
[18] http://www.plda.com/prodetail.php?pid=184

Response Time (Compressed)

6.2x 5.1x 4.6x 3.4x 2.6x

1.2x

0

2

4

6

8

10

12

14

16

0.3 1.7 2.7 6 12 99.5

Rows qualified (%)

T
im

e
 (

s
e
c
)

Baseline w/ FPGA

Response Time (Uncompressed)
0.97x

0.99x0.96x0.96x0.97x0.96x

0

2

4

6

8

10

12

14

0.3 1.7 2.7 6 12 99.5

Rows qualified (%)

T
im

e
 (
s
e
c
)

Baseline w/ FPGA

Response Time (Compressed)

6.2x 5.1x 4.6x 3.4x 2.6x

1.2x

0

2

4

6

8

10

12

14

16

0.3 1.7 2.7 6 12 99.5

Rows qualified (%)

T
im

e
 (

s
e
c
)

Baseline w/ FPGA

Response Time (Uncompressed)
0.97x

0.99x0.96x0.96x0.97x0.96x

0

2

4

6

8

10

12

14

0.3 1.7 2.7 6 12 99.5

Rows qualified (%)

T
im

e
 (
s
e
c
)

Baseline w/ FPGA

420

