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ABSTRACT 

Business growth and technology advancements have resulted in 

growing amounts of enterprise data. To gain valuable business 

insight and competitive advantage, businesses demand the 

capability of performing real-time analytics on such data. This, 

however, involves expensive query operations that are very time 

consuming on traditional CPUs. Additionally, in traditional 

database management systems (DBMS), the CPU resources are 

dedicated to mission-critical transactional workloads. Offloading 

expensive analytics query operations to a co-processor can allow 

efficient execution of analytics workloads in parallel with 

transactional workloads. 

In this paper, we present a Field Programmable Gate Array 

(FPGA) based acceleration engine for database operations in 

analytics queries. The proposed solution provides a mechanism 

for a DBMS to seamlessly harness the FPGA compute power 

without requiring any changes in the application or the existing 

data layout. Using a software-programmed query control block, 

the accelerator can be tailored to execute different queries without 

reconfiguration. Our prototype is implemented in a PCIe-attached 

FPGA system and is integrated into a commercial DBMS 

platform. The results demonstrate up to 94% CPU savings on real 

customer data compared to the baseline software cost with up to 

an order of magnitude speedup in the offloaded computations and 

up to 6.2x improvement in end-to-end performance. 

Categories and Subject Descriptors 
C.3 [Special-purpose and application-based systems];  
H.2.4 [Database Management]: Systems 

Keywords 

Relational database, analytics, FPGA, acceleration 

1. INTRODUCTION 
We find ourselves, today, in the midst of the widespread 

adoption of analytics in the business world. Whether it is to 

stock store shelves just-in-time, set airline ticket prices to 

maximize yield, or purchase hedge contracts on fuel prices 

to make a transportation company’s forthcoming quarter’s 

budget more predictable, rapid analysis of transactional 

data in corporate database management systems has become 

a business necessity. Snapshot warehousing, such as in [1], 

is the existing practice where a snapshot of data is taken 

from an online transaction processing (OLTP) system to a 

warehouse system for decision support analysis. 

Snapshot warehousing has been acceptable in the past when 

updates to the database were infrequent. Performing 

analysis on a month old, week old or day old snapshot of 

business data was good enough for making executive 

decisions pertaining to business. Interpersonal networking, 

the empowering of individuals by personal communication 

devices and the wide use of social media networking has 

changed the dynamics of the marketplace. Increasingly, 

businesses are finding themselves required to respond to 

changes in market conditions in real time. For example, an 

airline may have the luxury of no more than a few minutes 

to respond to fare modifications by its competitor. Real 

time analytics is the capability to process analytical queries 

and other operations directly on transactional data.  

Injecting expensive analytics query operations into the data 

operating environment also poses challenges. One challenge 

is that system resources such as CPU and I/O have to be 

shared between transactional and analytical workloads. 

Normally, transactional workloads have stringent Service 

Level Agreements (SLAs); further, because these are 

directly tied to revenue generation, they are often the 

primary focus of the business. Analytical workloads need to 

run against the same data without impacting the SLA of the 

transaction workloads. Meeting this challenge requires 

consideration of both CPU and I/O resource issues.  

In this paper we focus on the CPU issue. We propose a 

hardware acceleration approach that offloads and 

accelerates some of the most CPU-intensive query 

operations on an FPGA. Our architecture enables the FPGA 

to retrieve DBMS in-memory data, which is mostly up-to-

date, perform expensive query operations, and send the 

results back to the database engine. The accelerator has 

been made customizable by architecting a query control 

block, and making the FPGA logic behave as an interpreter 

of the query control block. In this sense, one principle of 

object oriented programming, late binding, has been 
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implemented on the FPGA, making it versatile for DBMS 

queries. The presented work includes the following key 

contributions:  

• an architecture that integrates an FPGA into a host 
system and processes data extracted from the memory 
of a DBMS, 

• the design and prototype of FPGA functions including 
data decompression and predicate evaluation, both of 
which consume considerable CPU cycles on 
conventional processor architectures, 

• a software integration approach that enables FPGA-
based acceleration for an existing DBMS, 

• experimental and performance observations from our 
integrated prototype. 

The rest of the paper is organized as follows. Section 2 

outlines the previous work. Section 3 introduces related 

background information on database systems. In section 4, 

we present the overview of our proposed architecture and 

system integration. Section 5 describes the FPGA design of 

the data decompression and predicate evaluation functions. 

Section 6 describes software integration of the FPGA-based 

accelerator into an existing DBMS system. Section 7 

presents our experiments and results. Section 8 concludes 

the paper with discussions and future work. 

2. PREVIOUS WORK 
Over the years, there have been many efforts to speed up 

query processing in database management systems. As the 

increase in the speed of processors diminishes each year, 

further focus has been placed on parallelization techniques. 

One approach is to increase the number of processors [2] 

and threads [3] exploited by the DBMS. The problem here 

lies in how to partition the data, metadata, updates and data 

deltas to reduce memory conflicts and contention between 

cores [4]. Moreover, suboptimal utilization of the cores in 

large multi-core systems results in power inefficiencies [5]. 

Single Instruction Multiple Data (SIMD) operation 

provides data level parallelism by processing multiple data 

entities in a single instruction [6][7]. Effective SIMD 

exploitation, however, requires the DBMS data to be laid 

out in specific formats and packed tightly into 64 or 128 bit 

registers. This requires extra processing or compilation for 

each database table [6]. Further work has been done to 

exploit Graphics Processing Units (GPUs) to aid database 

sort operations [8]. GPUs offer a relatively fixed 

architecture, however, leading to limitations similar to those 

of SIMD architectures. 

Prior work [9][10][11] use FPGAs for parallel query 

processing. One of the differentiators of our work is the 

enablement of FPGAs to execute different queries without 

reconfiguration. This is different than the compilation-

based approach [12] which first compiles queries into a 

hardware description and then synthesizes into FPGA 

circuit. 

Data warehouse appliances such as the Netezza 

Performance Server [13] or the IBM DB2 Analytics 

Accelerator (IDAA) [14] also use FPGAs to accelerate 

query operations. In the former, the FPGA is in the I/O 

path, hence requiring a write-through I/O protocol which 

would increase the IOPS to unacceptable levels in an OLTP 

system. In IDAA, data from an OLTP system is periodically 

copied, which is appropriate for applications without 

stringent real time analytics needs. 

3. DBMS DATA PAGE PROCESSING  

3.1 Relational Database Tables and Pages 
In relational DBMS, records are stored in objects called 

tables. Records are often referred to as rows, and record 

attributes are called columns (or fields). Table 3-1 is a 

simplified illustration of a three-row table with six attribute 

columns (PhoneNumber, FirstName, LastName, Age, State, 

SalesTotal($)) per row. 

Table 3-1 Example “Customers” table 

Phone 
Number 

First 
Name 

Last 
Name 

Age State SalesTotal($) 

212-111-1111 Ann Smith 25 NY 250.54 

212-111-0000 Steve Jones 31 NY 500.00 

203-222-2222 Emily Brown 29 CT 900.01 

 

Typically, the physical unit of storage and I/O processing of 

a non in-memory database table is a page. All pages in a 

table are the same size such as 4KB, 8KB, 16KB, 32KB 

etc. A database has designated memory space, called buffer 

cache or buffer pool (BP), for temporarily storing the data 

pages. All relational data operations get the data pages from 

the BP and the I/O operations between the BP and the disk 

are managed transparently. When a page is updated, 

including insertions and deletions, its BP image is 

committed first, before eventually being written to the disk. 

Enabling processing of the latest data in the BP is the main 

reason that our accelerator is connected to the memory 

instead in the I/O path, as is done in [13].  

3.2 Page Format 
In transactional database systems, data is typically stored in 

a row-based layout where all the columns of a row are 

stored in contiguous storage. A page is a collection of slots 

that each contains a row [15]. At the end of a page, there is 

an array whose entries contain the offsets of the rows within 

the same page. The pair <pageID, slot number> is often 

referred to as record ID (RID), which uniquely identifies a 

row within a table. Figure 3-1 illustrates such page format. 

When processing a row in a table, the corresponding page is 

read from the buffer pool (if necessary, disk I/O is 

involved) and the row offset is used to extract the row from 

the page. If a row is deleted, its corresponding slot number 

holds an invalid value. 

412



 

Figure 3-1 Example page format 

3.3 SQL Predicate Evaluation    
Structured Query Language (SQL) has become the de facto 

standard language for schema definition, data manipulation 

and data query for relational DBMS. Large high throughput 

enterprise class OLTP applications based on SQL power a 

huge number of commercial applications today.  

SQL predicate evaluation refers to the process of retrieving 

those DBMS table rows that qualify under some criteria. 

The query typically may require logical inequality or 

equality comparisons of fields from records against 

constants, or test set containment for a field in a record. For 

example, the SQL statement “SELECT salesTotal FROM 

Customer WHERE state =’NY’ AND age <30” asks for 

sales dollar amount from all customers in state ‘NY’ that 

are younger than 30 years old from the example Table 3-1.  

Efficient access to one or few records is usually achieved in 

DBMS by means of an I/O efficient B+ tree index data 

structure based on the data retrieval key. B+ tree indexes 

have also been explored to retrieve large number of records.  

In a DBMS that supports OLTP and analytics 

simultaneously, the indexes that support OLTP serve the 

purpose to speed up OLTP. Any indexes that are intended 

merely to speed up analytics, however, have a detrimental 

impact on OLTP because insert, update, delete operations 

on records could entail index updates, resultant CPU and 

I/O consumption and hence impact on OLTP throughput. A 

mechanism is needed to accelerate the evaluation of SQL 

predicates on relational data without building B+ tree 

indexes specifically to accelerate their execution. 

3.4 Data Compression and Decompression  
Since the early 90’s, data compression has been embedded 

into DBMS [16]. Since OLTP applications typically only 

access a single or a small number of related rows, good 

OLTP systems select the database row as the unit of 

compression. DBMS data structures allow database logic to 

find the row; the DBMS merely decompressed the row 

before processing it. In the absence of indexes, the DBMS 

has to scan the table, decompress each row, and then apply 

SQL predicates against the decompressed row. The 

decompression technique built into the DBMS we worked 

with is typical of common DBMS in that decompression 

proceeds by taking some part of the input string and 

matching it against strings in a dictionary and retrieving its 

decompressed representation. Concatenating various 

decompressed fragments reproduces the decompressed row. 

From a processor CPU consumption perspective, predicate 

evaluation against each row becomes an intensive operation 

as the number of predicates increase, especially against a 

very large number of rows. Furthermore, decompression, 

being a per-byte operation, significantly increases required 

CPU cycles. Reducing the cost of both predicate evaluation 

and decompression on the processor executing OLTP is 

critical to maintain OLTP performance. 

4. DATABASE ACCELERATOR ON FPGA 

- SYSTEM OVERVIEW 
Figure 4-1 shows the high-level system architecture for the 

FPGA-accelerated DBMS. The prototyped system is 

implemented on a PCIe-attached FPGA card and is 

integrated with a commercial database system. The FPGA 

operates on DBMS’ in-memory data and writes the results 

back into the host CPU’s main memory. Data is transferred 

between the FPGA and the host using direct memory access 

(DMA) operations. Once the DBMS sends a job request to 

the FPGA, all the DMA operations are initiated by the 

FPGA without any intervention from the host CPU. 

 

Figure 4-1 System overview of the FPGA accelerator  

The FPGA solution has been structured in a modular 

fashion. There are two distinct pieces of logic that 

implement the required functionality. The service layer 

provides all of the logic that interfaces to the PCIe, DMA 

engines and job management logic. The application logic 

implements just the functions required to process database 

queries on the FPGA. A set of well defined interfaces exists 

between the two that include data buses for input and output 

data, queues for DMA requests, and control signals.  

On the host CPU, a job queue is maintained and the device 

driver and service layer logic cooperate to dispatch the jobs 

to the FPGA. Once a job has been dispatched, the service 

layer passes the job structures to the application logic and 

signals it to begin. From then on, the service layer only 

processes the DMA requests and updates the status of the 

jobs to the host. This structure allows the application logic 

to be developed independent of the service layer. 

To maximize the overall performance, the service layer 

must perform data transfers at full PCIe bandwidth and the 

application layer must process the data at the rate sustained 
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by the service layer. For our current bus interface, the peak 

bandwidth is 3.2 GB/sec (16B at 200 MHz); maintaining 

such rate is a challenge and must be addressed at all levels. 

The first challenge is to maximize the available bus 

bandwidth; this is addressed in a number of ways. First, a 

set of job structures, which are passed to the application 

logic, are created for each job; these specify the DMA 

addresses of all the data for the job. Second, a set of queues 

between the service layer and the application logic is 

implemented that allow the application logic to queue up 

DMA requests, thereby maximizing the use of the DMA 

engines. Finally, multiple input and output buffers enable 

double buffering, thereby completely hiding the host-FPGA 

transfer latencies. With these techniques, we achieve a data 

transfer rate of up to 2.7 GB/sec over the PCIe bus.  

Next, the FPGA must consume the 16B of data delivered 

every cycle. The predicate evaluation/decompression 

engine is designed to consume 1B every clock cycle. 

Replicating this engine sixteen times will enable the FPGA 

to consume all data being delivered. For uncompressed 

data, this results in a balance system. For compressed data, 

however, creating a balanced system becomes more 

difficult. For data compressed down to 40% of its original 

size, for example, the 16 bytes transferred on the PCIe per 

cycle expands to 40 bytes, consequently requiring a 2.5-fold 

increase in the number of engines to sustain the 

uncompressed bandwidth. Simply increasing the number of 

parallel engines may require more logic resources than the 

capacity of a given FPGA. Our FPGA design is thus 

architected such that the number of engines can be traded 

against the complexity of the query handled by each engine. 

Thus for very high levels of compression, high throughput 

can still be maintained, albeit for relatively simpler queries. 

5. QUERY PROCESSING ON FPGA 
The query processing engine on the FPGA is designed with 

two goals in mind: to support the most common cases in the 

target database system and to achieve maximum 

performance from the available hardware resources. 

Consequently, the size of the largest predicate supported, 

the database page buffer size and the decompression 

dictionary buffer size were chosen based on real-life 

customer workloads. While these sizes are fixed in the 

current design, supporting other sizes is trivial. 

Figure 5-1 shows the overall architecture for database row 

processing on FPGA. The design is architected to exploit 

parallelism at various levels. The core computational unit is 

a predicate evaluation unit (PE), which evaluates a single 

predicate by comparing two up to 64-bit long quantities: a 

stored predicate value supplied by the query and a row field 

streamed in from main memory. All the predicates within a 

row are evaluated concurrently by the multiple instances of 

PEs inside a row scanner (Figure 5-4). The number of PEs 

inside a row scanner is configurable at synthesis time. 

Multiple database rows are processed concurrently using 

parallel instances of row decompression and predicate 

evaluation logic within a scan tile (see Figure 5-1). 

Obtaining a balanced system with multiple parallel 

execution units requires careful rate matching and data 

staging. A scan tile forms a balanced unit for scanning the 

rows. It encapsulates the entire design flow for scanning 

database rows on the FPGA; the design can be scaled 

simply by replicating the tiles.  

A scan tile contains 8 row scanners, each preceded by a 

decompressor, plus buffers to store the input and output 

database pages, logic to extract the rows from the input 

pages and logic to write the qualified rows in the output 

buffers in a database-specific page format. Each input and 

output page buffer is 4KB in size, to match the target 

database page size. Each instance of the expansion 

dictionary is 32 KB and is shared by two decompression 

units; both have concurrent access to the dictionary using 

two independent read ports. 

 

Figure 5-1 Architecture for row processing on FPGA 

A scan tile scans one database page at a time. More than 

one page can be scanned in parallel by having multiple 

independent scan tiles on the FPGA. Processing at full PCIe 

bus bandwidth requires a minimum of two tiles, provided 

the pages are uncompressed or have a small compression 

ratio. Utilizing full bus bandwidth for highly compressed 

pages would require larger number of parallel scan tiles. 

For a given FPGA area, the number of tiles can be traded 

against the number of PEs within each row scanner. 

Depending on the query complexity and the compression 

ratio, different hardware configurations can be used. In one 

configuration, we instantiate 2 tiles for a total of 16 row 

scanners, each with 64 PEs, thus decompressing 16 rows 

concurrently and evaluating 1024 predicates in parallel. A 

query with fewer predicates, on the other hand, can allow 

more tiles and thus higher page-level parallelism. This 

flexibility to exploit parallelism at different granularities is 

an essential part of the design as it allows different database 

queries to obtain the highest performance from the available 

FPGA resources. Since generating an FPGA image is a 

time-consuming process, we pre-generate FPGA bit files for 

a variety of different hardware configurations and load the 

one that is best-matched to the given workload, where a 

workload is a collection of different queries. 
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5.1 Row Decompression on FPGA 
In our design, the compressed rows are decompressed on-

the-fly on the FPGA before being fed to the predicate 

evaluation logic. Performing decompression on the FPGA 

brings numerous benefits. First, database pages can be sent 

directly from the host to the FPGA without the need to pre-

filter and decompress on the host. Secondly, offloading 

decompression to the FPGA increases the amount of 

computation per datum transferred to the FPGA. Thirdly, 

efficient parallel hardware implementation of the 

decompression algorithm results in improved performance. 

Finally, transferring compressed rows increases the 

“effective” PCIe transfer bandwidth. This is especially 

important since the overall accelerator performance is often 

limited by the available host-to-FPGA data transfer 

bandwidth. Depending on the compression ratio, 

transferring compressed rows increases the effective 

bandwidth by a factor of 2 to 5. 

 

Figure 5-2 Row decompression logic on FPGA 

As mentioned in section 3, our target row decompression 

algorithm performs dictionary-based expansion. A 

compressed row consists of one or more 12-bit compressed 

symbols (tokens); a symbol may either represent a character 

of the uncompressed row or a pointer to a dictionary entry, 

which in turn may contain up to 7 characters of the 

uncompressed row. The decompression operation 

essentially involves decoding all the compressed symbols in 

a row and building the uncompressed row by stitching 

together character data from each of them. 

Row decompression logic on FPGA is shown in Figure 5-2. 

During an initial setup phase, the expansion dictionary is 

downloaded from the host into the dictionary buffers on the 

FPGA. This is a one-time process; it need not be repeated 

for each job, unless the table and hence the dictionary 

changes. During the scan phase, as the database pages are 

streamed to the FPGA, rows are extracted and stored in the 

row buffer. This extra buffering is required for rate 

matching between the decompressor and the row extraction 

logic and to provide each decompressor instance dedicated 

access to its respective rows in parallel to the rest. At the 

output of the decompression logic is an uncompressed row 

buffer which stores the decompressed rows. It provides a 

variable-bytes write interface, from 1 to 7 bytes, to support 

variable output rates from the decompressor. 

A given database page may contain compressed rows mixed 

with rows in raw form; the decompression logic thus works 

in two modes – decompression mode and pass-through 

mode. As a new row is fetched from the row buffer, the 

header parser determines if the row is compressed or raw. If 

raw, the row is simply passed along to the uncompressed 

row buffer, two bytes per cycle. Even though a raw row can 

be copied over faster, only two bytes are transferred per 

cycle to keep a common read interface from the row buffer 

for both raw data as well as compressed tokens. This 

reduces extra multiplexing at the output of the row buffer. 

Note that reading just 2 bytes a cycle does not cause any 

starvation of the downstream predicate evaluation logic 

since it consumes data at a rate of 1 byte per cycle. 

For compressed rows, the tokenizer module fetches the 

compressed token from the row buffer, one token at a time, 

as requested by the controller FSM. For a character-type 

token, the 8-bit character data is decoded from the token 

and written into the uncompressed row buffer. For a 

dictionary token, the controller reads the 8-byte entry from 

the dictionary.  

A dictionary entry can be unpreceded or preceded and is 

decoded appropriately by the dictionary data decoder. An 

unpreceded entry contains up to 7 bytes of data and a length 

field. It is a terminal entry, indicating that the current token 

has been fully decompressed. A preceded entry contains up 

to 5 bytes of data and its length. Additionally, it contains a 

pointer to the next chaining dictionary entry that must be 

decoded to continue decompressing the current token, and 

an offset that indicates the relative position of the data bytes 

from the current entry within the complete uncompressed 

data for the token. Decompression of a compressed token is 

continued until an unpreceded entry is found, at which point 

the next token is fetched from the row buffer. 

Optimal implementation of the decompressor design on the 

FPGA requires the operations described above to be staged 

in pipelined fashion. This, however, presents a potential 

problem – since the algorithm is not purely feed-forward, a 

new token cannot be fetched until the previous one is 

completely decompressed. Similarly, a new dictionary entry 

cannot be read until the current one has been read and 

decoded. These lead to empty cycles or bubbles between 

consecutive token reads and dictionary reads. This is not a 

problem as long as the average output rate of the 

decompressor is higher than 1 byte per cycle, which is the 

rate at which the predicate evaluation logic consumes data. 

For data with a very high compression ratio, this rate is 

easily achieved. For data with a lower compression ratio, 

however, where each compressed token expands to a few 

bytes, the average rate may drop below one byte per cycle, 

leading to stalling of the predicate evaluation pipeline. 

We address this issue by adding token prefetch logic in the 

tokenizer, wherein the 8 next tokens are prefetched and 

stored in a FIFO. With this approach, the next token is 
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ready for processing as soon as the current one is finished. 

When the entire row is fully decompressed, any outstanding 

tokens in the FIFO are flushed and a new set of tokens is 

prefetched from the next compressed row. Figure 5-3 shows 

the effect of adding the prefetch logic on the overall 

pipeline utilization, for a specific real-life workload. 

Adding the prefetcher results in a more than 50% reduction 

in row decompression time; for the 165 byte long rows, the 

average row decompression time is reduced from 190 

cycles to 80 cycles, bringing the average decompressor 

output rate well above the required 1 byte/cycle. Actual 

savings and the average output rate, of course, are 

dependent on the compression ratio and the number of 

tokens to be analyzed to decompress a row of certain 

length. The worst case of compression arises where a token 

does not access the dictionary and simply generates a single 

byte. With prefetching, such tokens can be processed in a 

single cycle, thus maintaining a throughput of 1 byte/cycle. 

 

Figure 5-3 Effect of prefetching on pipeline utilization 

Note that similar optimization is not possible on the 

dictionary read side since the reads from the dictionary are 

not from sequential locations and depend on the value of 

the pointer. This, however, is a concern only for the 

dictionary tokens that generate three or fewer bytes of data. 

Such tokens would appear in data with a very low 

compression ratio and can potentially lead to sub-optimal 

utilization of the predicate evaluation pipelines. 

5.2 Predicate Evaluation on FPGA 
Once the rows are decompressed, they are sent to 

downstream predicate evaluation logic for filtering based 

on the query predicates. A row scanner is used to evaluate 

the database rows against the query (Figure 5-4). It consists 

of a chain of independent predicate evaluation units and a 

reduction network (RN). Each PE evaluates a single 

predicate on a particular column of the database row. The 

reduction network then reduces the outputs of the PEs, as 

per the query, to a 1-bit qualify signal. 

To evaluate a query on the FPGA, each PE must perform a 

specific operation on specific bytes of the database row, 

and the reduction network must combine the outputs of the 

PEs in a certain manner. The operation to perform and the 

fields to evaluate are specific to a given query and change 

with the query. Generating a new FPGA hardware image 

for each query and reprogramming the FPGA is not viable 

since synthesis and place-and-route typically take hours to 

finish. Reprogramming the FPGA with a pre-generated 

FPGA image is plausible, though for queries that operate on 

relatively small amounts of data, the reconfiguration time 

may dominate the overall processing time. Moreover, even 

a slight change in the query would require regeneration of 

the FPGA image and reconfiguration of the FPGA. 

 

Figure 5-4 Row scanner for evaluating database rows 

To address this issue, we designed the row scanner such 

that a given hardware image can be tailored to a variety of 

different queries. To that end, each PE is designed to 

perform 1 of 6 inequality operations; the actual operation to 

be performed is chosen during the query load time. 

Moreover, some of the PEs can also be disabled and 

excluded from participating in the query. Similarly, the 

reduction network is constructed as a binary tree of 

reduction units. Each reduction unit is a 2 to 1 reducer 

capable of performing one of 6 1-bit operations between the 

two inputs: AND, OR, NOT a, NOT b, PASS a, or PASS b. 

During the query load phase, the configuration options are 

propagated down the PE chain and the reduction tree. PEs 

are configured using 5 options: (i) enable, to indicate 

whether the current PE is being used, (ii) predicate value, 

the constant against which the row field is compared, (iii) 

the inequality operation to be performed, (iv) offset of the 

first byte of the desired field within the row and (v) length 

of the field. A reduction unit has only one configuration 

option: the operation to perform between two predicates. 

During the scan phase, database rows are streamed over the 

PEs, one byte per cycle. Streaming at a granularity of 1 byte 

is essential since fields in a row can be of varying length 

and may start at any byte position within the row. To reduce 

the latency of evaluating a row, the streaming bytes are 

broadcast to all the PEs as opposed to being rippled down 

the chain. Further, they are also speculatively written into 

the qualified row buffer; this write is later committed or 

invalidated based on whether the row qualifies. Since 

broadcasting requires large fan out, we use a register tree to 

feed all the PEs concurrently while keeping the fan out low. 

As the row is streamed in, each PE captures the required 

bytes (using the start offset and length fields), evaluates its 

respective predicate and outputs a 1-bit match/mismatch 

signal. These funnel down the reduction network to 

generate the row qualify signal. For PEs disabled during the 

query load phase, the corresponding reduction unit either 

disables itself (if both the PEs feeding into it are disabled) 

or replaces the output from the disabled unit with the 

default pertaining to the function programmed into the 

reduction unit (e.g. 1 for an AND operation). 

For an N-byte long row, it takes N + log2(nPE) cycles to 

qualify the row, where nPE is the number of PEs in the row 
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scanner. At that point, the row, if qualified, is committed 

into the qualified row buffer. The qualified rows from 

different row scanners are copied over to the output page 

buffer by the page formatting logic (see Figure 5-1), at a 

rate of 16 bytes per cycle. Formatted pages are sent to the 

host for further processing. Note that the FPGA returns the 

rows in uncompressed form, for direct consumption by the 

DBMS. This does not affect the processing rate on the 

FPGA since the filtering of the database rows typically 

results in lower bandwidth requirements on the return path. 

6. SOFTWARE ENABLEMENT FOR FPGA 

ACCELRATION  
Enabling FPGA acceleration for a DBMS is an end-to-end 

effort. One aspect of this effort is to restructure the data 

flow. Secondly, the capability of transforming a DBMS 

query into a format that the FPGA accelerator can interpret 

for dynamic self-re-customization is also critical for 

accelerating various workloads without the need for 

reconfiguring the FPGA. 

    

Figure 6-1 Block operation to enable FPGA acceleration 

6.1 Block Level Data Operation 
An important design aspect for integration performance is 

to reduce the chattiness during the interactions between the 

host and the accelerator. For this purpose, we introduce a 

block level data operation within the DBMS query 

processing engine. More specifically, a long running 

predicate evaluation query is divided into multiple jobs for 

an FPGA to process sequentially. Each job consists of a 

number of data pages as input for the FPGA to read, and an 

output buffer into which the FPGA writes the results. Both 

data transferring actions are initiated by the FPGA. 

Figure 6-1 illustrates the changes made for enabling the 

block level data processing, as opposed to a traditional one 

page or one row at a time processing flow. For FPGA 

acceleration, a list of BP pages (addresses) is obtained by 

the Data Service Layer in DBMS and read by the FPGA. 

For output data from the FPGA, the DBMS pre-allocates a 

large enough buffer that is filled by the FPGA engine with 

its results. The data format in this output buffer conforms to 

the structure that is understood by DBMS processing engine 

for further downstream processing so additional data copy 

and formatting software can be avoided. 

6.2 DBMS-FPGA Communication Protocol 
Communication between the DBMS and the FPGA is 

achieved through a series of control blocks that are passed 

from the host to the FPGA. These carry the necessary 

information for describing the operations and data transfers. 

6.2.1 DMA Addressing 
Since the FPGA does not have direct addressability to host 

memory, all in-memory data blocks and control information 

blocks need to be transferred to the FPGA via DMA over 

PCIe. When constructing the communication protocol 

between software and the FPGA, the DMA addresses for 

the memory are used instead of the host addresses, as 

shown throughout this section. 

6.2.2 Host Control Block 
A query may be broken up into multiple jobs. A job is 

submitted to the FPGA via a host control block (HCB), 

which encapsulates the job information but is independent 

of the application logic. The HCB is interpreted by the 

service layer in the FPGA; it carries information such as 

whether the current HCB is the last job in the queue, the 

DMA address of the query control block (see 6.2.3), as well 

as updatable fields indicating an active job’s status. A 

queue of HCBs is maintained which allows more jobs to be 

queued while a job is active on the FPGA. FPGA will 

continue to the next job in the queue, if one is available, 

when the current one is completed.  

6.2.3 Query Control Block 
A query control block (QCB) is a data structure that is used 

to tailor the FPGA application logic to a specific query. To 

address different invocation scenarios, we devise two 

formats of the QCBs. Both formats contain an address list 

of the input data pages to be processed and the address of 

the output buffer. The first format, shown as QCB1 in 

Figure 6-2, is used when the FPGA needs to interpret new 

query instructions and customize its internal logic. It thus 

also contains predicate function information and an address 

list of the 8 4K dictionary pages to be loaded. When the 

second format, shown as QCB2 in Figure 6-2, is used, the 

FPGA performs the same task as in the previous job on a 

different set of data. This saves the time needed to re-

customize the FPGA logic and reload the dictionary. 

To process more data pages per job than the limit imposed 

by a single QCB, a query control data continuation block 

(QCDCB), shown in Figure 6-2, enables more input pages to 

be chained to a job. The last entry in QCB’s data list points 

to the next QCDCB when this is needed. 

6.2.4 Query Mapping to FPGA Engines 
To express predicate instruction to the FPGA, QCB1 

contains a list of predicate function control blocks and a list 

of reduction control blocks. A predicate function control 

block, shown in Figure 6-3, is a 16 byte data structure that 

has information on the column, the comparison operator 
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and the constant to compare against the column value that 

personalizes each PE. 

Reduction control blocks, logically structured as a tree for 

the RN, contain the Boolean operations information among 

the simple predicates in a complex predicate expression.   

Figure 6-4 shows an example mapping of a predicate 

expression to the PEs and the reduction network. 

 

 Figure 6-2 Different formats of the query control block 

   

Figure 6-3 16B predicate function control block 

  

Figure 6-4 Mapping predicate expression to PE and RN 

6.3 Transforming Query to QCBs 
SQL provides rich syntaxes to express data relations. 

Predicate expression are not limited to just comparisons and 

Boolean operations. For example, expression “WHERE 

state IN (‘NY’, ‘CT’) AND age between 20 AND 30” tests 

set containment for field “state” and it can not be directly 

mapped to PEs and RUs as is. However, existing SQL 

parsing and transformation capabilities in the DBMS are 

capable of converting the predicate into the comparison and 

Boolean only expressions shown in Figure 6-4 and 

representing it in an internal format [17]. A realistic 

approach for query transformation integration is to inject 

the FPGA QCB build function into the query processing 

flow such that it can take advantage of the transformed 

expression for its input. It is then straightforward for the 

QCB build function to map the transformed expression to 

predicate function control blocks and correct topology in 

the reduction network. 

7. EXPERIMENTS AND RESULTS 
Our prototype is built upon a commercial DBMS running 

on a 3.8GHz multi-core super scalar system. Our target 

FPGA system is a PLDA XpressGX4LP card [18] with an 

Altera Stratix IV GX530 FPGA. The card communicates 

with the host system over a PCIe gen2 x8 interface. 

Table 7-1 FPGA resource requirements 

Tiles PEs Logic ALUTs Registers Memory Bits 

16 9% 24637 (6%) 27338 (6%) 

32 16% 39893 (9%) 48949(12%) 1 

64 30% 70,240 (17%) 91114 (21%) 

 

2179840 (10%) 

 

16 19% 47,877 (11%) 54,318 (13%) 

32 33% 76,681 (18%) 97,441 (23%) 2 

64 59% 136149 (32%) 181750 (43%) 

 

4359680 (21%) 

 

16 38% 95,795 (23%) 108269 (25%) 
4 

32 66% 152,687(36%) 194416 (46%) 
8,719,360 (41%) 

Table 7-1 lists the FPGA resource requirements for the 

different configurations of the database acceleration engine. 

This does not include the service layer, which occupies a 

fixed area of around 25% of the target FPGA. For a given 

number of tiles, the logic requirements increase 

proportionately with the number of PEs within a row 

scanner, while the memory requirements remain unchanged. 

Increasing the number of tiles, on the other hand, increases 

the number of row scanners, leading to higher logic as well 

as memory requirements. While the former is due to the 

increased number of PEs, the latter results from having 

more dictionary and data staging buffers. With 64 PEs per 

row scanner, the current FPGA can support up to 2 tiles; 4 

tiles can be instantiated with fewer PEs per scanner. 

We now present the results of evaluating our FPGA-based 

accelerator for database systems, using three metrics: CPU 

savings, speedup on offloaded computations, and overall 

end-to-end speedup. Additionally, we discuss the cost and 

relative merit of invoking the FPGA kernel. In our 

experimental workload, the data is derived from real 

customer database tables, and the query operations include 

decompression and predicate evaluation, which are two of 

the most CPU intensive functions. Both the baseline and 

hardware-accelerated versions of the code are single-

threaded and run on a single processor core. All the 

measurements were taken with the data in buffer pools and 

do not include disk I/O time. Measurements were taken 

with both uncompressed and compressed rows; the 

uncompressed row lengths for the two workloads evaluated 

(customer 1 and customer 2 in Figure 7-2) are 165 bytes and 

229 bytes, with the average compression space savings of 

80% and 50% respectively. 

CPU savings represent the CPU runtime reduction obtained 

by offloading the computations from the CPU to the FPGA. 

This is an important metric since it effectively represents 

freeing-up of the CPU resources for online transaction 

processing in real-time analytics systems. Figure 7-1 shows 

the savings obtained while processing 468K database pages 

of uncompressed data and 101K pages of compressed data 

from customer 1 workload, for a range of data qualification 
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ratios. Note that the reduced CPU time shown for the 

FPGA-assisted database system does not include the time 

spent on the FPGA to perform the actual computations. 

 

Figure 7-1 CPU savings obtained from FPGA offload  

As shown, for compressed data, an 27.8% to 93.8% 

reduction in CPU time is obtained, while the reduction is 

between 14.7% and 67.9% for uncompressed data. This 

difference is expected; for uncompressed data, no 

decompression operation is involved, so the offload, and 

hence the savings is smaller. Moreover, for both 

compressed and uncompressed data, the savings are higher 

when a smaller fraction of rows qualify. This is due to the 

post-processing of the qualified data by the CPU, such as 

moving data to application buffer. When a larger fraction of 

rows qualify, there is more processing on the CPU and 

hence lower overall CPU savings. Overall, both compressed 

and uncompressed cases achieve significant saving of CPU 

resources, which in turn can be diverted to OLTP work. 

Next we compare the raw power of the FPGA to that of the 

host processor in performing the same work, expressed in 

Figure 7-2 in terms of ‘rows processed per second’, for 

compressed and uncompressed data from two customer 

workloads. Also shown is the effective uncompressed data 

processing throughput achieved by the FPGA for each case. 

The FPGA design was instantiated with 4 scan tiles, for a 

total of 32 row scanners, and runs at 200 MHz. Note that 

the processing rate shown here measures just the offloaded 

computations and is thus independent of data characteristics 

such as qualification ratio. These measurements do, 

however, include the time for host-FPGA data transfers.  

As shown, the FPGA achieves speedups of 10.7x and 6.7x 

on compressed data, whereas the speedups on 

uncompressed data are relatively modest. The reason is as 

follows: for uncompressed data, the overall performance is 

limited by the data transfer bandwidth; therefore, in this 

case, the FPGA engines are starved and not fully utilized. 

With uncompressed transfer bandwidth of 2.6GB/sec, the 

design achieves pipeline utilization of just 37%. In other 

words, the row scanners on the FPGA are idle for 63% of 

the time, waiting for data. Transferring compressed data, on 

the other hand, results in data expansion on the FPGA, thus 

leading to higher effective uncompressed bandwidth, 

thereby overcoming the effects of the PCIe limitation. For 

customer 2 workload, where the data is compressed down 

to 50%, the effective bandwidth is 4.8GB/sec and the 

FPGA engines achieve 75.7% of their peak performance. 

Here, all the available raw bandwidth has been utilized and 

the overall performance is still limited by PCIe. For 

customer 1 data, however, which is compressed down to 

20%, the effective bandwidth is 6.8GB/sec with the actual 

transfer bandwidth of just 1.5GB/sec. In this case, the 

design achieves 98.5% pipeline utilization and the 

performance is limited by the available FPGA resources. 

As can be seen, compression plays an important role; due to 

the high compression ratio, even a portion of the available 

bus bandwidth is sufficient to saturate the predicate 

evaluation engines on the FPGA. Higher PCIe utilization 

and further performance improvement can be achieved by 

instantiating more scan tiles on the FPGA. Data with a 

smaller compression ratio, alternatively, can utilize higher 

PCIe bus bandwidth to achieve high data processing rate. 

Note that the actual and effective bandwidths for 

uncompressed data are one and the same. 

 

Figure 7-2 FPGA speedup over the baseline software  

To evaluate the ultimate benefit of the proposed approach 

to an end customer, we measure the improvements on the 

end-to-end query response time. Figure 7-3 plots response 

times for compressed and uncompressed data. The dataset 

used is the same as that reported in Figure 7-1. The 

measured time includes data transfer time, the time for pre 

and post processing of the data on the host CPU and the 

time spent on the FPGA accelerator. 

Again, the end-to-end response time is dependent on the 

filtering ratio, due to the post-processing of the qualified 

data. For compressed data, the graph shows similar trend as 

that for CPU savings – larger end-to-end speedups for 

lower qualification ratio, with speedups in the range of 1.2x 

to 6.2x for various filtering ratios. Uncompressed data, on 

the other hand, does not show any improvement in response 

time. This is mainly due to two reasons: first, the amount of 

processing that is offloaded is not enough to amortize the 

costs associated with invoking the FPGA routine and 

second, the computation-only speedup obtained from the 

FPGA is modest, as discussed earlier, due to the bus 
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bandwidth limitations. While the latter can be addressed by 

tuning the current PCIe DMA interface or using a higher 

bandwidth bus, addressing the former requires offloading 

more computations to the FPGA. These include some of the 

post processing operations performed by the CPU. 

Nonetheless, the fact that there is no regression in response 

time in the uncompressed case still makes offloading an 

effective improvement due to CPU savings. More 

importantly, the compressed data performance is 

particularly significant in that most enterprise customers do 

compress their large tables for storage savings. 

 

Figure 7-3 Query response time improvement 

As is clear from the above discussions, offloading the 

decompression operation to the FPGA is crucial to 

obtaining overall performance improvement. Our FPGA 

design performs streaming, on-the-fly decompression of the 

compressed rows, thereby offsetting PCIe bus bandwidth 

limitations without incurring any performance penalties for 

large, throughput-centric analytics workloads. 

Finally, we discuss the overhead of calling the FPGA 

routine. Since sending a query to the FPGA incurs some 

start-up cost, we performed experiments to find the 

minimum query data size needed to offset that cost and 

obtain an overall performance benefit. In terms of absolute 

time, the CPU cost for FPGA invocation is around 50 to 

100 milliseconds on this processor. Based on our 

experiments, this cost gets offset for tables with 4000 to 

10,000 uncompressed pages or 400 to 1,000 compressed 

pages. For smaller queries, invoking the FPGA routine does 

not pay off and the original software path should be used 

instead. A future work in deploying this acceleration 

technology to DBMS is to enhance the query optimizer 

such that it can select the appropriate execution path 

between software and the acceleration based on database 

statistics and the optimizer’s analysis of the query. 

8. CONCLUSIONS AND FUTURE WORK 
We have presented an FPGA-accelerated database system 

for evaluating expensive analytics queries. The results show 

up to 94% savings of CPU resources and up to an order of 

magnitude speedup in the offloaded computations on the 

tested workload. We presented a general approach for an 

existing DBMS to seamlessly leverage the FPGA 

accelerator and validated with a prototype that integrates 

the accelerator into a commercial DBMS and achieves 

significant end-to-end performance improvements. 

As part of our future work, we are investigating offload of 

other database computations to the FPGA to further 

improve the overall performance. Moreover, in our current 

work, we focused on the issue of CPU resources while 

running analytics queries in parallel with mission-critical 

transactional work. While CPU is the most critical resource 

in such environments, in some cases, I/O resources can also 

affect the overall performance. Addressing this also forms a 

part of our future work. 
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