
ColumnML: Column-Store Machine Learning with
On-The-Fly Data Transformation

Kaan Kara† Ken Eguro‡ Ce Zhang† Gustavo Alonso†
†Systems Group, Department of Computer Science

ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

‡Microsoft Research, Redmond, USA
lastname@microsoft.com

ABSTRACT
The ability to perform machine learning (ML) tasks in a database
management system (DBMS) provides the data analyst with a pow-
erful tool. Unfortunately, integration of ML into a DBMS is chal-
lenging for reasons varying from differences in execution model to
data layout requirements. In this paper, we assume a column-store
main-memory DBMS, optimized for online analytical processing,
as our initial system. On this system, we explore the integration of
coordinate-descent based methods working natively on columnar
format to train generalized linear models. We use a cache-efficient,
partitioned stochastic coordinate descent algorithm providing lin-
ear throughput scalability with the number of cores while preserv-
ing convergence quality, up to 14 cores in our experiments.

Existing column oriented DBMS rely on compression and even
encryption to store data in memory. When those features are con-
sidered, the performance of a CPU based solution suffers. Thus,
in the paper we also show how to exploit hardware acceleration
as part of a hybrid CPU+FPGA system to provide on-the-fly data
transformation combined with an FPGA-based coordinate-descent
engine. The resulting system is a column-store DBMS with its im-
portant features preserved (e.g., data compression) that offers high
performance machine learning capabilities.

PVLDB Reference Format:
Kaan Kara, Ken Eguro, Ce Zhang, Gustavo Alonso. ColumnML: Column-
Store Machine Learning with On-The-Fly Data Transformation. PVLDB,
12(4): 348-361, 2018.
DOI: https://doi.org/10.14778/3297753.3297756

1. INTRODUCTION
Integrating advanced analytics such as machine learning into a

database management system and taking advantage of hardware
accelerators for data processing are two important directions in
which databases are evolving. Online analytical processing engines
(OLAP) are the natural place to implement these advanced capabil-
ities, being the type of data processing system with rich function-
ality and the ability to deal with large amounts of data. Yet, the
problem of efficiently integrating ML with OLAP is not trivial, es-
pecially if the functionality of the latter needs to be preserved. In

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 4
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3297753.3297756

this paper, we take a step forward in understanding the question:
How can we integrate ML into a column-store DBMS without dis-
rupting either DBMS efficiency or ML quality and performance?

Landscape of Previous Research. This paper is built upon
previous research in the following three areas.
In-DBMS Machine Learning. Integrating machine learning into
DBMS is an ongoing effort in both academia and industry. Cur-
rent prominent systems include MADlib [18], SimSQL [10], SAP
HANA PAL [14] and various products from Oracle [55], Impala [28],
and LogicBlox [6]. The combination of ML and DBMS is attrac-
tive because businesses have massive amounts of data residing in
their existing DBMS. Furthermore, relational operators can be used
to pre-process and denormalize a complex schema conveniently be-
fore executing ML tasks [31].
Column-Store for Analytical Workloads. Column-stores are the
standard solution for OLAP workloads [20, 32, 7]. When combined
with main memory processing and techniques like compression [4],
they become highly efficient in processing large amounts of data.
However, it is not clear whether the column-store format is suit-
able for most ML algorithms, notably stochastic gradient descent
(SGD), which access all attributes of a tuple at the same time; pro-
cessing tuples by row. In fact, existing in-DBMS ML systems tend
to work on row stores [18, 10, 6].
New Hardware for Data Processing. Emerging new hardware—
FPGA, GPU—has the potential to improve processing efficiency in
a DBMS through specialization of commonly used sub-operators
such as hashing [26], partitioning [27], sorting [52] or advanced
analytics [37]. Specialized hardware is also becoming available in
data centers: Microsoft uses FPGAs [42] to accelerate Bing queries
[41] and neural network inference [11]; Baidu uses FPGA instances
in the cloud to process SQL; Intel develops hybrid CPU+FPGA
platforms enabling tight integration of specialized hardware next to
the CPU [39]. In most of these systems, efficient I/O is required to
move data to the accelerator; otherwise the performance advantages
disappear behind the cost of data movement. Column-stores are
a better fit to achieve this purpose as column oriented processing
makes it easier to move data from memory while still being able to
exploit the available parallelism in the hardware—especially when
the columns are compressed, thereby increasing I/O efficiency.

Scope. In this paper, we focus on a specific problem: Given a
column-store database, how can we efficiently support training gen-
eralized linear models (GLMs)? We provide a solution by first
choosing an established ML training algorithm that natively ac-
cesses data column-wise: stochastic coordinate descent (SCD) [48].
This algorithm, however, is not efficient due to lack of cache local-

348

ity and the complexity of model management during the learning
process. Therefore, we apply a partitioned SCD algorithm, inspired
by recent work of Jaggi et al. [22] to improve cache-locality and
performance. Both the standard and the partitioned SCD work on
raw data values. Yet, data in column-stores is usually compressed
(often twice, through dictionary compression and run-length or delta
encoding) and also encrypted [5]. When adding the necessary steps
to deal with compression and encryption, we observe that the over-
all performance on a CPU suffers. To overcome this, we use an
FPGA to do on-the-fly data transformation. We choose an FPGA
as accelerator because its architectural flexibility enables us to put
vastly different processing tasks, such as data transformation (de-
compression, decryption) and ML training (SCD) into a dataflow
pipeline, resulting in high throughput for all of them. The contri-
butions of the paper are as follows1:

• We employ a partitioned stochastic coordinate descent algorithm
(pSCD) to achieve cache-efficient training natively on column-
stores, leading to higher performance both on a multicore CPU
and an FPGA.

• We analyze the performance of pSCD against standard SCD and
SGD on both row and column-stores by performing an in-depth
experimental evaluation on a wide range of data sets, showing
the effectiveness of pSCD for real-world ML tasks.

• We provide a detailed implementation of an FPGA-based train-
ing engine able to perform SCD and pSCD. We analyze memory
access and computational complexity for both algorithms. We
validate our design on a CPU+FPGA platform, showing that it
saturates the memory bandwidth available to the FPGA.

• We extend the FPGA-based training with data transformation
steps. We utilize those steps to show that performing delta-
encoding decompression and/or AES-256 decryption on-the-fly
comes at practically no performance reduction for the SCD/pSCD
engine on the FPGA, whereas on the CPU it leads to significant
decrease in the training throughput.

2. BACKGROUND
In this section, we explain the advantages of stochastic coordi-

nate descent (SCD) against the popularly implemented stochastic
gradient descent (SGD) algorithm when the underlying data is or-
ganized as a column-store. We provide the necessary background
on SCD and also introduce our target CPU+FPGA platform.

Problem Definition. We aim at solving optimization problems
of the form:

min
x∈Rn

(
1

m

m∑
i=1

J(〈x,ai〉, bi)
)

+ λ‖x‖1 (1)

J =

{
1
2

(〈x,ai〉 − bi)2 for Lasso
−bi log(hx(ai))− (1− bi) log(1− hx(ai)) for Logreg

• hx(ai) = 1/(1 + exp(−〈x,ai〉)) is the sigmoid function.

(2)

where (a1, b1), ..., (am, bm) ∈ ([−1, 1]n × [0, 1]) is a set of sam-
ples and J : Rn × R → [0,∞) is a non-negative convex loss
function. λ is the regularization parameter adjusting the strength of
regularization, that tries to prevent overfitting to the training data
by limiting how much the norm of the model x can grow We use `1
regularization, turning the optimization problem to Lasso [56] for
quadratic loss and logistic regression (Logreg) for cross-entropy
loss, as shown in Equation (2). For denoting a column, we use the
notation a:,j ∈ [−1, 1]m, indicating the jth column/feature of the
sample matrix [a1;a2; ...;am], where each ai is a row.
1https://github.com/fpgasystems/ColumnML

Algorithm 1: Stochastic Coordinate Descent
Initialize:
· x = 0, z = 0, step size α

· S(z) =

{
z for Lasso
1/(1 + exp(−z)) for Logreg

· T (xj , gj) =

αgj + αλ xj − αgj > αλ

αgj − αλ xj − αgj < −αλ
xj else (to set xj = 0)

for epoch = 1, 2, ... do
— randomly without replacement
for j = shuffle(1, ..., n) do

gj = 1
m

(S(z)− b) · a:,j — partial gradient computation
µ = T (xj , gj) — thresholding due to regularization
xj = xj − µ — coordinate update
z = z− µa:,j — inner-product vector update

2.1 SGD on Column-Stores
For all gradient-based optimization methods, the knowledge of

the inner product 〈x,ai〉 is required to compute a gradient estimate.
Any gradient-descent algorithm, e.g., most notably SGD, computes
this inner product at each iteration of the algorithm. This implies
that a sample ai has to be accessed completely at each iteration
requiring all features in ai ∈ Rn to be read in a row-wise fashion.

It is still possible to perform SGD on a column-store, but to make
reading from distant addresses in the memory efficient, one has to
read in batches due to row-buffer locality of DRAMs [24]: Reading
multiple cachelines from one column, storing them in the cache,
reading from the next column, and so on. This is practically an
on-the-fly column-store to row-store conversion that is disadvanta-
geous: It requires cache space proportional to the number of fea-
tures in the data set and a large batch size in order to read as se-
quentially as possible [59]. We show the disadvantage of working
on a column-store for SGD empirically in Section 4.

Coordinate-descent based algorithms eliminate this problem by
enabling a way of accessing the samples one feature at a time,
which natively corresponds to column-wise access.

2.2 Stochastic Coordinate Descent
Shalev-Shwartz et al. [48] introduce SCD and provide a bound

on the runtime for convergence. The core idea in SCD is to main-
tain a vector z ∈ Rm, zi = 〈x,ai〉 containing the results of the
inner-products between the model and the samples. It is then pos-
sible to always apply the change that was done to one coordinate
of the model (xj) also to the inner-product vector z, as shown in
Algorithm 1. This maintains up-to-date inner products between all
samples and the current model in vector z. As a result, an update to
the model requires accessing only one coordinate—one feature—
for all samples, which equals to a column-wise access pattern.

We perform SCD by randomly (without replacement) selecting
a feature at each iteration. As we show in Algorithm 1, the model
x is initialized to 0 and therefore, the inner-product vector z also
starts at 0. An epoch corresponds to processing the entire data set:
Each column is accessed completely to compute the partial gradi-
ent either for Lasso or Logreg. Then, the corresponding coordinate
of the model is updated with the partial gradient. Finally, an inner-
product vector update takes place to keep the inner products in z
up-to-date, the last step in Algorithm 1. All steps of the algorithm
access samples column-wise. We perform multiple epochs until
convergence for the optimization problem is observed, by evaluat-
ing the loss function.

349

https://github.com/fpgasystems/ColumnML

FPGA - Intel Arria 10
Xeon Broadwell E5
14 Cores @ 2.4 GHz

Intel Framework Intel Libraries DRAM
(64 GB)

Memory Controller

Accelerator Application

1x QPI, 2x PCIe
Up to 20 GB/s

Figure 1: The target platform: Intel Xeon+FPGA v2.

2.3 Target Platform: Intel Xeon+FPGA
Our target platform is the second generation Intel Xeon+FPGA2,

which combines an Intel Broadwell with 14 cores at 2.4 GHz nom-
inal frequency and an Arria 10 FPGA in the same package (Fig-
ure 1). The FPGA has cache-coherent access to the main memory
(64 GB) of the CPU, via 1 QPI and 2 PCIe links. The read band-
width when utilizing all 3 memory links is approximately 17 GB/s
and the aggregate read-write bandwidth is approximately 20 GB/s.

We implement FPGA accelerators using VHDL, against a 64 B
cacheline granular read/write-request based interface. This inter-
face works with physical addressing, so address translation has to
take place on the FPGA. On the software side, Intel libraries pro-
vide a memory management API to allocate pinned memory that
is accessible by both the CPU and the FPGA. The shared memory
region is allocated using 4 MB pages and a page-table on the FPGA
is populated with physical addresses of the page offsets before an
application is started.

Evaluation Setup. We perform all our experiments on the Intel
Xeon+FPGA machine. We use gcc 5.4 and compile the binaries
with ”-O3 -march=native”. We set the frequency governor of the
CPU to performance, enabling it to run at 3.2 GHz peak frequency
during program execution.

2.4 System Overview
Our implementation is based on DoppioDB [51], a system pro-

viding FPGA-acceleration inside a popular column-store database,
MonetDB [20]. The high level diagram in Figure 2 shows how
we perform training and inference using user defined functions
(UDF). A table name and hyperparameters are given as arguments
to a UDF, in which we implement our CPU and FPGA based algo-
rithms. The model produced by the training is stored as a database
internal data structure in DoppioDB—similar to a database index.
Inference can be performed also with UDFs if a model to a corre-
sponding table has been trained beforehand. MonetDB uses com-
pression by default only on strings, so we implement numeric com-
pression and also encryption as part of the UDFs for test purposes.

3. CACHE-CONSCIOUS SCD

3.1 Overview
Although column-wise access of SCD suits column-store DBMS

well, it has one drawback compared to SGD: The intermediate state
that needs to be kept is the inner-product vector z ∈ Rm which
may be much larger than the model x ∈ Rn itself, since the num-
ber of samples is usually much larger than the number of features
(m � n). We use a partitioned version of SCD (pSCD), inspired
by the CoCoA algorithm introduced by Jaggi et al. [22]. CoCoA
aims at reducing the communication frequency when performing

2Results in this publication were generated using pre-production
hardware and software donated to us by Intel, and may not reflect
the performance of production or future systems.

Table tname

CREATE INDEX tname_model ON
SCD(‘tname’, numEpochs, stepSize, …);

Decryption

Decompression

SCD

Iterative
Execution

tname_modelNew tuple T

INSERT INTO tname (attr1, attr2, …, label)
VALUES (T.attr1, T.attr2, …, INFER(‘tname_model’, T))

DoppioDB

Figure 2: System overview showing the training and inference pro-
cedures in DoppioDB.

SCD pSCD

Figure 3: A simplified representation of the data access patterns
of SCD and pSCD. The crucial advantage of pSCD is that while
processing the samples, only partition-sized portions of the inner-
product and label vectors need to be accessed.

distributed dual coordinate ascent. Our main goal with pSCD is
to reduce the amount of intermediate state that is kept. As a re-
sult, first, the memory access complexity can be reduced because
of cache-locality, and second, the algorithm becomes trivially par-
allelizable, with only infrequent need for synchronization.

Method. The difference in pSCD is mainly that it processes
all features in a partition, before moving onto the next one, thus
requiring to keep only a partition-sized portion of the inner-product
vector z and label vector b, as depicted in Figure 3. However, when
we split the gradient updates this way, the partial gradient that we
compute is valid only for the current partition. Therefore, we can’t
apply the coordinate update step to a global model x; we have to
keep a separate model x[k] for each partition and apply updates
locally, as in Algorithm 2. This is equivalent to trainingK separate
models when a dataset is divided into K subsets. To achieve a
common model, we perform model averaging and update the entire
inner-product vector every P epochs, the so-called global inner-
product update (last part in Algorithm 2). Notice that all steps in the
algorithm still access data column-wise, even though a column is
not scanned in its entirety as in SCD, but in large partitions/subsets.

Convergence Rate. Jaggi et al. [22] perform a theoretical analy-
sis on the convergence rate of partitioned coordinate methods. They
show that the convergence rate of partitioned methods is equal to
non-partitioned block-coordinate descent methods [46], if the indi-
vidual optimization problem for each partition is solved to optimal-
ity. Another way of analyzing the convergence properties of pSCD
is from an update staleness perspective, which suits having the fre-
quency of model aggregation as a tuning parameter: The conver-
gence rate is affected mainly because we are introducing staleness
to the algorithm by updating K models independently, then aggre-
gating those every P epochs. The update scheme is similar to stale
synchronous parallel [19, 62]. Using a similar approach, we as-
sume K (given by the number of partitions) independent workers

350

Algorithm 2: Partitioned SCD
Initialize:
· x[K] = 0, z = 0, step size α
· S(z) and T (xj , gj) as in Algorithm 1
· partition size M , number of partitions K = m/M
· inner-product update period P
for epoch = 1, 2, ... do

for k = 0, ..., K-1 (each partition) do
— randomly without replacement
for j = shuffle(1, ..., n) do

subset = kM + 1, ..., kM +M
— partial gradient computation
gj = (S(zsubset)− bsubset) · asubset,j

— thresholding due to regularization
µ = T (x[k]j , gj)
— coordinate update
x[k]j = x[k]j − µ
— inner-product vector update
zsubset = zsubset − µasubset,j

— global inner-product update with the averaged model
if epoch mod P then

x̄ = (x[0] + ...+ x[K − 1])/K
z = 0
for k = 0, ..., K-1 (each partition) do

subset = kM + 1, ..., kM +M
for j= 1, ..., n do

zsubset = zsubset + x̄jasubset,j

(1)

(2)

and S = nP as our deterministic staleness value, where n is the
number of features and P is the global inner-product update period.
Ho et al. [19] show that the noisy model state due to staleness is at
most KS = KnP updates away from the reference state and this
factor is proportional to the convergence rate. In conclusion, the
convergence rate of pSCD is closer to standard SCD for smaller
K, n, or P . In practice, we can adjust the staleness by selecting
a smaller global inner-product update period P , thus resulting in a
better convergence rate, as we show in the next section.

Runtime overhead. Performing a global inner-product update
((2) in Algorithm 2) has the same memory access cost as the main
part ((1) in Algorithm 2). If the main part (1) has a runtime of
Tmain, the runtime for one pSCD epoch can be approximated by
Tepoch = Tmain × (1 + 1/P). If a relatively high P value deliv-
ers good convergence, the overhead by part (2) becomes minimal,
because (2) needs to be executed infrequently.

Limitation. One limitation of pSCD in a DBMS is that it as-
sumes the input data is shuffled—when the data is ordered, the con-
vergence of the pSCD approach could be slower. In our CPU and
FPGA based implementations, we support both pSCD and standard
SCD, the latter is scan order resilient. The user may use both de-
pending on the assumptions on the underlying data. The study of
scan order for stochastic first order methods is a challenging prob-
lem open for decades. Recent theoretical studies on this topic [17,
49, 44] do not completely eliminate data shuffling.

Evaluation. To evaluate the overall efficiency of pSCD, we
need to compare both its convergence rate and data processing rate
to those of standard SCD. Compared to standard SCD, the con-
vergence rate, termed statistical efficiency, is expected to be less
for pSCD due to its staleness. However, the data processing rate,
termed hardware efficiency, is expected to be higher for pSCD due
to its cache-locality. In the following sections, our goal is to show
that, for pSCD, the advantage offered by hardware efficiency is
larger than the disadvantage in its statistical efficiency. Thus, pSCD
can lead to an overall shorter training time.

Table 1: Data sets used in the evaluation.

Name # Samples # Features Size Type

IM 332,800 2,048 2,726 MB classification
AEA 32,769 126 16,5 MB classification
KDD1 391,088 2,399 2,188 MB classification
KDD2 131,329 2,330 1,224 MB classification
SYN1 33,554,432 16 2,147 MB regression
SYN2 2,097,152 256 2,147 MB regression

Table 2: Training quality results comparing SCD and pSCD, with
varying inner-product update period P . For pSCD results, we use
red for worse and green for better results compared to SCD.

Configuration
Valida-
tion
Metric

SCD pSCD
P=∞

pSCD
P=100

pSCD
P=10

Data set: IM
Epoch = 200
Train Size = 266k
Test Size = 66k
Partition Size = 16k

Log
Loss 0.10154 0.10575

+4.15%
0.10380
+2.23%

0.10191
+0.36%

Test
Accu-
racy

96.17% 96.071%
-0.10%

96.109%
-0.06%

96.196%
+0.03%

Data set: AEA
Epochs = 5k
Train Size = 32k
Test Size = 59k
Partition Size = 16k

Log
Loss 0.13531 0.25927

+91.61%
0.14972
+10.65%

0.13947
+3.07%

Test
AUC 0.91029 0.86880

-4.56%
0.90891
-0.15%

0.91013
-0.02%

Data set: KDD1
Epochs = 1k
Train Size = 391k
Test Size = 45k
Partition Size = 16k

Log
Loss 0.24672 0.24712

+0.16%
0.24701
+0.12%

0.24698
+0.11%

Test
AUC 0.62430 0.62369

-0.10%
0.62274
-0.25%

0.62226
-0.33%

Data set: KDD2
Epochs = 1k
Train Size = 131k
Test Size = 45k
Partition Size = 16k

Log
Loss 0.32285 0.32294

+0.03%
0.32286
+0.003%

0.32285
0%

Test
AUC 0.61145 0.61144

-0.002%
0.61145
0%

0.61139
0.01%

3.2 Statistical Efficiency
In this section, we evaluate the statistical efficiency—convergence

behavior—of pSCD against standard SCD, using data sets from
real-world use cases (Table 1). We are interested in comparing the
convergence rate and the resulting model quality when using either
SCD or pSCD. Due to the large staleness introduced by pSCD, our
expectation is to observe a deviation in the final loss achieved after
N epochs when comparing the two algorithms. Our goal here is to
show that, in practice, the deviation is very limited and can further
be adjusted by tuning the global inner-product update period P .

Data sets. We select a variety of data sets which have relational
properties from Kaggle competitions, using MLBench from Liu
et al. [36] as a guideline. We also create a data set of our own
to have a large-scale real-world classification task: We run Incep-
tionV3 [54] neural network on ImageNet (ILSVRC 2012 contest)
to extract 2048 features from images, resulting in the IM data set.

• IM: Half the samples contain features extracted from cat images
(classes 281, 282, 283, 284) and the other half from dog images
(classes 153, 230, 235, 238), for classifying cats and dogs.

• AEA: Winning features [1] for Amazon employee resource ac-
cess/denial prediction competition.

• KDD1 and KDD2: Winning features [2] for the KDD Cup 2014
competition, predicting excitement about projects.

• SYN1 and SYN2: Synthetically generated data sets having vary-
ing number of samples and features with uniform random noise,
for throughput measurement purposes.

351

naive
AVX-1

AVX-2
AVX-4

AVX-8
AVX-14

0
5

10
15
20
25
30
35
40
45
50

Processing Rate (GB/s)

(a) Lasso, SYN1

naive
AVX-1

AVX-2
AVX-4

AVX-8
AVX-14

0
5

10
15
20
25
30
35
40
45
50

(b) Lasso, SYN2

naive
AVX-1

AVX-2
AVX-4

AVX-8
AVX-14

0
5

10
15
20
25
30
35
40
45
50

SCD pSCD

(c) Logreg, IM

Figure 4: SCD and pSCD, throughput for SYN1, SYN2 and IM. AVX-N denotes using an N-threaded CPU implementation with AVX
intrinsics. Partition size: 16384. For pSCD P = 10.

100 200
0

0.2

0.4

0.6

Epochs

Logreg Loss

(a) IM.

0 2,0004,000
0

0.2

0.4

0.6

Epochs

(b) AEA.

500 1,000
0

0.2

0.4

0.6

Epochs

SCD
P = ∞
P = 100
P = 10

(c) KDD1.

Figure 5: Convergence of the Logreg loss for three data sets trained
with either SCD or pSCD with varying P .

Methodology. For each data set, we select a certain configura-
tion and perform first SCD, then pSCD with varying inner-product
update periods, P . Step size is held constant at 4. We evaluate the
convergence both by the optimization objective (loss function) and
a test score: for IM we split the data set into 80/20 training/test
sets; for AEA, KDD1 and KDD2 we perform inference on the test
sets given in their respective Kaggle competitions and submit the
predictions to Kaggle to obtain an area under curve (AUC) score.
The scores we obtain are ranked in the top 50 in Kaggle for the
respective data sets.

Analysis. The results are in Table 2: We present the deviation
from the SCD results as percentages. As expected, the negative im-
pact by the staleness of pSCD shows itself in both the loss function
evaluation and the test scores. However, for all data sets, the nega-
tive effect is very limited. Furthermore, it can be decreased by us-
ing a lower global inner-product update period P : We observe loss
and test score values closer to the ones obtained with SCD when
using lower P (= 10), which means a global inner-product update
is performed more frequently. Performing the global update fre-
quently turns out to be especially important for AEA data set. The
reason for this is that it has a low number of features (32k), leading
to just two partitions (each sized 16k). When those two partitions
have substantially different distributions, frequent global updates
are needed to share information regarding optimization steps the
two partitions take separately during pSCD. The fact that even rel-
atively infrequent global updates lead to very satisfactory results in
Table 2 shows the usefulness of pSCD to train generalized linear
models, for real-world problems. In Figure 5, we plot the Logreg
loss over the number of epochs performed for 3 data sets. Apart
from AEA, all curves are overlapped, making a visual distinction
not possible. For AEA, we observe that for P = 10, a total visual
overlap happens. From the results in this section, we see that not
only the final loss with pSCD is very close to SCD, but the empir-
ical convergence rate is also very similar. Thus, we conclude the
statistical efficiency of pSCD is very close to that of SCD.

3.3 Hardware Efficiency
Previously we showed that epochs of SCD and pSCD are statis-

tically very similar. Now our goal is to show that an epoch of pSCD
can be performed faster on a multi-core CPU, compared to SCD;
thus leading to an overall shorter training time. We are interested
in the sample processing rate reported in GB/s, calculated by divid-
ing the total size of all samples in a data set (number of samples ×
number of features× 4 Bytes) by the time required for one epoch.

CPU performance. On the CPU we have multi-threaded imple-
mentations of both SCD and pSCD, using Intel intrinsics to take full
advantage of the AVX (256-bits) and fused multiply-add (FMA) in-
structions. We parallelize standard SCD by distributing the partial
gradient computation to multiple threads and we synchronize be-
fore the coordinate update step for each feature. Parallelizing pSCD
is much simpler, since each thread can independently work on its
own partitions without any need for synchronization, which is only
needed when performing a global inner-product update. In Fig-
ure 4, we report numbers using synthetic and IM data sets, covering
a range of dimensionality and sample count properties. The advan-
tage of using intrinsics and multi-core parallelism (AVX-N, denot-
ing N-threaded CPU implementation) is clearly visible, compared
to a naive single-threaded implementation. For Lasso with AVX-14
doing pSCD, the processing rate reaches the memory bandwidth of
the CPU (Figure 4b). This is thanks to the well parallelizable and
cache-local processing nature of pSCD. The performance differ-
ence between SCD and pSCD is most noticeable for SYN1, in Fig-
ure 4a: The large number of samples in that data set leads to a large
inner-product vector (∼135 MB) that cannot be kept in the CPU’s
cache. SCD needs to read the inner-product vector from main mem-
ory during gradient computation and inner-product update, leading
to lower compute efficiency. For data sets where the inner-product
vector fits the last level cache, for example with SYN2 (∼ 8 MB),
this effect is less detrimental, however still visible (Figure 4b). Do-
ing Logreg on the CPU has larger overhead due to having to com-
pute the sigmoid function during gradient computation, therefore
the throughput is substantially reduced for IM (Figure 4c).

Conclusion. We have shown that pSCD has better hardware ef-
ficiency than SCD on a multi-core CPU. Although this is already
useful when the target platform is a multi-core CPU, the advantage
of pSCD over SCD will be more pronounced for an FPGA imple-
mentation, as it will be discussed in Section 6.

4. EMPIRICAL COMPARISON TO SGD
In this section we empirically compare the coordinate descent

based methods (SCD and pSCD) with stochastic gradient descent

352

Table 3: Algorithms used in comparison analysis. AVX-N denotes
using an N-threaded CPU implementation with AVX intrinsics.

Name Minibatch Size Step Size Impl. Storage

SGD-tf 512 0.1 default row-store
SGD-row 1 0.01 AVX-1 row-store
SGD-col-1 1 0.01 AVX-1 column-store
SGD-col-8 8 0.1 AVX-1 column-store
SGD-col-64 64 0.5 AVX-1 column-store
SGD-col-512 512 0.9 AVX-1 column-store

Name Partition Size Step Size Impl. Storage

SCD - 4 AVX-1 column-store
pSCD 16384 4 AVX-1 column-store

(SGD) regarding convergence speed. Our goal is to understand un-
der which circumstances SCD/pSCD is preferable over SGD, fo-
cusing on the assumption of columnar storage.

Algorithms. The algorithms used in this analysis are given in
Table 3. For SGD, we use the term minibatch to refer to how
many samples are used to compute a partial gradient. As a base-
line (SGD-tf), we use the standard SGD optimizer in Tensorflow
v1.11 to perform logistic regression (Logreg). The performance of
SGD-tf for a minibatch size of 1 is quite low (we assume due to
the overhead of calling its C++ back-end frequently), so we use a
minibatch size of 512 for SGD-tf. The other algorithms are our
own AVX-optimized CPU implementations. SGD-row performs
standard SGD with a minibatch size of 1 on row-store data. Al-
though its minibatch size is much lower than what we used in
Tensorflow, it achieves a higher throughput due to being a native
implementation and therefore provides a good baseline for SGD
performance on row-stores. SGD-col-1 to SGD-col-512 perform
SGD on column-store data, with varying minibatch sizes. SCD
and pSCD are coordinate-descent based methods as described pre-
viously, working on column-store data.

Methodology. We use single-threaded CPU implementations for
each algorithm to obtain a fair comparison. We explain the reason
for doing a single threaded analysis in the following. SGD when
training linear models is not straightforward to parallelize because
of its iterative nature: In each iteration the model under training is
updated and the next iteration requires the up-to-date model, cre-
ating a tight dependency. There are many studies about modify-
ing SGD by relaxing certain constraints, such as allowing asyn-
chronous updates to enable better thread parallelism [45, 12, 38].
However, since the efficiency of the algorithm depending on the
storage layout is an orthogonal issue to how it is modified for better
thread parallelism, using standard SGD with one thread serves the
purposes of our analysis. Although SCD/pSCD is straightforward
to parallelize without any modifications to the algorithm, to remain
fair regarding how much compute resources are used, we use also
one threaded implementations for SCD/pSCD in this analysis. All
algorithms are implemented using AVX (256-bits) instructions to
take full advantage of one core. For all algorithms, we tune the step
size by sweeping over a range and then use the one that delivers the
best final loss. For SGD algorithms, the step size is diminished at
each epoch (step size/epoch number).

Analysis of SGD performance. Figure 6 shows the process-
ing rate of all algorithms when running Logreg on IM data set.
Higher bars indicate that the algorithm can execute epochs faster,
corresponding to better hardware efficiency. When the underly-
ing storage layout is a row-store, SGD is the clear winner in hard-
ware efficiency. However, when the same algorithm is run on a
column-store (SGD-col-1), the throughput drops more than 20x.
This is because, regular SGD—having a minibatch size of 1—is

SGD-tf

SGD-ro
w

SGD-co
l-1

SGD-co
l-8

SGD-co
l-6

4

SGD-co
l-5

12
SCD

pS
CD

0

1

2

3

4

5

Pr
oc

es
si

ng
R

at
e

(G
B

/s
)

row-store column-store

Figure 6: Throughput of algorithms while running Logreg on IM.
For pSCD P = 10.

very inefficient when gathering individual values of a row from dif-
ferent memory locations. Moreover, with a minibatch size of 1, any
means of achieving instruction level parallelism is also blocked due
to a tight data dependency, where each iteration depends on the pre-
vious iteration’s result. This observation is consistent with previous
work, analyzing SGD performance on row vs. column stores [59].

Still, there is a way to improve the hardware efficiency of SGD
on column-stores: Increasing the minibatch size. This eliminates
the tight data dependency, allowing unrolling the innermost loop
of the algorithm and the usage of SIMD parallelism on minibatch
sized columns. Furthermore, since we read minibatch size chunks
from the memory contiguously, we also increase memory access
efficiency. As we observe in Figure 6, larger minibatch variants of
SGD (SGD-col-8 ... SGD-col-512) have a much higher processing
rate, nearly reaching SCD/pSCD on columns-stores.

Hardware and statistical efficiency combined. To get a com-
plete picture of algorithm efficiency, we evaluate hardware and sta-
tistical efficiency combined. While the hardware efficiency tells us
how fast an algorithm can complete a training epoch (correspond-
ing to the results in Figure 6), the statistical efficiency tells us how
much optimization progress the algorithm makes in that epoch.

In Figure 7 we show the convergence curves obtained by run-
ning different algorithms on different data sets, plotted over time.
Thus we can observe which algorithm reaches a lower optimiza-
tion objective faster. While the statistical efficiency for SGD-row
and SGD-col-1 are—by definition—exactly the same, the differ-
ence in hardware efficiency discussed earlier leads to SGD-row’s
much faster convergence, as observed for all data sets. The statis-
tical efficiency of SGD-col-512 can remain practically unaffected
by increasing the initial step size (Table 3) and it offers a good al-
ternative to SCD in terms of hardware efficiency, if the underlying
data format is column-store. The statistical efficiency of coordinate
descent methods is slightly lower than SGD variants for IM data
set (Figure 7c), having a large number of samples to number of
features ratio; nevertheless SCD/pSCD reaches as good a solution
after the same number of epochs. The difference in convergence
rates is explained well in theory [9] that favors SGD for data sets
with large number of samples to number of features ratio.

FPGA-related considerations. Large-minibatch-SGD gives a
comparable hardware efficiency to pSCD even when working with
a column-store, on a CPU. We discuss here if large-minibatch-SGD
would be also a viable alternative to pSCD for FPGA acceleration.
We consider FPGA as a target platform, because our final goal is to
efficiently combine on-the-fly data transformation with a training
algorithm. When implementing large-minibatch-SGD on FPGA,
following difficulties regarding resource consumption may arise:

353

100 101 102
0

0.2

0.4

0.6

0.8

Time (s)

L
og

re
g

L
os

s
SGD algorithms: SGD-row SGD-col-1 SGD-col-512
SCD algorithms: SCD pSCD

row-store column-store

(a) Convergence over time for KDD1.

10−1 100 101 102
0

0.2

0.4

0.6

0.8

Time (s)

row-store column-store

(b) Convergence over time for KDD2.

100 101 102 103
0

0.2

0.4

0.6

0.8

Time (s)

row-store
column-store

(c) Convergence over time for IM.

Figure 7: Convergence of the Logreg loss using different training algorithms on three data sets, plotted over time to observe the combined
effect of hardware and statistical efficiencies. Partition size: 16384. For pSCD P = 10.

(1) For efficient usage of the limited memory bandwidth, the
model needs to be kept in FPGA on-chip memory (BRAM). Oth-
erwise, half the memory bandwidth will be used for reading the
model. This problem does not exist in pSCD, as only one coor-
dinate of the model needs to be updated per each partition, thus
leading to less BRAM usage.

(2) For SGD, a large minibatch size is required to saturate the
memory bandwidth when reading individual columns from a column-
store. Empirical studies on our platform show that around 32 cache-
lines (4KB) need to be read from subsequent addresses to saturate
the bandwidth [51], leading to a minibatch size of 512. Besides
potentially lowering the statistical efficiency [9], larger minibatch
sizes would also increase the BRAM usage as discussed next.

(3) In SGD, a row is required twice during an update, once in
the initial dot product and once in the partial gradient computation.
To avoid wasting memory bandwidth, an entire minibatch of all
rows need to be buffered during an update, leading to large BRAM
usage. For instance, to run KDD1 with 2399 features and a batch
size of 512, we need 4.9 MB of BRAM which is around 70% of
our target FPGA. Such high resource usage makes meeting timing
constraints for an FPGA design more difficult, potentially requiring
reducing the clock frequency. This problem does not exist in pSCD,
since only one column is needed per update and therefore resource
usage does not scale with dimensionality.

With these arguments, large-minibatch-SGD seems to be less
suitable than pSCD for an FPGA implementation when working
on column-stores. However, when working on row-stores, efficient
linear model training designs have been proposed on FPGAs [25] as
well, potentially reaching the same hardware efficiency as pSCD.

Conclusion. When the underlying storage format is row-store,
the clear choice of algorithm is SGD, providing both high hardware
and statistical efficiency. This conclusion is also inline with exist-
ing in-DBMS machine learning solutions [18, 10, 6], which work
on row-store format and use SGD for training. When we are deal-
ing with column-stores, both large-minibatch-SGD and SCD/pSCD
emerge as good candidate algorithms. The main advantage of pSCD
over large-minibatch-SGD is its suitability for an FPGA implemen-
tation when processing column-store data. This leads to an efficient
and scalable FPGA implementation, which in turn can be combined
with other necessary data processing modules such as decompres-
sion and decryption, as we discuss in Section 6.

5. NON-DISRUPTIVE INTEGRATION
A primary limitation of integrating ML algorithms into a DBMS

is that the two systems usually have different assumptions about the
underlying data. In previous sections, we described the inconsis-

no compression:

2x compression:

3x compression:

4x compression:

32-bit
base

31-bit
delta

31-bit
delta7 deltas

2-bit
meta

32-bit
base

14-bit
delta

14-bit
delta

2-bit
meta15 deltas

32-bit
base

9-bit
delta

9-bit
delta

2-bit
meta23 deltas

32-bit
base

7-bit
delta

7-bit
delta

2-bit
meta31 deltas

Figure 8: An illustration of the block-based delta encoding
scheme.

tency between the nature of SGD and the storage layout in column-
stores. We offered pSCD as a solution, enabling both statistical and
hardware efficient generalized linear model training on a column-
store, with a CPU. However, DBMS usually store and manage data
in ways that are inherently unfriendly to machine learning algo-
rithms. For instance, column-stores are very suitable to being com-
pressed efficiently thanks to the fact that items of the same type
are stored next to each other. DBMS take advantage of this and
store tables compressed. Sensitive applications also might choose
to keep the data encrypted at all times. However, ML algorithms
by default cannot work directly on compressed or encrypted data.

The naive solution of creating a separate copy of data properly
formatted for ML purposes is usually less than ideal. First, it cre-
ates maintenance problems and requires additional storage by cre-
ating two copies. Second, it defeats the benefits of certain trans-
formations: Keeping a decompressed copy defeats the purpose of
efficient storage and keeping a decrypted copy defeats the security
objective. Therefore, non-disruptive integration requires on-the-fly
data transformation from its in-storage state to that required by ML
only when it is needed. We consider two such data transformations:
delta-encoding decompression and AES decryption.

Block-based Delta-Encoding. The encoding tries to find small
delta series in a column and packs the base and the deltas in 256-bit
wide blocks, ergo block-based. During decompression, the blocks
can be processed independently, thus allowing a high degree of
parallelism. Choosing 256-bit wide blocks provides a nice trade-
off between compression capability vs. ease of decompression: A
larger block would increase compression capability, while decreas-
ing the ease of decompression due to less independence.

Depending on the largest delta found in a series, a compressed
block can have the following number of values (Figure 8): 8, 16,
24 or 32. The first value in a 256-bit block is always the base,
which takes 32 bits. The rest of the block is used to store deltas: 7,
15, 23 or 31, taking 31, 14, 9 or 7 bits, respectively. At the end of
each block, 2 bits are reserved for meta data storing the information
about the compression rate applied to the current block.

354

0 5 10 15 20 25 30
0
5

10
15
20
25
30
35
40
45
50

Number of Threads

Pr
oc

es
si

ng
R

at
e

(G
B

/s
) just read read/write

decompress decrypt

Figure 9: CPU scaling of read bandwidth, read/write bandwidth,
decryption and decompression rates.

Algorithm 3: Steps in AES-256 decryption
AESDEC (in[127:0], out[127:0], last):

temp = InvShiftRows(in)
temp = InvSubBytes(temp)
if last then

out = temp
else

out = InvMixColumns(temp)

AESDEC-256 (in[127:0], out[127:0])
AESDEC (in, temp1, 0)
... — multiple executions of AESDEC
AESDEC (temp12, temp13, 0)
AESDEC (temp13, out, 1)

Decompression Performance. We perform a micro-benchmark
on our target CPU to analyze decompression rate and how it scales
with the number of threads used. In Figure 9, we show the de-
compression rate in comparison to both read bandwidth and simul-
taneous read/write bandwidth on the target CPU. We observe that
decompression is compute bound; as a result, the decompression
rate scales linearly with the number of threads until the core count
on the target CPU—14 cores—is reached. Therefore, we conclude
that on-the-fly decompression on the CPU is expected to lead to
substantial throughput reduction if performed before SCD.

AES-256 CBC Decryption. We use the Advanced Encryption
Standard (AES) with 256-bit key and ”Cipher Block Chaining”
(CBC) as the block cipher mode—this determines the block-size
for data that has to be encrypted and decrypted together. We se-
lect the block size of CBC to be the partition size of our ML al-
gorithms. On the target Xeon CPU, AES encryption/decryption is
supported by specialized intrinsic instructions which we use to im-
plement AES-256 in CBC mode.

Decryption Performance. The decryption steps are shown in
Algorithm 3, of which AESDEC is an intrinsic instruction provid-
ing 1.78 cycles/byte performance according to the Intel AES in-
trinsics manual [3]. This is consistent with our micro-benchmark
in Figure 9, considering a peak clock frequency of 3.2 GHz. Al-
though scaling better than decompression, decryption is still com-
pute bound, even when using all cores available.

On-The-Fly Data Transformation on CPU. In Figure 10 we
show a timing breakdown of individual parts when performing pSCD
with on-the-fly data transformation. As expected, data transforma-
tion times dominate on the CPU. Decompression on-the-fly is more
costly than decryption on-the-fly; when data is both compressed
and encrypted, the decompression time dominates. When we per-
form both encryption and compression, we first compress the data
in order to benefit from inherent numerical properties for a bet-
ter compression rate and then encrypt the compressed data. This
has the side effect of decryption being shorter when performed on

AVX-1 AVX-1
decompress

AVX-1
decrypt

AVX-1
decompress

decrypt

0
0.1
0.2
0.3
0.4
0.5

Ti
m

e
(s

)

decrypt time decompress time
dot-product time inner-product update time

Figure 10: CPU breakdown analysis for pSCD with on-the-fly data
transformation. Data: 1 Million samples, 90 features. Partition
size: 8192. For pSCD P = 10.

compressed data, simply because less data has to be decrypted, as
we see in the rightmost column in Figure 10. The breakdown ex-
periment confirms that on-the-fly data transformation when present
indeed dominates the runtime of ML training on a CPU.

6. SPECIALIZED HARDWARE
Since data transformation is so costly on the CPU, but is also

required for a seamless integration of ML into a DBMS, we of-
fer a specialized hardware solution. Our goal is to develop a data
processing pipeline performing both data transformation tasks and
machine learning. FPGAs excel at pipeline parallelism and due to
their micro-architectural flexibility they also offer acceleration for
vastly different compute tasks. Therefore, they are a suitable target
platform for providing ML with on-the-fly data reconstruction. In
this section we provide an in-depth description of an FPGA-based
SCD Engine and the implementation of two data transformation
tasks on the FPGA: decompression and decryption.

6.1 FPGA-based SCD Engine
The SCD Engine is designed to be runtime configurable regard-

ing many parameters: Data properties (number of samples and
features), partition size, global inner-product update period, and
whether to perform SCD or pSCD. We can also dynamically choose
which data transformation slots (e.g., decompression and decryp-
tion) to activate. Figure 11 shows a high-level diagram with the
essential blocks of the SCD Engine.

6.1.1 Fetch Engine
A Fetch Engine is responsible for generating read requests with

correct addresses to the memory; to read the inner-products, the
labels, and the samples—in partitions. The read responses (64 B
cachelines) arrive out-of-order from the memory links, so the Fetch
Engine performs reordering of cachelines according to their trans-
action IDs, using a large enough (256 lines) internal reorder buffer.

Address Calculation. Since we perform address translation on
the FPGA, the SCD Engine can work on a virtual address space.
At the start of each epoch, the offsets for the inner-products, the
labels, and the feature columns are read by the Fetch Engine and
stored internally for calculating final addresses.

The essential part of final address calculation is partition off-
set determination, for which there are two modes of operation: (1)
If the data is stored regularly—if the offsets for partitions can be
computed—, then the partition offsets are calculated on the engine
and the final address can be determined with those. (2) If the data
is stored irregularly—for instance in the compressed case each par-
tition might occupy a different size in memory—, then the partition
offsets are stored in the memory and they first have to be read by
the Fetch Engine before the final addresses can be determined.

355

16x

16x

16x

Data
Transformation 1

Data
Transformation 2

Fetch Engine

read
request

write
request

read
response

Compute Engine

Label
Store

Product
Store 1

Column
FIFO

Product
Store 2

Step Size,
Lamda

- --

x xx

- --

Input
Stream
Of
Column
Values

Write
Back

Engine

notify

16x x xx

+ + +

+Dot
Product

Sync

Reorder
Responses

Address
Calculate

1

2

3

4

Model
Store

Global Inner-
Product Update

5
0 1

16x SS

T

Figure 11: A high-level diagram showing the parts of the SCD
engine on the FPGA.

In the latter mode, where the partition offsets have to be read
from the memory, the Fetch Engine has to wait as long as the mem-
ory latency before it can start requesting the partition. This causes
a substantial reduction in read throughput, if only one SCD Engine
is employed. However, when multiple SCD Engines are employed,
as discussed later in Section 6.1.4, there are enough requests gen-
erated to hide this effect, as we show later in our evaluation. The
effect is similar to that observed in join algorithms where a large
number of threads can help hide memory latencies [8].

Fetch Frequency. The Fetch Engine is allowed to request one
complete partition without any control by the Compute Engine,
which is further down in the pipeline. However, in order to start
requesting the next partition, a notification has to come from the
Compute Engine, as shown in Figure 11. This notification is gener-
ated once an entire partition is received by the Compute Engine.
The longer the latency of the data transformation, the more the
Fetch Engine has to wait until it can start requesting a new par-
tition. The throughput reduction caused by this usually remains
small, even for high latency operations such AES-256 decryption,
since the read time for the partition sizes we are using (e.g., 64 KB)
is much larger than internal data transformation latencies.

SCD vs. pSCD. The read pattern of the Fetch Engine depends
on whether the FPGA is supposed to perform SCD or pSCD. In
the pSCD case, a partition from the inner-products and labels are
fetched and stored in the Compute Engine, then the Fetch Engine
proceeds to reading the corresponding partitions from all feature
columns. Since the inner-products and the labels are read only

once per partition in the case of pSCD, the memory access com-
plexity of one epoch is proportional to nm, where n is the number
of features and m is the number of samples. In the SCD case,
the access complexity is larger, because the intermediate state that
needs to be kept is much larger than in pSCD: For each column, the
labels are read once, the inner-products and all feature columns are
read twice (once for the gradient computation, once for the inner-
product update), and the inner-products are written once, resulting
in a memory access complexity proportional to 6nm.

Global Inner-Product Update. In pSCD, we perform a global
inner-product update at every P epochs, with an aggregated model.
The Fetch Engine enables this operation by reading the aggregated
model from the memory and then scanning all columns in the par-
tition pattern, just as in normal mode of operation. Labels and cur-
rent inner-products do not have to be read, as they are not required
in this operation. The memory access complexity of this operation
is equal to performing one epoch of pSCD, nm, where n is the
number of features and m is the number of samples.

6.1.2 Compute Engine
The Compute Engine is responsible for calculating the gradient

of the current partition and for updating the local inner-product. It
can also perform a global inner-product update with an averaged
model kept in Model Store, a step required in pSCD. It is designed
to consume one 64 B cacheline, with 16 single-precision floating-
point values at every clock cycle, resulting in a processing rate of
12.8 GB/s when clocked at 200 MHz.

Compute Pipeline. In the following, we give a high-level de-
scription of the compute pipeline shown in Figure 11. Here, we first
explain the mode of operation, when Global Inner-Product Update
(Figure 11) is not performed. Partition-sized inner-products and la-
bels are kept in Product Store 1 and Label Store. When a feature
column is fed into the Compute Engine, first the differences be-
tween inner-products (for Lasso without and for Logreg with sig-
moid S) and labels are calculated (1), then the dot product between
the differences and the column values is calculated (2). In the
meantime, the column is written into the partition-sized Column
FIFO, waiting there to be used during the inner-product update.
Once the dot product is ready, it is multiplied with the step size and
regularization term is applied as in the thresholding function in Al-
gorithm 1. The resulting value is the model update for the current
coordinate, or feature. This value is written back to the memory
and also used internally in the Compute Engine to update the local
inner-product. The inner-product update takes place by multiply-
ing the column values from Column FIFO with the model update
(3) and subtracting the values from the local inner-product (4) re-
siding in Product Store 2. Notice that we keep two inner-product
stores in the Compute Engine. The reason is that we use single-port
read/write Block-RAM (BRAM) resources on the FPGA to imple-
ment local storage. As a result, at every clock cycle data from only
a single address can be read from a BRAM. Since we need to read
the inner-product both at the input for the dot product and during
the inner-product update, we keep two replicas of the inner-product
and update both of them at the same time.

Global Inner-Product Update. In the second mode of opera-
tion, when Global Inner-Product Update (Figure 11) is active, the
aggregated model is kept in the Model Store. The columns are read
just as in normal mode of operation but instead of performing a
dot product, only a scalar-vector multiplication (4) is performed
between the values in the model store (5) and values from the Col-
umn FIFO. Mathematically, the goal of this computation is to cal-
culate the dot products between the aggregated model and all sam-
ples in the data set, to obtain an up-to-date inner-product vector.

356

SCD
Engine

SCD
Engine

SCD
Engine

SCD
Engine

400 MHz

200 MHz

Response ArbiterRequest Arbiter

Async.
FIFOs

Load Balancer

64 B x 400 MHz =
25.6 GB/s

12.8 GB/s

Intel Endpoint (1 QPI, 2 PCIe)

Figure 12: Load balancing to employ multiple SCD Engines on
the FPGA.

6.1.3 Write Back Engine
The Write Back Engine is responsible for writing the model up-

dates and updated inner-products back to the memory. Since the
memory interface is granular as a 64 B cacheline, writes also have
to be issued in this granularity. For inner-product writes, this hap-
pens naturally, because the interface to Product Stores are 64 B
wide. For model updates, however, the Write Back Engine concate-
nates 16 of them to have a complete cacheline before requesting a
write to the memory. That means model updates are written for
every 16 columns processed. If the number of columns modulo 16
is larger than 0, the end of processing for the final column triggers
the write back with a padded cacheline.

SCD vs. pSCD. For the pSCD case, the updated inner-products
are written back after all columns are processed, resulting in a write
complexity proportional tom, the number of samples. For the SCD
case, the updated inner-products have to be written back after each
processed column, since local storage is not large enough, resulting
in a write complexity proportional to mn.

6.1.4 Employing Multiple SCD Engines
One SCD Engine can potentially process data close to its max-

imum processing rate (64 B × 200 MHz = 12.8 GB/s), if a very
large partition size is selected. A large partition size means that
the Fetch Engine can request more data at a time without waiting.
However, in our evaluation, we observe that even using a relatively
large partition (64 KB) leads to around 9 GB/s sample processing
rate for the SCD Engine, due to the high memory access latency
(∼250 ns). Furthermore, when operating in dynamic partition off-
set reading mode, the high memory latency hurts performance even
more, as explained in Section 6.1.1, around 5 GB/s sample process-
ing rate. To overcome this limitation and to saturate the available
memory bandwidth for the FPGA (∼17 GB/s), we put multiple
SCD Engines to work. The engines can process samples completely
independently due to the well parallelizable nature of pSCD.

To work with multiple SCD Engines, we need a load balancer, as
in Figure 12. The load balancer talks to the Intel Endpoint at 400
MHz, enabling a peak data processing rate of 25.6 GB/s. There
are asynchronous FIFOs in the load balancer, responsible for the
necessary clock domain crossing: 4 FIFOs for requests, 4 FIFOs
for responses. The reason for keeping SCD Engines clocked at 200
MHz is to make meeting the timing requirements for the FPGA
much easier; also, 4 SCD Engines at 200 MHz provide an aggre-
gate processing rate already enough to saturate the memory band-
width. During runtime, we can select how many engines we want
to use. We use this to benchmark how overall throughput can be
improved when multiple engines are employed, as discussed dur-

N
o

 C
o

m
p

.
(7

 a
dd

e
rs

)

256-bit Line

2
x

 C
o

m
p

.
(1

5
 a

d
d

e
rs

)

3
x

 C
o

m
p

.
(2

4
 a

d
d

e
rs

)

4
x

 C
o

m
p

.
(3

1
 a

d
d

e
rs

)

meta
00 01 10 11

Arbiter

256-bit Line

A
E

S
-2

5
6

512-bit Ciphertext
127:0255:128383:256511:384

A
E

S
-2

5
6

A
E

S
-2

5
6

A
E

S
-2

5
6

512-bit Plaintext

FIFO 2 FIFO 3FIFO 1FIFO 0

FIFO
3

FIFO
2

FIFO
1

FIFO
0

D
e

c
o

d
e

rs

a) Decompression Pipeline b) Decryption Pipeline

Figure 13: Decompression and decryption pipelines on the FPGA.

ing the evaluation. With 4 SCD Engines, the memory latency can
be hidden well and enough requests are generated to saturate the
memory bandwidth.

Regarding load balancing, we assign partitions as equally as pos-
sible among SCD Engines. Each Engine reads and writes data from
its own partitions in the memory. Thus, the load balancer is passive
and merely arbitrates access to the memory port: read/write re-
quests from each Engine are tracked and replies are forwarded ac-
cordingly. The load balancer has to keep track of as many cacheline
requests as Engines can produce in-flight, that is 256 cachelines.

6.2 On-The-Fly Data Transformation
The advantage of the architectural flexibility of an FPGA shows

itself most when data processing can be done as a pipeline. Deep
pipelines on FPGAs turn the problem of achieving high through-
put into a question of whether there are enough resources, instead
of counting cycles as done for a CPU. As much as the available re-
sources on the FPGA allow, data processing modules can be put in a
pipeline, resulting in an overall throughput determined by the slow-
est module. If all modules process data at the same rate, then the
number of modules in the pipeline does not affect the throughput, it
only affects resource consumption. Thanks to pipeline parallelism,
when we put data transformation slots in front of the Compute En-
gine, we enable on-the-fly data transformation at no throughput
reduction—if the data transformation happens at the same rate as
the Compute Engine, that is 64 B/cycle.

Delta-Encoding Decompression FPGAs excel at compression
and decompression tasks [47, 53, 16], mainly because they inher-
ently can access and manipulate data in a bitwise manner. We im-
plement block-based delta decompression on the FPGA using spa-
tial parallelism to handle multiple values in the same cycle, using
multiple adders. Determining the FPGA-based decompression per-
formance is straightforward by analyzing the design, shown in Fig-
ure 13. A 256-bit input line is fed to its corresponding decoder, de-
pending on its meta bits. In the case of 4x compression, the pipeline
has to produce 4 times as many lines as it consumes. Therefore, its
consumption rate in the worst case is 1 line per 4 cycles. We put
two such decompression pipelines when doing decompression in
front of the Compute Engine in order to handle 512-bit cachelines.
In the worst case, the theoretical rate of decompression is 4x less
than the rate of the Compute Engine. In practice we do not observe
any performance reduction related to this, mainly because one SCD
Engine does not read data as frequently to saturate memory band-
width in dynamic partition offset reading mode (Section 6.1.1).

AES-256 CBC Decryption When performing decryption on the
FPGA, we eliminate the performance disadvantages of the CPU.
Since FPGA-based designs are specialized and use a restricted mem-
ory interface, having decrypted values only on the FPGA might also

357

SCD pSCD

AVX-14
FPGA-1

AVX-14
FPGA-1

FPGA-2
FPGA-4

0
5

10
15
20
25
30
35
40
45
50

Processing Rate (GB/s)

(a) Lasso, SYN1

SCD pSCD

AVX-14
FPGA-1

AVX-14
FPGA-1

FPGA-2
FPGA-4

0
5

10
15
20
25
30
35
40
45
50

(b) Lasso, SYN2

SCD pSCD

AVX-14
FPGA-1

AVX-14
FPGA-1

FPGA-2
FPGA-4

0
5

10
15
20
25
30
35
40
45
50

raw data compressed data
encrypted data compressed and encrypted data

(c) Logreg, IM

Figure 14: SCD and pSCD, throughput for SYN1, SYN2 and IM. AVX-N denotes using an N-threaded CPU implementation with AVX
intrinsics. FPGA-N denotes using N SCD Engines simultaneously. Partition size: 16384. For pSCD P = 10.

provide a security advantage, although recent work [43] has shown
side-channel attacks are possible in multi-tenant FPGA settings. In
Figure 13 we show the pipelined design for performing AES-256
decryption in CBC mode. Each AES-256 block is implemented as a
deep pipeline on the FPGA, performing the transformations shown
in Algorithm 3. We implement the arithmetic functions in the Ga-
lois field using look-up tables on the FPGA. The pipelined design
in Figure 13 is able to decrypt data at 12.8 GB/s. When put in front
of the SCD Engine, it causes no reduction in throughput.

6.3 Evaluation with FPGA
In this section we aim to show the processing rate of the FPGA

for pSCD, focusing on the capability to perform on-the-fly data
transformation (decryption/decompression) without performance re-
duction, thus offering better overall hardware efficiency for pSCD
than a multi-core CPU. In Figure 14, we present the performance
for the CPU and FPGA designs performing SCD and pSCD with
on-the-fly delta-encoding decompression and AES256-CBC decryp-
tion. We report the processing rate in GB/s, calculated by dividing
the total size of all samples in a data set (number of samples ×
number of features × 4 Bytes) by the time required for one epoch.

FPGA performance. The reduced memory access complexity
of pSCD helps the FPGA more than it helps the CPU , simply be-
cause the FPGA has a lower memory bandwidth (∼17 GB/s) com-
pared to the CPU (∼50 GB/s). As a result, we observe a rela-
tively low performance for the FPGA performing standard SCD
compared to the CPU (Figure 14). When we perform pSCD, the
FPGA processes samples at a much higher rate, due to the better
intermediate state locality provided by partition-based processing.
With 4 SCD Engines operating in parallel (FPGA-4), the FPGA
processes samples at the maximum available memory bandwidth of
∼17 GB/s, for relatively high dimensional data sets, SYN2 and IM.
For SYN1, the processing rate for samples is around 15 GB/s, lower
compared to the other ones, because SYN1 has less columns; there-
fore more inner-product updates happen per column processed.

Data transformation on the FPGA. The advantage of the FPGA
shows itself most when performing on-the-fly data transformation.
When doing decompression, the FPGA-1 performance is lower be-
cause partition offsets have to be fetched from the memory dynam-
ically, as explained in Section 6.1.1. However, the latency caused
by this dynamic offset fetching can be hidden when more SCD En-
gines are employed: For FPGA-4, we see that processing com-
pressed data might even increase performance on the FPGA (Fig-
ures 14a and 14b) because in total less data has to be read from the
memory. Performing just decryption on-the-fly is shown to come

1× 1.248× 2.324× 4×

5

10

15

20

Compression Rate

Processing Rate (GB/s)

AVX-14 SCD, decomp
AVX-14 pSCD, decomp
FPGA-4 SCD, decomp
FPGA-4 pSCD, decomp

(a) Compression rate analysis. For
pSCD P = 10.

1 2 4 8 16 32

10

20

30

40

50

P

Processing Rate (GB/s)

AVX-14 pSCD
AVX-14 pSCD, decomp+decrypt
FPGA-4 pSCD
FPGA-4 pSCD, decomp+decrypt

(b) Global inner-product update
period P analysis.

Figure 15: Sample processing rate shown at different compression
rates and increasing global inner-product update periods P on the
multi-core CPU and FPGA. Lasso, SYN2. Partition size: 16384.

at no performance reduction. Performing both decompression and
decryption causes a slight decrease in the processing rate, around
8%, because of the circuit latency introduced by these operations:
The Fetch Engine has to wait slightly longer until it can request a
new partition. The effect of this latency could be hidden by using
a larger batch size than we used for these experiments (64 KB),
which comes at a higher on-chip storage consumption cost.

Effect of the compression rate. We show the effect of the cost
of decompression on the sample processing rate on the CPU and
the FPGA in Figure 15a. Higher compression rate means higher
cost of decompression, since more data is produced through delta
addition (Section 6.2). Against intuition, sample processing rate
increases with higher compression rate (=higher cost) for pSCD
on the FPGA. This shows that reading less data—thanks to higher
compression rate—is more beneficial than the increasing decom-
pression cost on the FPGA. Furthermore, it shows that the Compute
Engines are able to keep up with higher processing rates than the
memory bandwidth, which is the bottleneck of FPGA-based pSCD
when compression rate is 1×. The CPU also reads less data with a
higher compression rate, but higher decompression cost amortizes
this leading to a constant processing rate.

Effect of global inner-product update periodP . In Figure 15b,
we show the effect of the global inner-product update period for
pSCD. Performing a global inner-product update takes a similar

358

amount of time as performing one pSCD epoch without the global
update for Lasso, as analyzed in Section 3. We see this behavior
in the experiment, a higher P resulting in a higher processing rate
both on the CPU and the FPGA. As shown in Section 3.2, high
P values such as 10 still lead to high quality training, so that the
overhead by the global inner-product update can be kept minimal.

About inference performance. Since the FPGA is already mem-
ory bandwidth bound performing training with pSCD, inference on
the FPGA would not be any faster than the rates we observe in
Figure 14. For the CPU, significant throughput increase is also not
expected when doing only inference, because just the inner-product
update time is eliminated and that is only a small portion of the total
runtime, as we showed previously in Figure 10.

Conclusion. We have showed the advantage of using an FPGA
design, if the data needs to be decompressed or decrypted before
a machine learning task. However, if the data exists in a non-
transformed state, a multi-core CPU offers a faster solution. It is
important to mention that the FPGA design becomes memory band-
width bound and future FPGA-based architectures offering more
memory bandwidth could turn this trade-off more in favor of FPGA-
based solutions, even if the data does not need to be transformed.

7. RELATED WORK
ML in DBMS. As ML-based data analytics becomes common-

place, integrating ML functionality into a DBMS is ever more im-
portant and therefore a very active research field [55, 14, 15, 18, 29,
31, 30, 33]. The SAP HANA [14] Predictive Analysis Library en-
ables a wide range of ML algorithms in the form of SQLScript pro-
cedures. Both stochastic gradient descent and cyclical coordinate
descent (similar to standard SCD in this work) are given as possible
training algorithms, however details about the implementations are
not disclosed. Zhang et al. [59] provide an in-depth study on which
ML algorithms to use depending on the storage layout, focusing
on a NUMA-based CPU system, rather than the cache-conscious
or specialized hardware approaches we take in this work. Most
of the remaining work in this area focuses on row-store databases:
Feng el al. [15] consider gradient descent based methods, noting
its similar data access pattern with SQL aggregation and integrate
it into a row-store DBMS. Hellerstein et al. [18] propose MADlib
enabling SQL-based ML with user-defined-functions (UDF) pri-
marily on a row-store database (PostgreSQL); similar to how we
use MonetDB [20] UDFs, its main difference being columnar stor-
age. To our knowledge, our focus on performing ML natively on
column-store DBMS via coordinate-descent methods and our ap-
proach in using specialized hardware to work on transformed data
with high performance is unique among existing work.

Stochastic Coordinate Descent. Shalev-Shwartz et al. [48] in-
troduce stochastic coordinate update at each iteration and provide
a theoretical convergence analysis with tight convergence bounds.
Zhao et al. [61] use a minibatch-based coordinate descent approach,
where they, for each epoch, first compute an exact gradient and then
use that during minibatch-wise access to adjust partial gradients.
Our approach with pSCD is similar to this, as we perform global
inner-product updates every P epochs, similar to computing the ex-
act gradient; however, our approach is different in that K models
can be updated independently, thus allowing staled updates and en-
abling parallel processing with infrequent synchronization. Jaggi
et al. [22] introduce CoCoA, a communication efficient distributed
dual coordinate ascent algorithm. Our approach is similar in that
it also partitions a dual variable (the inner-product vector) into dis-
junct pieces and performs local optimization in a distributed way
followed by model averaging. While they analyze the local op-
timization and subsequent aggregation independently, we analyze

the effect of the frequency of model averaging from a staleness
point of view, similar to Ho et al. [19] and keep the number of coor-
dinate descent steps the same, regardless of how many aggregation
steps are performed. Liu et al. [35] perform SCD asynchronously
to enable better parallelism and show near linear speed-ups in dis-
tributed settings, however not eliminating cache inefficiencies. Re-
cently, coordinate-based methods have also been considered for
deep neural network (DNN) training [60].

Specialized Hardware in DBMS. Database acceleration with
specialized hardware, in the form of FPGAs, GPUs and ASICs,
has been a very relevant topic in recent literature [26, 27, 50, 58, 52,
34]. Oracle’s Sparc M7 processor [34] contains so-called database
analytic accelerator (DAX) engines on silicon, performing predi-
cate evaluation and decompression on-the-fly, the latter similar to
our approaches in this work. Fang et al. [13] also target on-the-fly
data transformation with an ASIC design, focusing on offloading
extract-transform-load workloads from the CPU, albeit not combin-
ing it with other computation directly on specialized hardware, as
we do in this work with decompression/decryption and SCD/pSCD.
Istvan et al. [21] implement a persistent key-value store, similar to
a noSQL database, on an FPGA-based system, using its on-the-fly
data transformation capabilities. However, since we are interested
in maintaining OLAP capability while providing efficient ML in
this work, noSQL databases are not a direct option.

Specialized Hardware for ML. Due to the data and compute in-
tensive nature of ML, specialized hardware designed for these algo-
rithms has a large potential to accelerate both training [23, 27, 37]
and inference [57, 40]. Similar to this work, Kara et al. [27] accel-
erate generalized linear model training on an FPGA; however they
use SGD on row-stores and focus on optimizing the architecture
for quantized input data, whereas we focus on coordinate-descent
based methods and performing on-the-fly data transformation.

8. CONCLUSION
In this paper we have focused on generalized model training

on column-stores using coordinate descent based methods. We
use partition based stochastic coordinate descent (pSCD), that im-
proves the memory access complexity of SCD, leading to better
training performance both on the CPU and FPGA. We show the
staleness of pSCD for model updates can be fine tuned, leading to
high quality convergence. On the systems side, we presented an
FPGA-based system capable of performing various compute inten-
sive data transformation tasks—decompression and decryption—in
a pipeline before an SCD engine, performing either SCD or pSCD
on the FPGA. We compared our FPGA-based system to an AVX-
optimized multi-core CPU implementation, showing that the multi-
core CPU is faster on raw data. However, once it has to perform
on-the-fly data transformation, its performance is reduced signif-
icantly; whereas the FPGA sustains high throughput even when
it performs decompression/decryption, due to pipeline parallelism.
We also compared pSCD to more popular SGD and discussed under
which circumstances the choice of pSCD over SGD makes sense.

The resulting system shows the advantages of using specialized
hardware for dataflow processing and machine learning, in a column-
store database setting. Our future work includes query optimization
to decide when to perform SCD either on the CPU or on the FPGA,
depending on which type of data transformation is needed.

9. ACKNOWLEDGMENTS
We thank Intel for their generous donation of the Xeon+FPGA,

Version 2 platform used in this work. This work has been partially
funded by the Microsoft Swiss Joint Research Center (JRC).

359

10. REFERENCES
[1] https://github.com/owenzhang/

Kaggle-AmazonChallenge2013.
[2] https://www.datarobot.com/blog/

datarobot-the-2014-kdd-cup.
[3] https://www.intel.com/content/dam/doc/

white-paper/advanced-encryption\
-standard-new-instructions-set-paper.
pdf.

[4] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, S. Madden,
et al. The design and implementation of modern
column-oriented database systems. Foundations and
Trends R© in Databases, 5(3):197–280, 2013.

[5] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. Orthogonal Security
with Cipherbase. In CIDR. Citeseer, 2013.

[6] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu,
E. Pasalic, T. L. Veldhuizen, and G. Washburn. Design and
implementation of the LogicBlox system. In Proceedings of
the 2015 ACM SIGMOD International Conference on
Management of Data, pages 1371–1382. ACM, 2015.

[7] J. Arulraj, A. Pavlo, and P. Menon. Bridging the archipelago
between row-stores and column-stores for hybrid workloads.
In Proceedings of the 2016 International Conference on
Management of Data, pages 583–598. ACM, 2016.

[8] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of
main memory hash join algorithms for multi-core CPUs. In
Proceedings of the 2011 ACM SIGMOD International
Conference on Management of data, pages 37–48. ACM,
2011.

[9] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization
methods for large-scale machine learning. SIAM Review,
60(2):223–311, 2018.

[10] Z. Cai, Z. Vagena, L. Perez, S. Arumugam, P. J. Haas, and
C. Jermaine. Simulation of database-valued Markov chains
using SimSQL. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, pages
637–648. ACM, 2013.

[11] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengill, M. Liu, D. Lo, S. Alkalay,
M. Haselman, et al. Serving DNNs in Real Time at
Datacenter Scale with Project Brainwave. IEEE Micro,
38(2):8–20, 2018.

[12] C. M. De Sa, C. Zhang, K. Olukotun, and C. Ré. Taming the
wild: A unified analysis of hogwild-style algorithms. In
Advances in neural information processing systems, pages
2674–2682, 2015.

[13] Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien. UDP: a
programmable accelerator for extract-transform-load
workloads and more. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture,
pages 55–68. ACM, 2017.

[14] F. Färber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe,
and J. Dees. The SAP HANA Database–An Architecture
Overview. IEEE Data Eng. Bull., 35(1):28–33, 2012.

[15] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a unified
architecture for in-RDBMS analytics. In Proceedings of the
2012 ACM SIGMOD International Conference on
Management of Data, pages 325–336. ACM, 2012.

[16] J. Fowers, J.-Y. Kim, D. Burger, and S. Hauck. A scalable
high-bandwidth architecture for lossless compression on
FPGAs. In Field-Programmable Custom Computing

Machines (FCCM), 2015 IEEE 23rd Annual International
Symposium on, pages 52–59. IEEE, 2015.

[17] M. Gürbüzbalaban, A. Ozdaglar, and P. Parrilo. Why random
reshuffling beats stochastic gradient descent. arXiv preprint
arXiv:1510.08560, 2015.

[18] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li,
et al. The MADlib analytics library: or MAD skills, the SQL.
PVLDB, 5(12):1700–1711, 2012.

[19] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons,
G. A. Gibson, G. Ganger, and E. P. Xing. More effective
distributed ml via a stale synchronous parallel parameter
server. In Advances in neural information processing
systems, pages 1223–1231, 2013.

[20] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender,
and M. Kersten. MonetDB: Two decades of research in
column-oriented database architectures. Data Engineering,
40, 2012.

[21] Z. István, D. Sidler, and G. Alonso. Caribou: intelligent
distributed storage. PVLDB, 10(11):1202–1213, 2017.

[22] M. Jaggi, V. Smith, M. Takác, J. Terhorst, S. Krishnan,
T. Hofmann, and M. I. Jordan. Communication-efficient
distributed dual coordinate ascent. In Advances in Neural
Information Processing Systems, pages 3068–3076, 2014.

[23] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, et al.
In-datacenter performance analysis of a tensor processing
unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, pages 1–12. ACM,
2017.

[24] M. Kandemir, H. Zhao, X. Tang, and M. Karakoy. Memory
row reuse distance and its role in optimizing application
performance. In ACM SIGMETRICS Performance
Evaluation Review, volume 43, pages 137–149. ACM, 2015.

[25] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and C. Zhang.
FPGA-accelerated Dense Linear Machine Learning: A
Precision-Convergence Trade-off. In Field-Programmable
Custom Computing Machines (FCCM), 2017 IEEE 25th
Annual International Symposium on, pages 160–167. IEEE,
2017.

[26] K. Kara and G. Alonso. Fast and robust hashing for database
operators. In Field Programmable Logic and Applications
(FPL), 2016 26th International Conference on, pages 1–4.
IEEE, 2016.

[27] K. Kara, J. Giceva, and G. Alonso. FPGA-Based Data
Partitioning. In Proceedings of the 2017 ACM International
Conference on Management of Data, pages 433–445. ACM,
2017.

[28] M. Kornacker et al. Impala: A modern, open-source SQL
engine for Hadoop. In Proceedings of the 7th Biennial
Conference on Innovative Data Systems Research, 2015.

[29] T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J.
Franklin, and M. I. Jordan. MLbase: A Distributed
Machine-learning System. In Cidr, volume 1, pages 2–1,
2013.

[30] A. Kumar, M. Boehm, and J. Yang. Data management in
machine learning: Challenges, techniques, and systems. In
Proceedings of the 2017 ACM International Conference on
Management of Data, pages 1717–1722. ACM, 2017.

[31] A. Kumar, J. Naughton, and J. M. Patel. Learning
generalized linear models over normalized data. In
Proceedings of the 2015 ACM SIGMOD International

360

https://github.com/owenzhang/Kaggle-AmazonChallenge2013
https://github.com/owenzhang/Kaggle-AmazonChallenge2013
https://www.datarobot.com/blog/datarobot-the-2014-kdd-cup
https://www.datarobot.com/blog/datarobot-the-2014-kdd-cup
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption\-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption\-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption\-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption\-standard-new-instructions-set-paper.pdf

Conference on Management of Data, pages 1969–1984.
ACM, 2015.

[32] P.-Å. Larson, A. Birka, E. N. Hanson, W. Huang,
M. Nowakiewicz, and V. Papadimos. Real-time analytical
processing with SQL server. PVLDB, 8(12):1740–1751,
2015.

[33] B.-E. Laure, B. Angela, and M. Tova. Machine Learning to
Data Management: A Round Trip. In 2018 IEEE 34th
International Conference on Data Engineering (ICDE),
pages 1735–1738. IEEE, 2018.

[34] P. Li, J. L. Shin, G. Konstadinidis, F. Schumacher,
V. Krishnaswamy, H. Cho, S. Dash, R. Masleid, C. Zheng,
Y. D. Lin, et al. 4.2 A 20nm 32-Core 64MB L3 cache SPARC
M7 processor. In Solid-State Circuits Conference-(ISSCC),
2015 IEEE International, pages 1–3. IEEE, 2015.

[35] J. Liu and S. J. Wright. Asynchronous stochastic coordinate
descent: Parallelism and convergence properties. SIAM
Journal on Optimization, 25(1):351–376, 2015.

[36] Y. Liu, H. Zhang, L. Zeng, W. Wu, and C. Zhang. MLBench:
How Good Are Machine Learning Clouds for Binary
Classification Tasks on Structured Data? PVLDB,
11(10):1220–1232, 2018.

[37] D. Mahajan, J. K. Kim, J. Sacks, A. Ardalan, A. Kumar, and
H. Esmaeilzadeh. In-RDBMS Hardware Acceleration of
Advanced Analytics. PVLDB, 11(11):1317–1331, 2018.

[38] C. Noel and S. Osindero. Dogwild!-distributed hogwild for
cpu & gpu. In NIPS Workshop on Distributed Machine
Learning and Matrix Computations, 2014.

[39] N. Oliver, R. R. Sharma, S. Chang, B. Chitlur, E. Garcia,
J. Grecco, A. Grier, N. Ijih, Y. Liu, P. Marolia, et al. A
reconfigurable computing system based on a cache-coherent
fabric. In Reconfigurable Computing and FPGAs
(ReConFig), 2011 International Conference on, pages
80–85. IEEE, 2011.

[40] M. Owaida, H. Zhang, C. Zhang, and G. Alonso. Scalable
inference of decision tree ensembles: Flexible design for
CPU-FPGA platforms. In Field Programmable Logic and
Applications (FPL), 2017 27th International Conference on,
pages 1–8. IEEE, 2017.

[41] A. Putnam. Large-scale reconfigurable computing in a
Microsoft datacenter. In Hot Chips 26 Symposium (HCS),
2014 IEEE, pages 1–38. IEEE, 2014.

[42] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers,
G. P. Gopal, J. Gray, et al. A reconfigurable fabric for
accelerating large-scale datacenter services. ACM SIGARCH
Computer Architecture News, 42(3):13–24, 2014.

[43] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios,
S. Pillement, D. Holcomb, and R. Tessier. FPGA side
channel attacks without physical access. In International
Symposium on Field-Programmable Custom Computing
Machines, pages paper–116, 2018.

[44] B. Recht and C. Ré. Toward a noncommutative
arithmetic-geometric mean inequality: conjectures,
case-studies, and consequences. In Conference on Learning
Theory, pages 11–1, 2012.

[45] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free
approach to parallelizing stochastic gradient descent. In
Advances in neural information processing systems, pages
693–701, 2011.

[46] P. Richtárik and M. Takáč. Parallel coordinate descent
methods for big data optimization. Mathematical

Programming, 156(1-2):433–484, 2016.
[47] S. Rigler, W. Bishop, and A. Kennings. FPGA-based lossless

data compression using Huffman and LZ77 algorithms. In
Electrical and Computer Engineering, 2007. CCECE 2007.
Canadian Conference on, pages 1235–1238. IEEE, 2007.

[48] S. Shalev-Shwartz and A. Tewari. Stochastic methods for
l1-regularized loss minimization. Journal of Machine
Learning Research, 12(Jun):1865–1892, 2011.

[49] O. Shamir. Without-replacement sampling for stochastic
gradient methods. In Advances in Neural Information
Processing Systems, pages 46–54, 2016.

[50] D. Sidler, Z. István, M. Owaida, and G. Alonso. Accelerating
pattern matching queries in hybrid CPU-FPGA architectures.
In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 403–415. ACM, 2017.

[51] D. Sidler, Z. István, M. Owaida, K. Kara, and G. Alonso.
doppioDB: A hardware accelerated database. In Proceedings
of the 2017 ACM International Conference on Management
of Data, pages 1659–1662. ACM, 2017.

[52] E. Stehle and H.-A. Jacobsen. A Memory
Bandwidth-Efficient Hybrid Radix Sort on GPUs. In
Proceedings of the 2017 ACM International Conference on
Management of Data, pages 417–432. ACM, 2017.

[53] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer,
B. Brezzo, D. Dillenberger, and S. Asaad. Database analytics
acceleration using FPGAs. In Proceedings of the 21st
international conference on Parallel architectures and
compilation techniques, pages 411–420. ACM, 2012.

[54] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2818–2826, 2016.

[55] P. Tamayo, C. Berger, M. Campos, J. Yarmus, B. Milenova,
A. Mozes, M. Taft, M. Hornick, R. Krishnan, S. Thomas,
et al. Oracle data mining. In Data mining and knowledge
discovery handbook, pages 1315–1329. Springer, 2005.

[56] R. Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society. Series B
(Methodological), pages 267–288, 1996.

[57] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott,
P. Leong, M. Jahre, and K. Vissers. Finn: A framework for
fast, scalable binarized neural network inference. In
Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, pages
65–74. ACM, 2017.

[58] K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding, and
X. Zhang. Concurrent analytical query processing with
GPUs. PVLDB, 7(11):1011–1022, 2014.

[59] C. Zhang and C. Ré. Dimmwitted: A study of main-memory
statistical analytics. PVLDB, 7(12):1283–1294, 2014.

[60] Z. Zhang and M. Brand. Convergent block coordinate
descent for training tikhonov regularized deep neural
networks. In Advances in Neural Information Processing
Systems, pages 1719–1728, 2017.

[61] T. Zhao, M. Yu, Y. Wang, R. Arora, and H. Liu. Accelerated
mini-batch randomized block coordinate descent method. In
Advances in neural information processing systems, pages
3329–3337, 2014.

[62] F. Zhou and G. Cong. On the convergence properties of a
K-step averaging stochastic gradient descent algorithm for
nonconvex optimization. arXiv preprint arXiv:1708.01012,
2017.

361

	Introduction
	Background
	SGD on Column-Stores
	Stochastic Coordinate Descent
	Target Platform: Intel Xeon+FPGA
	System Overview

	Cache-Conscious SCD
	Overview
	Statistical Efficiency
	Hardware Efficiency

	Empirical Comparison to SGD
	Non-Disruptive Integration
	Specialized Hardware
	FPGA-based SCD Engine
	Fetch Engine
	Compute Engine
	Write Back Engine
	Employing Multiple SCD Engines

	On-The-Fly Data Transformation
	Evaluation with FPGA

	Related Work
	Conclusion
	Acknowledgments
	References

