
LINQits: Big Data on Little Clients
Eric S. Chung†, John D. Davis†, and Jaewon Lee‡

†Microsoft Research Silicon Valley
‡Department of Computer Science and Engineering, POSTECH

ABSTRACT
We present LINQits, a flexible hardware template that can
be mapped onto programmable logic or ASICs in a heteroge-
neous system-on-chip for a mobile device or server. Unlike
fixed-function accelerators, LINQits accelerates a domain-
specific query language called LINQ. LINQits does not pro-
vide coverage for all possible applications—however, existing
applications (re-)written with LINQ in mind benefit exten-
sively from hardware acceleration. Furthermore, the LIN-
Qits framework offers a graceful and transparent migration
path from software to hardware.

LINQits is prototyped on a 2W heterogeneous SoC called
the ZYNQ processor, which combines dual ARM A9 pro-
cessors with an FPGA on a single die in 28nm silicon tech-
nology. Our physical measurements show that LINQits im-
proves energy efficiency by 8.9 to 30.6 times and performance
by 10.7 to 38.1 times compared to optimized, multithreaded
C programs running on conventional ARM A9 processors.

Categories and Subject Descriptors
C.1.3 [Processor Architectures]: Adaptable architec-
tures, data-flow architectures, high-level language architec-
tures

General Terms
Design, Performance

Keywords
Co-processor accelerator, database, query language, big
data, mobile, FPGA, ASIC

1. INTRODUCTION
Smartphones, tablet computers, and other emerging client

devices have become a major catalyst for the post-PC
revolution—it is estimated that by the end of 2013 nearly
1.2 billion units will be shipped world-wide, surpassing the
total number of desktops and servers in the wild [15]. These
devices are the sources and gateways to the world of Big
Data [1], providing the opportunity to access, synthesize,
and interpret information continuously. Due to stringent
energy demands coupled with the recent failure of Den-
nard Scaling [10, 18, 14, 42, 9], today’s client devices are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’13 Tel-Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

highly constrained in their capabilities—with many emerg-
ing, disruptive applications out of immediate reach, such as
augmented reality, continous speech recognition, interactive
personal agents (e.g., “Watson” on a phone), and novel user
experiences.

To extend the capabilities of future client devices, com-
mercial system-on-chips (SoC) are evolving into rich, hetero-
geneous systems that combine conventional processors with
multiple specialized, low-power accelerator cores on a single
die [35, 8, 39]. Although hardware specialization is a critical
ingredient for improving energy efficiency, system architects
face a multitude of new challenges: (1) how to gracefully in-
tegrate custom hardware into existing software ecosystems,
operating systems, and programming languages, (2) how to
select custom core functionality without compromising on
re-use, flexibility, and composability, and (3) how to cope
with rapidly changing application requirements in a diverse
mobile software ecosystem. Furthermore, fabrication costs
and times are increasing, so features mapped into custom
hardware must be selected judiciously, thus far limiting the
“safe” accelerator candidates to functions such as video de-
coding, encryption, and graphics [39].

In this paper, we present LINQits1, a flexible and com-
posable framework for accelerating data-intensive applica-
tions using specialized logic. LINQits eschews traditional
hardware-software boundaries (e.g., ISA) in favor of directly
accelerating a declarative subset of the C# programming
language called LINQ (Language Integrated Query). LINQ
is designed to operate upon data sets or collections and ex-
poses first-class language constructs for manipulating col-
lections using rich query operators (similar to SQL). Unlike
traditional query languages, LINQ allows the programmer
to embed user-defined anonymous functions that enable el-
egant ways to express rich algorithms [49].

The LINQits framework provides a pre-tuned accelera-
tor template that can be flexibly configured and mapped
on to a heterogeneous SoC with reconfigurable logic or an
ASIC. LINQits extracts declarative tasks in a LINQ query
and configures the template to support those tasks efficiently
in hardware. The template offers several key properties:
(1) the ability to accelerate constrained, user-defined func-
tions embedded within LINQ queries, (2) the ability to effi-
ciently process large dataset sizes using multi-pass partition-
ing strategies that avoid excess spilling from limited on-chip
memory, and (3) a customized memory system that coa-
lesces memory accesses for improved efficiency. In general,
LINQits can be applied to any system that services LINQ
queries (e.g., a server or desktop) or traditional database lan-
guages (e.g., SQL). In energy-constrained settings, LINQits
can vastly improve the data- and sensor-processing capabil-
ities of future client devices.

1A portmanteau of LINQ and Circuits.

By targeting a stable, existing language such as LINQ for
hardware acceleration, we illustrate a guiding principle be-
hind our work—to leverage the infiltration [21] of language
extensions in modern programming languages and to use
these extensions as a natural boundary that separates tra-
ditional imperative-style code and specialized code. There
could be other stable language alternatives. Our selection of
LINQ is borne out of pragmatism: (1) we do not need to in-
vent a new language for accelerators, (2) LINQ is well-suited
for “big data” computations and is a natural entry and exit
point in the program, (3) LINQ only requires a constrained
set of operators that can be built very efficiently to lever-
age the expertise of logic-level designers, (4) LINQ allows
embedded user-defined functions, enabling greater compu-
tational expressivity, (5) LINQ is portable and can be au-
tomatically parallelized to run on a distributed cluster of
machines [24] or a low-power reconfigurable device as we
show in Section 7, and (6) LINQ is a language standard
with stable operators that are unlikely to disappear in the
near future, making it a viable target for ASICs. Our work
makes the following contributions:

• We present the hardware design for LINQits, a tightly-
coupled processor and accelerator fabric optimized for pro-
cessing data collections.

• We show that LINQits offers a flexible and programmable
hardware template that enables a single building block for
various LINQ operators such as Select, SelectMany, Where,
Join, GroupBy, and Aggregate.

• We present divide and conquer techniques in hardware
that virtualize on-chip memory resources—making it possi-
ble to handle large data sets and to make off-chip memory
accesses vastly more efficient.

• We show, using physical measurements of an RTL pro-
totype on a Xilinx ZYNQ processor, that LINQits provides
higher performance (10.7 to 38.1 times) and lower energy
consumption (8.9 to 30.6 times) than optimized C code run-
ning on low-power, ARM A9 cores.

2. BACKGROUND
Language-Integrated Query (LINQ) was introduced to

Microsoft’s .NET Framework [32] in 2007 and exposes first-
class language constructs for manipulating sequences of data
items (referred to as collections). LINQ was initially sup-
ported in C#, F#, and Visual Basic and has since been
ported to Java, PHP, and other programming languages.
Using LINQ, programmers can express rich computations
in a high-level declarative language abstraction while re-
maining insulated from run-time implementation decisions.
LINQ supports a large set of operators based on functional
data parallel programming patterns and has been used to
implement a variety of applications including machine learn-
ing algorithms, linear algebra, and even body tracking for
the Microsoft Kinect sensor [49, 6, 31]. The seven essen-
tial LINQ operators are listed in Table 1 and should appear
familiar to those who have used the SQL language.

Many LINQ operators accept one or more user-defined
functions to process elements in a collection (a property that
distinguishes LINQ from traditional SQL). These anony-
mous user-defined functions are often written in short-hand
as x => f(x), which maps a single variable x to a result
f(x) [31]. Figure 1 shows how data extraction and filtering

Operation Meaning

Where (Filter) Keep all values satisfying a given property.
Select (Map) Apply a transformation to each value in the col-

lection.
Aggregate (Fold, Reduce) Combine all values in the collection to

produce a single result (e.g., max).
GroupBy Create a collection of collections, where the elements in

each inner collection all have a common property (key).
OrderBy (Sort) Order the elements in the collection according

to some property (key).
SelectMany Generates a collection for each element in the input (by

applying a function), then concatenates the resulting
collections.

Join Combine the values from two collections when they
have a common property.

Table 1: LINQ Operators (re-printed from [31]).

1. // Object-oriented syntax with anonymous functions
2. var results =
3. SomeCollection
4. .Where(cust => cust.sales > 100)
5. .Select(cust => new { cust.zipCode,
6. c.paymentType });

7. // Equivalent SQL-style syntax
8. var results = from cust in customer
9. where cust.sales > 100
10. select new {cust.zipCode, c.paymentType};

11. foreach(var v in results) ... // do work

Figure 1: A LINQ excerpt illustrating two ways of
expressing filtering and map operations.

can be performed using these functions. First, L4 applies
the Where operator to the initial source collection, using an
anonymous function to retain items with sales over $100.
The resulting collection is then passed into the Select op-
erator (L5), which maps the original item into a new data
type made up of the customer’s zip code and payment type.
L8-L9 show the equivalent filter and map operations using
traditional SQL-like syntax. In LINQ, query execution is de-
ferred until the elements are actually needed in a consuming
process (e.g., L11).

K-means Example. Figure 2 gives a more sophisticated
example of using LINQ and user-defined functions to imple-
ment K-means Clustering [31]. The goal of K-means is to
partition N points along a D-dimensional space into K clus-
ters. In Lloyd’s algorithm, a collection of centers are first
initialized with seed values followed by a set of iterative re-
finement steps. During each step, every point in a collection
is associated with a nearest center using a distance function
(L1-L14). Subsequently, for each center, all of its nearest
points are averaged and normalized to form a new center.
This process repeats (using the new centers as input) until
convergence (or a bound) is reached.

In L17 of Figure 2, the GroupBy operator is first applied to
an unordered collection of points. The user-defined function
NearestCenter for GroupBy computes an integer key that
represents the closest center to each point. This key is used
by GroupBy to sort each of the points into K sub-collections.
In L18, each of these sub-collections are mapped (using Se-

lect) into single values by summing up and normalizing all
of the points in each sub-collection using the Aggregate op-
erator. These sub-collections of normalized averages now
form a new collection of centers for the subsequent iteration
of K-means.

LINQ

C# Program Compiler Query Plan

S S

G
J

S

Streamer

Spli
t

/Br
oad
cas

t

Accelerator Core

Reduction

Accelerator Core

Main
Byte Code

Map to
Hardware
Templates

CoresC# Run-time
and

Scheduler

User
Functions FPGA/

ASIC

Query
Compiler

System-on-Chip

Figure 3: The LINQits Software-to-Hardware Flow. The query compiler is provided by the Dandelion
compiler and runtime for distributed heterogeneous systems [38].

1. int NearestCenter(Vector point, Collection centers) {
2. int minIndex = 0;
3. int curIndex = 0;
4. double minValue = Double.MaxValue;
5. foreach (Vector center in centers) {
6. double curValue = (center - point).Norm2();
7. if (minValue > curValue) {
8. minValue = curValue;
9. minIndex = curIndex;
10. }
11. curIndex++;
12. }
13. return minIndex;
14. }

15. Collection Step(Collection points,
16. Collection centers) {
17. return points.GroupBy

(point => NearestCenter(point, centers))
18. .Select(group => group.Aggregate((x, y) => x + y) /
19. group.Count());
20. }

21. Collection Steps(Collection points,
22. Collection centers, int n) {
23. for (i=0; i < n; i++) centers = Step(points, centers);
24. return centers;
25. }

Figure 2: K-means Clustering (Lloyd’s algorithm)
implemented using GroupBy, Select, and Aggregate
in C# and LINQ.

3. LINQITS OVERVIEW
To set the stage on how end-to-end LINQ hardware ac-

celeration is carried out, Figure 3 illustrates our proposed
software-to-hardware framework. We envision a deployment
scenario where application-specific accelerators for LINQ
queries are generated automatically in a centrally-managed
repository (e.g., app store). The generated accelerators can
either be mined automatically and fabricated as a general
ASIC that supports many applications or targeted on a per-
application basis to an FPGA.

As illustrated on the left of Figure 3, a programmer writ-
ing in a high-level managed programming language (e.g.,
C#) embeds LINQ queries to perform computations on col-
lections of data. The LINQits framework performs an ahead-
of-time compilation step to generate the hardware blocks for
run-time execution. This compilation process would typi-
cally occur prior to an application’s deployment from the
central repository.

Query Plan Optimization. During the ahead-of-time
compilation step, the LINQ queries are compiled into a
query plan represented as a graph of computation nodes
and communication edges. A node encodes important in-
formation including: (1) the operator (e.g., Select, Join,
etc.) (2) the collection’s element type (e.g., int, float),

Cortex
A9

Cortex
A9

32 KB
L1 I/D

32 KB
L1 I/D

512 KB L2

Accelerator
Coherency

Port
(ACP)

AMBA Interconnect

Field
Programmable

Gate Array
(FPGA

DDR3 Memory Controller I/O Devices

1 GB 1 GbE
USB
2.0

Zynq-7020

Figure 4: ZYNQ SoC overview.

(3) the node’s producers and consumers (i.e., communica-
tion edges), and (4) the user-defined functions discussed in
Section 2. In the current software framework we are lever-
aging (called Dandelion [38]), each computation node reads
all of its inputs from memory and/or storage2 and writes
the results back. To reduce communication, the query plan
optimizer may choose to re-order or fuse computation nodes
in the graph. For example, fusing GroupBy and Aggregate

nodes can greatly reduce communication to storage or mem-
ory (relative to running each of the operators in isolation).

Mapping to Hardware Templates. In the next stage
of the ahead-of-time compilation step, the information from
the nodes in the query plan are used to configure a pre-
designed Hardware Template (HAT). The HAT is a special
IP block that is highly parameterized at the RTL-level and
can be customized to suit the particular needs of the query
plan (e.g., which operators to support, what data types to
use, the number of functional units, and the embedded user-
defined functions). The HAT also provides hardware sup-
port for fused operators such as GroupByAggregate, used
in some applications such as K-means and KeyCount (dis-
cussed in Section 7). The HAT must also be configured to
match the target system-on-chip characteristics such as the
memory datapath and area constraints. Section 5 will later
describe in greater detail how the HAT supports the major
operators presented in Section 2.

Run-time Scheduling. In our system, not all LINQ
queries can be mapped automatically due to various con-
straints in the hardware templates. If the user-defined func-
tions are not side-effect free or operate on complex data
structures (e.g., linked lists), the C# run-time has the op-
tion of deferring the execution to software, which preserves

2Our current implementation only handles in-memory col-
lections; enabling LINQits to process data from storage di-
rectly is a straightforward extension.

the original application’s intent. Another scenario to con-
sider is the need to amortize the cost of initiating the HAT
between software and hardware. Selecting a problem size
that is too small may slow down the application, negating
the benefits of hardware acceleration. In the last stage of
Figure 3, the C# run-time has the opportunity to decide dy-
namically whether one or more nodes of the optimized query
plan should execute in hardware or software. If acceleration
is not possible or profitable, the run-time can transparently
fallback to execution in software.

4. TARGET PLATFORM
As a proof-of-concept, the LINQits framework is proto-

typed on a new heterogeneous processor called the ZYNQ
Programmable System-on-Chip (SoC) [48]. ZYNQ is a
commercially-available SoC that exemplifies a significant
milestone in heterogeneous processors coupled with pro-
grammable logic. The ZYNQ processor combines dual ARM
Cortex-A9 processors with FPGA programmable logic—
operating in a small power envelope of 0.5-2W. An instance
of the ZYNQ architecture is shown in Figure 4. Each A9 core
has 32KB of instruction and data caches, a shared 512KB
L2 cache and a variety of peripherals, including FPGA fab-
ric. The FPGA fabric is coherent with the cores’ L1 and
L2 caches through the Accelerator Coherency Port (ACP).
Finally, both the cores and the FPGA have access to 1GB
of DRAM through the AMBA AXI bus. More system de-
tails are given in Table 2 in Section 7. For our purposes,
the ZYNQ platform is an excellent proxy for studying the
opportunity of hardware specialization in future, low-power
client devices such as smartphones and tablets, because it
offers similar core capabilities and memory capacity.

Run-time Operation. When a LINQits-enabled applica-
tion is launched, the LINQits-aware C# run-time must pre-
configure the hardware to operate in tandem with managed
code. In an FPGA, a bitstream can either be programmed at
boot-time or on a per-application basis, depending on how
many applications use LINQits. In the ZYNQ platform we
target, when a LINQits hardware template is instantiated
and running in hardware, a memory-mapped set of registers
enables the ARM cores to set the desired operation (opera-
tor selection), configure which user-defined functions to ac-
tivate, store pointers to where shared memory structures are
kept, and provide signals to the ARM cores for completion.

FPGA vs. ASIC. In an FPGA implementation of LIN-
Qits, only the features required by a specific or set of appli-
cations would be instantiated, given the reconfigurability op-
tion of the FPGA. In an ASIC, all operators must be instan-
tiated prior to fabrication to provide high coverage across a
large spectrum of LINQ applications; the ASIC must also
support multiple configurable data types at run-time. In
an ASIC, the hardware template could be augmented with
software-programmable cores that enable even more flexi-
bility in the template—we leave this aspect of LINQits to
future work.

5. OPERATOR CHALLENGES
A distinguishing characteristic of LINQits is the ability

to handle a wide range of both simple and complex opera-
tors. Existing commercial [22] and academic [33] systems fo-
cused primarily on simpler queries such as Select and Where

30 1 0 2 1 2 0

A C I

A B C E F H IValues

Keys

B F E H

D

3

G

D G

30 1 0 2 1 2 0

A B C E F H ID

3

G

Partition(Key) =
Key % 2

Key = f(Val)

A C IE H D GB F

A C I B FE H D G

Values

Keys

GroupBy

GroupBy with
1 level of

partitioning

Figure 5: Example of GroupBy.

0 1 1 0

A B D EValues

Keys

Partition(Key) =
Key % 2

Join
1

C

A, E B, D C, D

0

F

A, F
Joined
Output

0 1 1 0

A B D E

1

C

0

F

0

A

0

E

0

F

1

B

1

C

1

D

A, E B, D C, DA, F
Joined
Output

Disjoint
Sub-Partitions

Join with
partitioning

Figure 6: Example of Join.

while delegating more complex queries such as GroupBy and
Join to conventional general-purpose processors (or simply
do not support them). These complex operators introduce
significant difficulties due to their irregular memory access
characteristics and potentially large memory footprints that
exceed aggregate on-chip memory capacities.

Overall, the HAT architecture supports six of the seven
major operators described in Section 2 (OrderBy is the ex-
ception). In this section, we devote our discussion to what
is needed to accelerate two of the most complex queries,
GroupBy and Join. Section 6 will later discuss how we triv-
ially extend the HAT to support the remaining operators.

GroupBy and Join Algorithms. Figure 5 shows the
computational pattern of GroupBy, where a collection of
unsorted values are “grouped” into four disjoint partitions
based on a user-defined value-to-key function. In hardware,
the user-defined functions can be trivially mapped into a
parallel array of functional units that process each input
from memory independently. However, the distribution of
keys and final partition sizes are not known a priori, making
it difficult to know for each key-value pair where the final
values should be written in memory. A typical implemen-
tation of GroupBy in software uses a hash table (indexed
by the element key) to dynamically create and update ar-
rays for the groupings. On the first insertion of a given
key, an array is allocated and the element is added to it.
Subsequent elements that match the same key are simply
appended. Unfortunately, hashing negatively impacts cache
and DRAM locality, especially in large-scale data set sizes.

Metadata
Structures

Pre-Core
(user-def)

Pre-Core

Pre-Core

Partition
Reader

Control

Spill
FSM

Partition
Allocator
+ Writer

DRAM

HW Post-Core
(user-def)

Post-Core

Post-Core

SW
Core Core

L2

Figure 7: LINQits hardware template for partitioning, grouping, and hashing.

The Join operator also poses similar challenges, as shown
in Figure 6. In a Join, two large data collections are matched
by a common key followed by a user-defined function that
takes both values associated with the common key and com-
putes an output (also based on a user-defined function). For
very large data set sizes, a hash join is typically used to avoid
an expensive nested, pairwise comparison. In the hash join,
elements from the smaller of the two partitions are inserted
into a hash table. Elements of the larger partition are then
used to probe the hash table for matching keys. Like in
GroupBy, implementing a naive hash join similarly exhibits
poor caching and memory behavior.

Partitioning. Partitioning is a well-known software strat-
egy for improving the locality and performance of GroupBy

and Join queries in databases [16, 12, 41] and distributed
run-times [24]. As illustrated in Figure 5 (bottom), a pre-
processing step is first carried out by computing a key par-
tition function on each key value. In the example, the par-
tition function divides the initial collection into two disjoint
sub-partitions, each with non-overlapping keys. In the final
GroupBy, the two disjoint sub-partitions are processed with
independent hash tables with non-overlapping key values.

During the partitioning steps, fewer random accesses are
made to DRAM because sub-partitions are built up contigu-
ously (versus writing in one pass to the final partitions di-
rectly). Partitioning comes at the cost of O(np) operations,
where n is the collection size and p is the number of parti-
tioning passes. At the end of the partitioning phase, each in-
dividual sub-partition would be inserted into a private hash
table scaled to fit within on-chip memories. The same opti-
mization can be applied to Join (bottom, Figure 6). Here,
two disjoint sub-partitions are created followed by smaller
hash-joins that can potentially fit in smaller data structures
such as caches.

6. GENERAL HARDWARE APPROACH
Our key idea behind the LINQits hardware template is

to adopt the same divide-and-conquer approaches used in
software to make hardware-based hash tables practical to
implement for queries that operate on large-scale dataset
sizes. In the context of a small SoC such as ZYNQ, the
HAT must operate with a limited amount of on-die mem-
ory storage (typically 1MB or less). Naively implementing
a hardware-based hash table using this limited storage can
hurt performance due to excessive conflicts and spills. A
key strategy we take is to develop hardware that performs
in-place, multi-pass partitioning prior to actually carrying

Partition
Meta

Free List

Data
Arrays

Key
Next

DataRoot
Size

Partition
Header

Next
Partition

Data Array Next

~1-4KB

Data Array Next

Data Array

Figure 8: Data Structures for LINQits partitions.

out the final hash operation needed in a multi-level GroupBy
or Join. We also observe that both hashing and partition-
ing can leverage the same physical structures with minimal
impact to hardware complexity and area.

Figure 7 illustrates the physical organization of our pro-
posed HAT architecture, spanning both hardware and soft-
ware on the ZYNQ platform. The heart of the HAT is a
data steering and storage engine that enables fine-grained re-
partitioning of data into multiple hash entries, implemented
using a network-on-chip and physical queues.

At run-time, data is streamed in from main memory and
processed by a collection of pre- and post-core modules that
implement the user-defined functions described in Section 2;
the outputs of the pre-cores are used by the network-on-chip
for steering key-value pairs into destination queues. When
a queue reaches capacity, it is streamed out into main mem-
ory to form new sub-collections that become the sources for
subsequent invocations of the HAT.

For operators that associate computation with items al-
ready sorted into queues (e.g., Aggregate), post-cores are
placed in the back-end of the HAT pipeline to handle post-
processing operations. Finally, the metadata structures
shown in Figure 7 contain information about created parti-
tions (i.e., partition ID and address table), groups, keys, ele-
ment counts, and other relevant information required to tra-
verse the data structures for the various passes of the LINQ
operators. In the next sections, we discuss two important
modes of operation: partitioning and hashing. Section 6.3
will later describe how these building blocks implement six
out of the seven essential LINQ operators from Section 2.

6.1 Partitioning Mode
Figure 9 (top) shows the hardware structures for operating

the HAT in partitioning mode.

Partition Reader. The partition reader is a specialized
DMA engine responsible for reading bulk data stored in par-

val key

user-defined
pre-core pass #

key-to-qid

qid = (key >> pass # *log2(numQ)) % numQ

v QID

To bank 0

To bank 1

To bank 2

To bank 3

headkey tailbusy

1KB

Queue
Pointers

Queue
Data

Spill
FSMs

Partition
Writer

Partition
Reader

key
1KB

Partition
Writer

Partition
Reader keyHash

Hash: key -> sparse key table index

Sparse Key Table
(depth = multiples of # queues)

user-defined
post-core

Mode: Partition

Mode: Hash-Table + Functions

val

user-defined
pre-core

Hash Collision Spill Queue

Figure 9: LINQits Hardware Template (HAAT) Configured for Partitioning (Top) and Hash-Table (Bottom).
Within the HAT, there can be multiple parallel lanes that access independent banks for the queue data.

titions, which are data structures that realize LINQ collec-
tions in main memory (note: we refer to collections and
partitions interchangeably). At run-time, partitions are ini-
tialized by software on the ARM cores, which share the same
coherent memory subsystem with the FPGA. Figure 8 illus-
trates how software organizes the partition data structure.
In main memory, the freelist records a list of fixed-sized data
arrays on the order of 1-4KB—the size of a memory page.
The partition meta block contains a list of partition head-
ers, each with four fields: (1) a key or partition ID, (2)
a next pointer for chaining multiple partitions (e.g., used
for GroupBy that produces a collection of collections), (3) a
data index that points to the beginning of a linked list of
arrays, and (4) the number of elements in the collection. At
run-time the partition reader processes a starting metablock
(programmed by the ARM core through memory-mapped
I/O registers) and begins fetching data until the partition
(or a chained group of partitions) is completely read.

Pre- and post-cores. Streams of data from the partition
reader are fed into the pre-cores, which are used to support
the anonymous functions in LINQ operators. Pre-cores im-
plement user-defined logic functions that perform value-to-
key generation for Select, Where, GroupBy, and Join. The
post-cores are the dual to the pre-cores, associated with the
data item storage. These cores implement the user-defined
functions for queries such as Aggregate and Join, described
further below in Section 6.3. The keys from the pre-cores
are used to steer key-value pairs to the downstream queues.
For small HAT instances, the data steering is facilitated by
a crossbar, but for large HAT instances, a scalable network
is required for data item movement. In LINQits, the user-
defined functions realized as pre- and post-cores must be
side-effect free and cannot update global state. Section 6.4
gives more details on user-defined function constraints.

Queue Insertions. When partitioning, the pre-core out-
puts are passed into a special block that maps generated
keys into separate queues (key-to-qid block in Figure 9). The
key-to-qid block selects bits from the user-generated key to

determine its destination queue. In an example HAT with
64 queues, bits 5 to 0 of the key would be used to index the
queues during the first partitioning phase, followed by bits
11 to 6 for phase 2, etc. One partitioning step, for exam-
ple, will sub-divide a single partition into 64 sub-partitions.
This process, when repeated on the 64 sub-partitions again,
will create at most 4096 sub-partitions (and so forth). Af-
ter a desired number of partitioning steps are performed, a
GroupBy (or Join) operation can take place on much smaller
sub-partitions that can fit into on-chip memories.

Partition Allocator and Writer. Given that partition
sizes and locations are not known a priori, the HAT must
perform dynamic memory allocation of arrays and partitions
(for writing) as it processes a stream of key-value pairs. The
Partition Allocator and Writer (PAW) modules are special-
ized DMA engines that manage memory block allocation
with a list of free arrays. Arrays are linked together that
map to the same queue (and have the same key) by placing
the address of the next array in the last entry of the queue
(i.e., building up a linked list) before the queue is written to
memory. The queues are sized to burst in large data chunks
to maximize DRAM row-buffer locality. These “write-back”
bursts are initiated in parallel with queue insertions.

6.2 Hash Table Mode for GroupBy and Join
Figure 9 (bottom) shows the activated hardware struc-

tures when operating the HAT in hash mode, needed for the
final stages of GroupBy and Join. In this mode, the same
queues for partitioning are repurposed into hash table en-
tries. Like before, the partition reader streams in data that
is fed into the pre-cores to generate the keys.

Sparse Key Table. During hashing, all of the HAT’s
queues can ideally be allocated efficiently using a fully-
associative table that maps any unique key to an available
queue. Unfortunately, the FPGA does not support content-
associative memories efficiently. Instead, we use a direct-
indexed sparse key table (shown in Figure 9, bottom) that
is sized to multiples of the number of queues. When a key

No Partitioning 1-pass Partition 2-pass Partition

0.01% Unique Keys 2739118 2000000 3000000

0.1% Unique Keys 8311241 2002989 3000000

1% Unique Keys 78238488 2766866 3001120

1
10

100
1000

10000
100000

1000000
10000000

100000000

M

em
o

ry
 A

cc
es

se
s

Queue Spills vs. Partitioning (1M elements)
0.01% Unique Keys 0.1% Unique Keys 1% Unique Keys

Figure 10: Number of Spills vs. Number of Parti-
tioning Phases.

arrives, a key hash function indexes into the sparse key table
to determine if there is a valid entry. If not, then a new key
is allocated from a free queue counter that tracks available,
unallocated queues. The counter then points to the actual
row corresponding to the logical hash table entry.

Handling Hash Conflicts. Even after partitioning—for
correctness reasons—the HAT must still deal with occasional
hash conflicts. In a typical software-based hash table, a
conflict is handled using a linked list to chain conflicted ele-
ments. In hardware, adding chaining support to each physi-
cal queue in the HAT would introduce undesired complexity
and logic for a rarely occurring event. A key observation
we make is that the conflicted elements should simply be
re-circulated through the HAT rather than being inserted
into the HAT’s hash table. As shown in Figure 9 (bottom),
the HAT reserves a special hash collision spill queue that
stores all of the conflicted key-value pairs. The spill queue
is treated like any other queue in the HAT and can spill into
its own private partition in main memory. When the HAT
finishes reading its current partition, it re-circulates the con-
tent of the the spill queue (and its partition) through the
HAT, until all elements have been processed.

Sensitivity of Spills to Partitioning. Figure 10 shows
how partitioning dramatically reduces the number of queue
spills in a hardware-based GroupBy. For a 1M data set with
1% unique keys in the distribution, the amount of spillage
under no partitioning can be 72 times the number of ele-
ments. This excessive spilling occurs because the hardware-
based hash table is very small, filling up to only 64, then
spilling all other remaining keys into the spill queues. On
subsequent iterations, this process continues pathologically
until the entire collection is processed. As can be seen, with
a 2-pass partitioning step, the number of memory accesses
is tripled (2 for the partitioning, 1 for the final hash table),
but spills become negligible because the hash tables rarely
conflict after the partitioning steps.

6.3 Supporting Other Essential Operators
We now discuss how the HAT primitives can be used to

support the remainder of the essential LINQ operators. In
the case of Select, SelectMany, and Where, the pre-cores are
used to compute the user-defined functions that map inputs
to outputs (for Select, SelectMany) or inputs to predicates
(for Where). In these modes, the partition queues can be
chained together to form one large logical buffer for spilling
out to a single partition. In Aggregate mode, the HAT op-
erates similarly to Select, except that values exiting the

queues are accumulated into a register value rather than
being spilled directly into memory. The accumulation func-
tion for Aggregate is supported by the post-cores shown in
Figure 7.

The Join is the most complex operator to implement. The
approach we take is to apply the GroupBy operator to two
separate input partitions, breaking them into two sets of
sub-partitions that can be joined together per-subgroup in
a pair-wise fashion. In main memory, a table must be used to
track which sub-partitions actually exist—we perform this
operation using the partition allocator state machine. Af-
ter the sub-partitions are created, the LINQits hardware is
reconfigured to stream data from both partitions into the
queues, upon which the post-cores are used to perform the
actual join.

6.4 Generating pre- and post-cores
In our current FPGA-based implementation, the user-

defined functions (i.e., pre- and post-cores) are implemented
using a high-level synthesis tool called AutoESL [47]. Cur-
rently, our process for converting LINQ C# functions to
AutoESL-compatible C is not automatic. Although the ma-
jority of the code translation is straightforward, we must
specify pragmas that control the pipeline datapath widths
and the desired initiation intervals for loops. In the near
future, we plan to automatically translate C# expressions
and methods into AutoESL-compatible C/C++ code; using
a constrained hardware template also makes it easy for us
to generate the pragmas automatically. It is worth noting
that LINQits does not fundamentally require HLS—a simple
thread-interleaved RISC processor is also a viable approach,
which we plan to investigate in future work.

7. EVALUATION
Target Platform. Our study compares the performance,
power, and energy efficiency of a LINQits FPGA prototype
running against tuned software on the ZYNQ ZC702 plat-
form [48] (described in Section 3). As depicted in Table 2,
the ZYNQ processor approximates the capabilities of a hy-
pothetical mobile system-on-chip augmented with reconfig-
urable logic. Although ZYNQ is not engineered for mobile
devices, the combined FPGA and ARM cores in a single
die enables accurate architectural comparisons and measure-
ments in a technology-neutral environment.

Power Methodology. The ZC702 platform exposes 9 volt-
age rails of independent sub-systems (e.g., DRAM, ARM,
FPGA) that can be measured through three on-board
software-managed voltage regulators [48]. We are interested
in two levels of detail on our hardware platform: the core
power characteristics and the system power characteristics.
For the core power, we assume that unused components can
be power- and clock-gated. This means that we ignore the
on-chip power measurements of the FPGA and its subcom-
ponents when focusing on the A9 subsystem and vice-versa.
Out of the 9 voltage rails, we log the ZYNQ’s power includ-
ing the BlockRAMs, CPU system, and DDR I/O supply
voltage, and ignore peripheral power measurements in our
comparisons.

7.1 Applications
Software. Table 3 lists our workloads reflecting both
compute- and memory-intensive uses of LINQ. For all soft-

Technology 28nm TSMC
Processing 2-core Cortex-A9 + FPGA Logic
Core Parameters 2-wide superscalar out-of-order
Peak Frequencies 667 MHz (A9), 200MHz (FPGA)
DRAM 1GB DDR3-533MHz

Single-channel, 8.5GB/s peak
Voltages 1V, 1.5V (DDR3)
FPGA Capacity 53KLUTs, 106K Flip-flops

CPU-to-DRAM Latency 140ns
FPGA-to-DRAM Latency 140ns
CPU-to-FPGA Latency 200ns

Table 2: ZYNQ platform overview.

Application Parameters

K-means Single-prec, 4M 2D Points, 10 centers
Bscholes Single-prec, 1M Options
GroupBy 64b words, 32b keys, 400K inputs, 10% uniq. keys

Join 64b words, 32b keys, 2×200K inputs, 10% uniq. keys
KeyCount 32b words, 32b keys, 4M inputs, 10% uniq. keys

Table 3: Software Benchmarks.

ware implementations, we evaluated both C# and native
C implementations to separate the overheads of a managed
run-time for C#. The K-means clustering algorithm [44] and
Black-Scholes (Bscholes) [43] are examples of two compute-
intensive, floating-point workloads. In C#, K-means and
Black-Scholes are implemented using LINQ queries, similar
to the examples described in Section 2; in C, we used ex-
isting tuned multithreaded implementations for both bench-
marks [44, 43]. For the C-based versions of GroupBy and
Join, we explored classical cache-conscious algorithms [41]
and hash partitioning [27]. In our tuning efforts for the
ARM cores, an implementation of the radix-sort clustering
algorithm [30] gave us the best overall performance.

All software workloads are measured using cycle-level
CPU timers while running on Debian Linux and averaged
across multiple runs. In all C-based codes, we pre-allocated
memory pages to optimize performance—our ARM core
measurements exclude this overhead. We also compiled C-
based codes using GCC-4.1 with ARM VFP floating point
instructions enabled. To run C# applications, we cross-
compiled the Linux-compatible Mono 2.10 runtime [2] us-
ing an ARM GCC 4.1 cross-compiler. Instead of relying on
Mono’s built-in LINQ provider, we leveraged an improved
internal implementation of LINQ [38]. Due to synchroniza-
tion bugs in Mono 2.10, we were unable to run any multi-
threaded LINQ queries to completion—thus, we report only
single-threaded results for C#. Join, GroupBy, and Key-
Count in C are also single-threaded—in these instances, we
conservatively report perfect performance scaling from 1 to 2
cores (and for the power measurements, we ran two concur-
rent single-threaded instances with reduced dataset sizes).

Hardware. Each application in Table 3 and associated
queries were mapped to different instances of the LINQits
hardware template (HAT) described in Section 5. The HAT
is currently implemented in under 10K lines of Verilog (in-
cluding test harnesses) and has been placed-and-routed at
100MHz on the ZYNQ ZC702 platform for all the appli-
cations. The HAT exposes many compile-time parameters
(e.g., queue sizes, number of queues, datapath width, etc.),
each configured according to a given application’s needs, as
shown in Table 4. Presently, our parameters are scaled man-

C
, 2

 t
h

re
ad

s

C
, 2

 t
h

re
ad

s

C
, 2

 t
h

re
ad

s

Bscholes KeyCount K-means

11

21

804

7

15

205

12

24

633

7

14

182

62

120

1283

1

10

100

1000

C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s

Groupby Join Bscholes KeyCount K-means

Lo
g

Sp
ee

d
u

p
 N

o
rm

al
iz

ed
 t

o
 M

o
n

o

Figure 11: Speedup of optimized C (1 and 2-CPUs)
and LINQits relative to C#.

ually to achieve high area utilization of the FPGA while
meeting the datapath requirements based on the data types
required by the queries.

K-Means, Black-Scholes, and KeyCount have user-defined
anonymous functions in LINQ. These functions are mapped
to the pre- and post-core regions discussed in Section 5. As
discussed in Section 5, to generate these cores, we converted
the original C# LINQ functions into C code targeting Xilinx
AutoESL [47], a commercial high-level synthesis (HLS) tool
that compiles C/C++ into RTL. These C functions must
be side-effect-free and cannot perform memory allocations
or recursion. Table 4 shows the resource utilization of each
of the cores generated by AutoESL for various applications.

Inputs. For all applications, we deliberately selected input
parameters that would stress the capabilities of the LIN-
Qits HAT module. In K-means, for example, the arithmetic
intensity scales with O(nk), where n and k are the total
number of points and centers, respectively. By selecting
only 10 centers, the amount of work available for offload-
ing is limited per data byte, which increases the overhead of
launching the HAT for each iteration of K-means. Similarly,
for GroupBy, Join, and KeyCount, we created random dis-
tributions of inputs bounded with a replication factor such
as that only 10% of the total numbers were unique. For
example, grouping 400K integers with 40K unique keys will
produce 40K groups of 10 integers each—during the final
GroupBy phase, the HAT would be run many times but will
incur large overheads when generating small groups3. Due to
DRAM capacity limitations on the ZYNQ evaluation board
(1GB, up to 25% reserved by the OS), we scaled all input
sizes to fit within off-chip memory but ensured that all data
set sizes exceeded the last-level shared cache (512KB) of the
ARM A9 cores to generate realistic traffic (see Table 3).

7.2 Performance Comparison
Figure 11 shows the performance of C (1 and 2 threads)

and LINQits normalized to single-threaded C# perfor-
mance. Our first observation is that running C# on a
managed run-time (Mono) incurs a significant overhead rel-

3We also conducted experiments with less adversarial data
sets with expected results (not reported in this paper).

Configuration Operators Total Area Pre-Core Area Post-Core Area

GroupBy 64b data, 32b key, 256 logical queues,
4 banks, 1kB/queue, 4 pre-cores

Partition,
GroupBy

21 KLUTs (39%)
90 BRAMs (62%)

1.1 KLUTs (2%) -

Join
64b data, 32b key, 256 logical queues,

4 banks, 1kB/queue, 4 pre-cores
Partition,

GroupBy, Join
27 KLUTs (51%)

94 BRAMs (67%)
2.2 KLUTs (4%) -

Black-Scholes
256b data-in, 32b data-out, 4 logical queues,

2 banks, 1kB/queue, 2 pre-cores
Select

29 KLUTs (54%)

54 BRAMs (34%)

3.9 KLUTs (7%)

55 DSPs (24%)
-

KeyCount 32b data, 32b key, 1024 logical queues,
8 banks, 256B/queue, 8 pre-cores, 1 post-core

Partition,
GroupByAccum

38 KLUTs (71%)
98 BRAMs (65%)

635 LUTs (1%) 747 LUTs (1%)

K-means 64b data, 32b key, 64 logical queues,
4 banks, 1kB/queue, 4 pre-cores, 1 post-core

GroupByAccum
28 KLUTs (51%)

90 BRAMs (60%)

1.7 KLUTs (3%)
14 DSPs (6%)
1 BRAM (1%)

6.7KLUTs (13%)
8 DSPs (4%)

Table 4: Area of the LINQits hardware template configured to implement different applications.

0
.7

0
.8

1
.0 0

.7

0
.8

0
.9 0

.7

0
.8

0
.9 0

.7

0
.9

1
.0

0
.7

0
.8

0
.9

0
.6

0
.8

1
.0

0
.6

0
.8

1
.0

0
.5

0
.8

0
.9

0
.7

0
.9

0
.9

0
.6

0
.6

0
.7

0.0

0.5

1.0

1.5

2.0

2.5

C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s

Groupby Join Bscholes KeyCount K-means

Po
w

er
 (

W
)

Compute Power DRAM Power

Figure 12: Power of optimized C (1 and 2-CPUs)
vs. LINQits.

ative to native C (about one order of magnitude). To ver-
ify that this was not an issue caused by the ARM-based
cross-compiler, we also observed a similar degradation in
performance when running Mono against C on a desktop
Xeon-based processor.

The rightmost set of bars in Figure 11 show LINQits
achieving nearly 2 to 3 orders of magnitude better perfor-
mance relative to single-threaded C#. Relative to C with 2
threads, LINQits achieves between 10.7 and 38.1 times bet-
ter performance. These gains are possible due to the HAT’s
ability to exploit parallelism and pipelining between multi-
ple stages in hardware (i.e., queue insertion, queue spilling,
pre- and post-core computations, etc), and the ability to
coalesce memory accesses efficiently to DRAM.

Overall, for the applications we studied, LINQits achieves
between 10.7 and 38.1 times better performance than op-
timized multithreaded C code running on the ARM cores.

7.3 Power and Energy
Figure 12 shows the system- and core-level power con-

sumption of LINQits compared to the C-based implemen-
tations. On the 2-threaded C-based runs, the dual ARM
cores (including caches) consume about 700mW of power.
In the single-threaded runs, we were unable to disable the
unused core, which explains the incremental difference of
100-200mW between 1- and 2-threaded runs. Figure 12 also
shows the DDR3 power consumption, which alone accounts
for nearly 50% of total power.

In general, the LINQits HAT running on the FPGA con-

10
17

515

7
12

149

12
23

432

6
11

121

61
108

959

1

10

100

1000

C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s C

C
, 2

 t
h

re
ad

s

LI
N

Q
it

s

Groupby Join Bscholes KeyCount K-means

LO
G

 N
o

rm
al

iz
ed

 E
n

er
gy

 G
ai

n
 v

s.
 M

o
n

o

Figure 13: Energy of optimized C (1 and 2-CPUs)
vs. LINQits.

sumes higher power than both the ARM cores combined.
LINQits, by virtue of running faster than the processors,
also increases memory traffic to DRAM, resulting in higher
power dissipation. A more important metric than power
or speedup alone, however, is the relative energy reduction
using LINQits. Figure 13 shows how LINQits achieves any-
where from 8.9 to 30.6 times energy reduction relative to
multithreaded C. This result is somewhat surprising given
that a significant percentage (around 50%) of the overall
power is attributed to DRAM, yet LINQits is still able to
improve energy efficiency by an order of magnitude. In-
tuitively, by speeding up the computation by an order-of-
magnitude, LINQits reduces the amount of static energy
wasted between idling periods of the ZYNQ’s DRAM sub-
system as well as maximizing efficient use of data (versus a
cache controller that may unnecessarily fetch unused data).
In a hypothetical mobile system with other components such
as screens and radios, increasing performance would reduce
the response time dramatically, lowering overall energy con-
sumed from idling in the system.

For the applications we studied, LINQits achieves between
8.9 and 30.6 times energy reduction relative to optimized
multithreaded C on the ARM cores.

7.4 Discussion
The results presented in this section confirm that the

divide-and-conquer approach of LINQits combined with

Workload
Computation time (ms)

Power (mW) Energy (mJ)

Computation DRAM Computation DRAM

Mono C C 2threads LINQits Mono C C 2threads LINQits Mono C C 2threads LINQits Mono C C 2threads LINQits Mono C C 2threads LINQits

Groupby 7580 716 358 9.4 707 696 800 952 559 641 796 1032 5359 498 286 9 4237 459 285 10
Join 8813 1193 596 43 699 712 803 723 566 622 772 1021 6160 849 479 31 4988 742 460 44

Blackscholes 17610 1471 735 28 698 670 768 939 548 545 554 875 12292 986 564 26 9650 802 407 25
Symbolcount 7922 1110 555 44 693 651 719 978 564 749 905 898 5490 723 399 43 4468 831 502 40

K-means 150360 2441 1255 117 687 690 800 934 547 553 571 719 103297 1684 1004 109 82247 1350 717 84

Table 5: Summary of all performance, power, and energy results.

hardware-accelerated user-defined functions can offer a sig-
nificant benefit to future hypothetical mobile devices incor-
porating reconfigurable logic. Although we do not present
ASIC results in this paper, it is a reasonable conjecture that
a hardened HAT engine could significantly reduce the core
power consumption relative to the FPGA by another fac-
tor of 10-100 times [28]. Without the flexibility of reconfig-
urable logic, the ASIC would require software-programmable
engines for the pre- and post-cores, which we are planning
to explore. Based solely on the results of Figure 12 and
Figure 13, using an ASIC would offer a substantial gain in
overall energy efficiency if: (1) the FPGA is unable to sat-
urate off-chip memory bandwidth, and (2) off-chip DRAM
power consumption scales down commensurately in the long
term. We leave this investigation to future work. Table 5
offers a summary of all the performance, power, and energy
results collected in our experiments.

8. FUTURE WORK
In the future, there is an entire body of work related to

re-thinking the hardware-software stack for specialized hard-
ware. For example, we plan to explore new software run-
times that optimize the scheduling and placement of LINQ
queries across HATs and software. The current LINQits
HAT is most effective when the startup costs are amortized
across medium or large data set sizes; if amortization is im-
possible for a given query, then software should dynamically
avoid offloading. Furthermore, there is opportunity within
the runtime to pre-characterize (e.g., sampling) input col-
lections prior to execution in hardware to determine the op-
timal number of levels in multi-pass partitioning for queries
such as Join or GroupBy. As mentioned in Section 7, the
HAT currently requires manual configuration of hardware
parameters adjusted to match the application and platform.
In the future, we plan to pursue methods for automatic pa-
rameter selection. Another area of future work is to augment
or replace the application-specific cores within LINQits with
run-time programmable, multithreaded microcode engines.

Our work also points the way to multiple improvements
that can be made to an SoC that integrates FPGA fabric.
One critical area of difficulty is the memory management
aspects of data structures shared between the CPU and ac-
celerator. In order to break the reliance of the FPGA on the
processor for data management, adding a TLB would enable
the FPGA to translate memory addresses and observe mem-
ory protection. LINQits is really a data movement engine
and as such could benefit from higher memory bandwidth
and larger memory capacity to dive deeper into the world
of “big data”. Improved external memory characteristics
would cause a commensurate requirement for more inter-
nal memory capacity and bandwidth, potentially requiring
a dedicated network for scalability. Finally, for finer-grained

interactions between the cores and FPGA, the communica-
tion latency could be reduced, via shared message registers
or other mechanisms.

9. RELATED WORK
Our work intersects broadly with three major areas:

database accelerators, high level synthesis, and hardware
accelerators. We provide some context by comparing our
work to SQL accelerators because LINQ is a close cousin
to SQL with the addition of user-defined functions. Prior
work has focused on both custom and commodity hard-
ware, like GPUs. We also perform high-level source transla-
tion to hardware for the user-defined functions and touch on
high-level synthesis. Finally, researchers have been explor-
ing ways to incorporate existing or new specialized hardware
into systems at various granularities. To provide context, we
discuss the mapping granularity of software to specialized
hardware and focus on specialized hardware for bundles of
instructions or units of coarser granularity.

9.1 Custom Database Machines
The idea of using custom hardware to accelerate queries

is not new and was introduced by DeWitt in 1978 [11]. The
DIRECT and GAMMA [13] multiprocessors employed specialized
processors dedicated to database operations. More recently,
various research and commercial efforts have used FPGAs to
target acceleration of database queries in the datacenter [22,
34, 33, 37]. For example, IBM’s Netezza appliance [22] uses
FPGAs to filter and compress data between I/O and mem-
ory; in this setting, the FPGAs only target simple Select
and Where queries while delegating more complex queries
such as GroupBy and Join to the CPU. LINQits handles
both simple and complex queries and incorporates support
for user-defined functions in hardware.

The Avalanche and Glacier [33, 34] projects explore syn-
thesis of database queries for FPGAs while exploiting run-
time reconfigurability. The Glacier compiler focuses on ac-
celeration of streaming algebra operators that process aggre-
gate data in a single-pass arriving from the network or disks.
Glacier does not support multi-pass partitioning to handle
complex operators such as GroupBy or Join. Furthermore,
Glacier requires a custom bitstream for each query, whereas
the HAT in LINQits supports multiple operators in a single
design that can be configured at runtime without reloading
a bitstream.

9.2 GPGPUs
A growing body of work examines the use of GPGPUs

to accelerate in-memory databases and query languages
(e.g., [17, 19, 20, 25, 3, 46, 38]). These solutions run on
commercial off-the-shelf GPUs and must amortize the com-
munication costs over a slow PCI express channel. Some re-

ported GPU results exhibit a high degree of variance (e.g., 2-
7X speedup in [20], 3-8X speedup in [25]) on complex queries
such as Joins; furthermore, these studies do not compare rel-
ative energy consumption, a first-class constraint in future
systems. Unlike LINQits, many of the GPU approaches fo-
cus on conventional database queries that operate on tables
with simple data types such as integer tuples. LINQits, on
the other hand, can be easily extended to handle complex
data types such as variable-length strings or dynamic ob-
jects. An area of future work for us is to pursue a hybrid
solution on a system-on-chip, where the GPU is used to pro-
cess simple data-parallel queries such as Select and Where,
while the FPGA and/or ASIC handles more complex queries
such as GroupBy or Join.

9.3 High-Level Synthesis
Commercial high-level synthesis tools such as Xilinx Au-

toESL [47] compile high-level languages in C or C++ into
synthesizable RTL. Although the user perceives a sequen-
tial programming abstraction, significant effort is needed to
generate high-quality results. Furthermore, many tools can-
not handle dynamic memory allocation or cope with large
dataset sizes that exceed available on-chip storage.

In contrast, LINQits is not intended to target arbitrary
programming language constructs, and instead, narrows the
playing field to well-defined communication and computa-
tion patterns (i.e., LINQ queries). LINQits can leverage ex-
isting high-level synthesis tools in the generation of pre- and
post-cores, although this is not fundamentally required (i.e.,
a multithreaded processor could also be just as effective).

9.4 Instruction-level Accelerators
Mapping basic blocks or super blocks of instructions to

specialized hardware provides the finest granularity of spe-
cialization. These groups of instructions can be mapped
on to specialized processor cores, as is the case with C-
Cores [42]. These C-cores lack the generality to be reused
for other purposes, which is appropriate for designs that
have plentiful transistor and communication latency bud-
gets. This approach is similar to fixed-function accelerators
in mobile SoCs on the market now. On the other end of the
spectrum are coarse-grain reconfigurable arrays (CGRAs)
that compose data flow engines from smaller building blocks,
like those used by DYSER [4]. The network that contains
the coarse-grain units provides the flexibility to map many
different program segments or data flow graphs onto the
same building blocks. This latter example provides more
flexibility and the underlying silicon area can have higher
utilization. This approach is limited by the communication
resources and related data flow scheduling problem. In ei-
ther case, these approaches use the general purpose proces-
sor’s memory system, including caches to service memory re-
quests. These approaches are also restricted by being tightly
coupled to imperative languages. That is—the accelerators
are implementing the instructions and not providing an op-
portunity to optimize the algorithm or implementation.

9.5 Method-level Accelerators
Instead of targeting basic blocks or instruction level ac-

celeration, others have taken the approach of accelerating
methods in high level languages. In this scenario, the high
level language provides rapid software development. Later,
programmers with intimate hardware knowledge can pro-

vide method replacements that are specific to the underly-
ing hardware, in most case GPUs or many-core processors.
This provides an opportunity to optimize the algorithm and
target specific hardware, as has been demonstrated by SE-
JITS, Copperhead and auto-tuning [26, 7, 45]. Thus far,
researchers have targeted existing hardware and have not
applied this methodology to specialized hardware. This also
has the advantage of overloading methods in popular pro-
gramming languages and is very suitable for accelerating
library code. In high performance computing, the math ker-
nel library (MKL) and CUDA are examples of this [23, 36].
Finally, given an API, the library developer is free to im-
plement the algorithm however they prefer. The method
declares the computation’s intent instead of explicitly de-
scribing how it should be done.

9.6 Language-level Accelerators
The highest level abstraction for specialized hardware has

been developed in the context of Domain Specific Languages
(DSLs) that can target many-core CPU or GPU systems.
In this case, frameworks like Delite [5], provide operators
for domain specific experts to build their own DSL. Pre-
defined Delite operators used in the new DSL definition are
accelerated for “free” because the operators already target
existing hardware. Others can then use these DSLs for their
applications and leverage this. If pre-defined operators are
not used in the DSL, someone will have to map these new
operators on to the specialized hardware. In general, new
languages, including DSLs, suffer from an adoption problem,
limiting their utility.

LINQ is an example of a DSL that associates SQL-
like operations with a data collection. Unlike new DSLs,
LINQ is an established DSL that can be embedded in many
managed-language frameworks, like Java and C#. In this
work, we target the LINQ operators for specialized hard-
ware as opposed to trying to write optimized code for the
LINQ operator that targets many-core or GPUs. LINQ pro-
vides a declarative description of the computation and allows
optimization at many levels, e.g., the query plan down to in-
dividual operators.

9.7 Hardware-Based Templates
Finally, the idea of hardware-based templates has been ex-

plored for both many-core processing and map-reduce pat-
terns. The MARC project, for example, targets OpenCL
and similar abstractions to a many-core template that can be
re-configured for an FPGA or implemented on an ASIC [29].
Researchers have also proposed implementing a Map-Reduce
computational pattern in the FPGA [40].

10. CONCLUSION
The LINQits framework represents a first step towards

domain-specific declarative language acceleration using spe-
cialized logic. The heart of LINQits is a parameterized hard-
ware template that employs divide-and-conquer approaches
to virtualize limited on-chip resources while coalescing mem-
ory accesses for better locality. Our empirical results from
running on a real single-chip heterogeneous platform con-
firms that custom hardware can significantly enhance data-
and compute-intensive tasks on energy-constrained mobile
processors. Compared to optimized, multithreaded C code,
LINQits is 10.7 to 38.1 times faster and 8.9 to 30.6 times
more energy-efficient than low-power, embedded cores.

Acknowledgements
We thank Chris Rossbach, Yuan Yu, and Jon Currey for
their help with the Dandelion compiler. We thank our
anonymous reviewers, Doug Burger, Babak Falsafi, and
Onur Koçberber for their invaluable feedback.

11. REFERENCES
[1] “Big Data Definition,”

mike2.openmethodology.org/wiki/Big Data Definition.

[2] “Mono Platform,” www.mono-project.com.

[3] P. Bakkum and K. Skadron, “Accelerating SQL Database
Operations on a GPU with CUDA,” in GPGPU’10.

[4] J. Benson, R. Cofell, C. Frericks, C.-H. Ho, V. Govindaraju,
T. Nowatzki, and K. Sankaralingam, “Design, Integration and
Implementation of the DySER Hardware Accelerator into
OpenSPARC,” in HPCA’12.

[5] K. Brown, A. Sujeeth, H. J. Lee, T. Rompf, H. Chafi,
M. Odersky, and K. Olukotun, “A Heterogeneous Parallel
Framework for Domain-Specific Languages,” in PACT’11.

[6] M. Budiu, J. Shotton, D. G. Murray, and M. Finocchio,
“Parallelizing the Training of the Kinect Body Parts Labeling
Algorithm,” in Big Learning: Algorithms, Systems and Tools
for Learning at Scale, Sierra Nevada, Spain, December 16-17
2011.

[7] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead:
Compiling an Embedded Data Parallel Language,” in
PPoPP’11.

[8] Chipworks, Inc. Inside the Apple iPad 4–A6X a very new beast!
www.chipworks.com/blog/recentteardowns/2012/11/01/
inside-the-apple-ipad-4-a6x-to-be-revealed/.

[9] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-Chip
Heterogeneous Computing: Does the Future Include Custom
Logic, FPGAs, and GPGPUs?” in MICRO’10.

[10] R. H. Dennard, F. H. Gaensslen, H.-n. Yu, V. Leo Rideovt,
E. Bassous, and A. R. Leblanc, “Design of Ion-Implanted
MOSFET’s with Very Small Physical Dimensions,” Solid-State
Circuits Newsletter, IEEE, vol. 12, no. 1, pp. 38 –50, winter
2007.

[11] D. J. DeWitt, “DIRECT - A Multiprocessor Organization for
Supporting Relational Database Management Systems,” in
ISCA’78.

[12] D. J. DeWitt and R. H. Gerber, “Multiprocessor Hash-Based
Join Algorithms,” in VLDB’85.

[13] D. J. Dewitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B.
Kumar, and M. Muralikrishna, “Gamma - A High Performance
Dataflow Database Machine,” in VLDB’86.

[14] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam,
and D. Burger, “Dark Silicon and the End of Multicore
Scaling,” in ISCA’11.

[15] Gartner, “The Mobile Scenario: Understanding Mobile Trends
Through 2017,” gartner.com/it/page.jsp?id=2227215, Nov 2012.

[16] J. R. Goodman, “An Investigation of Multiprocessor Structures
and Algorithms for Database Management,” May 1981.

[17] N. K. Govindaraju and D. Manocha, “Efficient Relational
Database Management Using Graphics Processors,” in
DaMoN’05.

[18] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Toward Dark Silicon in Servers,” IEEE Micro, vol. 31, no. 4,
pp. 6–15, Jul. 2011.

[19] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo,
and P. V. Sander, “Relational Query Coprocessing on Graphics
Processors,” ACM Trans. Database Syst., vol. 34, no. 4, Dec.
2009.

[20] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and
P. Sander, “Relational Joins on Graphics Processors,” in
SIGMOD’08.

[21] Herb Sutter, “Elements of Modern C++ Style,”
herbsutter.com/elements-of-modern-c-style, Oct 2010.

[22] IBM, Inc. The Netezza Data Appliance Architecture: A
Platform for High Performance Data Warehousing and

Analytics.

[23] Intel, Inc. Intel Math Kernel Library.
http://www.intel.com/software/products/mkl.

[24] M. Isard et al., “Dryad: Distributed Data-Parallel Programs
from Sequential Building Blocks,” in Proc. EuroSys, 2007.

[25] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “GPU Join
Processing Revisited,” in DaMoN’12.

[26] S. Kamil, D. Coetzee, S. Beamer, H. Cook, E. Gonina,
J. Harper, J. Morlan, and A. Fox, “Portable Parallel
Performance from Sequential, Productive, Embedded
Domain-Specific Languages,” SIGPLAN Not., vol. 47, no. 8,
pp. 303–304, Feb. 2012.

[27] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen,
N. Satish, J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs.
Hash Revisited: Fast Join Implementation on Modern
Multi-core CPUs,” Proc. VLDB Endow.

[28] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and
ASICs,” in FPGA’06.

[29] I. Lebedev, C. Fletcher, S. Cheng, J. Martin, A. Doupnik,
D. Burke, M. Lin, and J. Wawrzynek, “Exploring Many-core
Design Templates for FPGAs and ASICs,” Int. J. Reconfig.
Comput., vol. 2012, pp. 8:8–8:8, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.1155/2012/439141

[30] S. Manegold, P. Boncz, and M. Kersten, “Optimizing
Main-Memory Join on Modern Hardware,” IEEE Trans. on
Knowl. and Data Eng., vol. 14, no. 4, pp. 709–730, Jul. 2002.

[31] F. McSherry, Y. Yu, M. Budiu, M. Isard, and D. Fetterly,
Scaling Up Machine Learning. Cambridge University Press,
2011, ch. Large-Scale Machine Learning using DryadLINQ.

[32] Microsoft, Inc., “LINQ (Language-Integrated Query),”
msdn.microsoft.com/en-us/library/bb397926.aspx.

[33] R. Mueller, J. Teubner, and G. Alonso, “Glacier: A
Query-to-Hardware Compiler,” in SIGMOD’10.

[34] ——, “Streams on Wires: A Query Compiler for FPGAs,” Proc.
VLDB Endow., vol. 2, no. 1, pp. 229–240, Aug. 2009.

[35] NVIDIA, Inc. www.nvidia.com.

[36] ——. www.nvidia.com/object/cuda home new.html.

[37] Y. Oge, T. Miyoshi, H. Kawashima, and T. Yoshinaga, “An
Implementation of Handshake Join on FPGA,” in ICNC’11.

[38] C. J. Rossbach, Y. Yu, J. Currey, and J.-P. Martin, “Dandelion:
A Compiler and Runtime for Distibuted Heterogeneous
Systems,” Technical Report: MSR-TR-2013-44, Microsoft
Research Silicon Valley, 2013.

[39] Samsung, Inc. www.samsung.com/global/business/
semiconductor/minisite/Exynos/index.html.

[40] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang,
“FPMR: MapReduce framework on FPGA,” in FPGA’10.

[41] A. Shatdal, C. Kant, and J. F. Naughton, “Cache Conscious
Algorithms for Relational Query Processing,” in VLDB’94.

[42] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor, “Conservation
Cores: Reducing the Energy of Mature Computations,” in
ASPLOS’10.

[43] Victor Podlozhnyuk, NVIDIA Inc. (2007) Black-Scholes Option
Pricing.

[44] Wei-keng Liao. [Online]. Available:
users.eecs.northwestern.edu/˜wkliao/Kmeans

[45] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and
J. Demmel, “Optimization of Sparse Matrix-Vector
Multiplication on Emerging Multicore Platforms,” in SC’07.

[46] H. Wu, G. Diamos, S. Cadambi, and S. Yalamanchili, “Kernel
Weaver: Automatically Fusing Database Primitives for Efficient
GPU Computation,” in MICRO’12.

[47] Xilinx, Inc. Vivado High-Level Synthesis.
www.xilinx.com/tools/autoesl.htm.

[48] ——, “ZC702 Evaluation Board for the Zynq-7000 XC7Z020.
All Programmable SoC User Guide, October 8, 2012.”

[49] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, J. Currey, F. McSherry, and K. Achan, “Some Sample
Programs Written in DryadLINQ,” Microsoft Research, Tech.
Rep. MSR-TR-2009-182, December 2009.

