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Lithography simulation, an essential step in design for manufacturability (DFM), is still far
from computationally efficient. Most leading companies use large clusters of server computers to
achieve acceptable turn-around time. Thus coprocessor acceleration is very attractive for obtaining
increased computational performance with a reduced power consumption. This article describes
the implementation of a customized accelerator on FPGA using a polygon-based simulation model.
An application-specific memory partitioning scheme is designed to meet the bandwidth require-
ments for a large number of processing elements. Deep loop pipelining and ping-pong buffer based
function block pipelining are also implemented in our design. Initial results show a 15X speedup
versus the software implementation running on a microprocessor, and more speedup is expected
via further performance tuning. The implementation also leverages state-of-art C-to-RTL synthe-
sis tools. At the same time, we also identify the need for manual architecture-level exploration
for parallel implementations. Moreover, we implement the algorithm on NVIDIA GPUs using
the CUDA programming environment, and provide some useful comparisons for different kinds of
accelerators.
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1. INTRODUCTION

Optical lithography is the technology used for printing circuit patterns onto
wafers. As the technology scales down, and the feature size is even smaller
than the wavelength of the light employed (e.g., 193nm lithography), signifi-
cant light interference and diffraction may occur during the imaging process.
Lithography simulation, which tries to simulate the imaging process or the
whole lithography process—from illumination to mask to imaging to resist—is
considered an essential technique for the emerging field of DFM.

Lithography simulation can be done through various methods with different
accuracy. Model- or rule-based optical proximity correction (OPC) uses empir-
ical rules and models from experimental data to perform the simulation and
discover the defects caused by lithography [Mack 2005]. It is fast but not ac-
curate enough. On the other hand, using finite difference or finite element
methods to solve the corresponding electromagnetic equations directly [Yeung
2003] is a very accurate approach, but is so expensive that it can only simulate
small regions and designs.

The coherent decomposition method [Pati and Kailath 1994] can better bal-
ance the accuracy and running time, and is the main method used in compu-
tational lithography for large designs. It first decomposes the whole optical
imaging system into many coherent systems with decreasing importance. The
image corresponding to each coherent system can be obtained via numerical
image convolution, and the final image is the weighted sum of the image of
each coherent system. However, the method still needs a large amount of CPU
time to perform the simulation because the number of layers and the size of im-
ages are large. As the technology scales down and the accuracy requirement
goes up, it will be more challenging to meet the tight requirement of design
turn-round time.

Leading commercial computational lithography products have already
started to use special coprocessor acceleration to further accelerate compu-
tation. Brion Technologies (now part of ASML) reports that each leaf node
composed of two CPUs and four FPGAs in their Tachyon System can achieve
20X speedup over one single CPU node [Cao et al. 2004]. Mentor Graphics uses
Cell Broadband Engine to accelerate the computation in their nmOPC product
[Mentor 2004]. Clear Shape Technologies has filed patents for using GPUs to
accelerate the computation [Wang et al. 2006].

This article presents a new hardware implementation for accelerating litho-
graphy imaging simulation on FPGA platforms. Unlike the image-based ap-
proach Brion takes, which ultimately relies on the accelerated performance
of 2D-FFT, we use the polygon-based approach [Cobb and Zakhor 1995; Wong
2005] instead. The polygon based approach makes use of the fact that the ac-
tual layouts are solely composed of rectilinear shapes, and it has comparable or
even better performance than an image-based approach in software implemen-
tation. Recent advances in OPC algorithms, for example, IB-OPC [Yu and Pan
2007] also employ a polygon-based approach for lithography intensity simula-
tion. Moreover, the polygon-based approach precomputes the convolution and
stores that into a look-up table, and the subsequent computation mainly just
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involves some additions and subtractions on the look-up value. Thus the poly-
gon based approach could be better approximated via fixed-point computations
without sacrificing much accuracy. The algorithm can be better parallelized
and accelerated by utilizing the high bandwidth of on-chip memory in FPGA.

Another unique aspect of our work is that we leverage state-of-the-art C to
HDL compilation tools and write all our design in C, whereas the FPGA accel-
erator design by Brion [Cao et al. 2004] was based on completely manual RTL
coding. A design described in higher level languages such as C/C++ is more
portable to various platforms and easier to maintain. Also these tools could
evaluate multiple design choices faster and perform various kinds of optimiza-
tions for improved performance against the RTL-based design, but those tools
also have limitations on the supported language features. The challenge we
experienced for this design is that of manually developing an efficient memory
partitioning scheme, based on the observation of the memory access pattern,
to provide a large data bandwidth for a larger number of processing elements.
Deep loop pipelining and the overlapping of the communication and compu-
tation via ping-pong buffers are also implemented to take advantage of both
instruction-level parallelism and task-level parallelism. All the design tech-
niques are represented at algorithmic level in the code refinement/rewriting of
ANSI C, and the resulting C code is further synthesized into RTL though the
automatic C-to-RTL synthesis tools.

This article is organized as follows: Section 2 describes the basic equations
we use in this work for lithography simulation and discusses the trade-offs be-
tween the image-based approach and the polygon-based approach. Section 3
describes our entire design, specifically the design of memory partitioning.
Section 4 discusses our experience on using C to HDL compilation tools, and
the C code refinements in implementing the design. Section 5 describes our
experimental results, and Section 6 concludes the article. A preliminary ver-
sion of this work was presented in Cong and Zou [2008]. This article includes
additional discussions and results, such as a detailed derivation on address
generation and data multiplexing, discussions of communication overhead, the
nested loop pipelining, interconnect issues and comparisons against the GPU
implementation.

2. BASICS FOR AERIAL IMAGE SIMULATION

2.1 The Imaging Equation

The coherent decomposition method first decomposes the whole optical system,
into a series of coherent optical systems (using eigenvalue decomposition). The
series is truncated to a finite one based on the ranking of the eigenvalues. If
we keep only K significant eigenvalues and eigenvectors, the image can be
computed as:

I(x, y) �

K∑
k=1

λk|(O ⊗ φk)(x, y)|2. (1)
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Here the I(x, y) is the image intensity, λk is the kth eigenvalue, O(x, y) is the
object function (field), and φk(x, y) is the kth eigenvector. The symbol ⊗ denotes
convolution (2D image convolution). For more details on the derivation of the
coherent decomposition method, please refer to Cobb [1998].

One way to perform the 2D image convolution is through 2D FFT. We can
first transform the padded object pattern (see Section 2.3) and the eigenvector
into the frequency domain via 2D FFT. (Note the FFT of the eigenvector φk
only needs to be computed once and can be reused.) Then we multiply the
eigenvector and object pattern in the frequency domain. Finally we can obtain
the convolution result via an inverse FFT of the multiplied result. This is the
image-based simulation that is also used by Cao et al. [2004].

As the actual layout of VLSI circuits is only composed of polygons (or
rectangles if we perform polygon decomposition on the layout), the convolu-
tion of different sizes of polygons/rectangles can be precomputed and stored.
We first consider purely rectangle cases. The convolution for an object pat-
tern solely composed of N rectangles with vertices at (x(n)

1 , y(n)
1 ), (x(n)

2 , y(n)
1 ),

(x(n)
1 , y(n)

2 ),(x(n)
2 , y(n)

2 ) can be simplified via quadrant functions.
The object pattern in one padded area can be written as:

O(x, y) =
N∑

n=1

[Q(x − x(n)
1 , y − y(n)

1 ) − Q(x − x(n)
2 , y − y(n)

1 )

+Q(x − x(n)
2 , y − y(n)

2 ) − Q(x − x(n)
1 , y − y(n)

2 )], (2)

where quadrant function

Q(x, y) =
{

1 if x ≥ 0 and y ≥ 0
0 otherwise.

The convolution equation thus can be rewritten as:

I(x, y) �

K∑
k=1

λk|(O ⊗ φk)(x, y)|2

=
K∑

k=1

λk|
N∑

n=1

[ψk(x − x(n)
1 , y − y(n)

1 ) − ψk(x − x(n)
2 , y − y(n)

1 )

+ ψk(x − x(n)
2 , y − y(n)

2 ) − ψk(x − x(n)
1 , y − y(n)

2 )]|2, (3)

where

ψk(x, y) = Q(x, y) ⊗ φk(x, y)

is the convolution of the quadrant function with the kth eigenvector. This is the
polygon/rectangle-based algorithm we use, and it is described in more detail in
Wong [2005].

For rectilinear polygons, an equation similar to Equation (2) can be written
using quadrant function on each vertex of the polygons. In Figure 1, we label
the + and − on the vertexes of rectilinear polygons (the rectangle is simply a
special type of rectilinear polygon, and + and − are just the signs for the look-
up value for the vertexes; see Equation (2) and Equation (3) for the rectangle
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 17, Pub. date: September 2009.
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Fig. 1. Rectilinear polygons can be processed similar to rectangles.

case). We go from a vertex which is at bottom-left, and label that with + and
go around the border of the polygon and label that with − and + respectively.

Using rectangles or polygons will not alter the overall algorithm and de-
sign presented in the following. For simplicity and benchmarking purposes,
we assume we are given N rectangles with 4N vertexes for one region of the
image in the subsequent illustration, while our litho simulation tool, which
goes from GDSII to simulated image, is also capable of processing polygons
from the GDSII directly without the need for rectangle decomposition.

2.2 Image-Based Simulation versus Polygon-Based Simulation

It is worthwhile to briefly discuss the trade-offs between image-based simula-
tion and polygon-based simulation. Image-based simulation first converts the
layout, which in most cases is stored in GDSII, into an object image, and then
gets the image convolution via FFT and IFFT. Note that only image-based
simulation needs to take this additional conversion step from the GDSII to
the object image, which might also be expensive. The 2D-FFT algorithm, al-
though well studied, still needs a large number of floating-point operations. On
the other hand, the polygon-based algorithm can use fixed-point computation
without losing much accuracy, and thus can be implemented without using any
floating-point operations. Suppose the rounding error for the elements in ψk

in Equation (3) is 2−p, the absolute error for computing
∑N

n=1[ψk(x − x(n)
1 , y −

y(n)
1 ) −ψk(x − x(n)

2 , y − y(n)
1 ) +ψk(x − x(n)

2 , y − y(n)
2 ) −ψk(x − x(n)

1 , y − y(n)
2 )] is bounded

by 4N ∗ 2−p. If we assume the error distribution for the elements in ψk is a
uniform distribution between −2−p and 2−p, the error distribution of the sum∑N

n=1[ψk(x − x(n)
1 , y − y(n)

1 ) − ψk(x − x(n)
2 , y − y(n)

1 ) + ψk(x − x(n)
2 , y − y(n)

2 ) − ψk(x −
x(n)

1 , y − y(n)
2 )] follows uniform sum distribution. Its variance is proportional to

N and the standard deviation is proportional to
√

N, thus the actual error is
much smaller, statistically, than the conservative error bound which is linear
with N.

Both algorithms scale linearly with the number of pixels to compute. The is-
sue of the polygon-based approach is that the running time will also depend on
the layout density, which determines the number of polygons or rectangles in
a unit area within the interaction range (N in Equation (3)), while the image-
based approach only depends on the chip area. We implemented the 2D-FFT
based 2D-convolution using the FFTW package [Frigo and Johnson 2005], and
tested that on kernels with size 400 by 400. We found that the running time
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is comparable to a polygon-based method with a moderate density (see Section
5.3). The polygon based approach requires less computation and runs faster
for layers that are not very dense, and the image-based approach runs faster
for very dense layers. Note that the polygon-based approach also saves the
step on conversion from polygons to images, as polygons are naturally stored
in GDSII.

In terms of the FPGA-based acceleration, FFT is still tightly constrained by
the available DSP units or logic slices, and the peak FLOPs of FPGA are at
the same magnitude with the peak FLOPs of modern CPU; thus, typically only
a 2 to 8X speedup is seen on accelerating FFT on FPGA platforms via paral-
lel implementation [Uzun et al. 2005]. Fixed-point FFT core for FPGA is also
available and give potentially larger speedup, but it will have a worse accuracy
because multiplication can enlarge the absolute error. For the polygon-based
approach, the convolution on the quadrant function can be precomputed us-
ing highly accurate floating point computations (on CPU) and reused multiple
times. The time to precompute the convolution can be ignored as it is a one-
step process. The remaining computations only involve table look-up and sim-
ple addition/subtraction operations, and are much more suitable for a decent
speedup. Therefore, in this work we use the polygon/rectangle-based approach
rather than the image-based approach for accelerator design.

2.3 Detailed Settings for the Imaging Equation Using the Polygon-Based
Approach

We assume the convolutions of eigenvectors and the quadrant functions are
already precomputed, and sampled into a 2D array called kernel. The re-
gion/range of the kernel we use is 2000nm by 2000nm; it is sampled on a 5nm
grid, and thus contains 400 by 400 numbers. The image we need to compute
is on a 25nm grid. Without loss of generality, we assume the layout corners
(vertexes of the polygons) are also on the 5nm grid. (If the layout corner is on
a much finer grid, interpolation will be used to get the kernel value.) These
settings used in our algorithm and implementation were recommended by our
industry collaborator from Magma Design Automation [Wong 2007], but our
architecture certainly is not confined to these settings and can be extended
to other settings. Some setting changes require a recompile/resynthesis while
some do not. This depends on whether the change of underlying hardware is
needed. For example, the design synthesized with a large N (layout density
metric) can be used for a smaller N without the need of changing hardware.
On the other hand, enlarging array sizes or changing the memory partitioning
schemes will affect the underlying hardware and a recompile/resynthesis will
be needed to generate the new hardware bitstreams.

3. FPGA-BASED ACCELERATOR FOR THE IMAGING SIMULATION

3.1 Image Padding for the Polygon-Based Approach

Both the object pattern and the simulated image are large; however, when we
compute one region of the image, only one padded region of the object needs to
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 17, Pub. date: September 2009.
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Fig. 2. Pseudocode for the nested loop.

be considered due to the locality of the litho effects. For example, for a kernel
ranges within a 2000nm by 2000nm area, if we want to compute a 1000nm by
1000nm image region, an object pattern within a range of 3000nm by 3000nm
needs to be taken into computation. The reason for this is that some objects are
far away from the current pixel and out of the interaction range, and therefore
need not be considered.

The computation complexity is proportional to the number of rectangles
N taken into computation, and the intensity of each pixel is determined by
the rectangles within the interaction range (2000nm by 2000nm in our case)
around this pixel.

3.2 Rearranging the Nested Loop

Now we devote ourselves to implementing the nested loop corresponding to
Equation (3), which is described in Figure 2, where c is a constant for address-
ing alignment, and rectx and recty are arrays for the coordinates of rectangle
corners. Note that this is the code for simulating one region of an image, and
there is another outer loop over the pseudo-code in Figure 2 for changing the
current image region where the input N and rectx and recty shall all be changed
as we move to different image regions. Here the pixel max is the number of pix-
els in either X or Y direction. We use 5 ∗ x and 5 ∗ y in the code as we use an
image grid on 25nm and a kernel grid on 5nm. The outermost loop goes over
different image pixels. Within the outer loop there is a loop that goes over dif-
ferent kernels. The innermost loop goes over different layout corners. This is
a direct implementation of Equation (3), but it might not be suitable for gener-
ating synthesizable hardware. We apply loop interchange techniques to find a
better rearrangement for the nested loop.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 17, Pub. date: September 2009.
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Fig. 3. Pseudocode for the rearranged nested loop.

First, we look at the choices for the outermost loop. Because the whole
nested loop will need the data in the kernel array, which will be reused for the
image computation with different image regions or different pixels and layout
corners, we would like to prefetch the kernel array and store the kernel array
in the on-chip RAM of the FPGA. In our setting in Section 2.3, each kernel has
16 ∗ 400 ∗ 400 bits of data, which is 2.44Mb, if we use 16bit precision for kernel
data. As the total size of on-chip RAM of FPGA is limited, it is unlikely that
all the kernels will fit, but in our case at least one kernel can be put in. (the
device we use has around 9Mb on-chip memory in total) Thus, we would like
to make the loop over different kernels the outermost loop.

For the inner part, our considerations are that the loop over different layout
corners is less structured than the loop over the image pixels. If we fix one
layout corner and update the set of pixels, the memory access pattern is very
regular, but if we fix one pixel and change different layout corners, it will not
be that regular because we can not expect the layout corners to have some
specific pattern. Thus, we would like to make the loop over different pixels the
inner-most loop. Figure 3 is the nested loop after the loop interchange.

The illustration of the computation is shown in Figure 4. The address of
kernel data depends on the value of the rectangle corner. For one specific cor-
ner, the address for the kernel array is just an affine mapping over the pixel
index x and y. As the data of rectx[n], recty[n] is in the layout corner array and
accessed at runtime, the data access for the kernel array is still some type
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 17, Pub. date: September 2009.
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Fig. 4. Computation of the inner nested loop.

of indirect memory access. This imposes great challenges for the automation
tools. After the rearranging of the nested loop, the key problem is to design
and implement the inner loop—the inner loop over different rectangle corners
and image pixels.

3.3 Communication Analysis and HW/SW Partitioning

In our design, the hardware component running on FPGA mainly initializes
and computes the image partial sum Ik, while the result is sent back to a
software component running on the processor; the software component parses
and provides input data to the hardware component and also performs the
square operation and stores the results.

As the computation is mainly performed on the FPGA coprocessor, input
data required for computation needs to be transferred from the host CPU to the
coprocessor, and the computed results need to be transferred back. Although
the Hyper-Transport bus enables a low latency solution, overhead in the data
transfer still exists.

The major part of data transfer from host (CPU) to coprocessor is the lay-
out corner array (rectx,recty in the pseudo-code). Note that kernel data also
needs to be transferred from the host to coprocessor, but the same kernel can
be used for a larger number of padded image region, thus the communication
overhead in transferring kernel data can be neglected. The major data trans-
fer from coprocessor to CPU is the array of image partial sum Ik. Assume
we use 16-bit data for the elements in rectx,recty array and 32-bit data in ar-
ray Ik. For settings shown in Section 2.3, the total bytes of data transfer for
computing one padded region with size 1000nm by 1000nm on a 25nm grid
is (32/8) ∗ 4N + (32/8) ∗ 40 ∗ 40, where the first term corresponds to the data
transfer for the layout corner array and the second term corresponds to the
transfer of partial image. The data transfer is done in a DMA-like fashion.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 17, Pub. date: September 2009.
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For a moderate density say N = 100, and a data bandwidth around 800MB/s
(the peak bandwidth of the SRAM device we use as hardware/software shared
memory), the data transfer needs around 10us. This is roughly 10% of the
overall execution time of our accelerated design. In Section 3.8 we talk about
the overlapping of the communication and computation, a technique that could
completely resolve the overhead.

3.4 Exploring Parallelism

Typically, the accelerator on the FPGA platform is able to explore task paral-
lelism, data parallelism, and instruction parallelism. We will use high level
synthesis tools, for example, AutoPilotTM1 to implement our design. AutoPilot
first parses the input description e.g., in C, and generates control data flow
graph (CDFG) of the code. Then it performs scheduling and binding on the
CDFG to generate the final RTL. Instruction parallelism, is directly realized by
the scheduler of the tool, because scheduler might schedule multiple instances
of function units (FU) at same cycle. Moreover, the loop pipelining pragma
can inform the scheduler to schedule the loop in a pipelined fashion, creating
more instruction parallelism. Task parallelism needs to explicitly write multi-
ple processes or tasks, and needs to consider inter-process synchronization and
arbitration of shared resources. Currently, AutoPilot can realize the task par-
allelism via functional block pipelining or through SystemC based description.
Data parallelism, on the other hand, widely used in SIMD instructions or GPU
accelerators, tries to use a same or similar program/code to cope with multiple
data. AutoPilot uses loop unrolling pragma to invoke program transform for
loops and the scheduler will schedule the unrolled CDFG to create the data
parallelism.

In our initial scheme, we developed a design based on task-level parallelism.
We first partitioned the kernel array and the partial image array into several
partitions based on the geometric locations. Figure 5 shows a 4-way naive
partitioning.

We then allocate four PEs in the FPGA, and each PE is responsible for the
computing of one partition of partial image array. As the computing of one
partition of partial image might need all the four partitions of kernel data,
access conflicts might occur. We schedule the operations such that different PE
will read or write different memory blocks at each computation stage (shown
in Figure 6).

However, as the address of the required kernel data depends on the set of
layout corners, it is likely that this approach might face load balancing prob-
lems, if the layout corner is not uniformly distributed. For example, if the
whole loop makes heavy use of one or several specific partitions, the benefit or
speedup using partitioning might become degraded. Another drawback is that
this type of task parallelism need control flow in each PE and need additional
logic to do synchronization.

1http://www.autoesl.com
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Fig. 5. Naive partitioning based on geometric locations.

Later, we decided to mainly borrow the idea from data parallelism, where
we first unroll the inner nested loop (the loop over different pixels) to some
degree and try to execute the multiple operations in the inner loop at exactly
the same cycle. The benefit is that the control flow is more simplified and the
load balancing problem no longer occurs. The 4-way unrolled code is shown in
Figure 7, where we unroll once in x direction and once in y direction. (Note
this unrolling doesn’t need to be written explicitly, as in Figure 7, but can also
be achieved by specifying unrolling pragmas in the original loop.) However,
this rewriting technique does not help without further memory partitioning,
as each on-chip memory block only has limited ports. When loop pipelining is
further enabled, the unrolling might increase the initiation interval of pipelin-
ing and not contribute much for the overall latency. The goal of the memory
partitioning is to make sure the correspondent simultaneous memory accesses
in the unrolled loop are partitioned into different memory blocks.

Besides the parallelism similar to data parallelism, we also use a loop
pipelining technique as an instructional parallelism technique, and the data
prefetching or the overlapping of the SW/HW communication and computation
using function block pipelining or task-level parallelism.

3.5 Memory Partitioning Using Modulo Addressing

This subsection discusses the memory partitioning scheme to allow multiple
memory access in the inner unrolled loop to be parallelized. For each block of
on-chip memory in the FPGA, typically there are only two ports available. If
the kernel array and partial image (a temporary buffer for each pixel to store
the inner sum) are just single memory blocks without partitioning, multiple
memory accesses can not be scheduled to the same cycle due to port contention.
Thus, clearly we need to partition the memory to allow for parallel processing
and to achieve high bandwidth and high throughput.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 17, Pub. date: September 2009.
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Fig. 6. Block scheduling for naive partitioning.

The idea we used in memory partitioning is a variant of modulo addressing.
The modulo addressing approach with a circular buffer that could get a row
of data containing n elements from n banks is presented in Tanskanen et al.
[2004]. The basic idea of Modulo addressing is simple: if we want to fetch a row
of data with address x, x+1, x+2, · · · , x+n−1 simultaneously, we can use cyclic
array partitioning where data with different modulo of address x%n are placed
in different memory blocks. Cubic addressing [Doggett and Meissner 1999]
provides a partitioning scheme for 3-D array which can obtain a 2*2*2 voxel
neighborhood simultaneously from 8 banks, this is a special case for modulo
addressing. Our case is a 2D case rather than 1D. Also, we want data with
address 5x,5(x + 1), · · · ,5(x + n − 1) are in different blocks; thus we need some
natural extensions on the simple modulo addressing. Also the aforementioned
work is in the domain of multiport memory architecture design for medical
image processing or video coding, while we describe the partitioning scheme
for our design in behavior C for reconfigurable computing.

In our case, we mainly have three arrays: the kernel array, which serves as
the look-up table for the computation; the partial image sum array, which is
used to store the intermediate inner sum for different pixels; and the layout
corners array. Without loss of generality, we assume that the overall size of the
three arrays can be loaded into the on-chip RAM of the FPGA. This assump-
tion holds for our test settings, but generally might not be true, and further
partitioning of data and computations might be needed.
ACM Transactions on Reconfigurable Technology and Systems, Vol. 2, No. 3, Article 17, Pub. date: September 2009.
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Fig. 7. Pseudocode for the partially unrolled nested loop.

We would like to further partition the array to take advantage of the high
peak bandwidth of the on-chip RAM. Multiple Processing Elements(PE), can
process multiple data concurrently if we partition the kernel array and the
partial sum array effectively without access contention and serialization.

To obtain a better partitioning scheme for this specific nested loop, we need
to take a look at the memory access pattern. For a specific layout corner, we
need to update all the image pixels. The corresponding data access in the
kernel array has a regular pattern (shown in Figure 4). A better partition
scheme should be able to evenly distribute the memory access pattern shown
in Figure 4 into multiple memory banks/blocks, regardless of the location value
of specific layout corners. Therefore, we choose to use a modulo interleaving
partition scheme.

We still take 4-way partitioning as an example, and the illustration is shown
in Figure 8. The same color/texture means the data are physically stored in the
same memory bank/block. Using this partition scheme, multiple data can be
fetched concurrently without any conflicts.

The basic idea for partitioning is to follow the grid size of the access pat-
tern in both X and Y directions so that memory accesses in the most inner
unrolled loop in Figure 7 are always in different memory partitions. In our
case, the kernel array is on a 5nm grid and the image array on a 25nm grid.
The illustration of the partitioning is shown in Figure 8. In this figure, dots
are memory accesses for kernel arrays (shown on the left) and the memory ac-
cess for the image partial sum (shown on the right). We can see the concurrent
accesses always lie in different colors in Figure 8, and thus can be scheduled
to execute at the same cycle. Figure 8 could be obtained via first coloring (here
we use coloring to represent the memory partitioning) the bottom-left 5 * 5
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Fig. 8. 4-way (2 by 2) memory partition scheme for load balancing.

Fig. 9. Address generation and output data multiplexing.

corner blocks in the kernel array, and coloring other blocks in an interleaved
fashion, to ensure that the four memory accesses in the inner unrolled loop
are in different memory blocks. Note that Figure 8 only shows a 4-way 2 * 2
partitioning corresponding to the partially unrolled loop in Figure 7, but a
5 * 5 or 8 * 8 partitioning scheme can also be developed similarly to allow for a
larger data bandwidth.

The array of image partial sum is also partitioned in a fashion shown in
Figure 8, so that we can write the output data into the array concurrently.
As the addresses for image partial sum are affine mapping of loop variables
and do not depend on runtime data, the partitioning for the image partial sum
array is somewhat simpler. The layout corner array does not need partitioning
as the loop over layout corners is an outer loop.

3.6 Address Generation Logic

As we explore the memory access pattern to partition the memory to allow for
concurrent access, the addresses to fetch those data also need to transformed
and mapped.

The address generation logic, and the memory partitioning and the mul-
tiplexing of output data, are all implemented via rewriting the code of the
original algorithm written in ANSI C.

Again take the 4-way partitioning in Figure 7 and Figure 8 as an example.
In Figure 9, a, b , c, d are four memory blocks after partitioning, and 1,2,3,4
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are four concurrent memory accesses. There are four different configurations
shown in the figure. With different address shifting determined by rectx and
recty, the concurrent memory accesses have different combinations with the
memory blocks they visit. In configuration 1, the four concurrent memory ac-
cesses 1,2,3,4 will need the data in memory block a,b , c,d, respectively. In
configuration 2, the four accesses will need the data in memory block b ,a,d, c,
respectively. Different configurations will have slightly different address gen-
eration logics.

The address generation logic first looks at which configuration is among
the four cases in the 2 by 2 partitioning design in Figure 9. Later, for each
configuration, there is a mapping function to transform the original address
into the mapped address. For each of the four configurations shown in Figure 9,
the data we get from different memory partitions also needs to go through
multiplexing to provide the required data for the accumulator. Let us go into
more detail on the address generation. Again we take 2 by 2 partitioning cases
as an example. Suppose we denote that the four addresses that the unrolled
loop needs to access (before the address mapping) in Figure 7 are [addrx][addry],
[addrx+5][addry], [addrx][addry+5] and [addrx+5][addry+5] respectively. We first
determine which group the address lies in by looking at the quotient addrx/(2∗
5), addry/(2 ∗ 5); e.g., in Figure 9 addrx/(2 ∗ 5) = 0 and addry/(2 ∗ 5) = 0. We
can determine which configuration it is by looking at the modulo addrx%(2 ∗ 5)
and addry%(2 ∗ 5); for example, addrx%(2 ∗ 5) < 5 and addry%(2 ∗ 5) < 5 means
that it is the first configuration. The divisor here is 2 ∗ 5: 2 relates to 2 by 2
partitioning, 5 relates to the image grid size which is 5X larger than kernel
grid size (also in the pseudo-code in Figure 2).

We denote the mapped address [addra
x][addra

y], [addrb
x ][addrb

y ], [addrc
x][addrc

y],
[addrd

x][addrd
y] for the four different memory blocks shown in Figure 9. And a

mapping function is

addrmappedx = f (addrx) = (addrx/(2 ∗ 5)) ∗ 5 + addrx%5
addrmappedy = f (addry) = (addry/(2 ∗ 5)) ∗ 5 + addry%5.

The first term determines the address that corresponds to different groups of
concurrent access, and the second term determines the address shifting within
a 5*5 block.

If it is the first configuration, then the addresses for the four memory block
are the same.

addra
x = addrb

x = addrc
x = addrd

x = addrmappedx

addra
y = addrb

y = addrc
y = addrd

y = addrmappedy.

If it is the second configuration, we have

addrb
x = addrd

x = addrmappedx

addra
x = addrc

x = addrmappedx + 5
addra

y = addrb
y = addrc

y = addrd
y = addrmappedy.

We can get the address for the remaining two configurations similarly. After
we get the addresses for each configuration, we can somewhat simplify the
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logic by extracting the common terms and write the address generation logic
as follows:

addra
x = addrmappedx if (addrx%(2 ∗ 5) < 5)

addrmappedx + 5 otherwise
addra

y = addrmappedy if (addry%(2 ∗ 5) < 5)
addrmappedy + 5 otherwise.

When we use other partitioning, such as 5 * 5 partitioning, similar address
generation logic can also be written using the same idea and format.

Note that the equations shown above use division and modulo operations, it
is well known that these operations are relatively costly on FPGA in terms of
both area and latency. However, we precompute these costly operations at the
CPU side and store them so that the FPGA does not need to worry about this.
If we recall the address generation shown in Figure 2, we only need to convert
the array data in rectx and recty to the form of quotient ∗ divisor + remainder so
that the quotient and remainder used in address computation can be obtained
directly.

3.7 Output Data Multiplexing

The data we fetched from the partitioned memory blocks needs to go through
multiplexing before it is sent to the accumulator, because the computation of
one partition of image partial sum might still require data in different parti-
tions of kernel array. For the 2 by 2 partitioning shown in Figure 9, if the data
from the four memory blocks are arraya[..], arrayb [..], arrayc[..], arrayd[..] and
the data we can directly send to the accumulator are Reg1, Reg2, Reg3, Reg4.
We denote the multiplexing logic as

Reg1, Reg2, Reg3, Reg4

= (arraya[..],arrayb [..],arrayc[..],arrayd[..]) (conf iguration 1)
= (arrayb [..],arraya[..],arrayd[..],arrayc[..]) (conf iguration 2)
= (arrayc[..],arrayd[..],arraya[..],arrayb [..]) (conf iguration 3)
= (arrayd[..],arrayc[..],arrayb[..],arraya[..]) (conf iguration 4).

But this naive multiplexing might have a large routing overhead when we
have a larger partitioning. We use 2D ring-based shifting to implement the
multiplexing. Figure 10 is the interconnect structure for the 2 by 2 partitioning
using ring-based multiplexing. For configuration 1, no shifting is needed; for
configuration 2, we can shift one step in X direction; for configuration 3, we
can shift one step in Y direction; and configuration 4 requires shifting one step
in both X and Y directions.

A larger partitioning scheme, for example, 5 * 5 partitioning can also use
a similar multiplexing scheme. Figure 11 is the interconnect structure for
the 5 * 5 partitioning using ring-based multiplexing. The pseudo-code for the
2D-ring-based multiplexing for 5 * 5 partitioning is shown in Figure 12. selx

and sely are values to determine how many steps the whole ring needs to be
shifted, which can be obtained by modulo of the layout corner, and ring shift x
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Fig. 10. 2D ring for 2 by 2 partitioning.

Fig. 11. Ring-based data multiplexing for 5 by 5 partitioning.

means all data in the 2D-ring is assigned the value on its circular left side,
and ring shift y means all data in the 2D-ring is assigned the value on its cir-
cular upper side. Although the if statement inside the loop can be merged to
the loop bound, we write it in the current form so that it has a constant loop
bound. These loops are further unrolled/flattened to facilitate the loop pipelin-
ing of the outer loop. We wrote the pseudo-code in such a way that the cycles
need to perform shifting are constant regardless of which configuration it is,
otherwise a nondeterministic cycle count might bring difficulties for pipelining.
The whole shifting is done in a multicycle fashion. In our 5 * 5 partitioning-
based design, we will shift two steps in one clock cycle. Although the latency
of the multiplexing through this 2D ring structure is long, it will not affect
the overall performance due to loop pipelining, as the multiplexing block can
be implemented as a unit that has a multicycle latency but with a one cycle
pipeline initiation interval (similar to many floating point IPs).

3.8 Loop Pipelining and Function Block Pipelining

The whole nested loop is pipelined to increase the throughput. Although many
rewritings, including the address generation and data multiplexing, compli-
cate the logic and increase the latency, they will not affect the performance
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Fig. 12. Pseudocode for 2D ring multiplexing for 5 * 5 partitioning.

Fig. 13. Loop flattening for deep loop pipelining.

much because the whole nested loop (over different rectangles and image pix-
els) can be pipelined and can achieve an initiation interval equal to one. Loop
pipelining can be achieved by specifying loop pipelining pragmas within the
nested loop. The core loop we implement is a nested loop. Specifying loop
pipelining pragmas might only pipeline the inner loop. The pipelining pos-
sibility also lies between different instances of the middle loop and even the
outer-most loop. We manually flatten the loop to reduce the depth of the loop-
nest. In this way, we can further reduce latency by reducing the startup latency
of the pipeline. The flattening process is shown in Figure 13. This is a tool-
specific rewriting. Some tools might be able to pipeline the whole nested loop
without manual flattening.

Moreover, we would like to overlap all the communications and computa-
tions so that the hardware component is running the computations almost all
the time. This can either be viewed as function block pipelining (Figure 14) or
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Fig. 14. Block pipelining/overlaping communication and computation.

Fig. 15. Explicit control flow on overlapping communication and computation.

realized as an explicit control flow of multiple tasks (Figure 15). In Figure 15
DI1 means transferring data from the CPU side to the SW/HW shared SRAM,
and DI2 means transferring data from the SRAM to the FPGA. DO2 means
transferring data from the FPGA to the SRAM and DO1 means transferring
data from the SRAM to the CPU. Comp is the computation part in FPGA. This
is an explicit control flow, and two hardware processes communicate with each
other via signals. Ping-pong buffers are used for both the layout corner array
and the image partial sum array, which serve as input data array and output
data array for the computation of one region respectively. 2X storage space is
used for the ping-pong buffer while one is used in the current computations
and the other is used for sending/receiving data. Using ping-pong buffers can
ensure that the overlapping will not alter the data that is needed for current
computation. In Section 3.3, we found that the communication time is not
greater than the computation time, thus the overlapping can hide the over-
head in the communications.
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Fig. 16. Using wider data to balance the use of the memory ports.

3.9 Using Wider Memory Access to Balance the Usage of Memory Ports

Besides the techniques shown in the previous subsections, we observe that the
port accesses for the kernel memory and the image partial sum memory are
not equal. Even in the pipelined loop, at each cycle we only get one unit of
data from a partition of kernel memory, but we use two ports for the image
partial sum memory due to the accumulator. As each memory block can have
two ports, we try to use both of the two ports of the kernel memory. But at the
output side, the image partial sum memory needs to store a wider bit of data
to avoid port conflict. This would provide a 2X more parallelism without fur-
ther partitioning of the memory blocks. Figure 16 illustrates the computation
elements using wider data.

4. LEVERAGING C TO HDL COMPILER FOR HARDWARE GENERATION

The entire algorithm is written in C so that we can leverage up-to-date C to
HDL translation tools. We use AutoPilot, which is a commercial tool that can
take ANSI C (within the synthesizable subset) as input and generate synthe-
sizable and optimized RTL.

4.1 C-Based Hardware Generation and Optimization without Code Refinement

The original core C code might be as short as shown in Figure 2 or Figure 3.
However, simply taking these codes into the translation tools might generate
a hardware design with even poorer performance than a software implemen-
tation, as the clock frequency of FPGA is much slower than conventional CPU,
and we need a much larger degree of parallelism to get speedup. Automation
tools can realize the parallelism via scheduling multiple operations in the con-
trol data flow graph (CDFG) at the same cycle. Currently, these tools are not
able to extract system-level parallelism automatically, but they provide a set
of pragmas which work as hints or directives for invoking parallel execution.
These include loop optimization techniques such as unrolling and pipelining,
which can increase the performance substantially compared to a generated
hardware design without using these techniques.

Loop unrolling and pipelining techniques are provided by the tool to op-
timize the performance of the nested loop. Loop unrolling can increase the
degree of parallelism if the computation is not constrained by memory access
of input data or there is some input data reuse between iterations of inner loop
bodies. Loop pipelining tries to start the execution of the loop body of the next
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iteration before completion of the prior iteration, and thus can greatly reduce
overall latency of the nested loop. In our case, the unrolling will not help much
compared to the pipelined loop as inner loop bodies will need the data from a
single memory block with limited ports and there is not much data reuse for
the loop. Pipelining did help as it could generate a pipelined loop with a small
initiation interval (one clock cycle in our case). But as the execution of loop
body without pipelining just uses around five to six clock cycles, the pipelined
design still cannot completely compensate for the low clock frequency of FPGA
to get a decent speedup. AutoPilot, recently added pragmas for memory par-
titioning, but till now they still can not handle the indirect data access in our
case very well.

AutoPilot, also recently added pragmas to specify the ping-pong buffer-
based IO interface. Thus, the overlapping behavior can also be generated
automatically.

4.2 Code Rewriting/Refinements for the Core Nested Loop

To break up the bottleneck at code generation for the data access, we conduct a
set of rewriting shown in previous subsections to increase the bandwidth and
throughput for the FPGA platform. The general idea is to partition the mem-
ory blocks to allow for concurrent data access, and the access pattern needs
to be exploited to develop a good partition scheme. Also the addresses for the
memory access after partitioning need to be mapped or generated and data
fetched from different partitions needs to be multiplexed. These are details de-
scribed in Sections 3.5 to 3.7. Besides the memory partitioning we presented
in the previous section, another issue is interconnect. It is very difficult for
high level tools to estimate the impact of interconnect at the high level, and in
most cases these tools ignore the interconnect issues, and only use the delay of
the functional unit during scheduling. The code for output data multiplexing
shown in Section 3.7 only performs some small bit-width comparisons and as-
signment operations, which does not consume much function unit delay in the
modeling of the tools. Thus, tools might chain a lot of comparison and assign-
ment into one cycle. But the interconnect delay will significantly degrade the
frequency in this case. We manually add clock boundary in that code to make
sure that the number of shifting steps in one cycle is fixed.

Many of these rewritings are intrinsic for hardware design. We feel that
the gap between the software C code and the C code suitable for hardware
generation still exists. It is unlikely that a pure software designer can master
these rewriting techniques; thus, there is still much room for synthesis tools to
extract the systematic parallelism and automate these refinements and rewrit-
ings, especially for users who are developing accelerators for high-performance
computing who might not be very familiar with HDL and the memory hierar-
chy of FPGA. However, even some rewriting and code tweaking cannot be done
automatically for the time being; C-based design greatly shortens the devel-
opment cycle and helps maintenance of the design. Most of these refinements
are specified at algorithmic level using C. We then use the C-to-HDL compi-
lation tools to generate the RTL for the refined C code, and we also enable
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Fig. 17. XD1000 system diagram.

Table I. Device Information of EP2S180
ALUT M512 M4K M-RAM Total DSP/Multiplier IO Pins

blocks blocks blocks Memory Bits
143,520 930 768 9 9,383,040 96 / 384 1170

the loop pipelining for the nested loop. The performance is greatly increased
with the help of large parallelism in the refined code. The core C algorithm is
less than one hundred lines of code, while after explicitly memory partition-
ing, the C code becomes around a thousand lines of code, and the generated
RTL contains several tens of thousands of lines. Thus, using the C-based de-
sign shall result in a significant saving in terms of design effort, compared to
a pure manual RTL design.

5. EXPERIMENTAL RESULTS

We implement the algorithm on Xtremedata’s XD1000 development system.2

Figure 17 is the system diagram of XtremeData’s XD1000TM development
system, which is the hardware platform we use. This development system
uses a dual Opteron motherboard and one Opteron is replaced by an XD1000
coprocessor module. The XD1000 coprocessor communicates with the host
Opteron CPU via HypertransportTM links, and it is built based on Altera’s
largest FPGA in Stratix II family: EP2S180. Table I shows the device infor-
mation of Altera Stratix II EP2S180 FPGA.

5.1 Speedup Measurement

We use a 5 by 5 partitioning scheme, and it effectively drives 25 ∗ 2 = 50
processing elements. Kernel array spans a 2000nm by 2000nm area and is a
400*400 array containing 16-bit resolution fixed point values. The window of
image region we simulate has a size of 1000nm by 1000nm, thus image partial
sum array is a 40*40 array containing 32-bit resolution fixed point values.
Layout corner array is an array containing up to 800 32-bit values and can

2http://www.xtremedatainc.com
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Table II. Device Utilization of the Design with 5 by 5 Partitioning

Tool ALUT Memory Bits DSP/Multiplier IO pins Fmax(MHZ)
AutoPilot 22,457 (15.6%) 2,972,876(31.7%) 0 (0%) 485(41%) 112.30

Fig. 18. Speedup plot with accelerator, single kernel.

Fig. 19. Speedup plot with accelerator, multiple kernels, N=200.

store N up to 200 rectangles. All these arrays are stored in the on-chip RAM
of the FPGA.

The design has only around a 20% device utilization in logic ALUT and 30%
utilization of memory bits; it does not use any multiplier and DSP units. We
run the design at 100MHZ. Note that around 8% ALUT is used by the Hyper-
Transport core and SRAM interface cores in the framework, thus the design
itself consumes less than 20K ALUT. Table II shows the device utilization of
our design.

We first conduct our experiment on a layout design with size 200um*200um
with the setting shown in Section 2.3 where we simulate each unit of image re-
gion of 1000nm by 1000nm, and the range of the kernel is 2000nm by 2000nm.

We generate the layout with different layout density N. Figure 18 and 19
depict the speedup curve of the FPGA accelerated version versus the pure
software implementation running on the Opteron CPU. The software imple-
mentation runs on the same development box of XD1000 with AMD Opteron
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Table III. Running Time Comparison with or without Accelerator, Single Kernel

N wo accelerator w accelerator speedup
5 4.16 1.44 2.89

10 8.01 1.44 5.56
25 19.94 1.46 13.65
50 39.88 2.61 15.27
75 59.80 3.86 15.49

100 79.74 5.16 15.45
125 99.64 6.41 15.54
150 119.63 7.71 15.51
175 139.45 8.99 15.51
200 159.44 10.27 15.52

Table IV. Running Time Comparison with or without Accelerator, Multiple Kernels, N=200

No. of Kernel wo accelerator w accelerator speedup
1 159.44 10.27 15.52
2 274.27 20.55 13.34
4 606.37 41.12 14.74
6 885.71 61.70 14.35
8 1216.00 82.29 14.77

10 1572.00 102.80 15.29
12 1806.00 123.46 14.62

248 (2.2GHZ) 4G DDR memory and is compiled through gcc -O3. The mea-
sured speedup factor is around 15. Note that for a very small N, for example,
N ≤ 10, the speedup we get is small due to the overhead in communications.
For a moderate N, we can keep a speedup around 15, as the communication
time is smaller than the computation time. We first just use one kernel for
simulation. Table III shows the measured running time and speedup with dif-
ferent N. Then we keep the N fixed and change the number of kernels. The
data is shown in Table IV.

One limitation of our current design is that we assume the three arrays used
for computing using one kernel can be fitted into the on-chip RAM of the FPGA.
However, we are not able to fit a larger partitioning with the current setting
of input/output data size, although the overall on-chip memory bits have not
exceeded the memory bits available in the device. The reason is that around
60% of the on-chip memory in the device is M-RAM, and each M-RAM can
store only one memory partition. The more partitioning we use, the larger the
percentage of partitioned arrays are put into the remaining M-4K and M512
blocks, which will increase the difficulty of fitting the design.

It is possible to fit the design and achieve a higher bandwidth and speedup
with a larger partitioning scheme, such as an 8 by 8 partitioning or even larger
partitioning scheme, if we use a smaller kernel array or decreased resolution.
Another way is to further partition the kernel array and computation into
multiple parts and only load one part into the on-chip RAM and only do the
computation that uses that part for one time.
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Fig. 20. Contour graph using fixed point or floating point computation.

Fig. 21. Error distribution for the contour graph.

5.2 Accuracy of the Fixed-Point Computation

Using fixed-point computation will not have a big impact on accuracy. We
measured the error of the approach versus the software implementation using
all floating point operations, and the absolute error is usually within 1% for the
pixels with bright intensity. The relative error for pixels with very small/weak
intensity, on the other hand, might be larger because of the truncation error.
Figure 20 shows two plotted pictures of a 1000nm by 1000nm region obtained
via either software or hardware. We can see that almost no difference can
be observed in the contour graph. We also plot the error distribution of the
contour graph in Figure 21. From the figure, we see the maximum absolute
error of all the pixels is around 10−3. Besides, most of the pixel tend to have a
even smaller error, which is in line with our analysis in Section 2.2. Note that
the maximum intensity of that contour graph is 1.83, and the relative error is
indeed very small.

5.3 Comparison with the FFT-Based Approach and Other Acceleration
Techniques

There is no prior published work on accelerating the polygon based lithography
image simulation. However, the 2D FFT-based image convolution has been ex-
tensively studied in various platforms. We list them here for reference. Table V
shows the measured/expected performance rate on various platforms (and we
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Table V. Performance Rate (Mpixel/s) Comparison of Various Algorithm and Platforms

N polygon polygon polygon 2D-FFT 2D-FFT FPGA 2D-FFT GPU
software FPGA GPU software [Mencer and [Podlozhnyuk 2007]

Clapp 2007]
10 8.0 44.4 32.4 0.2 1.1 3.4
50 1.6 24.5 10.8 0.2 1.1 3.4

100 0.8 12.4 6.7 0.2 1.1 3.4

assume only one kernel is used here). We use FFTW [Frigo and Johnson 2005]
in the software implementation of the 2D FFT-based convolution. Note our
setting uses different grid size for imaging and kernel, say a 5nm grid on the
kernel/eigenvectors and layout corners and a 25nm grid for the simulated im-
age, but FFT needs the same grid size for computation. If we use the finer grid
size among the two(the kernel grid), it will report the effective performance
rate shown in the column of the table. If we use the coarser grid, the effective
performance rate will be 25X to 30X larger, but it might lose some accuracy in
representing the objects and might cause some accuracy loss in the simulated
image. It might be more fair to compare all implementations with a same grid
size for kernel and image, yet we do not have data of the FPGA implementation
for this setting.

From Table V we can see, for a moderate density N around 50 to 100, while
the polygon-based approach is not as fast as the FFT-based approach using
25nm in the object and eigenvectors, it is much faster than the FFT-based ap-
proach using a 5nm grid. (Note the extra overhead for the FFT-based approach:
conversion from the GDSII to the object image, is not included.) In terms of ac-
celerated simulation, our implementation can achieve up to 15X speedup over
the software implementation, while the FPGA accelerated FFT-based 2D con-
volution only reported around 5X in the single precision and around 10X in
the 16-bit precision [Mencer and Clapp 2007] using a Virtex-4 device. We also
notice that recently FFT-based 2D convolution is shown to achieve very high
FLOPS [Podlozhnyuk 2007] on NVidia G80 with the help of the CUDA Toolkit
and CUFFT library; if we use the coarser grid size, it can achieve 90Mpixels/s.

As the algorithm in Figure 2 is naturally data parallel, we also implement
the algorithm using CUDA. CUDA mainly uses the SPMD(single program
multiple data) model. Each thread has a thread ID and each thread can use
the ID to access different data and perform subsequent computation using the
data. Figure 22 shows the part of the pseudo CUDA code. The parameter
blockDim.x and blockDim.y define the number of the threads in one dimen-
sion and gridDim.x defines the number of thread blocks. This code will launch
gridDim.x ∗ blockDim.x ∗ blockDim.y threads. Further optimizations need to
determine the locations for the array data, which affects the effective internal
bandwidth for the application. We place the image partial sum array in the
shared RAM in the threading block, place the kernel array in texture mem-
ory, and place layout corner array in global memory. The overall size of the
kernel array is too big to be put in the shared memory. Accessing kernel data
via texture caching might not give as large a bandwidth as the carefully parti-
tioned on-chip memory of FPGA, but the massive threading offsets the possible
latency in memory access.
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Fig. 22. Pseudocode for the core computation using CUDA.

We test the performance on a 8800GTS video card. The current measured
speedup we get for the design is around 8X . Consider the usage of a higher end
card, for example, 8800GTX, GTX280 and more tuning possibilities, we expect
the speedup for our litho design using NVIDIA GPUs should be somewhat the
same against our accelerator design using FPGA. Note that GPUs also have
their advantage on floating-point, while FPGA design usually needs to use
fixed-point for area efficiency.

External IO bandwidth is critical for certain applications. In this appli-
cation, Section 3.3 gives the estimate on the communication for the FPGA
design. The communication time is less than the computation time and the
overlapping scheme removes the communication from the critical path. For
the GPU design using CUDA, the (external IO) communications are not over-
lapped with the computation, but the peak bandwidth of PCI-e x16 is 4GB/s
and is sufficiently fast for this application. This makes the communication
time only consist of less than 1/10 of the total execution time.

In terms of power consumption, the power for this FPGA design reported
by Quartus Power Analyzer tool is 6.2W and the peak power for this FPGA
device is roughly 25W. The TDP(Thermal Design Power) of the Opteron 248
CPU is 95W, and the TDP of the 8800GTS GPU is 147W. (It is difficult for us
to measure the actual power for the CPU and GPU at runtime, thus we put
the TDP here.) We can see the power consumption of either GPU or CPU is
much larger than the FPGA device. However, the FPGA coprocessor is plugged
in a dual CPU motherboard. If we count the power consumption of other part
in the system, for example, chipset, hard drive in the comparison, the gap on
power consumption is not very large. If we consider the possibility of using
multiple devices(more than one FPGAs or more than one GPUs), the gap will
again become significant. In our design, FPGA platform could deliver similar
performance with much less power consumption.

In terms of ease of use, the CUDA toolkit, as a C development environment
for NVIDIA GPU, is very friendly to use; this makes GPGPU platform very
attractive. Users need to rewrite their code to the SPMD form and tune the
locations of array data for performance. This tuning needs the deep knowledge
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of GPU hardware. Traditionally, using FPGA for computing has been much
more difficult than GPU and CPU. C to RTL automation tools help to bridge
the gap, and will also make the FPGA-based computing platform increasingly
attractive. We present our paper describing our litho design on FPGA using C
to RTL automation tools. We also point out that currently it also needs many
hardware-oriented refinements or tuning.

In terms of cost for reaching similar performance, high-end FPGAs for HPC
markets are still relatively expensive, thus FPGA designs need to demonstrate
a larger speedups to justify a more competitive position. This is often the
case for examples with high degree of bit-level parallelism and data/task par-
allelism. (Note that the design we present does not have bit-level parallelism.)

6. CONCLUSIONS AND FUTURE WORK

This article presents a design for accelerating lithography aerial image simula-
tion using a polygon-based simulation model. The adequate memory banking
scheme for the on-chip memory can improve the load balance and ensure a de-
cent speedup. A 5 by 5 partitioning design can achieve around 15X speedup
over software implementation. We also compare against other algorithms and
implementations on GPU.

We see several opportunities for making improvements over the current de-
sign. One is that the 2D-ring structure might have a large interconnect delay
in the feed-back path; thus buffers need to be explicitly inserted, especially
when there is a larger partitioning. Another improvement concerns the as-
sumption that at least one kernel can be loaded into the on-chip RAM. This
might not be always true for different settings. Thus, further partitioning of
the kernel and computation should also be implemented.

Current C to HDL code translation and synthesis tools have already en-
abled the designer to write and maintain the algorithm and logic in high level,
purely in C, and help reduce the development cycle. However, our experience
shows that a certain amount of effort is still needed to find a larger parallelism
through manual refinement of the C code. More automation is needed for the
extraction of systematic parallelism. Also for the mapping of memory models,
the compilation tool should not simply convert one array in C into a memory
block in HDL, but should provide more flexibility and optimizations on memory
models that could possibly do a better job of handling the specific addressing
patterns in our design.
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