
On-the-fly Composition of FPGA-Based SQL Query Accelerators Using A Partially
Reconfigurable Module Library

Christopher Dennl, Daniel Ziener, Jürgen Teich
Chair for Hardware-Software-Co-Design

Department of Computer Science
University of Erlangen-Nuremberg

Erlangen, Germany
Email: {christopher.dennl,daniel.ziener,teich}@cs.fau.de

Abstract—In this paper, we introduce a novel FPGA-based
methodology for accelerating SQL queries using dynamic par-
tial reconfiguration. Query acceleration is of utmost importance
in large database systems to achieve a very high throughput.
Although common FPGA-based accelerators are suitable to
achieve such a high throughput, their design is hard to extend
for new operations. Using partial dynamic reconfiguration, we
are able to build more flexible architectures which can be
extended to new operations or SQL constructs with a very low
area overhead on the FPGA. Furthermore, the reconfiguration
of a few FPGA frames can be used to switch very fast from
one query to the next. In our approach, an SQL query is
transformed into a hardware pipeline consisting of partially
reconfigurable modules. The assembly of the (FPGA) data path
is done at run-time using a static system providing the stream-
based communication interfaces to the partial modules and the
database management system. More specifically, each incoming
SQL query is analyzed and divided into single operations
which are subsequently mapped onto library modules and the
composed data path loaded on the FPGA. We show that our
approach is able to achieve a substantially higher throughput
compared to a software-only solution.

I. INTRODUCTION

Today’s database systems have to execute many queries
on large databases, e.g., Google has to answer about one
billion search queries per day. To keep the response time
low, queries must be executed as fast as possible. Queries
are the interface between the database management systems,
which hold the databases, and the database applications
which rely on data stored in such databases. Therefore,
speeding up query execution could increase the performance
of database systems and the database applications could
benefit from a lowered response time. Until now, software
optimizations are done exhaustively to increase the per-
formance of database systems but limits in terms of CPU
clock frequency are reached, thus software execution time
is limited, too. It is likely that data loads will increase
further. Hence, we have to think of further possibilities to
accelerate the query execution. On the one hand, today’s
multi-core CPUs offer the possibility to increase software
performance if software is parallelized. On the other hand,
we can take hardware accelerators into consideration to
speed up execution by exploiting natural parallelism of
reconfigurable hardware like FPGAs. FPGAs are already
used in different fields of application, e.g., image process-
ing, network packet processing, or other high-throughput

applications. Consequently, it is worthwhile to investigate
the usage of FPGAs in the field of database applications
in general and for query execution purposes in particular.
The possibility to change the configuration of an FPGA at
run-time within milliseconds allows us to handle different
queries by simply switching to the appropriate configuration.
However, it is unaffordable to build one special accelerator
for each possible query. Therefore, we make use of the
possibility of partial reconfiguration. Partial reconfiguration
allows us to switch the FPGA configuration partially, thus
it is possible to load modules into the FPGA at run-time
without the need of a complete reconfiguration. Furthermore,
partial reconfiguration is faster than a full reconfiguration of
an FPGA because the bitstreams are smaller.

In this paper, we present a module library consisting of
such modules which covers an important subset of typical
operations occuring in SQL queries. Furthermore, we present
methods to map a query into a data path consisting of
modules of our library. Consequently, we can cover a subset
of possible queries and can execute a specific query by
loading the appropriate, pre-synthesized modules into the
FPGA at run-time.

In Section II we introduce related work. This includes
existing approaches as well as the used technology. We
continue in Section III with a problem definition and present
architectural concepts in Section IV. Implementations are
shown in Section V and the results are discussed in VI.
This paper ends with a conclusion in Section VII.

II. RELATED WORK

There exist already some static approaches which use
FPGAs for query processing, i.e., they do not utilize partial
reconfiguration which leads to some drawbacks. The first ap-
proach is implemented by Glacier [1], a query-to-hardware
compiler and library. It implements a set of streaming
operators which can be composed to a digital circuit. This
circuit is able to execute a specific query. Glacier converts
an algebraic query plan, which represents such a query,
into an appropriate digital circuit by generating VHDL
files. Afterwards, the circuit is synthesized and the resulting
bitstream is loaded into the FPGA which is now ready to
execute the query on an appropriate data stream. However,
this approach is only suitable for scenarios with few queries
which are known in advance. Synthesizing digital circuits is

2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines

978-0-7695-4699-5/12 $26.00 © 2012 IEEE

DOI 10.1109/FCCM.2012.18

45

a time-consuming step which can take minutes to hours,
thus Glacier is unapplicable for applications with many
unknown queries and high throughput requirements. We will
show how to overcome this drawback by utilizing partial
reconfiguration.

Another approach is implemented by Netezza’s FAST-
engines [2] as shown in Figure 1.

����

�����

	
�

�������
��

�

�

�

�

�

�

���

��	��
��

����	�

�����	�

Figure 1. Overview of Netezza’s FAST-engine [2] providing a fixed
pipeline with several computing engines

It provides a pipeline consisting of several computing
engines which is reconfigurable by setting internal registers.
It is still a static design as no FPGA-based (partial) recon-
figuration is applied at run-time. One purpose of a FAST-
engine is to reduce the amount data, which is passed from the
disk to the CPU, by performing projections and restrictions
on the requested table data beforehand. Furthermore, a
FAST-engine hides the slow I/O transfer rate of a hard-
disk by utilizing its decompression engine. This engine
decompresses data stored on the disk into uncompressed data
stored in RAM, thus the I/O bottleneck of disks is weakened.
We cannot state the exact capabilities of each engine because
they are neither public nor documented. However, the design
of a fixed pipeline forces the projection engine only to drop
columns which are not needed later anymore. This is non-
optimal in terms of amount of data reduction. Furthermore,
following our own approach, a trade-off between flexibility
of the hardware and complexity of the queries needs to be
made. The more flexible the hardware is to cover a high
variety of queries, the less is the maximum complexity
of a query because more flexible hardware needs more
resources than specialized hardware. We show how partial
reconfiguration can be used to resolve the drawback of a
fixed pipeline and allows us to handle both complex and
non-complex queries by just selecting appropriate modules.

The design and implementation of our partially recon-
figurable system along with its modules requires also to
solve dynamic interconnect problems. For this purpose, we
propose to use the ReCoBus-Builder tool as described in
[3]. This framework provides communication macros to
exchange data between the static part of a system and partial
modules as well as macros to guide the Place & Route step
during implementation. Especially, we rely on the I/O Bar
macro which is used to design pipelined structures. I/O Bars
are a composition of several pre-routed wires whose purpose
is to pipe a data stream. Partial modules can be plugged on
and off the I/O Bar at run-time and have the possibility to
bypass or manipulate the data stream.

III. PROBLEM DEFINITION

First of all, we have a closer look on the Structured Query
Language (SQL) [4] and its offered operations and data
types. Afterwards, we select a powerful subset for which we
will present a methodology for automatic accelerator gen-
eration on the basis of a partial reconfigurable architecture.
SQL queries provide the interface between database appli-
cations and data stored in relational databases. In relational
databases, data is organized as tables which are defined by
one or more attributes. Each row of a table corresponds to
one specific data tuple stored in this table and each attribute
has a specific data type like integer, string or float. SQL
defines CRUD operations (create, read, update, delete) to
interact with the data stored in such tables. Furthermore,
the SQL offers operations to constrain the so-called CRUD
operations, e.g., it is likely for a delete operation not to delete
all tuples of a table but only tuples which meet a specific
requirement. Amongst others and looking at benchmarks
like TPC-H [5], there are four commonly used operations
in query processing: projections, restrictions, aggregations
and joins.

Projections: Projections are used to select specific
attributes of a tuple. In other words, projections select
specific columns of a table. They can considerably decrease
the amount of data which is passed from the database to the
application because only needed data is retrieved, thus I/O
load can be reduced. In the SQL syntax, they are expressed
using the SELECT-statement.

Restrictions: Whenever a database application wants
to retrieve or modify certain tuples which have to meet
one or more requirements, restriction operations are used.
Restrictions are Boolean expressions and only tuples which
fulfill a restriction are considered for further processing.
Whereas projections select specific columns of a table,
restrictions select specific rows, thus data can be reduced
further. To define a restriction in SQL syntax, the WHERE-
statement is used.

Aggregations: Aggregations are functions to combine
several values of one or more attributes of a group of data
tuples to one value. Figure 2 shows an example usage of the
aggregation function SUM().

����� ��	
�����

��� ��

���� ��

��� ��

��� ���

��� ��

���� ���

���� ��

��� ��

��� ��

���� ��

������

���

�����

	
�
�
��
�
	
���

��
���

���
�
��
��

��

Figure 2. Application of the aggregation function SUM(); the product
price * quantity of each tuple is summed up

Joins: Joins combine two tables to one compound
table containing the combined information of both tables.

46

Formally, a join is the cartesian product of two tables
followed by a restriction.

In this paper, we apply Netezza’s concept of using FPGAs
as a precomputational step between a data source and a
data sink. Moreover, we will focus on projections and
restrictions and show how partial reconfiguration can be
used to assemble flexible computation pipelines at run-
time. Furthermore, we show how restrictions of different
complexities can be handled by offering an appropriate
module library for different needs. However, the SQL defines
a wide variety of possible data types and operators working
on these types. Thus, we select a representative subset with
common types and operations. In this work, we offer the
following operators for restrictions:

• +,−, ∗,
• AND,OR,NOT,XOR,NAND,NOR,
• <,≤,=, �=,≥, > .

Furthermore, in this first version of our module library
we designed modules to support integers and fixed-length
strings. The comparison operators are defined on both types
whereas the arithmetic ones work only on integers. However,
our library can be easily extended to support other types,
e.g., float, by simply adding appropriate partial reconfig-
urable modules.

Figure 3 shows an overview of our approach. An SQL
query is transformed into a hardware pipeline consisting
of partially reconfigurable modules. The assembly of the
(FGPA) data path elements is done at run-time using a
library of predefined SQL operator modules that will be
explained in the next section. This way, an input table is
filtered by a restriction term, thus the outgoing tuple data
stream contains only records which fulfill the restriction.

IV. ARCHITECTURAL CONCEPTS

Before being able to design the library of partial mod-
ules, the architecture and data processing concepts will be
explained. These include a module interconnect interface
called I/O Bar, which must be the same for all modules,
as well as processing the data in a suitable way. The I/O
Bar provides the following interface:

• Control bus with several control signals:

– global_reset to reset all modules in the
pipeline

– local_reset to reset a specific module in the
pipeline

– data_valid and config_valid to indicate
the arrival of a new tuple or configuration data on
the data bus

– project to tell the projection module whether to
keep or drop the data on the data bus

• Opcode bus to address configuration registers inside the
modules

• Data bus to transport tuple and configuration data

For data processing, we assume a query data stream is
formed and flowing from some data source to some data
sink through the FPGA. One pattern of query processing
of real databases is that usually tuples are wider than usual

����� ��	
�����

��� ��

���� ��

��� ��

��� ���

��� ��

���� ���

���� ��

��� ��

��� ��

���� ��

��������� !"!#

$%&
�

!

'

�

!

(

)*+"

, -

"

.

�

����� ��	
�����

��� ���

��� ��

��� ��

��� ��

SELECT * FROM product WHERE price < 1000 AND quantity > 0

	//�012�

*�3���

Figure 3. Query transformed into a hardware module pipeline; Tuples
from an input table are filtered by a restriction term

data bus widths. Hence, tuples must be split into several
parts, which we call chunks in the following and chunks
need to be properly sequenced, see, e.g., Figure 4. A chunk
has the same width as the data bus and contains certain
attributes of a tuple. Now, modules can access exactly these
attributes needed for operation by fetching the appropriate
chunks out of the data stream. Each chunk of a tuple has
a unique index and the modules are configured with the
appropriate chunk indices, e.g., if a adder module needs
chunk 2 and 4 for its operator inputs, it is configured
with index 2 for the first operand and index 4 for the
second operand. During stream processing, each module
counts the bypassing chunks and loads its operand registers
if an appropriate chunk arrives. Furthermore, the modules
are configured with the count of chunks per tuple. This
way, a module can recognize when a tuple ends and a
new tuple begins. This information is important because
projections and restrictions are evaluated row-wise, i.e., each
tuple is evaluated independently. Operands are not forced to
be tuple attributes only but also constant values which can
be configured beforehand. As stated above, single attributes
must be located in single chunks in order to be able to
address them via indices but this is not suitable for string
attributes because strings are usually longer than the size of
one chunk. In this case, the indices denote the start and the
end chunk of a string but we have to assume that one string is
contiguous. However, integer attributes can be smaller than
one chunk or several integer attributes are located inside
one chunk, therefore modules should provide the possibility
to cut out smaller attributes of chunks. Otherwise, such
attributes have to be aligned to the chunk width, which

47

would lead to a space overhead. Figure 4 shows a snapshot of
a typical data processing stream. The modules are configured
with the appropriate chunk indices which denote the position
of the operands inside one tuple.

�������	
������������	
�����

� � ���

��	
����	
�����	
�����	
����	
��� ��	
���

��������	
 ��������	
 �����

�������� �������� ��������

���	����� ���	����� ���	�����

��� ���

Figure 4. Snapshot of processing tuples of data; In the example, tuples
consist of three attributes and three chunks and the modules are configured
with indices which denote the position of the operands. The shown data path
consists of three cascaded modules for processing the query introduced in
Figure 3. It is not determined yet how results are handled. Figure 5 shows
the completed snapshot.

The more difficult part is the handling of intermedi-
ate results which arise when we want to evaluate more
complicated restriction terms. In general, there are two
possibilities to handle this situation: The first alternative is
to pass intermediate results in parallel to the data stream.
The second one is to include the results into the data
stream. The first possibility requires a second data bus which
leads to a higher resource usage of the system whereas the
second possibility decreases the maximum throughput of the
system because the tuples get blown up. We would prefer
the first method if resources would be available, but for
our prototype implementation, we stick to the second one
because there are typically not enough resources available
in a target FPGA. To insert intermediate results inside the
tuple stream, we allocate a sufficient count of spare chunks
per tuple beforehand and configure the modules with the
right result index. Hence, each module knows when it has
to insert its results. In order to retrieve the right result, the
result index must not be smaller than the operator indices.
However, they might be equal, thus old intermediate results
can be overridden by new ones. Figure 5 shows an adjusted
tuple stream processing. Modules are configured with an
additional result index. Thus, they can place their results
inside the stream into spare chunks which are allocated
beforehand.

� � ���

��	
�
��� ��	
�
��� ��	
�
���

������
�� ������
�� ������
��

������������������	�������������

����
�����
!����
�����
�����
� ����
	

��������	
 ��������	
 ������

""" """

Figure 5. Adjusted data processing, which was introduced in Figure 4, to
handle intermediate results; spare chunks are appended at the end of each
tuple to provide slots for intermediate results

As soon as the tuples leave the pipeline, the spare chunks
are dropped and only useful data is transferred for further
processing. To decide whether a tuple fulfills a restriction or

not, we have to take a look at the spare chunk which holds
the result of the last operator of the pipeline. The result
is either true or false. In some cases, it is possible to use
common tuple chunks as spare chunks. Whenever a chunk
will be projected by a projection module and is not used
further, it can possibly be used as a spare chunk. As stated
above, this possibility is not for free because we suffer a
decreased throughput which is quantified by Equation (1).

Eff. Throughput =
TC

TC + SC
·Max. Throughput (1)

• TC: Number of Chunks per Tuple
• SC: Number of Spare Chunks per Tuple

Implementing a projection module into the pipeline is
rather easy because we only have to evaluate the project
signal on the control bus. Furthermore, we can freely place
it before and/or after the restriction pipeline. In order to as-
semble an appropriate pipeline which evaluates a restriction,
we need several information and methods, respectivly. We
have to compute the minimal count of spare chunks which
have to be appended at the end of each tuple as well as the
assignment of modules to these spare chunks. Furthermore,
we have to derive a linear order of operations which respects
the dependencies inside the restriction term while the term is
evaluated. Thus, we can assemble a linear pipeline consisting
of several modules.

A. Computing Minimal Count of Spare Chunks

In order to solve these three problems, we have to choose
a sufficient data structure to represent restrictions and need
algorithms which work on this data structure. We represent
a restriction by the help of a Binary Expression Tree, which
is recursively defined by Equation (2):

T = Operand | T ×Operator × T (2)

Either tree T is an operand, or it is an operator with a
left and right sub-tree. I.e., operands are the leaves of the
tree and operators are the inner nodes. Figure 6 shows an
example.

�

�

� �

�

Figure 6. Binary expression tree representation of the restriction 5+x < y

We may now compute the minimal count of spare chunks
by applying the recursive algorithm denoted by Equation

48

(3) [6]. We have to call this algorithm on the root node of
a given binary expression tree.

#reg(v) =

⎧⎪⎪⎨
⎪⎪⎩

0, isLeaf(v)
max(#reg(l(v)),
#reg(r(v))), #reg(l(v)) �= #reg(r(v))
#reg(l(v)) + 1, otherwise

(3)

• isLeaf(v): Function to determine whether node v is a
leaf or not

• l(v), r(v): Functions to retrieve the left / right sub-tree
of a node v

If a node v of the tree is a leaf, it is an operand, and we
do not need an additional spare chunk. If the count of spare
chunks of the sub-trees differs, we can take the maximum
for the actual node because one of the sub-trees has free
spare chunks. We only need an additional spare chunk if
both sub-trees have the same count, thus we cannot reuse a
free spare chunk of one of the sub-trees.

B. Operator Node to Spare Chunk Assignment
Knowing the count of spare chunks allows us to compute

an assignment of operator nodes to spare chunks. Thus, we
can configure each operator module with the right operand
and result indices. Algorithm 1 shows a recursive algorithm
which assigns spare chunk indices to operator nodes.

Algorithm 1 Function to assign spare chunk indices to
operator nodes

function ASSIGN(v, current, max)
v.spare index ← max - current
if !isLeaf(l(v)) && !isLeaf(r(v)) then

assign(l(v), current, max)
assign(r(v), current+1, max)

else if !isLeaf(l(v)) then
assign(l(v), current, max)

else if !isLeaf(r(v)) then
assign(r(v), current, max)

end if
end function

• v: Currently visited node
• current: Current index counter
• max: Maximum index

To get a complete assignment, we have to call
assign(root(T), 0,#reg(root(T))− 1). The algorithm tra-
verses each inner node and labels the currently visited node
with an index. The index denotes the spare chunk which
holds the result of the assigned node. It is ensured that the
index of a node is greater or equal to the index of the sub-
trees, thus a result is not written until both operands are
fetched.

C. Linearization of a Binary Expression Tree
In order to build a pipeline of modules, we need a linear

order of operations which preserves the dependencies of the
operators. A operator must be placed later in the pipeline

than its child nodes. We choose a post-order traversal of
the tree because it generates the reverse polish notation of
a binary tree which corresponds exactly to our dependency
requirement. In post-order traversal, first the left and right
sub-trees are processed and afterwards the node itself. The
traversal can omit the leaves because they are no operators.
Figure 7 shows the application of all three algorithms on the
restriction (((a · b)− ((c− d) · e)) + f) < (g + (h− i)).

�

�

� �

�

� �

� � � �

� �

	 �

 ��

�

�

�

�

�

�

	

���� ����

����

����

����

����

����

����

��

��

��

�� �� �� �� �� �� �� �� �� �� ��

� � � � � � 	
 � �� ��

�

��

��

��

�

��

��

�	

�

��

��

��

�

��

��

�

�

��

��

��

�

��

��

��

�

��

��

��

�

����

����

�������

Figure 7. Application of all three algorithms and the resulting pipeline

So far, we have shown how to transform an SQL query
containing projections and restrictions into a flexible par-
tially reconfigurable module pipeline which processes a
database tuple stream. Now, we can take a closer look on
the prototypical implementation and results.

V. PROTOTYPICAL IMPLEMENTATION

In this section, we describe a prototypical implementation
of our system and module library. This includes the parti-
tioning of the FPGA into static and dynamic regions as well
as a sufficient choice of bus widths for the I/O Bar. We
chose the XUP Virtex-II Pro Development System of Xilinx
with an XC2VP30 FPGA as available target platform. Note
that the proposed methodology works exactly the same on
recent Virtex5 / Virtex6 platforms.

First of all, we have to partition the FPGA into a static
and dynamic reconfigurable part and design the I/O Bar. As
stated above, the I/O Bar consists of three different buses
and the bus widths are defined as follows:

49

• 8 bit control signals, which leaves additional spare
control signals for possible future use. One separate
bit is used per control signal,

• 16 bit opcode signals to address registers inside the
partially reconfigurable modules, and

• 32 bit data bus to transport tuple and configuration data.

These widths are chosen to keep the resource overhead
of the communication macro small, allowing us to use more
resources for the implementation of our partial modules. In
detail, we use one slice per row and module, i.e., two bits
per row and module. We split up the I/O Bar into a north and
a south one because the PowerPC Cores divide the available
space inside the FPGA. The north I/O Bar is connected to
the south one on the east side which allows us to treat the
both I/O Bars as a single one. The data is flowing from
west to east in the north part and from east to west in the
south part. Figure 8 illustrates the system design and shows
a possible placement of modules.

Figure 8. Partitioning of the FPGA and I/O Bar layout; the shown module
pipeline corresponds to the restriction shown in Figure 7

Each of the two dynamic regions has a size of 32x24
CLBs and contains 5 BlockRAM / Hardware Multiplier
columns. Each CLB contains 4 slices with each slice having

2 LUTs and 2 flip flops. Due to the reconfiguration scheme
of the FPGA [7] and the limitations of the ReCoBus-Builder,
the width of a partial module must be a multiple of 2 CLBs.
The frequency of the chosen clock is 100 MHz, i.e., the
maximum achievable throughput is 100 MHz · 32 bit = 400
MB
s . According to Equation (1), the effective throughput

decreases in dependence of the number of spare chunks.

A. Arithmetic-Logical Modules
We implemented a set of arithmetic-logical modules that

offer different feature combinations. Table I shows the
investigated combinations.

Table I
INVESTIGATED MODULE FEATURE COMBINATIONS

Immediate Values ALU Byte-wise Access
� � �
� no �
no no no

Having a programmable ALU inside a module has the
advantage that the operation can be changed by simply
switching the opcode of the ALU once the module is
plugged onto the I/O Bar. No further reconfiguration is
required. Omitting constants and byte-wise access is useful
for inner nodes which do not have constants or small
attributes as inputs. Amongst others, this is the case for
inner nodes without leaves. The more features are omitted,
the narrower a module becomes, i.e., a restriction can be
more complex but the reconfiguration effort to reconfigure
a new data path increases. Figure 9 shows the data path of
an ALU module supporting all discussed features.

���

���

���

	�

��

���

���

���

�		�
������

�		�
�����

���	��������

����������

�����
����

�����
��� ���������
��

����������
��

����
�

���

�����

�������������� !�

���

��

"

" "

#$%�!&&%�!��%�

	

�

�

	

�

�

�

�

�

	

�

�

 '���'(��

 '���'(�

#$%�!&&%�!��%��

����������
���

����������
#$%�� #�)%$# �

���

���

���

	�

�

Figure 9. Arithmetic-logical module with all features; by omimitting
certain features of this module, the module gets narrower and needs less
resources

It has a latency of two cycles but is fully pipelined. The
operand registers are loaded when the current index is equal
to the operand indices. If the result index is equal to the
current index, the ALU result is forwarded instead of the
current chunk. The data slice module cuts smaller attributes

50

out of chunks at the provided byte boundaries. Furthermore,
it can sign-extend the operands. A multiplication module
is relying on hardware multipliers inside the BlockRAM
columns, which puts location constraint on modules with
ALU or the multiplication module.

B. String Comparison Modules

Two different string comparison modules have been in-
vestigated, one based on flip flops and another one based on
BlockRAM for storing the string attributes. The former one
has no location constraint but can hold only small strings
up to 16 single-byte characters whereas the latter one relies
on BlockRAM and can hold strings up to 8192 single-
byte characters. Both modules are fully pipelined, thus all
modules in the library achieve the same throughput, i.e.,
may be freely chosen. A distributed RAM version is not
investigated yet.

VI. RESULTS

We investigate several aspects of our system. We take a
look at the resource usage of the modules and the conse-
quential complexity of restrictions. The overhead which is
brought with the dynamic approach is also a topic as well
as the execution time of different queries compared to a
software counterpart. We assume the data to be located in
DDR memory for our experiments. To fully utilize the max-
imum throughput of this system in applications, the storage
architecture must provide the corresponding bandwidth.

A. Resource Usage & Limitations

First of all, we show the resource usage of our module
library. Table II, Table III, and Table IV show the usage of
the arithmetic-logical modules. In 6/4/2 CLB columns (32
CLBs per column) we have 768/512/256 slices available,
respectively for each module. Furthermore, the narrowest
modules have the best slice utilization, i.e., the overhead in
comparison to a complete static design is very low. As stated
above, the module with ALU and the multiplication modules
require an additional BlockRAM column with its integrated
hardware multipliers.

Table II
RESOURCE USAGE OF THE ALU MODULE SUPPORTING ALL FEATURES

(FIGURE 9)

Slices CLB Columns Slice Utilization
531 6 69%

Table III
RESOURCE USAGE OF MODULE WITHOUT ALU

Operator Slices CLB Columns Slice Utilization
+, − 321 4 63%

AND,OR,XOR 305 4 60%
NOT 238 4 46%

NAND,NOR 305 4 60%
<, ≤ 322 4 63%
=, �= 314 4 61%
≥, > 322 4 63%
∗ 321 4 63%

Table IV
RESOURCE USAGE OF MODULE WITHOUT ALU, BYTE-ALIGNED

ACCESS, AND IMMEDIATE VALUES

Operator Slices CLB Columns Slice Utilization
+, − 239 2 93%

AND,OR,XOR 222 2 87%
NOT 194 2 76%

NAND,NOR 222 2 87%
<, ≤ 240 2 93%
=, �= 230 2 90%
≥, > 240 2 93%
∗ 238 2 93%

Table V
RESOURCE USAGE OF STRING COMPARISON MODULES

Method Slices CLB Columns Slice Utilization
Flip Flop 366 4 71%

BlockRAM 340 4 66%

The resource usage of the string comparison modules are
shown in Table V, respectively. The string comparison mod-
ule based on BlockRAM requires an additional BlockRAM
column.

As long as resource and location requirements are ful-
filled, the modules can be freely chosen and combined to
arbitrary pipelines which execute a corresponding restriction.
A trade-off has to be made between reconfiguration effort
and query complexity. If only queries of low complexity
may be expected, placing some general modules might be
a good choice because their functionality can be changed
without reconfiguration.

We chose 16 bit registers for indexing chunks. Hence, one
table row entry can have a maximum size of 216 · 32 bit
= 256 KiB. Integer attributes can have a size of 1, 2, 3, or
4 byte and string attributes can contain up to 16 or 8192
single-byte characters and must be a multiple of 4 bytes.

B. Query Execution Time

To measure query execution times, we choose different
queries and set up a test table which contains 12 four
byte integers (id,a,b,c,d,e,f,g,h,i,j,k) and a 16 character string
attribute (str) per entry. Thus, the size of one entry is 64
bytes which makes a total of 16 chunks to hold all attributes
of one row. We fill the table with 222 random entries which
sum up to a total workload of 256 MiB. Our test system for
the software is a Intel Core i7 Q820 @ 1,73 GHz with 8
GB RAM. We have a standard installation of MySQL 5.1
running on Windows 7 Professional 64 bit.

To ensure an equitable starting position, we created a
INMEMORY table in the database system, i.e., the complete
workload is located in main memory and not on hard-disk.
The primary key column id is indexed, i.e., for specific
search queries, the database system does not need to perform
a full table scan, which results in a huge performance gain.
Our hardware always does a full table scan regardless of the
query.

We prepared sample queries and present the execution
times of some queries next. Query 1 and 2 is a search on
indexed attributes, query 3 and 4 includes a string compari-
son, and query 5 and 6 is the most complex restriction with

51

24 operations which can be executed on our current FPGA
target.

Q1: SELECT * FROM test_table WHERE id=4711;
Q2: SELECT id FROM test_table WHERE id=4711;

Q3: SELECT * FROM test_table WHERE
str < ’abcdefghabcdefgh’ OR g > 500;

Q4: SELECT id FROM test_table WHERE
str < ’abcdefghabcdefgh’ OR g > 500;

Q5: SELECT * FROM test_table WHERE
((((a+b)-(c-d))<((e+f)+(g-a)))

AND
(((b+c)-(d-e))<((f+g)+(a-b))))

XOR
((((c+d)-e)<(f+g))

OR
((a-b)>(c+d)));

Q6: SELECT id FROM test_table WHERE
((((a+b)-(c-d))<((e+f)+(g-a)))

AND
(((b+c)-(d-e))<((f+g)+(a-b))))

XOR
((((c+d)-e)<(f+g))

OR
((a-b)>(c+d)));

Table VI shows the execution times in software and
FPGA hardware. The overhead which is created by the
spare chunks is also considered, i.e. the software can work
on the clean 256 MiB workload, whereas the hardware
has to work on the workload with overhead because spare
chunks are needed (net load column). However, as soon as
arithmetic operations are involved, query execution benefits
from our FPGA solution. The throughput and execution time
is independent from projections in our implementation but
the software can benefit from them. The measured times
represent the raw execution times excluding the time needed
for analyzing a query or assembling the pipeline. Inside the
FPGA, it is the time between the entry of the first tuple
and the leaving of the last tuple out of the pipeline. In
MySQL, it is the time elapsed during the executing thread
state, which can be looked up in a query profile. However,
this is only a little snapshot. Amongst others, the results are
highly dependent of the table layout, i.e., wider table rows
are beneficial for the FPGA because the influence of spare
chunks decreases. On the other hand, simple search queries
on indexed columns may be executed faster in software as
long as the FPGA makes no use of such structures and does
only full table scans.

Table VI
COMPARISON OF QUERY EXECUTION TIMES; 16 CHUNKS ARE NEEDED

TO HOLD THE ATTRIBUTES

Query Spare Ch. Net Load Software Hardware Speed-Up
Q1 1 285MB 0,0002s 0,713s x0,0003
Q2 1 285MB 0,0002s 0,713s x0,0003
Q3 2 302MB 3,49s 0,755s x4,62
Q4 2 302MB 1,06s 0,755s x1,40
Q5 4 335MB 5,16s 0,839s x6,15
Q6 4 335MB 2,43s 0,839s x2,90

VII. CONCLUSIONS & FUTURE WORK

In this paper, we presented a flexible approach for on-the-
fly query processing based on a dynamically reconfigurable
data path assembled at run-time of modules of a partially
reconfigurable module library. It was shown how partial
reconfiguration can be used to construct flexible pipelines
to execute real SQL queries consisting of projections and
restrictions. We eliminated the need of running a full syn-
thesis for each query, which is done by Glacier. We are
also not bound to a fixed pipeline as Netezza’s FAST-
engines. We experienced that query execution can benefit
a lot from an FPGA solution as soon as restrictions on non-
indexed columns are involved. However, we cannot provide
detailed reconfiguration times yet, because we are using
JTAG for partial reconfiguration. This shall be changed in
the future by using the ICAP interface. In future work, we
will move to newer technologies such as Virtex 6 which
offers the possibility to implement wider buses or more
complex operations like aggregations. The library shall be
extended also to support more data types like floats or
multi-byte strings, which are common in today’s database
environments. Furthermore, a multi-query system executing
several queries in parallel shall also be considered. On a
higher level of abstraction, developing methods to compute
reconfiguration schedules and module selections for different
optimization goals could be another direction of investiga-
tion as well as automatic query-to-data-path compilation.

ACKNOWLEDGMENT

We want to thank our industry project partners at IBM
Deutschland Research & Development GmbH in Böblingen
for supporting our research in this field.

REFERENCES

[1] R. Mueller, J. Teubner, and G. Alonso, “Glacier: a query-to-
hardware compiler,” in Proceedings of the 2010 international
conference on Management of data, ser. SIGMOD ’10. New
York, NY, USA: ACM, 2010, pp. 1159–1162. [Online].
Available: http://doi.acm.org/10.1145/1807167.1807307

[2] P. Francisco, “The Netezza Data Appliance Architecture: A
Platform for High Performance Data Warehousing and Ana-
lytics,” IBM, Tech. Rep., 2011.

[3] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder - A
novel tool and technique to build statically and dynamically
reconfigurable systems for FPGAS,” in International Confer-
ence on Field Programmable Logic and Applications, 2008.
FPL 2008., sept. 2008, pp. 119 –124.

[4] “Information Technology Database Languages SQL Part 1:
Framework (SQL/Framework),” ANSI/ISO/IEC 9075-1:2008.

[5] “Transaction Processing Performance Council - Ad-hoc Deci-
sion Support Benchmark,” http://www.tpc.org/tpch/default.asp,
[Online; accessed 02-January-2012].

[6] P. Flajolet, J. Raoult, and J. Vuillemin, “The number of regis-
ters required for evaluating arithmetic expressions,” Theoretical
Computer Science, vol. 9, pp. 99 – 125, 1979.

[7] B. Bridgford, C. Carmichael, and C. W. Tseng, “XAPP 779:
Correcting Single-Event Upsets in Virtex-II Platform FPGA
Configuration Memory,” Xilinx, Tech. Rep., 2007.

52

