
Accelerating database systems using FPGAs:
A survey

Philippos Papaphilippou, Wayne Luk
Department of Computing, Imperial College London, UK

{pp616, w.luk}@imperial.ac.uk

Abstract—Database systems are key to a variety of ap-
plications, and FPGA-based accelerators have shown promise
in supporting high-performance database systems. This survey
presents a systematic review of research relating to accelerating
analytical database systems using FPGAs. The review includes
studies of database acceleration frameworks and accelerator im-
plementations for various database operators. Finally, the survey
includes some promising future technologies and discussion on
the challenges to be addressed by the future research in this area.

Index Terms—FPGA, Databases, Acceleration, Operators,
Computer architecture, Analytics

I. INTRODUCTION

While the use of FPGAs in accelerating database operations

has been explored for a long time [1], reports about their

application to accelerating industrial-scale databases have only

emerged recently. Baidu, for example, has developed SDA,

a software-defined accelerator for general-purpose big data

analysis systems such as SparkSQL and HIVE, based on

Xilinx KU115 FPGAs running at 300MHz [2]. It supports

abstract SQL operations. For a real case query based on the

TPC-DS query3 benchmark, the FPGA runs 55 times faster

than a 12-core server.
FPGAs are an attractive option for accelerating different

database systems. FPGAs provide big amounts of flexibility

in a relatively cheap package that can be exploited by the

programmer or hardware designer to use its resources for

building an accelerator. Since the functionality of a database

can be specific to the user’s needs, developing a general

purpose database processor, such as with static ASIC designs,

would be expensive. For this reason, FPGAs have found

their way into the data centers to become co-processors for

specialized applications.
Database systems can be demanding, as their size can easily

reach ‘Big Data’ dimensions, with tables acquiring terabytes of

memory. Traditionally, the database systems were mostly On-

line Transaction Processing (OLTP) systems. These systems

are characterised by simplicity in terms of the transactions.

With the rise in popularity of data mining and machine

learning in big data, another database category emerged,

called On-line Analytical Processing (OLAP) which has more

complex queries that need to access and summarise multi-

dimensional data. In the latter category, FPGAs have been

perceived as an attractive solution as in many operations the

data is accessed in a streaming fashion and the queries are

sometimes pipelineable.

FPGA development has its own challenges. Different ar-

chitectures, including CPUs and GPUs, have different ineffi-

ciencies and introduce different bottlenecks to performance.

In order for an FPGA accelerator to be effective, the problem

needs to have certain qualities, such as to be naturally parallel.

FPGAs may perform significantly worse than a CPU if the

application is control-heavy, i.e. it has a lot of unpredictable

branches. The challenges in design may also include the steep

learning curve and the immaturity and proprietary nature of

the current FPGA development toolchains.

In Section II, there are the challenges of the modern FPGA

technology in respect to database operator acceleration. In

Section III, we review some representative works on Frame-

works and accelerator implementations for database accelera-

tion. Finally, in Section IV, we discuss some alternative and

future technologies to overcome the current bottlenecks in

performance.

II. CHALLENGES

A. Main memory throughput

In general, database accelerators require streaming big

amounts of data and they are bottlenecked by the memory

bandwidth [3]. The obtainable throughput can be lower, due

to the communication protocol.

Related studies use the DMA bandwidth [4] or the aggregate

throughput from other methods, such as with unified virtual

addressing (UVA) memory for GPUs [5] or with multiple-

FPGA solutions [3], utilizing one or more PCIe links instead,

which is currently at around 6.5 GB/s per link. CPU has the

highest memory bandwidth to main memory, with modern

Intel processors reaching over 80 GB/s read and 38GB/s write

speeds [6].

What is usually referred as memory bandwidth is the

throughput of the co-processor’s bigger memory (DRAM) [7],

but the memory access throughput to the main memory is

much lower. This is because most platforms are in a non-

uniform memory access (NUMA) machine, which means the

host processor has a main memory different to that of the

FPGA.

In some systems such as Intel’s HARP v1, the FPGA does

not have its own big memory [4] and the data still needs to

be obtained through the processor. Last, there are some SoCs

(System on Chip) that combine CPU cores with an FPGA and

they share the same speed to DRAM, but they can be low-

125

2018 International Conference on Field-Programmable Logic and Applications

978-1-5386-8517-4/18/$31.00 ©2018 IEEE
DOI 10.1109/FPL.2018.00030

end in this aspect and they are also often used in a NUMA

machine with another CPU being the host.

For the moment, some algorithms allow workarounds. An

approach is to use the DRAM of the FPGA more wisely, such

as with pre-loading specified datasets or applying optimiza-

tions to minimise the bandwidth requirements. The on-chip or

DRAM memories of the FPGA can also be used as scratchpads

or caches, such as by storing lookup tables. The work of

Halstead et al. [8] is an example of a database accelerator

that is inspired by the cache hierarchy for multiprocessors.

The database processor keeps entries in the on-chip memory

of the FPGA and makes multiple requests simultaneously to

‘hide’ the occurring memory latencies.

In addition, when aggregated, the DRAM of a multi-FPGA

server can reach or even exceed the amount of main memory

of the CPU. Therefore, it would also make sense to use this

memory for an in-memory database system.

B. Latency

In big data streaming situations, the FPGA-induced latency

is generally negligible. The latency to access main memory

becomes important in access patterns that are more unpre-

dictable, such as with random accesses. A database accelerator

whose performance is susceptible to memory latency is hash

join [8], as the entries are references to main memory locations

for the elements to be joined. For that reason, workarounds in-

spired from CPU’s attempts to hide memory latency are used,

such as prefetching and caching. The FPGA-induced latency is

also important in accelerators whose performance is affected

by the input, such as with some sorting implementations [9].

III. FPGAS AND DATABASES

The works related to database accelerators can be di-

vided into frameworks and specialised accelerators. The

‘frameworks’ class includes work that provides a software

and hardware stack for accelerating user-defined database

operations. In this class we have also included virtualisation

frameworks for providing a VM-like functionality in data

centers for users to deploy their own accelerators in the

cloud. In the ‘accelerator’ class, we have included database

processors that are specifically designed to support a set of

common queries. This also includes relatively simplistic FPGA

designs to accelerate single operations, but they could easily

be used in a framework of the previous class.

A. Database acceleration frameworks

a) Database-specific frameworks: One characteristic

work for providing a hardware-software solution is Centaur

[4]. Centaur consists of two parts, the hardware part called

the “FThreads manager” and the software part called the

“Application interface”. The software supports API calls in

C++ through the UDF (user defined function) functionality

of MonetDB [10]. The hardware component is responsible

for managing the different user-defined hardware in terms of

resource utilisation, memory accesses, and also pipelining.

Centaur implements a dynamic pipelining functionality. The

FThreads manager connects consecutive hardware operators

with FIFO queues for fast intermediate communication to en-

able pipelining in hardware. This is abstracted in the software,

as the user is able to pipeline the operators in source code. The

user can define it programmatically by using the FPipe object

to pipe the output from one operator to the other. The UDFs

also allow pipelining software and hardware components. This

is useful because the CPU is shown to perform better on some

operators and the FPGA resources might be too limited for

all the required operators to co-exist. The addition of more

heavily-optimised accelerators (and UDFs in this case) is left

to the user.

DoppioDB [11] extends Centaur. DoppioDB uses MonetDB

along with a number of optimized hardware designs for the

FGPA, exploiting the UDF functionality for making calls

to the hardware accelerator. DoppioDB implements regular

expression, skyline and stochastic gradient descent on the

FPGA and the rest of the workload is left for the CPU to

process. This resulted in a system that can execute SQL queries

for an analytical relational database with over 3 times speedup

when compared to the baseline, which was to execute the

queries on a high-performance CPU without acceleration.

The selection of MonetDB was a good choice of a database

to accelerate in these works, as it supports giving access

to whole tables, as well as adding the UDFs in plain C++.

Giving access to whole tables is an advantage over the more

traditional row-by-row processing, because it allows the table

to be accessed in a streaming fashion by the FPGA. MonetDB

is a column-store database, as it uses Binary Association

Tables (BATs) as a data representation [10], to be more

focused on high performance with big data. This is due to

the natural ability to ignore fields who belong in infrequently

accessed columns, having therefore more efficient memory

access patterns. Other advantages of MonetDB for future

research is that is open-source and it also approaches an in-

memory database, which is an increasingly popular storage

model and is here to stay [12].

b) General-purpose frameworks: There is also a selec-

tion of frameworks that are not directly related to databases,

but could be a useful component for a complete system for

accelerating database operations on FPGAs.

One example framework that targets a wider range of

applications is an attempt to provide virtualisation services

for FPGAs in data centers [13]. The main contribution of this

paper is the extension of the OpenStack framework with tools

to enable FPGA resource assignment to clients without making

compromises on performance and ease of use. The solution

is based on partial reconfiguration, as the main component

of the FPGA design is a static logic to manage the client-

programmable VFRs (Virtualized FPGA resources). The static

logic mainly consists of input and output arbiters that ensure

fast and secure communication and eliminate unpredictable

states. There are contributions with both hardware designs

and software, as a complete compile flow and boot sequence

is provided, with all the required parts, such as a netlist file

126

for the Xilinx tools to connect client designs in Verilog and

produce valid bitstream files. The added latency for arbitration

between different FPGA designs is negligible.

High-level synthesis tools could also be seen as frameworks

for database acceleration, as they provide means for easier

software-hardware interaction. One relatively popular general

purpose framework is the MaxCompiler. Simple accelerators

like some of the ‘arithmetic’ type below are just a few lines in

MaxCompiler. Maxeler systems provide a high-level synthesis

tool for FPGA accelerators along with their own dedicated

high-performance servers. Database accelerators have already

been deployed on a Maxeler system [3]. The server configu-

rations have multiple FPGAs connected through the multiple

sets of PCI Express lanes, which can lead to higher aggregate

throughput and enable pipelining of different tasks across

different FPGA boards. Some disadvantages of HLS are that

they may provide less flexibility to the programmer, some

designs may not be able to be represented efficiently with the

provided functionality and there might be less opportunities

for manual optimisation and root cause analysis.

B. Operator accelerators

In this subsection, we review a series of accelerators specific

to databases or applicable to databases. Most of these are

inspired from SQL queries, since it is an almost universal

language for expressing database operations, more extensively

than relational algebra, a more theoretical representation.

Database operator accelerators can be divided into one of

the following categories: sort, select, join, string matching,

filtering and arithmetic. In Table I, there is an overview of

the accelerated operators mentioned in this section. The access

pattern attribute describes the patterns with which the data is

moving and the data placement describes the original location

of the data at the time of request.

a) Sort: A sorting module can be very useful in a

database processor as many queries perform aggregations or

table merging and according to their implementation and

requirements it can be their costliest operation [3]. It can be

used for sort-merge joins, which is a join algorithm easily

applicable to FPGAs [3]. This is one of the cases where

different algorithms perform better on different platforms [14].

Quicksort and variations are currently preferred on CPUs.

Optimisations of quicksort can be found in the Oracle database

implementation [18] and this research area is still fairly active.

Other uses of sorting on databases include the analytics-related

queries, hence the tau notation in relational algebra which

represents sorting.

The current state-of-the-art sorting algorithms on FPGAs

are not based on quicksort. In 2005, J. Harkins et al. [14]

evaluated the performance of five different sorting algorithms

on an FPGA: Quick sort, Heap sort, Radix sort, Bitonic sort,

and Odd-even mergesort. The conclusion was that Radix sort

was the winner but the it was only twice as fast as quicksort

on the CPU, due to the technology limitations of that time,

such as the lower memory throughput, low FPGA clock and

fewer compiler optimisations. Mueller et al. reached similar

observations for sorting networks with 2012 technology [9].

They found that an FPGA consumes much less power than a

processor for similar performance and also that more tight

collaboration of an FPGA with a CPU can actually yield

better performance. They studied the performance of sorting

networks on FPGA (odd-even sort and bitonic sort) and

evaluated heterogeneous mergesort, which is a realistic use-

case that performs the last levels of the merge operation on

the CPU for data that does not fit the FPGA memory.

In a more database-centric setting, Casper et al. [3] in 2014

have created a mergesort implementation on the FPGA that

focuses on minimizing the memory bandwidth requirements.

The inclusion of a sorting accelerator was crucial for imple-

menting equi-join entirely in hardware. They showed that this

implementation is memory-bound, meaning that with advances

in memory system technology it has the potential to further

exceed the performance of a CPU-only solution.

There are also works that focus more on memory and energy

efficiency. Chen et al.[19] in 2015 showed that a bitonic

sort implementation can be 2 times more memory efficient

and 5 times more energy efficient when compared to a CPU

implementation. They also showed ways of trading perfor-

mance for more memory and energy efficiency by changing

the throughput with which the input data are accessed from

the FPGA.

Srivastava et al. [20] have further optimised bitonic sort for

accelerating big data applications. They showed that the last

merge operations of mergesort are a bottleneck for large-scale

sorting and replaced them with a heavily-pipelined bitonic

network for higher throughput. It was inspired by the two

works mentioned above [3], [19]. The result was a consider-

able speedup over the then current mergesort implementations.

b) Join: The join operation is a frequent operation of

relational databases. The main functionality of join is to com-

bine the columns of two tables by using different criteria. One

common join operation is equi-join, which takes as input two

tables and performs an equality comparison for merging rows

with common values in their equivalent columns. There are

multiple join algorithms, such as nested-loop join, sort-merge

join and hash join, all of which have FPGA implementations.

Casper et al. [3] created a full equi-join implementation in

hardware by pipelining different modules in a multi-FPGA so-

lution, as found in a high-performance Maxeler system. Their

approach was to do the sort-merge completely in hardware for

minimizing the bandwidth bottleneck and therefore including

a merge sort module. The main idea behind a regular sort-

merge join is that the two tables that need to be merged, they

must first be sorted by the respective key/column on which

the comparison will be performed.

Hash joins have also been successfully implemented on

FPGAs. The main consideration with hash joins is that hash

operations may perform suboptimally when the hashed lo-

cations are not provided efficiently in a memory hierarchy.

For example, when using a CPU, the multiple-level cache

system will help hide the memory latencies from accessing

the data if the working set is sufficiently small. Halstead et

127

TABLE I: Comparison of different accelerators for database operations in terms of data movement

Accelerator type Algorithm Ref. Access pattern Data placement

Sort

Quicksort, Heapsort, Radix sort [14]

Streaming controlledb

FPGAa

Odd-even mergesort, Bitonic sort [9], [14] FPGA
Merge sort (as an intermediate step) [3] FPGA

Heterogeneous mergesort [9] main memory (NUMA)
Selection Selection (as an intermediate step) [3] Streaming read/write FPGA

Join
Sort-Merge Join [3] Streaming read/write main memory (NUMA)

Hash Join [8] Random Access main memory (NUMA)
String Matching Regular expressions [11], [15] Streaming read/write main memory (NUMA)

Filtering
Logical expressions [16] Streaming read/write FPGA

Skyline [4], [11] Streaming iterative main memory (NUMA)

Arithmetic

Mullad (a[i] = b[i]*C+D) [4] Streaming read/write main memory (NUMA)
Percentage (sum(b[i:j])/sum(b[:])) [4] Streaming read, single value write main memory (NUMA)
Testcount (if cond(a[i]): count++) [4] Streaming read, single value write main memory (NUMA)

Stochastic Gradient Descent [11], [17] Streaming iterative main memory (NUMA)
aWhen ‘FPGA’, the data reside on FPGA’s DRAM or BRAM, ignoring initial copy operations, which is less realistic for a NUMA system
bThe data is mostly accessed sequentially, often in iterations, but it is not clearly streaming. It is either fetched from multiple DRAM banks/

FIFO queues in a MIMD or SIMD fashion from independent sorting modules, or sent through commands upon algorithmic request.

al. [8] showed that by mimicking multi-tasking as found in

multi-threaded implementations for multiprocessors, there is

a smarter memory hierarchy utilisation resulting is increased

performance. They have implemented a hardware-aware join

operation to eliminate the effects of the absence of cache in

the FPGA.

Recently, Roozmeh et al. [7] demonstrated how a hetero-

geneous system that combines an FPGA, a CPU and a GPU

can accelerate database join operations. Their approach was to

compare the performance of nested-loop join and sort-merge

join for FPGA and GPU and they showed that a high-end

FPGA can outperform the GPU test platforms.

c) String matching: Another focus of database accel-

eration research work is string matching operations. One

of Centaur’s[4] and also DoppioDB’s [11] hardware user-

defined functions (HUDFs) that were provided for evaluating

the performance of the frameworks was a regular expression

engine.

Regular expressions can be seen as short scripts which are

well-defined for complex string matching capabilities. With

the rise of machine learning and its integration in relation

algebras for analytic operations, the non-strictly formatted

data, such as string, can become the bottleneck in analytical

databases [11]. The claimed speedup is up to 3 times in com-

parison with a high-performance CPU implementation. The

accelerator implementation was described in more detail in

[15]. This work focuses in database applications and provides

more flexibility and resource utilisation by breaking down

the regular expressions into parameters. This is achieved by

having a flexible state graph that changes according to the

automatically–generated parameterisation configuration vector.

Accelerating regular expressions in FPGAs is not only found

in database analytics. The work of Sidhu et al. [21] dates back

to 2001 and demonstrated non-deterministic finite automaton

implementations on an FPGA working with O(n) speed, where

n is the number of characters in a string.

d) Filtering: The most common way of filtering is by

using logical expressions, as found in SQL’s WHERE clause,

which is a number of conditions for each row. One accelerator

designed to do this in hardware is a database processor from

2016 [16], designed for fast database operations and is imple-

mented on an FPGA. This work takes advantage of a highly-

coupled SoC architecture that provides high-throughput com-

munication between two arm cores and the FPGA, residing

on the same die (Altera Arria V SoC FPGA). In contrast with

other accelerators, it focuses on small and embedded devices.

The main idea was to use a Content Addressable Memory

(CAM), with which a series of queries will be executed in

parallel but inside the chip. The queries are encoded in a

format that reminds an Instruction Set Architecture (ISA)

found in processors.

One more complex way of filtering is by using the Sky-

line operator [22]. Skyline is a family of queries that filter

multi-dimensional data using multiple criteria. This requires

streaming the same data multiple times and it can be expensive

for CPUs. Centaur [4] and DoppioDB [11] explore an FPGA

implementation of a skyline query engine and demonstrate a

considerable performance improvement over CPUs.

e) Arithmetic: Other accelerators that would help in-

crease modern database systems are a set of operators that are

related to big data analytics and machine learning/statistics.

The list could be very extensive, due to the many different

use-cases and therefore we present only some that were seen

in a database acceleration context.

Simpler examples such as mullad (scale one column by

a constant and add another constant to each element) and

percentage (the percentage of the sum of a subsequence of

a column over the sum of all elements) and testcount (count

all rows satisfying a common condition) are included in the

exploration of the Centaur framework [4]. CPUs can also be

efficient with such operations, if vectorisation is exploited by

the compiler and the architecture supports them.

A more complex accelerator is a Stochastic Gradient De-

scent (SGD) implementation [17]. SGD is used for building

linear models in machine learning and is an iterative oper-

ation, until a set of stopping conditions are met. Through

128

quantization, the operation can be optimised for different

accuracy needs. It is shown to outperform a high-end CPU

implementation by an order of magnitude for the same level

of accuracy, despite the memory bandwidth limitation.

IV. ALTERNATIVE AND FUTURE ARCHITECTURES

A. Other co-processors

Graphics Processing Units (GPUs) are currently a com-

petitor to FPGAs for database acceleration. However, they

also suffer from the main bottleneck as FPGAs when doing

memory accesses, which is the limited memory bandwidth.

There is an exception to this and it is a new interconnection

protocol for NVidia GPUs called NVlink [23] and can yield

a main memory access speed of 25 GB/s which is close to

that of the CPU.

Roozmeh et al. [7] compared bleeding edge FPGA technol-

ogy with GPUs and found that FPGAs can actually be faster

than GPUs for some database operators. Both the FPGA plat-

forms were 40% more energy efficient than the GPUs. How-

ever, this work highlights that the high-end FPGA test platform

(Virtex UltraScale VU440) that was the best performance-wise

in comparison with the GPUs, costed $37000, which was two

orders of magnitude more expensive.

Many-core processors, such as Intel’s Xeon Phi, is another

competitor to FPGAs. As a co-processor, Xeon Phi suffers

from similar disadvantages for databases. Cheng et al. [6]

have optimised state-of-the-art hash join algorithms for better

utilisation of the resources of the latest Xeon Phis. The

local high-bandwidth Multi-Channel DRAM (MCDRAM) is

found better to work as a big cache for the main memory

and combined with software prefetching and NUMA-aware

partitioning, Xeon Phis can give an important speedup for hash

joins. Some of the optimisations can be found in a smaller

scale on the FPGA competitor for hash joins by Halstead et

al. [8].

Additionally, some innovative many-core architectures,

apart from leaving more control to the programmer for simpler

hardware logic and flexibility [24], they can support direct

inter-core communication which can be used for pipelining

operations [25]. This is something very desirable in database

queries [4] and it is not supported in mainstream CPUs.

B. Faster interconnection protocols

Moussalli [26] discussed the future directions for accelerat-

ing databases on GPUs and FPGAs in 2017 and suggested

that various new technologies could eliminate the memory

bandwidth limitation of accelerators. Among NVlink [23],

which is for GPUs, the IBM POWER8 processor, with its

Coherent Accelerator Processor Interface (CAPI) was also

mentioned for faster database acceleration.

CAPI promises higher memory bandwidth from the accel-

erator (including FPGAs) by eliminating software abstractions

for better bandwidth utilisation. This is currently implemented

on top of PCIe Gen. 3 and has a memory bandwidth of

16GB/s bidirectional [27] (16 lanes of 8 Gbps each, for one

device), which is low compared to CPU’s speeds. However,

future processors of the IBM POWER9 architecture will have

up to 48 PCIe lanes and OpenCAPI, the successor to CAPI,

which can yield performance of 150GB/s aggregate throughput

(48 lanes of 25Gbps each) [28]. Such protocols are expected

to improve the FPGA performance for database operations,

including multi-way joins [29].
The latest advancements in FPGAs revolve around System-

On-Chip (SoC) packages, such as with the MPSoC platform

[30] that combines an FPGA with ARM and GPU cores.

This could be a pivotal point for heterogeneous workloads,

but in regards the bandwidth performance it is relatively

low-end [16]. An interesting platform is the Intel HARP v1

prototype [4]. It allows an FPGA to co-exist in a second

socket in a multi-socket server. While this might not be an

important change over FPGAs connected with PCIe in high-

performance servers, it could be considered as an early step

for the introduction of higher-performing Xeon+FPGA chips

[31] and hopefully with the highest main memory bandwidth

for the FPGA.

C. Near-data processing/ processing in memory
In the datacenter scale, near-data processing (NDP) is

promising to overcome the power and performance impli-

cations of processing huge amounts of data. By moving

computation to memory, NDP avoids chip-to-chip transfers

and yields efficient in-memory computation. Due to the recent

advances in 3D-stacking technology, NDP is predicted to gain

more attention as a solution [32].
More related to FPGAs and databases [26], ConTutto is

a novel platform to bring FPGAs close to the memory by

incorporating them with DRAM in the form of DIMM car-

tridges [33]. There are working prototypes of such DIMMs and

plug into an IBM POWER8-based server. Acting as a memory

buffer, the FPGA can have a memory access bandwidth of 11

GB/s per DIMM port, or an aggregate of 35 GB/s for a single

memory channel.

V. CONCLUSIONS

FPGAs are an interesting platform for hardware acceleration

of a considerable amount of database operations. It is clear that

FPGAs are superior for energy efficiency, but their advantage

in overall performance for non-local data is sometimes ques-

tionable.
The main bottleneck is the limited main memory bandwidth

found in current hardware, which is around 6 GB/s and is

low in comparison with that of CPUs, reaching over 35 GB/s.

There are clever algorithms or modifications that make better

usage of the available memory throughput, such as by caching

entries, compression, improving the inter-chip communication

protocol and data localities. One possible workaround could

be to develop in-memory databases for FPGAs.
This limitation is likely to be solved in future architectures,

such as with IBM’s POWER9 servers that will allow up to

150 GB/s main memory throughput over 48 PCIe lanes using

the OpenCAPI protocol, Near-data processing and high-end

SoC platforms, such as Intel’s Xeon+FPGA, that may provide

main memory bandwidth close to that of the CPU.

129

ACKNOWLEDGMENTS

This research was supported by dunnhumby. The authors

would like to thank Chris Brooks and Rosie Prior from

dunnhumby for their valuable involvement in the partner-

ship program. The support of the United Kingdom EPSRC

(grant number EP/I012036/1, EP/L00058X/1, EP/L016796/1,

EP/N031768/1 and EP/K034448/1), European Union Horizon

2020 Research and Innovation Programme (grant number

671653) is gratefully acknowledged.

REFERENCES

[1] N. Shirazi, D. Benyamin, W. Luk, P. Y. Cheung, and S. Guo, “Quan-
titative analysis of FPGA-based database searching,” Journal of VLSI
signal processing systems for signal, image and video technology, vol.
28, no. 1-2, pp. 85–96, 2001.

[2] J. Ouyang, W. Qi, W. Yong, Y. Tu, J. Wang, and B. Jia, “SDA:
Software-defined accelerator for general-purpose big data analysis
system,” in Hot Chips: A Symposium on High Performance chips,
Hotchips, 2016.

[3] J. Casper and K. Olukotun, “Hardware acceleration of database
operations,” in Proceedings of the 2014 ACM/SIGDA international
symposium on Field-programmable gate arrays, ACM, 2014, pp. 151–
160.

[4] M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A
framework for hybrid CPU-FPGA databases,” in Field-Programmable
Custom Computing Machines (FCCM), 2017 IEEE 25th Annual
International Symposium on, IEEE, 2017, pp. 211–218.

[5] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “GPU join
processing revisited,” in Proceedings of the Eighth International
Workshop on Data Management on New Hardware, ACM, 2012,
pp. 55–62.

[6] X. Cheng, B. He, X. Du, and C. T. Lau, “A study of main-memory
hash joins on many-core processor: A case with intel knights landing
architecture,” in Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, ACM, 2017, pp. 657–666.

[7] M. Roozmeh and L. Lavagno, “Implementation of a performance
optimized database join operation on FPGA-GPU platforms using
OpenCL,” in Nordic Circuits and Systems Conference (NORCAS):
NORCHIP and International Symposium of System-on-Chip (SoC),
2017 IEEE, IEEE, 2017, pp. 1–6.

[8] R. J. Halstead, I. Absalyamov, W. A. Najjar, and V. J. Tsotras, “FPGA-
based Multithreading for In-Memory Hash Joins,” in CIDR, 2015.

[9] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on FPGAs,”
The VLDB JournalThe International Journal on Very Large Data
Bases, vol. 21, no. 1, pp. 1–23, 2012.

[10] S. I.F.G. N. Nes and S. M.S.M. M. Kersten, “MonetDB: Two
decades of research in column-oriented database architectures,” Data
Engineering, vol. 40, 2012.

[11] D. Sidler, Z. István, M. Owaida, K. Kara, and G. Alonso, “doppioDB:
A hardware accelerated database,” in Proceedings of the 2017 ACM
International Conference on Management of Data, ACM, 2017,
pp. 1659–1662.

[12] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson,
S. Hase, A. Holloway, J. Kamp, T.-H. Lee, et al., “Oracle database
in-memory: A dual format in-memory database,” in Data Engineering
(ICDE), 2015 IEEE 31st International Conference on, IEEE, 2015,
pp. 1253–1258.

[13] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow,
“Fpgas in the cloud: Booting virtualized hardware accelerators with
openstack,” in Field-Programmable Custom Computing Machines
(FCCM), 2014 IEEE 22nd Annual International Symposium on, IEEE,
2014, pp. 109–116.

[14] J. Harkins, T. El-Ghazawi, E. El-Araby, and M. Huang, “Performance
of sorting algorithms on the SRC 6 reconfigurable computer,” in Field-
Programmable Technology, 2005. Proceedings. 2005 IEEE Interna-
tional Conference on, IEEE, 2005, pp. 295–296.

[15] D. Sidler, Z. István, M. Owaida, and G. Alonso, “Accelerating pattern
matching queries in hybrid CPU-FPGA architectures,” in Proceedings
of the 2017 ACM International Conference on Management of Data,
ACM, 2017, pp. 403–415.

[16] X.-T. Nguyen, H.-T. Nguyen, T.-T. Hoang, K. Inoue, O. Shimojo,
T. Murayama, K. Tominaga, and C.-K. Pham, “An efficient FPGA-
based database processor for fast database analytics,” in Circuits and
Systems (ISCAS), 2016 IEEE International Symposium on, IEEE,
2016, pp. 1758–1761.

[17] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and C. Zhang,
“FPGA-accelerated Dense Linear Machine Learning: A Precision-
Convergence Trade-off,” in Field-Programmable Custom Computing
Machines (FCCM), 2017 IEEE 25th Annual International Symposium
on, IEEE, 2017, pp. 160–167.

[18] R. Neininger and J. Straub, “Probabilistic analysis of the dual-pivot
quicksort counti,” in 2018 Proceedings of the Fifteenth Workshop on
Analytic Algorithmics and Combinatorics (ANALCO), SIAM, 2018,
pp. 1–7.

[19] R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory efficient
mapping of bitonic sorting on FPGA,” in Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ACM, 2015, pp. 240–249.

[20] A. Srivastava, R. Chen, V. K. Prasanna, and C. Chelmis, “A hybrid
design for high performance large-scale sorting on FPGA,” in Re-
ConFigurable Computing and FPGAs (ReConFig), 2015 International
Conference on, IEEE, 2015, pp. 1–6.

[21] R. Sidhu and V. K. Prasanna, “Fast regular expression matching
using FPGAs,” in Field-Programmable Custom Computing Machines,
2001. FCCM’01. The 9th Annual IEEE Symposium on, IEEE, 2001,
pp. 227–238.

[22] L. Woods, G. Alonso, and J. Teubner, “Parallel computation of sky-
line queries,” in Field-Programmable Custom Computing Machines
(FCCM), 2013 IEEE 21st Annual International Symposium on, IEEE,
2013, pp. 1–8.

[23] D. Foley and J. Danskin, “Ultra-performance Pascal GPU and NVLink
interconnect,” IEEE Micro, vol. 37, no. 2, pp. 7–17, 2017.

[24] D. Bates, A. Chadwick, and R. Mullins, “Configurable mem-
ory systems for embedded many-core processors,” ArXiv preprint
arXiv:1601.00894, 2016.

[25] D. Bates, A. Bradbury, A. Koltes, and R. Mullins, “Exploiting tightly-
coupled cores,” Journal of Signal Processing Systems, vol. 80, no. 1,
pp. 103–120, 2015.

[26] R. Moussalli, “Tradeoffs and considerations in the design of acceler-
ators for database applications,” in Data Engineering (ICDE), 2017
IEEE 33rd International Conference on, IEEE, 2017, pp. 1615–1615.

[27] J. Stuecheli, B. Blaner, C. Johns, and M. Siegel, “CAPI: A coher-
ent accelerator processor interface,” IBM Journal of Research and
Development, vol. 59, no. 1, pp. 7–1, 2015.

[28] T. P. Morgan, Opening Up The Server Bus For Coherent Acceleration,
https : / /www.nextplatform.com/2016 /10 /17 /opening - server- bus -
coherent-acceleration/, [Online; accessed 30-March-2018], 2016.

[29] K. Huang, “Multi-way Hash Join Based on FPGAs,” 2018.
[30] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal,

“Multiprocessor systems synthesis for multiple use-cases of multiple
applications on FPGA,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 13, no. 3, p. 40, 2008.

[31] N. Hemsoth, Intel Marrying FPGA, Beefy Broadwell for Open Com-
pute Future, https : / / www. nextplatform . com / 2016 / 03 / 14 / intel -
marrying - fpga - beefy - broadwell - open - compute - future/, [Online;
accessed 12-March-2018], 2016.

[32] R. Balasubramonian and B. Grot, “Near-data processing,” IEEE
Micro, vol. 36, no. 1, pp. 4–5, 2016.

[33] B. Sukhwani, T. Roewer, C. L. Haymes, K.-H. Kim, A. J. McPadden,
D. M. Dreps, D. Sanner, J. Van Lunteren, and S. Asaad, “Contutto:
a novel FPGA-based prototyping platform enabling innovation in the
memory subsystem of a server class processor,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitec-
ture, ACM, 2017, pp. 15–26.

130

