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D
atabase management systems (DBMSs) have be-
come an indispensable tool for industry, gov-
ernment, and academia, forming a significant 
component of modern datacenters and handling 

various tasks such as online analytical processing, data min-
ing, e-commerce, and scientific analysis. The rate at which 
new data is being produced grows every year: in 2000, re-
searchers estimated 800,000 petabytes of data were stored 
collectively in the world, and in 2020, they estimate the 
number will jump to 35 zettabytes (1 zettabyte is 10007 
bytes, or 1 trillion Gbytes). Given this exponential growth, 

there’s pressure on software and hardware developers to cre-
ate datacenters that can cope with increasing data storage 
requirements. Here, we look at the organization of a modern 
relational DBMS and propose optimizations for storage ac-
cess, memory, and CPU.

Our proposals represent distinct techniques, but we envi-
sion a unified system in which these optimizations can com-
plement one another and work holistically. Figure 1 shows 
a high-level overview of our conceived platform. Reconfigu-
rable architectures such as field-programmable gate arrays 
(FPGAs) are good candidates for hardware accelerators; our 



www.computer.org/cise			   	�  81

objective is to bring this specialized computation 
closer to storage devices to reduce the high over-
heads associated with data movement. FPGAs not 
only provide massive fine-grain parallelism, but 
they’re also resilient to irregular computation and 
storage access patterns. In the CPU, we investigate 
the capability of single-instruction, multiple-data 
(SIMD) multimedia instruction extensions to ac-
celerate sort, an important database operator with 
a significant processing overhead. We find that cur-
rent SIMD instruction set architectures (ISAs) lack 
the semantics to efficiently capture much of the 
available data-level parallelism (DLP). Based on this 
observation, we propose new SIMD instructions 
to capture irregular DLP and apply this to a novel 
sorting algorithm. In the memory hierarchy, we fo-
cus on 3D stacked DRAM caches, which allows for 
the integration of large amounts of memory with 
the processor die, increasing memory bandwidth 
and lowering access latency for the stacked DRAM. 
We also investigate schemes to improve data place-
ment in such caches to improve performance.

FPGA-Based Acceleration Framework
At the Barcelona Supercomputing Center, we’re de-
veloping an FPGA-based acceleration framework 
that contains a dynamic dataflow-like network 

between the disk system and various accelerators, 
implementing database primitives. Building on 
this framework, we’re investigating the potential 
of running entire complex DBMS queries precom-
piled on the board as well as the applicability of us-
ing high-level synthesis languages to allow novice 
programmers to create their own custom queries to 
execute directly on the framework.

Near Data Processing
As the amount of data to manage grows, there’s 
an increasing strain on DBMS software to meet 
its throughput and latency requirements. Data 
movement is a point of concern for modern data-
centers, and excessive movement can degrade both 
throughput and latency in addition to increasing 
average energy cost per query. Near data processing 
aims to bring the computation closer to where the 
data resides so that more operations can be com-
pleted, avoiding nonessential data movement. Al-
though this isn’t the first study to process queries 
directly from disk using FPGA technology,1 our 
focus is on designing state-of-the-art accelerators 
inside such an infrastructure. In this article, we 
specifically focus on our hash join engine.

Figure 1 shows our FPGA acceleration frame-
work, which is self-contained on a VC709 FPGA 

Figure 1. High-level system overview. The host contains the CPU with vector extensions and 3D-stacked DRAM. Its 
duty is to run the database management system (DBMS) software and selectively offload tasks to the acceleration 
framework. This framework has a high-bandwidth channel with the disk system and routes relevant data directly to 
the accelerator units or bypasses the request to the host.
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development board with a Virtex-7 FPGA and 8 
Gbytes of RAM. The acceleration framework is in 
close proximity to a pair of 250-Gbyte solid state 
drives (SSDs). The host accesses the acceleration 
framework through a software API. In a typical 
SQL DBMS, a query execution planner does the 
job of establishing an ordered set of steps to access 
and process data. We adapted this planner to ap-
propriately use our infrastructure and to send and 
receive data and commands through a fast PCI 
link to communicate with the acceleration frame-
work’s custom microcontroller. Depending on the 
query plan that the DBMS establishes, the host 
machine effectively programs the microcontroller 
to utilize the accelerator modules. This specialized 
microcontroller calculates the regions of the disk 
affected and instructs the appropriate accelerators 
to retrieve and process the data. The results can be 
stored back to the disk or sent to the host. 

Query-Processing Accelerators
We use Xilinx Vivado high-level synthesis (HLS) 
to perform the selection/filtering operations. For 
this purpose, we designed a compute engine that 
can process arbitrary-length data types in parallel. 
It takes rows as inputs and a condition such as the 
BETWEEN operator and then applies a selection/
filtering operation on the desired columns as they’re 
read, filtering out unwanted data from further pro-
cessing, thus reducing the size of the input set.2

To support join acceleration, we propose a 
novel architecture of hash join, one of the most 
commonly used and time-consuming DBMS op-
erations.3 Hash collisions—that is, multiple dis-
tinct keys resolving to the same location in the hash 
table—are a critical issue that can be detrimental 
to good performance. Pointer chasing is a com-
mon method for resolving collisions, but in DRAM 
based engines, the memory wall can significantly 
undermine performance. To overcome the memory 
wall, one feasible solution is to use FPGAs’ low-la-
tency local block RAMs (BRAMs). However, due 
to their small size, there’s no guarantee that they can 
store an entire hash table. Therefore, we introduce 
a novel DRAM-based hash join engine that trans-
forms BRAMs into low-latency cache. The entries 
of the main hash table are cached in the BRAM  

using a direct mapped methodology. Figure 2 shows 
the engine’s block diagram.

We developed the fully pipelined version of 
the proposed hash join architecture using BlueSpec 
SystemVerilog HLS and performed experiments on 
a selection of TPC-H queries. Depending on the 
BRAM hit rate, experimental results show an up 
to 2.8× improvement in the number of cycles over 
an FPGA baseline without BRAM and up to 82.3× 
over the hash join engine of PostgreSQL running 
on RAMDisk. Figure 2b shows detailed experi-
mental results for queries q03, q12, q13, and q14 
of TPC-H running three dataset sizes (1 Gbyte, 10 
Gbytes, and 100 Gbytes).3

Even though we developed accelerators for 
fundamental database primitives, further perfor-
mance improvements are possible if the framework 
provides acceleration for user-specific queries that 
require customized processing not easily express-
ible through default operators. As the optimal ac-
celerator would be very much workload dependent, 
the implementation would depend on the DBMS 
user, who’s typically not an expert in FPGA de-
velopment. We studied four HLS tools that could 
help nonexpert users accelerate common database 
operations.4 Choosing the right design languages 
and tools can greatly affect final hardware perfor-
mance. Our results show that high-level hardware 
description languages can produce accelerators 
with similar performance to manually designed 
hardware. In our study, we use four accelerators for 
database operations; programming experience var-
ies greatly from one design paradigm to the other. 
Advanced HLS tools, which can generate hardware 
from pure C code, are still in the initial stages, al-
though they look highly promising as a solution for 
nonexpert users to generate high-quality designs 
with little to no effort.

Novel SIMD Instructions for Sorting
FPGA-based acceleration can be used to offload 
many tasks from the main processing unit, but 
the CPU still plays a crucial role. Modern CPUs 
can yield very high performance if the algorithm 
is carefully tuned and thoroughly leverages archi-
tectural features. As a case study, we focus on sort-
ing and vector SIMD extension, one of the most  

Further performance improvements are possible if the framework 
provides acceleration for user-specific queries that require customized 
processing not easily expressible through default operators.
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efficient and powerful features available in com-
modity processors and essential to achieving high 
performance on the CPU.

Sorting is a cornerstone of relational databases 
that’s frequently used in the construction of compos-
ite functions. Given this operation’s importance, it’s 

Figure 2. Hash join engine: (a) overview showing the (1) compute hash index using a pipelined hash function, (2) 
grouping values of each individual key into the bucket table, (3) collisions resolved with a pointer chasing method, 
and (4) block RAM (BRAM) working as a cache of the main hash table; (b) execution time of cache-employed version 
compared to the baseline and software. 
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vital to have a high-performance algorithm. By lever-
aging SIMD extensions in modern microprocessors, 
sorting could potentially take advantage of explicit 
DLP and provide more bandwidth between func-
tional units and memory hierarchy. SIMD extensions 
have become ubiquitous in modern microprocessors, 
but current extensions lack essential features, which 
in turn inhibits scalability and speed when vectoriz-
ing sorting algorithms. We anticipate that SIMD ex-
tensions will grow both in width and functionality in 
future generations, and our contribution could help 
guide this evolution in a clear and positive way.

For relational databases, radix sort is arguably 
the best choice of sorting algorithm. Primary and 
foreign keys have cardinalities and radixes well be-
low their respective data type’s limit. Previous at-
tempts at vectorizing radix sort with a SIMD ISA 
have been only semisuccessful. The reasons are nu-
merous but boil down to two fundamental prob-
lems: radix sort has strict stability requirements, 
meaning it’s a serial algorithm in nature, and ac-
tions within standard SIMD operations should 
be independent of one another. This complicates 
the process of updating monolithic bookkeeping 
structures, such as histograms, as there are often 
conflicting gather-modify-scatter operations. To 
circumvent this irregular DLP, significant trans-

formations must be made to radix sort to vector-
ize it—for example, the input needs to be read 
incrementally using an inefficient strided memory 
access pattern so that individual elements of a vec-
tor register operate on contiguous partitions, and 
bookkeeping structures must be replicated for 
every element in a vector register to avoid update 
conflicts.

Based on these observations, we propose VSR 
sort,5 a novel way of vectorizing radix sort with-
out inefficient transformations. We introduce two 
new instructions into our SIMD ISA. The vector 
prior instances (VPI) instruction lets us load the 
input and store the output using an efficient unit-
stride (contiguous) memory access pattern without 
breaking radix sort’s strict stability requirements. 
In essence, it corrects problematic input values 
that have a serial dependency and ensures they 
end up in adjacent locations of the output. Vector 
last unique (VLU) can be used to update nonrep-
licated bookkeeping structures while avoiding 
gather-modify-scatter conflicts. Using nonreplicat-
ed bookkeeping structures lets us grow them con-
siderably and consequently process a larger subset 
of bits per pass, thereby reducing the algorithm’s 
runtime. The full semantics and implementation of 
these instructions appear elsewhere.5
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Figure 3. Speedup over scalar algorithm for vectorized versions of quicksort, bitonic mergesort, radix sort, and our novel VSR algorithm 
while varying the maximum vector length (mvl) and vector lanes. VSR sort exhibits good scalability and achieves maximum speedups up 
to 20.6× over a scalar baseline and on average performs 3.4× better over a standard SIMD radix sort when run on the same hardware 
configuration.

Previous attempts at vectorizing radix sort with a SIMD ISA have been 
only semisuccessful.
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Using a custom simulation framework, we 
can perform significant sensitivity experiments on 
VSR sort and three diverse SIMD sorting algo-
rithms suitable for relational databases: quicksort, 
bitonic mergesort, and radix sort. We take into 
account our predictions of width and functional-
ity in future microprocessor generations. Figure 3 
shows a comparison of each algorithm. As a met-
ric, we used speedup over a scalar baseline, chang-
ing two critical parameters: the maximum vector 
length (mvl), which is the number of elements in 
a SIMD register, and lanes, which refers to the 
number of redundant functional units available 
to a single SIMD instruction. A configuration 
with a single lane resembles a purely pipelined 
functional unit implementation, like that of the 
CRAY-1. We find that all the prior work suffers 
from bottlenecks and scalability problems. VSR 
sort exhibits good scalability and achieves maxi-
mum speedups up to 20.6× over a scalar baseline 
and on average performs 3.4× better over a stan-
dard SIMD radix sort when run on the same 
hardware configuration. We feel that VSR sort is 
an excellent candidate to implement sort primi-
tives in a relational database.

Leveraging Emerging Memory Technologies
Due to the ever increasing computational through-
put of chip multiprocessors, off-chip memory has 
become a performance-limiting factor due to lim-
ited pin count scalability. Current off-chip memory 
bandwidth capabilities aren’t sufficient to meet the 
demands of modern servers running data-demand-
ing workloads such as those employing relational  
databases.6 However, die-stacking technology enables  

tightly coupled integration of DRAM with the 
processor die, providing hundreds of megabytes to 
several gigabytes of storage that can be accessed at 
an unprecedented bandwidth with latencies that 
are significantly lower than those needed to access 
off-chip memory. Unfortunately, the amount of 
storage that this technology offers still isn’t suffi-
cient to cope with memory capacity requirements, 
which are often one or two orders of magnitude 
higher.7 For this reason, researchers have been ex-
ploring the use of stacked DRAM as a large last-
level cache.

We’ve analyzed current DRAM cache propos-
als and identified different performance pathologies 
that arise due to interleaved accesses from different 
cores at the DRAM banks. Figure 4 shows differ-
ent queued requests for each bank, and for each 
request, the requesting core and the targeted row 
(page) within the DRAM bank where the data is 
known to be present.

Figure 4a illustrates a case of row-buffer inter-
ference where core0 performs several accesses over 
the same DRAM row (page) on bank1, for which 
the access latency is low due to row-buffer hits. 
However, there’s a request to a different row from 
core3 that needs to be served, destroying this row-
buffer locality. We want to avoid any interference 
from other cores that could prematurely close the 
row-buffer just to service a single request, having 
to open again the previous row to finish reading it.

Figure 4b illustrates a case of utility interfer-
ence. In the example, bank0 contains a page ac-
cessed by core1 with high spatial locality, from 
which many blocks are useful (that is, demand-
ed). The rest of the cores access pages with low  

Figure 4. Performance pathologies present in DRAM caches: (a) row-buffer interference and (b) utility interference.
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spatial locality, suggesting a lower number of use-
ful blocks. If the incoming request in bank1, which 
was a cache miss, had been allocated in bank0, 
then the page with high locality and block usage 
would have been evicted even if there were better 
replacement candidates in other banks. We want 
to protect cores that would experience significant 
performance improvements from interfering cores 
that might hinder these improvements by thrash-
ing the cache, evicting highly reused blocks, and 
undermining cache utility.

In the context of database workloads, mem-
ory bandwidth and access latency are critical to 
achieving good performance. Moreover, in such 
workloads, abundant spatial locality is present 
in a significant number of common primitives, 
such as sequentially reading from a table. While a 
DRAM cache has the potential to be a great per-
formance booster for these kinds of workloads, the 
performance pathologies we described can degrade 
potential improvements. As Figure 4 suggests, 
these pathologies can be mitigated with better data 
placement within the cache. Our proposal aims at 
providing this functionality to improve DRAM 
cache performance.8

In particular, our proposal identifies cores ex-
periencing high spatial locality and dynamically 
modifies the DRAM cache replacement policy 
to allocate their pages to a subset of banks. This 
data placement policy reduces row-buffer interfer-
ence by avoiding the closure of row-buffers just to 
service a single access in the common case: high 
spatial locality implies high row-buffer locality. 
Similarly, allocations for cores with poor spatial lo-
cality are placed on another subset of the banks, 
where row-buffer locality is less penalized because 
it’s already low. In addition, utility interference is 
also reduced because rows with a high block de-
mand won’t be replaced by rows with low demand. 
Banks with rows that present low spatial local-
ity are likely to generate more evictions, but these 
evicted pages are cheaper to fetch back and have a 
lower impact on the overall cache hit ratio. 

We evaluate our proposal using an architec-
tural simulator that models a chip multiprocessor 
(CMP) with eight out-of-order cores and a three-
level cache hierarchy, which closely resembles 

a server grade Sandy Bridge Intel processor. To 
model the stacked and off-chip DRAM memory, 
we integrated a detailed main memory simulator 
and configured our DRAM cache to have a size of 
2 Gbytes and four memory channels. As a repre-
sentative data analytics workload, we use a set of 
queries (q9, q13, q15, and q16) from the TPC-H 
benchmark running on a modern column-store 
database engine with a dataset that exceeds 100 
Gbytes. Our proposal yields a 24.5 percent perfor-
mance improvement over a system without stacked 
DRAM and outperforms a state-of-the-art DRAM 
cache proposal9 by 10 percent.

In this work, we proposed hardware improvements  
for DBMSs that use emerging technologies: FPGAs,  

future SIMD support, and die-stacking DRAM. 
We anticipate that applying these redesigns to all 
levels of the system will result in datacenters that 
can provide a manyfold increase in throughput. 
One of our goals is to bridge the gap between these 
specialized technologies and the nonexpert end 
user. 

Although our work currently comprises several 
disparate ideas, we ultimately want to bring these 
together in a unified system and allow them to co-
operate harmoniously. Vector SIMD extensions are 
a good fit for certain key algorithms, but perfor-
mance is typically limited by the available memory 
bandwidth. A die-stacked DRAM cache provides 
abundant memory bandwidth that can unlock ad-
ditional performance for vector extensions while 
providing the additional benefits described here. 
Although these two technologies work well in tan-
dem, data movement between storage systems and 
processing units is a major bottleneck that will be 
exacerbated as the amount of data to be processed 
grows. To minimize data movement, we propose 
using FPGA technology for near data processing 
and to tackle certain operations that map well to 
these devices, reducing data movement to compu-
tational resources. 
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