
Education
Editors: Steven F. Barrett, steveb@uwyo.edu | Rubin Landau, rubin@physics.oregonstate.edu

80	 Computing in Science & Engineering	 1521-9615/16/$33.00 © 2016 IEEE	 Copublished by the IEEE CS and the AIP� January/February 2016

Novel Architectures
Editors: Volodymyr Kindratenko, University of Illinois, kindr@ncsa.uiuc.edu | Pedro Trancoso, Univ. of Cyprus, pedro@cs.ucy.ac.cy

Hardware Acceleration for Query Processing:
Leveraging FPGAs, CPUs, and Memory

Oriol Arcas-Abella | Barcelona Supercomputing Center and Universitat Politècnica de Catalunya
Adrià Armejach | Barcelona Supercomputing Center
Timothy Hayes | Barcelona Supercomputing Center and Universitat Politècnica de Catalunya
Gorker Alp Malazgirt | Bogazici University, Istanbul
Oscar Palomar and Behzad Salami | Barcelona Supercoming Center and Universitat Politècnica de Catalunya
Nehir Sonmez | Barcelona Supercomputing Center

D
atabase management systems (DBMSs) have be-
come an indispensable tool for industry, gov-
ernment, and academia, forming a significant
component of modern datacenters and handling

various tasks such as online analytical processing, data min-
ing, e-commerce, and scientific analysis. The rate at which
new data is being produced grows every year: in 2000, re-
searchers estimated 800,000 petabytes of data were stored
collectively in the world, and in 2020, they estimate the
number will jump to 35 zettabytes (1 zettabyte is 10007
bytes, or 1 trillion Gbytes). Given this exponential growth,

there’s pressure on software and hardware developers to cre-
ate datacenters that can cope with increasing data storage
requirements. Here, we look at the organization of a modern
relational DBMS and propose optimizations for storage ac-
cess, memory, and CPU.

Our proposals represent distinct techniques, but we envi-
sion a unified system in which these optimizations can com-
plement one another and work holistically. Figure 1 shows
a high-level overview of our conceived platform. Reconfigu-
rable architectures such as field-programmable gate arrays
(FPGAs) are good candidates for hardware accelerators; our

www.computer.org/cise			 	� 81

objective is to bring this specialized computation
closer to storage devices to reduce the high over-
heads associated with data movement. FPGAs not
only provide massive fine-grain parallelism, but
they’re also resilient to irregular computation and
storage access patterns. In the CPU, we investigate
the capability of single-instruction, multiple-data
(SIMD) multimedia instruction extensions to ac-
celerate sort, an important database operator with
a significant processing overhead. We find that cur-
rent SIMD instruction set architectures (ISAs) lack
the semantics to efficiently capture much of the
available data-level parallelism (DLP). Based on this
observation, we propose new SIMD instructions
to capture irregular DLP and apply this to a novel
sorting algorithm. In the memory hierarchy, we fo-
cus on 3D stacked DRAM caches, which allows for
the integration of large amounts of memory with
the processor die, increasing memory bandwidth
and lowering access latency for the stacked DRAM.
We also investigate schemes to improve data place-
ment in such caches to improve performance.

FPGA-Based Acceleration Framework
At the Barcelona Supercomputing Center, we’re de-
veloping an FPGA-based acceleration framework
that contains a dynamic dataflow-like network

between the disk system and various accelerators,
implementing database primitives. Building on
this framework, we’re investigating the potential
of running entire complex DBMS queries precom-
piled on the board as well as the applicability of us-
ing high-level synthesis languages to allow novice
programmers to create their own custom queries to
execute directly on the framework.

Near Data Processing
As the amount of data to manage grows, there’s
an increasing strain on DBMS software to meet
its throughput and latency requirements. Data
movement is a point of concern for modern data-
centers, and excessive movement can degrade both
throughput and latency in addition to increasing
average energy cost per query. Near data processing
aims to bring the computation closer to where the
data resides so that more operations can be com-
pleted, avoiding nonessential data movement. Al-
though this isn’t the first study to process queries
directly from disk using FPGA technology,1 our
focus is on designing state-of-the-art accelerators
inside such an infrastructure. In this article, we
specifically focus on our hash join engine.

Figure 1 shows our FPGA acceleration frame-
work, which is self-contained on a VC709 FPGA

Figure 1. High-level system overview. The host contains the CPU with vector extensions and 3D-stacked DRAM. Its
duty is to run the database management system (DBMS) software and selectively offload tasks to the acceleration
framework. This framework has a high-bandwidth channel with the disk system and routes relevant data directly to
the accelerator units or bypasses the request to the host.

SSD

custom
µcontroller

accelerator 1
select/filter

accelerator 2
aggregate

accelerator n
join

FPGA RAM

data
control

FPGA
acceleration
framework

SATA

...

PCI
FPGA

Processor with
3D-stacked memory

and vector cores
Host TSVs

PCI

SATA

3D-stacked DRAM
cache

vector
core

vector
core

Novel Architectures

82	 � January/February 2016

development board with a Virtex-7 FPGA and 8
Gbytes of RAM. The acceleration framework is in
close proximity to a pair of 250-Gbyte solid state
drives (SSDs). The host accesses the acceleration
framework through a software API. In a typical
SQL DBMS, a query execution planner does the
job of establishing an ordered set of steps to access
and process data. We adapted this planner to ap-
propriately use our infrastructure and to send and
receive data and commands through a fast PCI
link to communicate with the acceleration frame-
work’s custom microcontroller. Depending on the
query plan that the DBMS establishes, the host
machine effectively programs the microcontroller
to utilize the accelerator modules. This specialized
microcontroller calculates the regions of the disk
affected and instructs the appropriate accelerators
to retrieve and process the data. The results can be
stored back to the disk or sent to the host.

Query-Processing Accelerators
We use Xilinx Vivado high-level synthesis (HLS)
to perform the selection/filtering operations. For
this purpose, we designed a compute engine that
can process arbitrary-length data types in parallel.
It takes rows as inputs and a condition such as the
BETWEEN operator and then applies a selection/
filtering operation on the desired columns as they’re
read, filtering out unwanted data from further pro-
cessing, thus reducing the size of the input set.2

To support join acceleration, we propose a
novel architecture of hash join, one of the most
commonly used and time-consuming DBMS op-
erations.3 Hash collisions—that is, multiple dis-
tinct keys resolving to the same location in the hash
table—are a critical issue that can be detrimental
to good performance. Pointer chasing is a com-
mon method for resolving collisions, but in DRAM
based engines, the memory wall can significantly
undermine performance. To overcome the memory
wall, one feasible solution is to use FPGAs’ low-la-
tency local block RAMs (BRAMs). However, due
to their small size, there’s no guarantee that they can
store an entire hash table. Therefore, we introduce
a novel DRAM-based hash join engine that trans-
forms BRAMs into low-latency cache. The entries
of the main hash table are cached in the BRAM

using a direct mapped methodology. Figure 2 shows
the engine’s block diagram.

We developed the fully pipelined version of
the proposed hash join architecture using BlueSpec
SystemVerilog HLS and performed experiments on
a selection of TPC-H queries. Depending on the
BRAM hit rate, experimental results show an up
to 2.8× improvement in the number of cycles over
an FPGA baseline without BRAM and up to 82.3×
over the hash join engine of PostgreSQL running
on RAMDisk. Figure 2b shows detailed experi-
mental results for queries q03, q12, q13, and q14
of TPC-H running three dataset sizes (1 Gbyte, 10
Gbytes, and 100 Gbytes).3

Even though we developed accelerators for
fundamental database primitives, further perfor-
mance improvements are possible if the framework
provides acceleration for user-specific queries that
require customized processing not easily express-
ible through default operators. As the optimal ac-
celerator would be very much workload dependent,
the implementation would depend on the DBMS
user, who’s typically not an expert in FPGA de-
velopment. We studied four HLS tools that could
help nonexpert users accelerate common database
operations.4 Choosing the right design languages
and tools can greatly affect final hardware perfor-
mance. Our results show that high-level hardware
description languages can produce accelerators
with similar performance to manually designed
hardware. In our study, we use four accelerators for
database operations; programming experience var-
ies greatly from one design paradigm to the other.
Advanced HLS tools, which can generate hardware
from pure C code, are still in the initial stages, al-
though they look highly promising as a solution for
nonexpert users to generate high-quality designs
with little to no effort.

Novel SIMD Instructions for Sorting
FPGA-based acceleration can be used to offload
many tasks from the main processing unit, but
the CPU still plays a crucial role. Modern CPUs
can yield very high performance if the algorithm
is carefully tuned and thoroughly leverages archi-
tectural features. As a case study, we focus on sort-
ing and vector SIMD extension, one of the most

Further performance improvements are possible if the framework
provides acceleration for user-specific queries that require customized
processing not easily expressible through default operators.

www.computer.org/cise			 	� 83

efficient and powerful features available in com-
modity processors and essential to achieving high
performance on the CPU.

Sorting is a cornerstone of relational databases
that’s frequently used in the construction of compos-
ite functions. Given this operation’s importance, it’s

Figure 2. Hash join engine: (a) overview showing the (1) compute hash index using a pipelined hash function, (2)
grouping values of each individual key into the bucket table, (3) collisions resolved with a pointer chasing method,
and (4) block RAM (BRAM) working as a cache of the main hash table; (b) execution time of cache-employed version
compared to the baseline and software.

Hash function

Hash table (DDRRAM)

(key, value)

Cached hash table (BRAM)

index

key1 ● ●

Bucket table (DDRRAM)

key0 ● ●

key2 ●

v0 v1 v2

v3

v4 v5

key1 ● ●

key2 ●

1

2

3

4

1

10

100

1,000

10,000

100,000

1000,000

(a)

(b)

q03 q12 q13 q14 q03 q12 q13 q14 q03 q12 q13 q14

1 g 10 g 100 g

Ex
ec

ut
io

n
tim

e
(m

s)
 lo

g
sc

al
e

Benchmark (dataset, query)

software fpga-no cache fpga-cache

Novel Architectures

84	 � January/February 2016

vital to have a high-performance algorithm. By lever-
aging SIMD extensions in modern microprocessors,
sorting could potentially take advantage of explicit
DLP and provide more bandwidth between func-
tional units and memory hierarchy. SIMD extensions
have become ubiquitous in modern microprocessors,
but current extensions lack essential features, which
in turn inhibits scalability and speed when vectoriz-
ing sorting algorithms. We anticipate that SIMD ex-
tensions will grow both in width and functionality in
future generations, and our contribution could help
guide this evolution in a clear and positive way.

For relational databases, radix sort is arguably
the best choice of sorting algorithm. Primary and
foreign keys have cardinalities and radixes well be-
low their respective data type’s limit. Previous at-
tempts at vectorizing radix sort with a SIMD ISA
have been only semisuccessful. The reasons are nu-
merous but boil down to two fundamental prob-
lems: radix sort has strict stability requirements,
meaning it’s a serial algorithm in nature, and ac-
tions within standard SIMD operations should
be independent of one another. This complicates
the process of updating monolithic bookkeeping
structures, such as histograms, as there are often
conflicting gather-modify-scatter operations. To
circumvent this irregular DLP, significant trans-

formations must be made to radix sort to vector-
ize it—for example, the input needs to be read
incrementally using an inefficient strided memory
access pattern so that individual elements of a vec-
tor register operate on contiguous partitions, and
bookkeeping structures must be replicated for
every element in a vector register to avoid update
conflicts.

Based on these observations, we propose VSR
sort,5 a novel way of vectorizing radix sort with-
out inefficient transformations. We introduce two
new instructions into our SIMD ISA. The vector
prior instances (VPI) instruction lets us load the
input and store the output using an efficient unit-
stride (contiguous) memory access pattern without
breaking radix sort’s strict stability requirements.
In essence, it corrects problematic input values
that have a serial dependency and ensures they
end up in adjacent locations of the output. Vector
last unique (VLU) can be used to update nonrep-
licated bookkeeping structures while avoiding
gather-modify-scatter conflicts. Using nonreplicat-
ed bookkeeping structures lets us grow them con-
siderably and consequently process a larger subset
of bits per pass, thereby reducing the algorithm’s
runtime. The full semantics and implementation of
these instructions appear elsewhere.5

0

3

6

9

12

15

18

21

mvl-8 mvl-16 mvl-32 mvl-64 mvl-8 mvl-16 mvl-32 mvl-64 mvl-8 mvl-16 mvl-32 mvl-64 mvl-8 mvl-16 mvl-32 mvl-64

quicksort bitonic radix vsr

Sp
ee

du
p

ov
er

 s
ca

la
r

ba
se

lin
e

1 lane 2 lanes 4 lanes

Figure 3. Speedup over scalar algorithm for vectorized versions of quicksort, bitonic mergesort, radix sort, and our novel VSR algorithm
while varying the maximum vector length (mvl) and vector lanes. VSR sort exhibits good scalability and achieves maximum speedups up
to 20.6× over a scalar baseline and on average performs 3.4× better over a standard SIMD radix sort when run on the same hardware
configuration.

Previous attempts at vectorizing radix sort with a SIMD ISA have been
only semisuccessful.

www.computer.org/cise			 	� 85

Using a custom simulation framework, we
can perform significant sensitivity experiments on
VSR sort and three diverse SIMD sorting algo-
rithms suitable for relational databases: quicksort,
bitonic mergesort, and radix sort. We take into
account our predictions of width and functional-
ity in future microprocessor generations. Figure 3
shows a comparison of each algorithm. As a met-
ric, we used speedup over a scalar baseline, chang-
ing two critical parameters: the maximum vector
length (mvl), which is the number of elements in
a SIMD register, and lanes, which refers to the
number of redundant functional units available
to a single SIMD instruction. A configuration
with a single lane resembles a purely pipelined
functional unit implementation, like that of the
CRAY-1. We find that all the prior work suffers
from bottlenecks and scalability problems. VSR
sort exhibits good scalability and achieves maxi-
mum speedups up to 20.6× over a scalar baseline
and on average performs 3.4× better over a stan-
dard SIMD radix sort when run on the same
hardware configuration. We feel that VSR sort is
an excellent candidate to implement sort primi-
tives in a relational database.

Leveraging Emerging Memory Technologies
Due to the ever increasing computational through-
put of chip multiprocessors, off-chip memory has
become a performance-limiting factor due to lim-
ited pin count scalability. Current off-chip memory
bandwidth capabilities aren’t sufficient to meet the
demands of modern servers running data-demand-
ing workloads such as those employing relational
databases.6 However, die-stacking technology enables

tightly coupled integration of DRAM with the
processor die, providing hundreds of megabytes to
several gigabytes of storage that can be accessed at
an unprecedented bandwidth with latencies that
are significantly lower than those needed to access
off-chip memory. Unfortunately, the amount of
storage that this technology offers still isn’t suffi-
cient to cope with memory capacity requirements,
which are often one or two orders of magnitude
higher.7 For this reason, researchers have been ex-
ploring the use of stacked DRAM as a large last-
level cache.

We’ve analyzed current DRAM cache propos-
als and identified different performance pathologies
that arise due to interleaved accesses from different
cores at the DRAM banks. Figure 4 shows differ-
ent queued requests for each bank, and for each
request, the requesting core and the targeted row
(page) within the DRAM bank where the data is
known to be present.

Figure 4a illustrates a case of row-buffer inter-
ference where core0 performs several accesses over
the same DRAM row (page) on bank1, for which
the access latency is low due to row-buffer hits.
However, there’s a request to a different row from
core3 that needs to be served, destroying this row-
buffer locality. We want to avoid any interference
from other cores that could prematurely close the
row-buffer just to service a single request, having
to open again the previous row to finish reading it.

Figure 4b illustrates a case of utility interfer-
ence. In the example, bank0 contains a page ac-
cessed by core1 with high spatial locality, from
which many blocks are useful (that is, demand-
ed). The rest of the cores access pages with low

Figure 4. Performance pathologies present in DRAM caches: (a) row-buffer interference and (b) utility interference.

Bank 0 Bank 1 Bank 2 Bank 3

To DRAM Cache(a) (b)

Core 0
Row 1

Core 0
Row 1

Core 3
Row 10

Core 0
Row 1

Core 0
Row 1

Core 3
Row 20

Core 1
Row 30

Core 2
Row 40

Core 2
Row 40

Core 3
Row 20

Bank 0 Bank 1 Bank 2 Bank 3

To DRAM Cache

Core 1
Row 0

Core 1
Row 0

Core 1
Row 0

Core 1
Row 0

Core 1
Row 0

Core 0
Row 1

Core 0
Row 0

Core 0
Row 1

Core 3
Row 0

Core 2
Row 1

Core 0
Row 0

moved:
would have

evicted
bank 0
row 0

Novel Architectures

86	 � January/February 2016

spatial locality, suggesting a lower number of use-
ful blocks. If the incoming request in bank1, which
was a cache miss, had been allocated in bank0,
then the page with high locality and block usage
would have been evicted even if there were better
replacement candidates in other banks. We want
to protect cores that would experience significant
performance improvements from interfering cores
that might hinder these improvements by thrash-
ing the cache, evicting highly reused blocks, and
undermining cache utility.

In the context of database workloads, mem-
ory bandwidth and access latency are critical to
achieving good performance. Moreover, in such
workloads, abundant spatial locality is present
in a significant number of common primitives,
such as sequentially reading from a table. While a
DRAM cache has the potential to be a great per-
formance booster for these kinds of workloads, the
performance pathologies we described can degrade
potential improvements. As Figure 4 suggests,
these pathologies can be mitigated with better data
placement within the cache. Our proposal aims at
providing this functionality to improve DRAM
cache performance.8

In particular, our proposal identifies cores ex-
periencing high spatial locality and dynamically
modifies the DRAM cache replacement policy
to allocate their pages to a subset of banks. This
data placement policy reduces row-buffer interfer-
ence by avoiding the closure of row-buffers just to
service a single access in the common case: high
spatial locality implies high row-buffer locality.
Similarly, allocations for cores with poor spatial lo-
cality are placed on another subset of the banks,
where row-buffer locality is less penalized because
it’s already low. In addition, utility interference is
also reduced because rows with a high block de-
mand won’t be replaced by rows with low demand.
Banks with rows that present low spatial local-
ity are likely to generate more evictions, but these
evicted pages are cheaper to fetch back and have a
lower impact on the overall cache hit ratio.

We evaluate our proposal using an architec-
tural simulator that models a chip multiprocessor
(CMP) with eight out-of-order cores and a three-
level cache hierarchy, which closely resembles

a server grade Sandy Bridge Intel processor. To
model the stacked and off-chip DRAM memory,
we integrated a detailed main memory simulator
and configured our DRAM cache to have a size of
2 Gbytes and four memory channels. As a repre-
sentative data analytics workload, we use a set of
queries (q9, q13, q15, and q16) from the TPC-H
benchmark running on a modern column-store
database engine with a dataset that exceeds 100
Gbytes. Our proposal yields a 24.5 percent perfor-
mance improvement over a system without stacked
DRAM and outperforms a state-of-the-art DRAM
cache proposal9 by 10 percent.

In this work, we proposed hardware improvements
for DBMSs that use emerging technologies: FPGAs,

future SIMD support, and die-stacking DRAM.
We anticipate that applying these redesigns to all
levels of the system will result in datacenters that
can provide a manyfold increase in throughput.
One of our goals is to bridge the gap between these
specialized technologies and the nonexpert end
user.

Although our work currently comprises several
disparate ideas, we ultimately want to bring these
together in a unified system and allow them to co-
operate harmoniously. Vector SIMD extensions are
a good fit for certain key algorithms, but perfor-
mance is typically limited by the available memory
bandwidth. A die-stacked DRAM cache provides
abundant memory bandwidth that can unlock ad-
ditional performance for vector extensions while
providing the additional benefits described here.
Although these two technologies work well in tan-
dem, data movement between storage systems and
processing units is a major bottleneck that will be
exacerbated as the amount of data to be processed
grows. To minimize data movement, we propose
using FPGA technology for near data processing
and to tackle certain operations that map well to
these devices, reducing data movement to compu-
tational resources.

Acknowledgments
The research leading to these results has received
funding from the EU’s Seventh Framework Programme

Banks with rows that present low spatial locality are likely to generate
more evictions, but these evicted pages are cheaper to fetch back and
have a lower impact on the overall cache hit ratio.

www.computer.org/cise			 	� 87

(FP7/2007- 2013) under the AXLE project (grant 318633).
This is a collaborative project where the authors have
contributed equally. They have been listed in alphabetical
order by surname. Gorker Alp Malazgirt undertook
this work with a Severo Ochoa grant at the Barcelona
Supercomputing Center.

References
1.	 T.C. Scofield et al., “XtremeData dbX: An FPGA-

Based Data Warehouse Appliance,” Computing in
Science & Eng., vol. 12, no. 4, 2010, pp. 66–73.

2.	 G.A. Malazgirt et al., “Accelerating Complete De-
cision Support Queries Through High-Level Syn-
thesis Technology,” Proc. ACM/SIGDA Int’ l Symp.
Field-Programmable Gate Arrays, 2015, p. 277.

3.	 B. Salami, Behzad et al., “HATCH: Hash Table
Caching in Hardware for Efficient Relational Join
on FPGA,” Proc. Ann. Int’ l Symp. Field-Program-
mable Custom Computing Machines (FCCM), 2015,
p. 163.

4.	 O. Arcas-Abella et al., “An Empirical Evaluation
of High-Level Synthesis Languages and Tools for
Database Acceleration,” Proc. Int’ l Conf. Field
Programmable Logic and Applications (FPL), 2014,
pp. 1–8.

5.	 T. Hayes et al., “VSR Sort: A Novel Vectorised
Sorting Algorithm & Architecture Extensions for
Future Microprocessors,” Proc. IEEE 21st Int’ l
Symp. High Performance Computer Architecture
(HPCA), 2015, pp. 26–38.

6.	 B.M. Rogers et al., “Scaling the Bandwidth Wall:
Challenges in and Avenues for CMP Scaling,”
Proc. 36th Ann. Int’ l Symp. Computer Architecture
(ISCA), 2009, pp. 371–382.

7.	 M. Ferdman et al., “Clearing the Clouds: A Study
of Emerging Scale-Out Workloads on Modern
Hardware,” Proc. 17th Int’ l Conf. Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), 2012, pp. 37–48.

8.	 A. Armejach et al., “Tidy Cache: Improving Data
Placement in Die-stacked DRAM Caches,” to ap-
pear in Proc. Int’ l Symp. Computer Architecture and
High Performance Computing (SBAC-PAD), 2015.

9.	 D. Jevdjic et al., “Die-Stacked DRAM Caches for
Servers,” Proc. 40th Ann. Int’ l Symp. Computer
Architecture (ISCA), 2013, pp. 404–415.

Oriol Arcas-Abella is a PhD candidate in computer ar-
chitecture at the Universitat Politècnica de Catalunya,
where he obtained his BS and MS in computer science.
His research at the Barcelona Supercomputing Center is
focused on soft microarchitecture prototyping on recon-
figurable devices, including hardware debugging and

verification techniques and high-level design. Contact
him at oriol.arcas@bsc.es.

Adrià Armejach is a postdoctoral researcher at the Barce-
lona Supercomputing Center. His interests include com-
puter architecture, parallel computing, memory systems,
and performance evaluation. Armejach received a PhD
in computer architecture from the Universitat Politèc-
nica de Catalunya. Contact him at adria.armejach@
bsc.es.

Timothy Hayes is a third-year PhD candidate in the
field of computer architecture at the Barcelona Super-
computing Center. His research interests include SIMD
models of computation, workload characterization, and
high-performance microarchitecture development. Con-
tact him at timothy.hayes@bsc.es.

Gorker Alp Malazgirt is a PhD candidate in computer
engineering at Bogazici University, Istanbul. His re-
search interests are computer architectures, reconfigu-
rable computing, and metaheuristics. Malazgirt received
an MSc in system-on-chip design from Lund University,
Sweden. Contact him at alp.malazgirt@boun.edu.tr.

Oscar Palomar is part of the parallel paradigms group
at the Barcelona Supercomputing Center. His research
interests involve low-power vector architectures and
energy minimization. Palomar received a PhD in com-
puter architecture from the Universitat Politècnica de
Catalunya. Contact him at oscar.palomar@bsc.es.

Behzad Salami is pursuing a PhD in computer archi-
tecture at the Universitat Politècnica de Catalunya while
doing research at the Barcelona Supercomputing Center.
His research interests include reconfigurable computing,
big data processing, and high-performance computing.
Contact him at behzad.salami@bsc.es.

Nehir Sonmez is a postdoctoral researcher in the par-
allel paradigms research group at the Barcelona Su-
percomputing Center. His research interests include
reconfigurable computing, multicore computer architec-
ture, and database acceleration for big data and trans-
actional memory. Sonmez received a PhD in computer
engineering from the Universitat Politècnica de Cata
lunya. Contact him at nehir.sonmez@bsc.es.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

