
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

Lumos: Dependency-Driven Disk-based
Graph Processing

Keval Vora, Simon Fraser University

https://www.usenix.org/conference/atc19/presentation/vora

LUMOS: Dependency-Driven Disk-based Graph Processing

Keval Vora
School of Computing Science

Simon Fraser University
British Columbia, Canada

keval@cs.sfu.ca

Abstract
Out-of-core graph processing systems are well-optimized to
maintain sequential locality on disk and minimize the amount
of disk I/O per iteration. Even though the sparsity in real-
world graphs provides opportunities for out-of-order execu-
tion, these systems often process graphs iteration-by-iteration,
hence providing Bulk Synchronous Parallel (synchronous for
short) mode of processing which is also a preferred choice for
easier programmability. Since out-of-core setting limits the
view of entire graph and constrains the processing order to
maintain disk locality, exploiting out-of-order execution while
simultaneously providing synchronous processing guarantees
is challenging. In this paper we develop a generic dependency-
driven out-of-core graph processing technique, called LUMOS,
that performs out-of-order execution to proactively propagate
values across iterations while simultaneously providing syn-
chronous processing guarantees. Our cross-iteration value
propagation technique identifies future dependencies that can
be safely satisfied, and actively computes values across those
dependencies without sacrificing disk locality. This eliminates
the need to load the corresponding portions of graph in fu-
ture iterations, hence reducing disk I/O and accelerating the
overall processing.

1 Introduction
Disk-based processing of large graphs enables processing
to scale beyond the available main memory in both single
machine [1, 8, 9, 13, 14, 16, 17, 24, 34, 35, 38] and cluster
based [23] processing environments. With limited amount of
main memory available for processing, out-of-core graph sys-
tems first divide the graph into partitions that reside on disk,
and then process these partitions one-by-one by streaming
through them, i.e., by sequentially loading them in memory
and immediately processing them. As expected, such out-
of-core processing is I/O intensive and systems often spend
significant amount of time in loading the partitions from disk;
for example, GridGraph [38], a recent state-of-art out-of-core
graph processing system, spends 69-90% of time in loading
edges from disk partitions.

A common concern across graph processing systems is the
nature of consistency semantics they offer for programmers to
correctly express their graph algorithms. Consistency seman-
tics in the context of iterative graph processing fundamentally
decide when should a vertex’s value (that is computed in a
given iteration) become visible to its outgoing neighbors. The
most popular consistency semantics is offered by the Bulk
Synchronous Parallel (BSP) [27] model (hereafter called syn-
chronous processing semantics) that separates computations
across iterations such that vertex values computed in a given
iteration become visible to their outgoing neighbors in the
next iteration, i.e., values in a given iteration are computed
based on values from the previous iteration. Such clear sepa-
ration between values being generated v/s values being used
allows programmers to clearly reason about the important
convergence and correctness properties. Hence, synchronous
processing semantics often becomes a preferred choice for
large-scale graph processing [18, 24, 36, 38].

While out-of-core graph processing systems that provide
synchronous processing semantics have been well-optimized
to maintain sequential disk locality and to minimize the
amount of disk I/O per iteration, they process graphs iteration-
by-iteration such that processing for a given iteration starts
only after all the partitions have been processed for the cor-
responding previous iteration. Such synchronous processing
enforces dependencies between all values across subsequent
iterations. However, dependencies in graph computation are
determined by the structure of the input graph, and real-world
graphs are often large and sparse. This means, more often than
not, two randomly chosen vertices will not be directly con-
nected to each other, hence deeming the dependency between
their values to be unnecessary in synchronous processing.
This sparsity in edges provides an opportunity to perform
out-of-order execution such that unrelated values across mul-
tiple iterations get simultaneously computed to amortize the
disk I/O cost across multiple iterations. However, achieving
such out-of-order execution in an out-of-core setting without
sacrificing sequential disk locality, as well as simultaneously
providing synchronous processing guarantees is challenging.

USENIX Association 2019 USENIX Annual Technical Conference 429

In this paper, we develop a dependency-aware cross-
iteration value propagation technique called LUMOS to en-
able future value computations that reduce disk I/O while still
guaranteeing synchronous processing semantics. We refine
vertex computations into two key components: the first step
performs concurrent aggregation of incoming vertex values,
and the next step uses the result of concurrent aggregation
to compute the final vertex value. Upon doing so, we iden-
tify that computing aggregations requires all incoming vertex
values to be available which is a strong precondition that
limits future computations. However, values can be safely
propagated to compute partial aggregations that lifts off the
precondition of requiring all incoming vertex values. When
the partial aggregations receive all required values, they can
be used to compute the final future vertex values which can be
propagated further down across subsequent future iterations.

We enable such cross-iteration value propagation across
partitions as partition boundaries become natural points to
capture the set of value dependencies that can be safely sat-
isfied. We further increase cross-iteration propagation via
locality-aware intra-partition propagation to exploit the in-
herent locality in real-world graphs which has been identi-
fied in recent works [36]. While LUMOS can also correctly
process asynchronous algorithms (e.g., traversal algorithms
like shortest paths), we further optimize LUMOS for asyn-
chronous algorithms by exposing relaxed processing seman-
tics in its processing model. Finally, to achieve maximum
benefits we enhance LUMOS with several key out-of-core pro-
cessing strategies like selective scheduling and light-weight
partitioning that have been shown to be seminal in extracting
performance in out-of-core processing.

While our dependency aware cross-iteration propagation
model is general enough to be incorporated in any syn-
chronous out-of-core graph processing system, we develop
LUMOS by extending GridGraph which is a state-of-art out-
of-core graph processing system that guarantees synchronous
processing semantics. Our evaluation shows that LUMOS is
able to compute future values across 71-97% of edges which
eliminates the corresponding amount of disk I/O across those
iterations, and hence, LUMOS is 1.8× faster than GridGraph
while it still retains the same synchronous processing seman-
tics. To the best of our knowledge, this is the first out-of-core
graph processing technique that enables future value compu-
tation across iterations, while still retaining the synchronous
processing semantics throughout all the iterations, which is
crucial for easy programmability.

2 Background & Motivation
We first discuss about semantics of synchronous execution,
and then summarize out-of-core graph processing techniques.

2.1 Synchronous Processing Semantics
The Bulk Synchronous Parallel (BSP) model [27] is a pop-
ular processing model that provides synchronous stepwise

Algorithm 1 Synchronous PageRank
1: G = (V,E) B Input graph
2: pr = {1,1, ...,1} B Floating-point array of size |V |
3: while not converged do
4: newPr = {0,0, ...,0} B Floating-point array of size |V |
5: par-for (u,v) ∈ E do

6: ATOMICADD(&newPr[v],
pr[u]

|out_neighbors(u)|)
7: end par-for
8: par-for v ∈V do
9: newPr[v] = 0.15 + 0.85×newPr[v]

10: end par-for
11: SWAP(pr, newPr)
12: end while

execution semantics with separated computation and com-
munication/synchronization phases. Under the BSP model,
values in a given iteration are computed based on values from
the previous iteration. We illustrate the synchronous process-
ing semantics of BSP model using the PageRank algorithm as
an example 1 in Algorithm 1. The algorithm computes vertex
values (newPr) using the ones computed in previous iteration
(pr) as shown on line 6. The flow of values across iterations
is explicitly controlled via SWAP() on line 11.

Such clear separation of values being generated v/s values
being used allows programmers to clearly reason about the
important convergence and correctness properties. Hence,
synchronous processing semantics often becomes a preferred
choice for large-scale graph processing [18, 24, 36, 38].

2.2 Out-of-Core Graph Processing
Disk-based graph processing has been a challenging task due
to ever growing graph sizes. The key components in effi-
cient out-of-core graph processing systems is a disk-friendly
partition-based data-structure, and an execution engine that
processes the graph in a partition-by-partition fashion that
maximizes sequential locality. Figure 1 shows how a given
graph is represented as partitions on disk. Each partition rep-
resents incoming edges for a range of vertices (chunk-based
partitioning [38]); partition p0 holds incoming edges for ver-
tices 0 and 1, p1 holds for vertices 2 and 3, and p3 for vertices
4 and 5. The iterative engine processes the graph by going
through these partitions in a fixed order; it sequentially loads
edges from partition p0 to process them in memory, then from
partition p1, and finally from the last partition p2. Once all
the partitions are processed, the iteration ends by perform-
ing computations across vertex values, that may reside on
disk or in-memory (depending on availability of memory).
This entire process is repeated for multiple iterations until
algorithm-specific termination condition is satisfied.

Several works aim to improve out-of-core graph processing
[1, 8, 9, 13, 14, 16, 17, 24, 31, 32, 34, 35, 38] as summarized in
Table 1. Depending on the processing semantics they offer,
they fall in two categories:

1Algorithm 1 is simplified to eliminate details like selective scheduling.

430 2019 USENIX Annual Technical Conference USENIX Association

Out-of-Order
Execution

Future Value
Computation

Synchronous
Semantics

Async.
Algorithms
(e.g., SSSP)

GraphChi [13] 7 7 3 3

X-Stream [24] 7 7 3 3

GridGraph [38] 7 7 3 3

FlashGraph [35] 7 7 3 3

TurboGraph [8] 7 7 3 3

Mosaic [17] 7 7 3 3

GraFBoost [9] 7 7 3 3

Graphene [15] 7 7 3 3

Garaph [16] 7 7 3 3

DynamicShards [31] 3 7 3 3

Wonderland [34] 3 3 7 3

CLIP [1] 3 3 7 3

AsyncStripe [4] 3 3 7 3

LUMOS 3 3 3 3

Table 1: Key characteristics of existing out-of-core graph processing
systems and LUMOS.

1

0 2

5
3

4

1

0 2

5
3

4

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(0,	3)
(0,	2)
(1,	3)
(4,	2)
(5,	2)

(0,	5)
(1,	5)
(2,	4)
(2,	5)
(3,	5)
(5,	4)

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(4,	2)
(5,	2)

(5,	4)

1

0 2

5
3

4

p0 p1 p2p0 p1 p2

1

0 2

5

3

4

(a) Example graph.

1

0 2

5
3

4

1

0 2

5
3

4

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(0,	3)
(0,	2)
(1,	3)
(4,	2)
(5,	2)

(0,	5)
(1,	5)
(2,	4)
(2,	5)
(3,	5)
(5,	4)

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(4,	2)
(5,	2)

(5,	4)

1

0 2

5
3

4

p0 p1 p2p0 p1 p2

1

0 2

5

3

4

(b) Edge partitions.

Figure 1: An example graph partitioned
into three partitions (p0, p1 and p2) that

reside on disk.

(A) Synchronous Out-of-Core Graph Processing.
GraphChi [13], X-Stream [24], GridGraph [38], and others
provide synchronous processing semantics. While initial sys-
tems like GraphChi [13] and X-Stream [24] proposed efficient
processing models, their performance is limited due to man-
agement of edge-scale intermediate values in every iteration
(edge values in GraphChi and edge updates in X-Stream).

GridGraph [38] is an efficient out-of-core graph process-
ing system that eliminates edge-scale intermediate updates.
It divides vertices into subsets called chunks and partitions
edges into 2D grid based on these chunks. In Figure 1b, the
dashed-horizontal lines represent boundaries of blocks such
that the entire representation becomes a 2D grid. The 2D grid
is processed by streaming through edge-blocks. Furthermore,
GridGraph enables selective scheduling which eliminates un-
necessary edges to be loaded from disk by skipping partitions.
Since its processing model is designed to minimize disk I/O,
it is the state-of-art out-of-core graph processing system that
provides synchronous processing semantics.

(B) Asynchronous Out-of-Core Graph Processing.
Recent works like CLIP [1] and Wonderland [34] are cus-
tomized for asynchronous algorithms like path-based algo-
rithms (e.g., BFS and shortest paths). These frameworks lever-
age the algorithmic properties (e.g., monotonicity [28, 29])
to process partitions based on newly computed values, re-
sulting in faster convergence. CLIP [1] processes partitions
multiple times in memory while Wonderland [34] performs
abstraction-guided processing for faster information propa-
gation. Even though these techniques perform out-of-order
computations (see Table 1), they do not provide synchronous
processing semantics since they violate the processing order
across computed vertex values. Hence, they cannot be used
for synchronous graph algorithms.

Limitations with Out-of-Core Systems.
As shown in Table 1, none of the systems perform future
value computation (i.e., beyond a single iteration) while si-
multaneously providing synchronous processing semantics.
In synchronous out-of-core frameworks, the processing model
is tied down to strict iteration-by-iteration processing. Such
tight coupling between synchronous semantics and strict pro-
cessing order limits the performance of out-of-core graph pro-
cessing. Particularly, the sparsity in real-world graphs often
presents opportunities to proactively compute future values
based on when value dependencies get resolved; realizing
such processing across future iterations can be beneficial in
out-of-core setting since edges corresponding to values that
have already been computed for future iterations do not need
to be loaded in those iterations, hence directly reducing disk
I/O. However, such acceleration via future value computa-
tion is not achieved in out-of-core systems due to their strict
iteration-by-iteration processing.

It is crucial to note that out-of-order execution does not
necessarily result in computing across future values. Specifi-
cally, DynamicShards [31] performs out-of-order execution to
dynamically capture the set of active edges to be processed in
a given iteration. It achieves this by dropping inactive (or use-
less) edges across iterations and delaying computations that
cannot be performed due to missing edges. While the delayed
computations get periodically processed in shadow iterations
(i.e., out-of-order execution), they do not compute across fu-
ture values to leverage sparse dependencies. Asynchronous
systems [1,34], on the other hand, do compute beyond a single
iteration, but do not provide processing semantics.

This poses an important question: how to process beyond a
single iteration to reduce disk I/O in out-of-core processing
while simultaneously guaranteeing synchronous processing
semantics?

USENIX Association 2019 USENIX Annual Technical Conference 431

 0

 15

 30

 45

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

16 64 256
Chunk Cyclic Random

%
 V

er
ti
ce

s

(a) Vertices for which vt+1 can be computed in
iteration t using ut ,∀(u,v) ∈ E.

 0

 1

 2

 3

 4

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

16 64 256
Chunk Cyclic Random

%
 E

dg
es

(b) Incoming edges for vertices in Figure 2a that
don’t need to be loaded from disk in iteration t +1.

 0

 15

 30

 45

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

U
K

T
W T
T

F
T

16 64 256
Chunk Cyclic Random

%
 E

dg
es

(c) Edges that don’t need to be loaded from disk in
iteration t +1, when computing partial aggregation

in iteration t as shown in Eq. 2.

Figure 2: Percentage of vertex computations and edge savings across three light-weight partitioning strategies (chunking, cyclic
hashing and random partitioning) and three partition sizes (#partitions = 16, 64 and 256) on four large graphs

(UK, TW, TT and FT from Table 4).

3 LUMOS: Dependency-Driven
Cross-Iteration Value Propagation

Since our goal is to provide synchronous processing semantics
while overlapping computations across multiple iterations,
we first characterize cross-iteration dependencies to capture
synchronous semantics and then develop our out-of-core value
propagation strategy that guarantees those captured semantics.

3.1 Characterizing Synchronous Dependencies
Synchronous iterative graph algorithms compute vertex val-
ues in a given iteration based on values of their incoming
neighbors that were computed in the previous iteration. Since
computations are primarily based on graph structure, such
cross iteration dependencies can be captured via the graph
structure as follows:

∀(u,v) ∈ E, ut 7→ vt+1 (1)

where ut and vt+1 represent values of vertex u in iteration t
and vertex v in iteration t +1 respectively, and 7→ indicates
that vt+1 is value-dependent on ut . It is important to note that
there are no dependency relationships among vertices that are
not directly connected by an edge. With limited view of graph
structure available at any given time in out-of-core graph
processing, the cross-iteration dependencies get satisfied by
processing vertices and edges in a given iteration only after
processing for the previous iteration is completed.

3.2 Out-of-core Value Propagation
We ask two important questions that allow us to identify the
interplay between cross-iteration value propagations to sat-
isfy future dependencies and partition-by-partition processing
orchestrated by out-of-core graph systems.

3.2.1 When to propagate?

A straightforward way to enable processing beyond a given
single iteration t is to compute vertex values for the sub-
sequent iteration t + 1 if incoming neighbors’ values corre-
sponding to t are available at the time when those vertices

are processed. With partition-by-partition out-of-core process-
ing, we know that values for vertices belonging to a given
partition p become available when p is processed; hence, we
can allow outgoing neighbors to use these available values
and compute for subsequent iterations if their partitions get
processed after p in the same iteration. While theoretically
this appears to be a promising direction, we profile the large
graphs from Table 4 to measure the number of vertices for
which future values can be computed (shown in Figure 2a),
and the number of edges that don’t need to be loaded for
the corresponding vertices in future iterations (shown in Fig-
ure 2b). To eliminate the impact of partitioning, we profiled
across three light-weight partitioning schemes, chunk-based
partitioning (as used in [38]), cyclic partitioning (where ver-
tex ids are hashed to partitions) and random partitioning; and,
across three partition sizes corresponding to number of parti-
tions being 16, 64 and 256. Even though Figure 2a shows up
to 45% of vertices can compute values for subsequent itera-
tions, it contributes to only 1-4% of edge savings as shown in
Figure 2b. This means, future values can be computed for ver-
tices that have low in-degree and, as expected, high in-degree
vertices cannot compute future values since values for all of
their incoming neighbors do not become available in time.

To achieve high amount of cross-iteration value propaga-
tion, we want to relax the precondition such that availability of
all incoming neighbor values does not become a requirement.
We achieve this by computing only the aggregated values for
future iterations instead of computing final vertex values. Let⊕

denote the aggregation operator that computes the inter-
mediate value based on incoming neighbors and f denote
the function to compute vertex’s value based on aggregated
intermediate value. For example, in PageRank (Algorithm 1),
ATOMICADD on line 6 represents

⊕
and line 9 shows f . In a

given iteration t, we aim to compute 2:

vt = f (
⊕

∀e=(u,v)∈E

(ut−1)) and g(vt+1) =
⊕

∀e=(u,v)∈E
s.t. p(u)<p(v)

(ut) (2)

2Values residing on edges (i.e., edge weights) have been left out from
equations for simplicity as they do not impact cross-iteration dependencies.

432 2019 USENIX Annual Technical Conference USENIX Association

where g(v) represents aggregated value of v and p(v) is
the partition to which v belongs. It is important to note
that

⊕
∀e=(u,v)∈E

represents a complete aggregation while⊕
∀e=(u,v)∈E

s.t. p(u)<p(v)

represents partial aggregation as the precondi-

tion p(u) < p(v) may not be satisfied by all edges. Since
∀u ∈V,ut−1 is available in iteration t (due to barrier seman-
tics), we can perform complete aggregation and also compute
the vertex’s value using f . However, since ut becomes avail-
able as partitions get processed in the same iteration t, at a
given point in time only the available ut values can be propa-
gated to compute the partial aggregation which satisfies the
future cross-iteration dependency ut 7→ vt+1. Since typically
partitions get processed in numerical order, with P being to-
tal number of partitions, we know that ∀i, j ∈ [0,P), if i < j,
partition i gets processed before partition j. This ordering is
captured in the precondition for partial aggregation g(vt+1).
Hence, in Figure 1, as p0, p1 and p2 get processed in that or-
der, vt

0 is available for g(vt+1
2), g(vt+1

3) and g(vt+1
5) via (0,2),

(0,3) and (0,5) respectively, while vt
3 is not available for

g(vt+1
1) during iteration t.

As shown in Figure 2c, the percentage of values propagated
(via partial aggregation) increases to 40-50%; the edges cor-
responding to these propagations need not be loaded in the
subsequent iteration (i.e., directly reducing disk I/O), which
is significantly higher compared to that in Figure 2b. We
also observe that random partitioning compares well with
other techniques and enables higher cross-iteration propaga-
tion; this can be reasoned with the high chances of an edge
(u,v) being placed across partitions such that p(u)< p(v). In
Section 5.3, we will explore more light-weight partitioning
strategies that will further enable cross-iteration propagation.

Note that the above value propagation requires vertex val-
ues for the current iteration to be computed as partitions get
processed. We developed our processing model to simulta-
neously compute vertex values as corresponding partition’s
edges get processed (discussed further in Section 5.1).

3.2.2 How far (in iteration space) to propagate?
Cross-iteration dependencies are linear in iteration space and
hence, we can potentially propagate values for future itera-
tions beyond t+1. In order to guarantee synchronous process-
ing semantics, we need to ensure that vt+1 gets computed in
iteration t before it is further propagated to out-neighbors of v.
We define a value vx to be computable when all its incoming
values corresponding to iteration x−1 have been propagated
to g(vx) (i.e., a complete aggregation has occurred in g(vx)).
Since out-of-core processing propagates values to vertices
based on its partitions, values can become computable when
the corresponding vertex’s partition gets processed. Com-
putable values get computed by applying f on g(vx) to achieve
vx which can be further propagated to out-neighbors of v for
x+ 1. For example in Figure 1, vertex 3 has two incoming

UK TW TT FT
D = 2 6.8 - 49.7 39.2 - 50.1 17.4 - 49.7 35.6 - 49.8
D = 3 0.38 - 0.52 0.13 - 0.25 0.11 - 0.44 0.04 - 0.26
D = 4 < 0.01 < 0.01 < 0.01 < 0.01

Table 2: Percentage (min-max range) of edge propagations
across three partitioning strategies from Figure 2.

edges (0,3) and (1,3), both of which contribute to g(vt+1
3)

during iteration t; hence, we can compute vt+1
3 = f (g(vt+1

3))

during iteration t itself and further propagate vt+1
3 across the

outgoing edge (3,5) in the same iteration t.
For a given iteration t, we know that vt becomes com-

putable when p(v) gets processed. Hence, for any arbitrary
k, vt+k becomes computable when ∀(u,v) ∈ E, p(u) < p(v)
and ut+k−1 is computable. This is because the partial aggrega-
tion

⊕
∀e=(u,v)∈E

s.t. p(u)<p(v)

becomes equivalent to complete aggregation

⊕
∀e=(u,v)∈E

when ∀(u,v) ∈ E, p(u)< p(v). These computable

values that get further propagated lead to I/O reduction in
the corresponding future iterations. We define distance of
propagation (in iteration space) based on the difference be-
tween the current iteration number and the iteration number
for which any value propagation occurs in the current iteration.
Formally, the distance of propagation D is defined as:

D = max
∀t

(max
∀g(vt+k)

(k+1))

In traditional out-of-core graph systems, barriers across itera-
tions ensure that D= 1. Our dependency-aware cross-iteration
propagation achieves D > 1; for example, with propagation
for immediately subsequent iteration, D is 2. Table 2 summa-
rizes the percentage of edge propagations that occur across
distances 2, 3 and 4. As we can see, propagations decrease
drastically at distance 3, and are close to 0% after that. Since
achievable benefits are minor beyond propagation distance 2,
we perform cross-iteration propagation until distance 2, i.e.,
for the current iteration t and the next iteration t +1.

3.3 Graph Layout
Since cross iteration dependencies are primarily based on the
input graph structure, value propagations beyond current iter-
ation can be statically determined based on the precondition
involved in Eq. 2. In order to completely avoid reading edges
whose dependencies have been satisfied, we create separate
graph layouts for subsequent iterations. In this way, the exe-
cution switches between different graph layouts on disk. In
theory, we can create D separate graph layouts to propagate
values across D iterations; however, to simplify exposition we
discuss the layout for D= 2 since larger propagation distances
provide diminishing benefits (as discussed in Section 3.2).
With D = 2, we have two graph layouts: the primary layout
consisting of all edges, and the secondary layout containing
only subset of edges. Figure 3 shows the secondary layout and
its corresponding graph representation for the primary graph

USENIX Association 2019 USENIX Annual Technical Conference 433

1

0 2

5
3

4

1

0 2

5
3

4

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(0,	3)
(0,	2)
(1,	3)
(4,	2)
(5,	2)

(0,	5)
(1,	5)
(2,	4)
(2,	5)
(3,	5)
(5,	4)

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(4,	2)
(5,	2)

(5,	4)

1

0 2

5
3

4

p0 p1 p2p0 p1 p2

1

0 2

5

3

4

1

0 2

5
3

4

1

0 2

5
3

4

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(0,	3)
(0,	2)
(1,	3)
(4,	2)
(5,	2)

(0,	5)
(1,	5)
(2,	4)
(2,	5)
(3,	5)
(5,	4)

(0,	1)
(1,	0)
(3,	1)
(4,	0)
(4,	1)

(4,	2)
(5,	2)

(5,	4)

1

0 2

5
3

4

p0 p1 p2p0 p1 p2

1

0 2

5

3

4

Figure 3: Secondary layout for graph from Figure 1.

Graph
Without With

Intra-Partition Intra-Partition
Propagation Propagation

UK 6.84 - 49.69 49.76 - 92.47
TW 39.24 - 50.09 50.31 - 62.22
TT 17.43 - 49.74 43.32 - 61.87
FT 35.58 - 49.80 47.20 - 56.19

Table 3: Percentage (min-max range) of edge propagations
with and without intra-partition propagation across three

partitioning strategies from Figure 2.

layout in Figure 1. The secondary layout does not contain
8 out of 16 edges since the corresponding dependencies get
satisfied while processing primary layout.

We analyze the reduction in I/O caused by our secondary
graph layout. Since |E|>> |V |, out-of-core graph processing
systems like GridGraph achieve high performance by ensur-
ing that the edges are loaded only once in every iteration.
Hence, for each iteration, their I/O amount is |E| + k×|V |
where k ≥ 2 captures batch loading of vertices for each par-
tition. While our I/O amount for the iteration using primary
layout remains the same, it reduces significantly when sec-
ondary layout is used. Let α be the ratio of edges for which
values are propagated for subsequent iteration when primary
layout is processed. Since those edges are not present in sec-
ondary layout, the I/O amount directly reduces by α× |E|.
Hence, the total I/O amount is:

C =

{
(1−α)×|E| + k×|V | . . . secondary layout
|E| + k×|V | . . . primary layout

As we will see in Section 6, α is typically over 0.7 which
drastically reduces the I/O amount.

3.4 Intra-Partition Propagation
So far cross-iteration propagation is performed for edges
across partitions as dictated by Eq. 2. While this captures
a large subset of edges that don’t need to be loaded in the
subsequent iteration, it has been recently shown in [36] that
real-world graphs often possess natural locality such that ad-
jacent vertices are likely to be numbered close to each other
due to the traversal nature of graph collection strategies (e.g.,
crawling, anonymization, etc.). This means, chunk-based par-
titioning strategies where contiguous vertex-id ranges get
assigned to partitions have several edges such that both end-
points belong to the same partition.

In order to leverage this natural locality, in a given iteration
t, we aim to propagate value for subsequent iteration across

edge (u,v) where p(u) = p(v). However, since ut becomes
available as partition p(u) gets processed in the same iteration
t, ut can only be propagated after p(u) has been processed.
Hence, if (u,v) can be held in memory until p(u) gets fully
processed, we can propagate ut to satisfy the future cross-
iteration dependency ut 7→ vt+1. This means, intra-partition
cross-iteration propagation relaxes our precondition for partial
aggregation to become:

g(vt+1) =
⊕

∀e=(u,v)∈E
s.t. p(u)≤p(v)

(ut) (3)

Table 3 summarizes the increase in cross-iteration propagation
when intra-partition propagation is enabled. As we can see,
cross-iteration propagation increases to 43-92% with intra-
partition propagation, which further saves disk I/O.

We enable intra-partition cross-iteration value propagation
by ensuring that partition sizes remain small enough such that
they can be entirely held in memory. As shown in Section 5.1,
our processing model holds the partition in memory until it
gets processed, and then performs cross-iteration propagation
for edges whose both end-points belong in the partition.

3.5 Value Propagation v/s Partition Size
The amount of cross-iteration value propagation not only de-
pends on the partitioning strategy, but also varies based on the
size of partitions. As we can observe in Figure 2c, the same
partitioning strategy with different partition sizes enables dif-
ferent amount of cross-partition propagation. In general, since
cross-partition propagation is achieved on edges crossing
partition boundaries, smaller partitions lead to higher cross-
partition propagation compared to that by larger partitions.
As an extreme case, each vertex residing in its own partition
would result in smallest partitions, and would cause highest
amount of cross-partition value propagation.

Intra-partition propagations, on the other hand, are
amenable to large partitions as they enable propagations
across edges within the partitions. Even though smaller par-
titions allow lesser intra-partition propagations compared to
that allowed by larger partitions, the set of edges crossing
smaller partitions is larger, hence allowing cross-partition
propagations through edges that get missed by intra-partition
propagations. It is interesting to note that as partitions be-
come smaller, edges that were originally participating in intra-
partition propagation get cut across partition boundaries either
in forward direction (i.e., p(u) < p(v) for edge (u,v)) or in
backward direction. Since cross-partition value propagation
occurs on forward edges only, the overall cross-iteration value
propagation (combined cross-partition and intra-partition) re-
duces as partitions become smaller. Hence, it is preferable to
have large partitions that can fit in main memory to maximize
cross-iteration value propagation. In Section 5.3, we propose
light-weight partitioning heuristics that increase the amount
of cross-iteration value propagation, which in turn reduces
the severity of partition size’s impact.

434 2019 USENIX Annual Technical Conference USENIX Association

3.6 LUMOS with DynamicShards
LUMOS can be combined with DynamicShards [31] to per-
form cross-iteration value propagation with dynamic edge
selection. Specifically, primary layout partitions can be made
dynamic (by dropping inactive edges) while secondary layout
partitions can be left static since they are already small in size.
Furthermore, shadow iterations require the missing graph
edges to process delayed computations, and hence, shadow it-
erations must be scheduled during primary iterations in order
to amortize loading costs. It is interesting to note that even
though secondary layouts are kept static, computations from
secondary layouts can get delayed due to transitive delays
occurring from previous iterations’ primary layouts.

4 LUMOS for Asynchronous Algorithms
Several graph analytics algorithms like traversal based mono-
tonic algorithms (e.g., shortest paths, BFS, connected com-
ponents, etc.) are asynchronous, i.e., they do not require
synchronous processing semantics to guarantee correct-
ness [28, 30]. Nevertheless, having synchronous semantics
does not hurt the correctness guarantees for asynchronous
algorithms because synchronous execution is one of the le-
gal executions under the set of asynchronous executions. In
other words, the dependencies enforced by synchronous pro-
cessing semantics in Eq. 1 are only stricter (while still being
legal) than that required by asynchronous semantics. Since
LUMOS’s out-of-order value propagation technique does not
violate the dependencies defined in Eq. 1, LUMOS works cor-
rectly on asynchronous algorithms like shortest paths and
connected components as well.

Furthermore, LUMOS can be optimized to efficiently pro-
cess asynchronous algorithms by incorporating relaxed pro-
cessing semantics in its processing model. For example,
traversal based monotonic algorithms often rely on selec-
tion functions [29] like MIN() that enable vertex’s value to be
computed based on value coming from its single incoming
edge. This means, intermediate vertex values computed based
on subset of their incoming values represent a valid final value
(instead of a partial aggregation) that can be instantly prop-
agated to outgoing edges. In other words, computations in
Eq. 2 do not require separation of values across iterations t
and t +1, and g(vt) can be directly incorporated in vt . Hence,
LUMOS can enable value propagation for asynchronous algo-
rithms by maintaining a single version of vertex values and
directly propagating the updated values across edges.

Such asynchronous value propagation is achieved both
across (inter-partition) and within (intra-partition) partitions;
intra-partition propagations are achieved by recomputing over
in-memory partition as described in Section 3.4. An inter-
esting side effect of asynchronous value propagation is that
secondary graph layout is no longer necessary because any
value propagation across edges in the primary graph layout
does not violate asynchronous semantics, and hence, entire
processing can occur on the primary graph layout itself.

5 The LUMOS System
So far we discussed value propagation in a generalized out-
of-core processing context without focusing on any particular
system. This makes our proposed cross-iteration value propa-
gation techniques useful for existing out-of-core processing
systems. We now discuss the important design details in-
volved in incorporating LUMOS into GridGraph. We choose
GridGraph since its streaming-apply processing model is de-
signed to minimize I/O amount, making it state-of-art syn-
chronous out-of-core graph processing system.

5.1 Propagation based Processing Model
LUMOS’s processing model is similar to out-of-core process-
ing systems where edges are loaded from disk in batches
and processed in memory. We discuss the processing model
at partition level to showcase how cross-iteration propaga-
tions are performed. Algorithm 2 shows how primary and
secondary partitions are processed; LUMOS offers three key
programming interfaces: (a) PROCESSPRIMARY performs
standard propagation and cross-iteration propagation across
primary partitions; (b) PROCESSSECONDARY performs stan-
dard propagations across secondary partitions; and, (c) VER-
TEXMAP performs updates across vertices. PROCESSPRI-
MARY processes both, edges (lines 4, 6, 13) and vertices (line
9). PROCESSSECONDARY’s structure is kept similar to PRO-
CESSPRIMARY to enable easier programmability of graph
algorithms. The primary partitions get processed in even itera-
tions using PROCESSPRIMARY while the secondary partitions
get processed in odd iterations using PROCESSSECONDARY.
Figure 4 illustrates how partition-by-partition processing is
achieved using primary and secondary layouts across two con-
secutive iterations. Along with the traditional cross-iteration
barriers, we also have cross-partition barriers while process-
ing primary partitions to ensure that precondition in Eq. 2 gets
correctly satisfied for cross-iteration propagation; these cross-
partition barriers are not required while processing secondary
partitions. Algorithm 3 shows PageRank algorithm using
our propagation interface. Beyond the standard edge func-
tion PROPAGATE and vertex function COMPUTE, we also use
the cross-iteration edge propagation function CROSSPROP-
AGATE. While the shape of CROSSPROPAGATE is similar to
PROPAGATE, they operate on different values for the same
edge, i.e., PROPAGATE aggregates for current iteration while
CROSSPROPAGATE aggregates for subsequent iteration. The
aggregation for subsequent iteration is made available using
ADVANCE (line 13).

5.2 Selective Scheduling
One of the strengths of 2D grid layout is that it enables selec-
tive scheduling of edge computations so that edge-blocks can
be skipped to reduce unnecessary I/O [38]. LUMOS carefully
incorporates selective scheduling with cross-iteration propa-
gation to ensure that scheduling gets correctly managed for
primary and secondary partitions.

USENIX Association 2019 USENIX Annual Technical Conference 435

Algorithm 2 Propagation Interface
1: function PROCESSPRIMARY(PROPAGATE,

CROSSPROPAGATE, COMPUTE)
2: for partition ∈ primaryPartitions do
3: par-for edge ∈ partition do
4: PROPAGATE(edge)
5: if p(edge.source)< p(edge.target) then
6: CROSSPROPAGATE(edge)
7: end if
8: end par-for
9: VERTEXMAP(COMPUTE, vertex_chunk(partition))

10: if Locality-Aware Intra-Partition Propagation then
/* partition is held in memory (see Section 3.4) */

11: par-for edge ∈ partition do
12: if p(edge.source) = p(edge.target) then
13: CROSSPROPAGATE(edge)
14: end if
15: end par-for
16: end if
17: end for
18: end function
19: function PROCESSSECONDARY(PROPAGATE, COMPUTE)
20: for partition ∈ secondaryPartitions do
21: par-for edge ∈ partition do
22: PROPAGATE(edge)
23: end par-for
24: VERTEXMAP(COMPUTE, vertex_chunk(partition))
25: end for
26: end function
27: function VERTEXMAP(VFUNC, V S =V) B V is default arg.
28: sum = 0
29: par-for v ∈V S do
30: sum += VFUNC(v)
31: end par-for
32: return sum
33: end function

An active edge-block represents edges that will be loaded
from disk; otherwise, they will be skipped. When processing
primary partitions (i.e., during even iterations), depending on
the state (active/inactive) of an edge-block for primary and
secondary layouts at the time when it needs to be processed,
there can be four cases. While three of those cases can be
handled in the same way as done for primary partitions, the
case when the edge-block is inactive for primary layout but
is active for secondary layout need to be considered care-
fully. In this case, while processing secondary partitions in
the subsequent iteration, the corresponding edge-block gets
loaded from the primary layout instead of secondary layout to
ensure that all necessary edges within the edge-block partic-
ipate correctly in value propagation. LUMOS maintains this
cross-iteration selective scheduling information using 2-bits
per edge-block; first bit indicating whether the edge-block is
active or inactive, and second bit indicating whether to load
edge-block from primary layout or secondary layout.

5.3 Graph Layout & Partitioning
For a graph G = (V,E), V is divided into P disjoint subsets
of vertices (called chunks), C = {c0,c1, ...,cP−1} such that⋃
c∈C

c = V and ∀ci,c j ∈ C,ci ∩ c j = ∅. The edges are repre-

Algorithm 3 PageRank Example
1: function PROPAGATE(e)
2: ATOMICADD(&sum[e.target],

pagerank[e.source]
outdegree[e.source])

3: end function
4: function CROSSPROPAGATE(e)
5: ATOMICADD(&secondary_sum[e.target],

sum[e.source]
outdegree[e.source])

6: end function
7: function COMPUTE(v)
8: sum[v] = 0.15 + 0.85× sum[v]
9: end function

10: function ADVANCE(v)
11: di f f = |pagerank[v]− sum[v]|
12: pagerank[v] = sum[v]
13: sum[v] = secondary_sum[v]
14: secondary_sum[v] = 0
15: return di f f
16: end function
17: pagerank = [1, ...,1]
18: sum = [0, ...,0]
19: secondary_sum = [0, ...,0]
20: iteration = 0
21: converged = f alse
22: while ¬converged do
23: if iteration % 2 == 0 then
24: PROCESSPRIMARY(PROPAGATE, CROSSPROPAGATE,

COMPUTE);
25: else
26: PROCESSSECONDARY(PROPAGATE, COMPUTE);
27: end if
28: d = VERTEXMAP(ADVANCE);

29: converged =
d
|V | ≤ threshold

30: iteration = iteration+1
31: end while

sented as a 2D grid of P×P edge-blocks on disk. An edge
(u,v) is in edge-block bi j if u ∈ ci ∧ v ∈ c j. It is important
to note that a column i in the 2D grid has incoming edges
for vertices belonging to ci, and similarly a row j has outgo-
ing edges for vertices belonging to c j. Hence, each column
is a partition for LUMOS in accordance with the precondi-
tion in Eq. 2 that satisfies the dependency relation. Similarly,
each row is a partition for LUMOS when values need to be
propagated across incoming edges (i.e., a transposed view).

As discussed in Section 3.3, we create a primary layout
and a secondary layout. This means, we create two separate
2D grids on disk, one for each layout. An important issue in
creating grid layouts is partitioning V into P chunks. Out-of-
core processing systems use a simplified structure-oblivious
partitioning strategy based on vertex-id ranges, i.e., assuming
vertices are numbered between 0 to |V |, chunks are formed
as contiguous range of vertex numbers: vertices 0 to k−
1 form chunk 0, vertices k to 2k− 1 form chunk 1, and so
on. While such structure-oblivious partitioning enables good
amount of cross-iteration propagation (shown in Section 3),
we develop greedy partitioning strategies that carefully use
the vertex degree information to maximize cross-iteration
value propagation.

Let P= {p(v0), p(v1), ..., p(v|V |−1)} capture the partition-

436 2019 USENIX Annual Technical Conference USENIX Association

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(0,	3)

(0,	2)

(1,	3)

(4,	2)

(5,	2)

(0,	5)

(1,	5)

(2,	4)

(2,	5)

(3,	5)

(5,	4)

p0 p1 p2

Process	primary	p0

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(0,	3)

(0,	2)

(1,	3)

(4,	2)

(5,	2)

(0,	5)

(1,	5)

(2,	4)

(2,	5)

(3,	5)

(5,	4)

p0 p1 p2

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(0,	3)

(0,	2)

(1,	3)

(4,	2)

(5,	2)

(0,	5)

(1,	5)

(2,	4)

(2,	5)

(3,	5)

(5,	4)

p0 p1 p2

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(4,	2)

(5,	2)

(5,	4)

p0 p1 p2

Process	secondary	p0

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(4,	2)

(5,	2)

(5,	4)

p0 p1 p2

(0,	1)

(1,	0)

(3,	1)

(4,	0)

(4,	1)

(4,	2)

(5,	2)

(5,	4)

p0 p1 p2

Process	primary	p1 Process	primary	p2 Process	secondary	p1 Process	secondary	p2
Cross-partition	barrier Cross-iteration	barrier

Figure 4: Execution using primary and secondary layouts across two consecutive iterations.

ing information that maps vertices in V to chunks in C. We
define our partitioning objective as:

argmax
P

|{(u,v) : (u,v) ∈ E ∧ p(u), p(v) ∈P

∧ p(u)< p(v)}| (4)

Note that with intra-partition propagation, the above condition
becomes p(u)≤ p(v) and there is an additional constraint to
limit partition sizes:

∀ci ∈C, ∑
∀v∈ci ∧
∀(u,v)∈E

(u,v) < T

where T is a threshold based on available memory.
Since the condition in Eq. 4 can be directly viewed as u’s

outgoing edges contributing to cross-iteration dependencies, a
straightforward greedy heuristic can be to place vertices with
higher out-degree in earlier partitions. However, an interest-
ing dual to this reasoning can be that v’s incoming edges con-
tribute to cross-iteration dependencies and hence, the greedy
heuristic can be to place vertices with higher in-degree in
later partitions. Based on these insights, we develop three key
partitioning heuristics to assign vertices in V to chunks in C:

(A) Highest Out-Degree First: ∀u,v ∈V ,
if p(u)< p(v), then out_degree(u)≥ out_degree(v)

(B) Highest In-Degree Last: ∀u,v ∈V ,
if p(u)< p(v), then in_degree(v)≥ in_degree(u)

(C) Highest Out-Deg. to In-Deg. Ratio First: ∀u,v ∈V ,

if p(u)< p(v), then
out_degree(u)
in_degree(u) ≥

out_degree(v)
in_degree(v)

Note that the above heuristics are simpler than structure-based
partitioning since computing degrees of vertices only requires
a single pass over the edge list.

6 Evaluation
We evaluate LUMOS using billion-scale graphs and syn-
chronous graph algorithms, and compare its performance with

Graphs Disk Size |E| |V|
UKDomain (UK) [2] 6.9-20.7GB 1.0B 39.5M

Twitter (TW) [12] 11-33GB 1.5B 41.7M
TwitterMPI (TT) [3] 15-45GB 2.0B 52.6M
Friendster (FT) [5] 20-60GB 2.5B 68.3M
Yahoo (YH) [33] 50-150GB 6.6B 1.4B
RMAT29 (RM) 66-198GB 8.6B 537M

Table 4: Real world & synthetic graphs.

GridGraph [38] which is the state-of-art out-of-core graph
processing framework that provides synchronous semantics.

6.1 Experimental Setup
LUMOS’s evaluation is carried out across three different AWS
EC2 storage optimized instances. For performance experi-
ments (Section 6.2), we use h1.2xlarge with 8 vCPUs, 32GB
memory and 2TB HDD. Its disk sequential read bandwidth 3

is 278MB/sec whereas the memory subsystem read bandwidth
is 9.6GB/sec. To study the effect of I/O scaling (Section 6.3),
we use d2.4xlarge and i3.8xlarge instances. The d2.4xlarge
instance is used with 16 vCPUs, 32GB memory and 1 to
4 2TB HDDs providing disk bandwidth of 195MB/sec to
768MB/sec, whereas the i3.8xlarge instance is used with 32
vCPUs, 64GB memory and 1 to 4 1.9TB SSDs providing disk
bandwidth of 1.2GB/sec to 3.9GB/sec.

We use six synchronous graph algorithms. PageRank (PR)
[22] is an algorithm to rank web-pages while Weighted Pager-
ank (WPR) is its variant where edges have weights as ap-
plied for social network analysis. Co-Training Expectation
Maximization (CoEM) [21] is a semi-supervised learning
algorithm for named entity recognition. Belief Propagation
(BP) [10] is an inference algorithm to determine states of ver-
tices based on sum of products. Label Propagation (LP) [37]
is a learning algorithm while Dispersion (DP) [11] is a simu-
lation based information dispersion model. We run each al-
gorithm for 10 iterations; PR and DP operate on unweighted
graphs while CoEM, LP, WPR and BP require weighted
graphs. This adds 4 bytes per edge for CoEM, LP and WPR,
and 16 bytes per edge for BP; hence, increasing graph sizes
to 1.5× and 3× respectively.

We evaluate LUMOS using billion scale graphs from Ta-

3Disk sequential read bandwidth measured using hdparm.

USENIX Association 2019 USENIX Annual Technical Conference 437

Version TT FT YH

PR

GridGraph 737 1008 3223
LUMOS-BASE 563 659 2027

LUMOS 439 583 1885

× LUMOS 1.68× 1.73× 1.71×

CoEM

GridGraph 1119 1554 5082
LUMOS-BASE 861 1029 3216

LUMOS 651 914 3043

× LUMOS 1.72× 1.70× 1.67×

DP

GridGraph 846 1032 3484
LUMOS-BASE 656 675 2219

LUMOS 498 611 2111

× LUMOS 1.70× 1.69× 1.65×

BP

GridGraph 2498 3782 13769
LUMOS-BASE 1921 2456 8660

LUMOS 1487 2212 7913

× LUMOS 1.68× 1.71× 1.74×

WPR

GridGraph 984 1302 4330
LUMOS-BASE 769 874 2758

LUMOS 569 770 2547

× LUMOS 1.73× 1.69× 1.70×

LP

GridGraph 1054 1421 4583
LUMOS-BASE 805 935 2976

LUMOS 624 826 2728

× LUMOS 1.69× 1.72× 1.68×

Table 5: Execution times (in seconds) for LUMOS,
LUMOS-BASE and GridGraph. Bold numbers indicate

speedups of LUMOS over GridGraph.

 0

 50

 100

 150

 200

 250

00:00 01:30

R
ea

ds
 (

M
B

/s
)

Time

1
 2

 4
 8

16

(a) Throughput.

 0
 200
 400
 600
 800

 1000

00:00 01:30

I/
O

 W
ai

t
T

im
e

(m
s)

Time

1
 2

 4
 8

16

(b) I/O Wait.

Figure 5: I/O throughput and waiting times for PR on TT
across 1, 2, 4, 8 and 16 threads.

ble 4. For experiments on h1.2xlarge, we use TT, FT and YH
whereas RMAT29 is used for I/O scaling experiments. Since
unweighted TT fits within 32 GB (on h1.2xlarge), we limit
the memory of unweighted TT experiments to 16 GB.

We compare the following three versions:

1. GridGraph (GG): is the GridGraph system [38].

2. LUMOS-BASE (LB): is LUMOS based on Eq. 2. It per-
forms cross-iteration propagation only across partitions.

3. LUMOS (L): is LUMOS based on Eq. 3. It also performs
intra-partition cross-iteration propagation.

6.2 Performance
Table 5 shows the execution times for GridGraph, LUMOS-
BASE and LUMOS on h1.2xlarge. We use Highest Out-Degree

Version TT FT YH

LUMOS-BASE 75.6% 67.5% 88.3%
LUMOS 81.1% 72.6% 93.8%

Table 6: Percentage of cross-iteration propagations.

to In-Degree Ratio First strategy which enables high cross-
iteration propagations as shown in Table 6 (we will evaluate
different partitioning strategies in Section 6.4). As we can see,
LUMOS-BASE and LUMOS accelerate GridGraph in all cases.
LUMOS is 1.65-1.74× faster than GridGraph while LUMOS-
BASE is 1.28-1.59× faster; this is due to the reduced amount
of I/O performed which gets enabled via cross-iteration prop-
agation. Figure 6 shows the time spent in reading partitions in
each case normalized w.r.t. execution time of GridGraph. As
expected in out-of-core graph processing, the execution time
is dominated by disk reads; for HDD we observe that Grid-
Graph typically spends 74-83% of the time in performing disk
reads, while LUMOS spends only 27-41% of the time perform-
ing disk reads compared to GridGraph. This reduction in read
times results from our cross-iteration propagation technique
that eliminates repetitive I/O using secondary layouts.

To study disk utilization, we vary the number of threads and
measure the disk throughput and wait latencies for LUMOS.
Figure 5 shows the disk throughput and wait latencies for PR
on TT across 1, 2, 4, 8 and 16 threads. As we can see, the
utilization is high even when using a single thread and having
more threads only helps to maintain the high utilization (230-
240 MB/sec) whenever the utilization drops for single thread
(red trenches in Figure 5). With more threads issuing more I/O
requests and utilization remaining same, the cores essentially
wait more for I/O requests to complete as threads increase
for HDD (shown in Figure 5b). We also observe high wait
latencies as threads increase in Figure 5b due to high number
of I/O requests.

It is interesting to observe that a single thread is easily able
to keep the disk busy (wait times 150-200 ms) as its measured
sequential read bandwidth is 278 MB/sec. Furthermore, we
observe a significant dip in waiting times between ∼60-90
seconds (shown in Figure 5b) which appear while processing
secondary layout; these secondary layouts are smaller, and
hence the I/O requests get served quickly.

6.3 I/O Scalability
We study the impact of scaling I/O on LUMOS by setting up
a RAID-0 array of 2 to 4 HDDs on d2.4xlarge, and 2 to 4
SSDs on i3.8xlarge instance. The resulting read bandwidths
are shown in Table 7.

Single RAID-0 with k drives
Drive k = 2 k = 3 k = 4

d2.4xlarge (HDD) 195MB/s 368MB/s 590MB/s 768MB/s
i3.8xlarge (SSD) 1.2GB/s 3.8GB/s 4.1GB/s 3.9GB/s

Table 7: Sequential read bandwidth.

438 2019 USENIX Annual Technical Conference USENIX Association

 0

 0.2

 0.4

 0.6

 0.8

 1

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

TT FT YH
PR CoEM DP BP WPR LP PR CoEM DP BP WPR LP PR CoEM DP BP WPR LP

Read Compute
N

or
m

al
iz

ed
 T

im
e

Figure 6: Read times and computation times of LUMOS and LUMOS-BASE normalized w.r.t. GridGraph’s execution time.

0

2K

4K

6K

 1 2 3 4

E
xe

cu
ti
on

 T
im

e

Drives

 GG-HDD
Lumos-HDD

 GG-SSD
Lumos-SSD

Figure 7: Execution times (in seconds) for LUMOS and
GridGraph (GG) with varying number of drives. GG-HDD

and LUMOS-HDD use HDDs on d2.4xlarge, while GG-SSD
and LUMOS-SSD use SSDs on i3.8xlarge (see Table 7).

We ran PR on RAMT29 graph (8.6B edges) on the above
setup with 64GB main memory. Figure 7 compares the exe-
cution times of LUMOS and GridGraph as number of drives
increase from 1 to 4. LUMOS on d2.4xlarge scales gradually
as I/O scales; it performs 1.8×, 2.6× and 3.8× faster with
2, 3 and 4 drives. It is interesting to observe that benefits
of LUMOS over GridGraph diminish as number of drives in-
crease. LUMOS performs 1.8× faster than GridGraph on a
single drive and 1.3-1.4× faster on 2-4 drives. This is because
GridGraph benefits from increased I/O bandwidth, which in
turn leaves lesser room for effects of cross-iteration value
propagation to become visible.

Contrary to HDDs, performance of LUMOS and GridGraph
doesn’t vary much as SSDs increase. Going from a single
SSD to 2 SSDs reduces LUMOS’s execution time from 505
sec to 460 sec, and the benefits of LUMOS over GridGraph
also remain low with more SSDs (1.4×). This is again due
to the high bandwidth provided by SSDs on i3.8xlarge (see
Table 7) that alleviate I/O bottlenecks.

6.4 Partitioning Strategies

We evaluate our three light-weight partitioning strategies
proposed in Section 5.3: Highest Out-Degree First (HOF),
Highest In-Degree Last (HIL) and Highest Out-Degree to
In-Degree Ration First (HRF). In Figure 8, we measure the
amount of cross-iteration propagation for each of these strate-
gies with and without intra-partition propagation and study

sensitivity of these strategies to partition sizes.
While cross-iteration propagation depends on the struc-

ture of graph, HOF and HIL achieve 13-89% propagations
across partitions whereas HRF captures the best of both and
achieves significantly higher propagations (51-88%). With
intra-partition propagations, all three strategies achieve signif-
icantly higher cross-iteration propagation (up to 92% for TT,
96% for FT, and 97% for YH). It is interesting to note that
HOF slightly outperforms HRF and HIL for FT while HIL
slightly outperforms HRF and HOF for TT; nevertheless, HRF
remains useful since it achieves the middle ground between
out-degree and in-degree metrics.

Finally, we observe that cross-iteration propagations across
partitions increase as number of partitions increase and par-
titions become smaller; this is expected since edges within
the same partition become potential candidates for propaga-
tions as they move to other partitions when partitions become
smaller. Furthermore, when intra-partition propagation is en-
abled, there are fewer candidates within the same partition
as number of partitions increase and hence, we observe a de-
creasing trend of cross-propagations. However, the scale of
cross-iteration propagations remains high for HRF (70-97%)
across different partition sizes, making it effective in all cases.

6.5 Preprocessing
Figure 9a shows the preprocessing times normalized w.r.t.
GridGraph. While our light-weight partitioning strategy re-
quires an additional pass over edges to compute vertex de-
grees, the pass is lightweight since it doesn’t incur simulta-
neous writing of edges. Furthermore, edges don’t need to
be sorted and vertices are ordered across buckets that de-
termine partitions. Finally, since majority of edges enable
cross-iteration propagation, secondary layouts are smaller
and hence, writing them out on disk is less time consuming
than that for the original graph. Figure 9b shows the increase
in disk space normalized w.r.t. GridGraph; as expected, the
increase is only 12-33% for LUMOS-BASE because 67-88%
of edges participate in cross-iteration propagation and hence,
only remainder edges are present in the secondary layouts.
With intra-partition propagation, the disk space requirement
increases only by 7-26%.

USENIX Association 2019 USENIX Annual Technical Conference 439

 0

 25

 50

 75

 100
16 32 64 12
8

25
6 16 32 64 12
8

25
6 16 32 64 12
8

25
6

TT FT YH
HOF HIL HRF

%
 E

dg
es

Partitions

(a) Without locality-aware intra-partition propagation.

 0

 25

 50

 75

 100

16 32 64 12
8

25
6 16 32 64 12
8

25
6 16 32 64 12
8

25
6

TT FT YH
HOF HIL HRF

%
 E

dg
es

Partitions

(b) With locality-aware intra-partition propagation.

Figure 8: Cross-iteration propagation enabled by three partitioning strategies: Highest Out-Degree First (HOF), Highest
In-Degree Last (HIL), and Highest Out-Degree to In-Degree Ratio First (HRF).

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

TW TT FT YH
Degrees OrderLayouts

N
or

m
al

iz
ed

 T
im

e

(a) Preprocessing times.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

G
G LB
L

G
G LB
L

G
G LB
L

G
G LB
L

TW TT FT YH
Primary Secondary

N
or

m
al

iz
ed

 S
pa

ce

(b) Disk Space.

Figure 9: Preprocessing time and disk space for LUMOS and
LUMOS-BASE normalized w.r.t. GridGraph whose absolute

time/space numbers are: TW = 217s/11GB;
TT = 248s/15GB; FT = 334s/20GB; YH = 815s/50GB.

7 Related Work
We classify out-of-core graph processing systems into two
categories based on the guarantees they provide.

(A) Synchronous Out-of-Core Graph Processing.
We discussed GridGraph [38] in Section 2; here, we briefly
discuss the remaining works. GraphChi [13] pioneered single
machine based out-of-core graph processing by designing
partitions called shards, and developing a parallel sliding
window model to process shards such that random disk I/O
gets minimized. X-Stream [24] performs edge-centric pro-
cessing using scatter-gather model. To reduce random vertex
accesses, X-Stream partitions vertices and accesses edge list
and update list based on partitioned vertex sets. Chaos [23]
scales out X-Stream on multiple machines. FlashGraph [35]
is a semi-external memory graph engine that stores vertex
states in memory and edge-lists on SSDs. TurboGraph [8] is
an out-of-core computation engine for graph database based
on sparse matrix-vector multiplication model. Mosaic [17],
GraFBoost [9] and Garaph [16] perform out-of-core process-
ing on heterogeneous architecture containing high-bandwidth
NVMe SSDs, massively parallel Xeon Phi processors, FP-
GAs and GPUs. Graphene [15] uses an I/O request centric
graph processing model to simplify IO management by trans-
lating high-level data accesses to fine-grained IO requests.
DynamicShards [31] develops dynamic partitions that elimi-
nate unnecessary edges from partitions to reduce disk I/O.

Limitation: Since all of these works focus on computations
within a single iteration, none of them leverage cross-iteration
value propagation as LUMOS does. Furthermore, since these
systems effectively process in partition-by-partition fashion,
they can be further improved using LUMOS.

(B) Asynchronous Out-of-Core Graph Processing.
CLIP [1] exploits algorithmic asynchrony by making multi-
ple passes over the partitions in memory. Wonderland [34]
extracts effective graph abstractions to capture certain graph
properties, and then performs abstraction-guided processing
to infer better priority processing order and faster informa-
tion propagation across graph. While the abstraction-based
technique is powerful, its scope of applications is limited to
path-based monotonic graph algorithms beyond which its ap-
plicability remains undefined (as mentioned in [34]). Async-
Stripe [4] uses asymmetric partitioning & adaptive stripe-
based access strategy to process asynchronous algorithms.
Limitation: Since synchronous guarantees are not provided
by these works, their applicability is limited to asynchronous
path-based algorithms. LUMOS with asynchronous process-
ing semantics (Section 4) leverages relaxed dependencies for
asynchronous algorithms as well.

Beyond Out-of-Core Graph Processing.
Google’s Pregel [18], PowerGraph [6], GraphX [7], GPS [25]
and Gemini [36] provide a synchronous processing model in
a distributed environment, while Galois [20] and Ligra [26]
offer similar guarantees in a shared memory setting. Graph-
Bolt [19] provides synchronous processing semantics while
processing streaming graphs.

8 Conclusion
We developed LUMOS, a dependency-driven out-of-core
graph processing technique that performs out-of-order execu-
tion to proactively propagate values across iterations while
simultaneously providing synchronous processing guarantees.
Our evaluation showed that LUMOS computes future values
across 71-97% of edges, hence reducing disk I/O and acceler-
ating out-of-core graph processing by up to 1.8×.

440 2019 USENIX Annual Technical Conference USENIX Association

References

[1] Z. Ai, M. Zhang, Y. Wu, X. Qian, K. Chen, and W. Zheng.
Squeezing out All the Value of Loaded Data: An Out-
of-core Graph Processing System with Reduced Disk
I/O. In USENIX ATC, pages 125–137, 2017.

[2] P. Boldi and S. Vigna. The Webgraph Framework I:
Compression Techniques. In WWW, pages 595–602.
ACM, 2004.

[3] M. Cha, H. Haddadi, F. Benevenuto, and K. P. Gum-
madi. Measuring User Influence in Twitter: The Million
Follower Fallacy. In ICWSM, pages 10–17, 2010.

[4] S. Cheng, G. Zhang, J. Shu, and W. Zheng. AsyncStripe:
I/O Efficient Asynchronous Graph Computing on a Sin-
gle Server. In IEEE/ACM/IFIP CODES+ISSS, page 32.
ACM, 2016.

[5] Friendster network dataset. http://konect.
uni-koblenz.de/networks/friendster. KONECT,
2015.

[6] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin. PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs. In USENIX OSDI,
pages 17–30, Hollywood, CA, 2012. USENIX.

[7] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J.
Franklin, and I. Stoica. GraphX: Graph Processing in
a Distributed Dataflow Framework. In USENIX OSDI,
pages 599–613, 2014.

[8] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim,
and H. Yu. TurboGraph: A Fast Parallel Graph Engine
Handling Billion-scale Graphs in a Single PC. In KDD,
pages 77–85, 2013.

[9] S.-W. Jun, A. Wright, S. Zhang, S. Xu, and Arvind.
GraFBoost: Using Accelerated Flash Storage for Ex-
ternal Graph Analytics. In ISCA. IEEE, 2018.

[10] U. Kang, D. Horng, and C. Faloutsos. Inference of
Beliefs on Billion-scale Graphs. In LDMTA, 2010.

[11] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,
D. Williams, and P. Kalnis. Mizan: A System for Dy-
namic Load Balancing in Large-scale Graph Processing.
In EuroSys, pages 169–182. ACM, 2013.

[12] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter,
a Social Network or a News Media? In WWW, pages
591–600. ACM, 2010.

[13] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi:
Large-Scale Graph Computation on Just a PC. In
USENIX OSDI, pages 31–46, 2012.

[14] Z. Lin, M. Kahng, K. M. Sabrin, D. H. P. Chau, H. Lee,
and U. Kang. MMap: Fast Billion-Scale Graph Compu-
tation on a PC via Memory Mapping. In BigData, pages
159–164, 2014.

[15] H. Liu and H. H. Huang. Graphene: Fine-Grained IO
Management for Graph Computing. In USENIX FAST,
pages 285–300, 2017.

[16] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai. Garaph:
Efficient GPU-accelerated Graph Processing on a Single
Machine with Balanced Replication. USENIX ATC,
pages 195–207, 2017.

[17] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and
T. Kim. Mosaic: Processing a Trillion-Edge Graph on
a Single Machine. In EuroSys, pages 527–543. ACM,
2017.

[18] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: A System
for Large-scale Graph Processing. In ACM SIGMOD,
pages 135–146. ACM, 2010.

[19] M. Mariappan and K. Vora. GraphBolt: Dependency-
Driven Synchronous Processing of Streaming Graphs.
In EuroSys, pages 25:1–25:16. ACM, 2019.

[20] D. Nguyen, A. Lenharth, and K. Pingali. A Lightweight
Infrastructure for Graph Analytics. In USENIX SOSP,
pages 456–471, 2013.

[21] K. Nigam and R. Ghani. Analyzing the Effectiveness
and Applicability of Co-training. In ACM CIKM, pages
86–93. ACM, 2000.

[22] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the Web.
Technical report, Stanford University, 1998.

[23] A. Roy, L. Bindschaedler, J. Malicevic, and
W. Zwaenepoel. Chaos: Scale-out Graph Pro-
cessing from Secondary Storage. In USENIX SOSP,
pages 410–424, 2015.

[24] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream:
Edge-centric Graph Processing Using Streaming Parti-
tions. In USENIX SOSP, pages 472–488, 2013.

[25] S. Salihoglu and J. Widom. GPS: A Graph Processing
System. In SSDBM, page 22. ACM, 2013.

[26] J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph
Processing Framework for Shared Memory. In ACM
SIGPLAN PPoPP, pages 135–146, 2013.

[27] L. G. Valiant. A Bridging Model for Parallel Compu-
tation. Communications of the ACM, 33(8):103–111,
1990.

USENIX Association 2019 USENIX Annual Technical Conference 441

http://konect.uni-koblenz.de/networks/friendster
http://konect.uni-koblenz.de/networks/friendster

[28] K. Vora. Exploiting Asynchrony for Performance and
Fault Tolerance in Distributed Graph Processing. PhD
thesis, University of California, Riverside, 2017.

[29] K. Vora, R. Gupta, and G. Xu. KickStarter: Fast and Ac-
curate Computations on Streaming Graphs via Trimmed
Approximations. In ASPLOS, pages 237–251, 2017.

[30] K. Vora, S. C. Koduru, and R. Gupta. ASPIRE: Exploit-
ing Asynchronous Parallelism in Iterative Algorithms
Using a Relaxed Consistency Based DSM. In OOPSLA,
pages 861–878, 2014.

[31] K. Vora, G. H. Xu, and R. Gupta. Load the Edges
You Need: A Generic I/O Optimization for Disk-based
Graph Processing. In USENIX ATC, pages 507–522,
2016.

[32] K. Wang, G. Xu, Z. Su, and Y. D. Liu. GraphQ:
Graph Query Processing with Abstraction Refine-
ment—Programmable and Budget-Aware Analytical
Queries over Very Large Graphs on a Single PC. In
USENIX ATC, pages 387–401, 2015.

[33] Yahoo! Webscope Program. http://webscope.
sandbox.yahoo.com/.

[34] M. Zhang, Y. Wu, Y. Zhuo, X. Qian, C. Huan, and
K. Chen. Wonderland: A Novel Abstraction-Based Out-
Of-Core Graph Processing System. In ASPLOS, pages
608–621. ACM, 2018.

[35] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E.
Priebe, and A. S. Szalay. FlashGraph: Processing
Billion-Node Graphs on an Array of Commodity SSDs.
In USENIX FAST, pages 45–58, 2015.

[36] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A
Computation-Centric Distributed Graph Processing Sys-
tem. In USENIX OSDI, pages 301–316, 2016.

[37] X. Zhu and Z. Ghahramani. Learning from Labeled and
Unlabeled Data with Label Propagation. 2002.

[38] X. Zhu, W. Han, and W. Chen. GridGraph: Large Scale
Graph Processing on a Single Machine Using 2-Level
Hierarchical Partitioning. In USENIX ATC, pages 375–
386, 2015.

442 2019 USENIX Annual Technical Conference USENIX Association

http://webscope.sandbox.yahoo.com/
http://webscope.sandbox.yahoo.com/

	Introduction
	Background & Motivation
	Synchronous Processing Semantics
	Out-of-Core Graph Processing

	Lumos: Dependency-Driven Cross-Iteration Value Propagation
	Characterizing Synchronous Dependencies
	Out-of-core Value Propagation
	Graph Layout
	Intra-Partition Propagation
	Value Propagation v/s Partition Size
	Lumos with DynamicShards

	Lumos for Asynchronous Algorithms
	The Lumos System
	Propagation based Processing Model
	Selective Scheduling
	Graph Layout & Partitioning

	Evaluation
	Experimental Setup
	Performance
	I/O Scalability
	Partitioning Strategies
	Preprocessing

	Related Work
	Conclusion

