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ABSTRACT
Given the growing importance of large-scale graph analytics, there
is a need to improve the performance of graph analysis frameworks
without compromising on productivity. GraphMat is our solution to
bridge this gap between a user-friendly graph analytics framework
and native, hand-optimized code. GraphMat functions by taking
vertex programs and mapping them to high performance sparse
matrix operations in the backend. We thus get the productivity
benefits of a vertex programming framework without sacrificing
performance. GraphMat is a single-node multicore graph frame-
work written in C++ which has enabled us to write a diverse set
of graph algorithms with the same effort compared to other vertex
programming frameworks. GraphMat performs 1.1-7X faster than
high performance frameworks such as GraphLab, CombBLAS and
Galois. GraphMat also matches the performance of MapGraph,
a GPU-based graph framework, despite running on a CPU plat-
form with significantly lower compute and bandwidth resources.
It achieves better multicore scalability (13-15X on 24 cores) than
other frameworks and is 1.2X off native, hand-optimized code on a
variety of graph algorithms. Since GraphMat performance depends
mainly on a few scalable and well-understood sparse matrix opera-
tions, GraphMat can naturally benefit from the trend of increasing
parallelism in future hardware.

1. INTRODUCTION
Studying relationships among data expressed in the form of graphs

has become increasingly important. Graph processing has become
an important component of bioinformatics [17], social network anal-
ysis [21, 32], traffic engineering [31] etc. With graphs getting larger
and queries getting more complex, there is a need for graph analy-
sis frameworks to help users extract the information they need with
minimal programming effort.

There has been an explosion of graph programming frameworks
in recent years [1, 3, 4, 5, 15, 19, 30]. All of them claim to provide
good productivity, performance and scalability. However, a recent
study has shown [28] that the performance of most frameworks
is off by an order of magnitude when compared to native, hand-
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optimized code. Given that much of this performance gap remains
even when running frameworks on a single node [28], it is imper-
ative to maximize the efficiency of graph frameworks on existing
hardware (in addition to focusing on scale out issues). GraphMat is
our solution to bridge this performance-productivity gap in graph
analytics.

The main idea of GraphMat is to take vertex programs and map
them to generalized sparse matrix vector multiplication operations.
We get the productivity benefits of vertex programming while en-
joying the high performance of a matrix backend. In addition, it
is easy to understand and reason about, while letting users with
knowledge of vertex programming a smooth transition to a high
performance environment. Although other graph frameworks based
on matrix operations exist (e.g. CombBLAS [3] and PEGASUS
[19]), GraphMat wins out in terms of both productivity and per-
formance as GraphMat is faster and does not expose users to the
underlying matrix primitives (unlike CombBLAS and PEGASUS).
We have been able to write multiple graph algorithms in GraphMat
with the same effort as other vertex programming frameworks.

Our contributions are as follows:

1. GraphMat is the first multi-core optimized vertex program-
ming model to achieve within 1.2X of native, hand-coded,
optimized code on a variety of different graph algorithms.
GraphMat is 5-7X faster than GraphLab [5] & CombBLAS
and 1.1X faster than Galois [4] on a single node. It also
matches the performance of MapGraph [15], a recent GPU-
based graph framework running on a contemporary GPU.

2. GraphMat achieves good multicore scalability, getting a 13-
15X speedup over a single threaded implementation on 24
cores. In comparison, GraphLab, CombBLAS, and Galois
scale by only 2-12X over their corresponding single threaded
implementations.

3. GraphMat is productive for both framework users and de-
velopers. Users do not have to learn a new programming
paradigm (most are familiar with vertex programming), whereas
backend developers have fewer primitives to optimize as it is
based on Sparse matrix algebra, which is a well-studied op-
eration in High Performance Computing (HPC) [35].

Matrices are fast becoming one of the key data structures for
databases, with systems such as SciDB [6] and other array stores
becoming more popular. Our approach to graph analytics can take
advantage of these developments, letting us deal with graphs as
special cases of sparse matrices. Such systems offer transactional
support, concurrency control, fault tolerance etc. while still main-
taining a matrix abstraction. We offer a path for array processing
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systems to support graph analytics through popular vertex program-
ming frontends.

Basing graph analytics engines on generalized sparse matrix vec-
tor multiplication (SPMV) has other benefits as well. We can lever-
age decades of research on techniques to optimize sparse linear al-
gebra in the High Performance Computing world. Sparse linear
algebra provides a bridge between Big Data graph analytics and
High Performance Computing. Other efforts like GraphBLAS [23]
are also part of this growing effort to leverage lessons learned from
HPC to help big data.

The rest of the paper is organized as follows. Section 2 provides
motivation for GraphMat and compares it to other graph frame-
works. Section 3 discusses the graph algorithms used in the paper.
Section 4 describes the GraphMat methodology in detail. Section 5
gives details of the results of our experiments with GraphMat while
Section 6 concludes the paper.

2. MOTIVATION AND RELATED WORK
Graph analytics frameworks come with a variety of different pro-

gramming models. Some common ones are vertex programming
(“think like a vertex”), matrix operations (“graphs are sparse matri-
ces”), task models (“vertex/edge updates can be modeled as tasks”),
declarative programming (“graph operations can be written as data-
log programs”), and domain-specific languages (“graph processing
needs its own language”). Of all these models, vertex programming
has been quite popular due to ease of use and the wide variety of
different frameworks supporting it [28].

While vertex programming is generally productive for writing
graph programs, it lacks a strong mathematical model and is there-
fore difficult to analyze for program behavior or optimize for better
backend performance. Matrix models, on the other hand, are based
on a solid mathematical foundation i.e. graph traversal computa-
tions are modeled as operations on a semi-ring [3]. CombBLAS
[3] is an extensible distributed-memory parallel graph library of-
fering a set of linear algebra primitives specifically targeting graph
analytics. While this model is great for reasoning and performing
optimizations, it is seen as hard to program. As shown in [28], some
graph computations such as triangle counting are hard to express
efficiently as a pure matrix operation, leading to long runtimes and
increased memory consumption.

In the High Performance Computing world, sparse matrices are
widely used in simulations and modeling of physical processes.
Sparse matrix vector multiply (SPMV) is a key kernel used in op-
erations such as linear solvers and eigensolvers. A variety of opti-
mizations have been performed to improve SPMV performance on
single and multiple nodes [35]. Existing matrix-based graph analyt-
ics operations achieve nowhere near the same performance as these
optimized routines. Our goal is to achieve “vertex programming
productivity with HPC-like performance for graph analytics”.

There have been a large number of frameworks proposed for
graph analytics recently, and these differ both in terms of program-
ming abstractions as well as underlying implementations. There
has been recent work [28] that has compared different graph frame-
works including Giraph [1] and GraphLab [5, 22] which are two
popular vertex programming models; CombBLAS [3, 11], a ma-
trix programming model; Socialite [29], a functional programming
model; and Galois [26, 4, 25], a task-based abstraction. That paper
shows that CombBLAS and Galois generally perform well com-
pared to other frameworks. Moreover, the ability to map many di-
verse graph operations to a small set of matrix operations means
that the backend of CombBLAS is easy to maintain and extend –
for example to multiple nodes (Galois does not yet have a multi-
node version). Hence, in terms of performance, we can conclude

that matrix-based abstractions are clearly a good choice for graph
analytics. Matrices are becoming an important class of objects in
databases. Our technique of looking at graph algorithms as gener-
alizations of sparse matrix algebra leads to a simple way to connect
graph stores to array databases. We believe the rise of sparse array
based databases will also help the use of graph storage and analyt-
ics.

There are other matrix based frameworks such as PEGASUS
[19] for graph processing. PEGASUS is based on Map-Reduce and
suffers from poor performance due to I/O bottlenecks compared to
in-memory frameworks. Other domain specific languages such as
GreenMarl [16] purport to improve productivity and performance,
but at the cost of a having to learn a new programming language.
MapGraph [15] is a graph framework with a vertex programming
model that uses GPUs to accelerate graph processing. Some other
ways to process graphs include writing vertex programs as UDFs
for use in a column store [18] and GraphX [33] (set of graph prim-
itives intended to work with Spark [2]). The popularity and adop-
tion of vertex based programming models (for instance, Facebook
uses Giraph [12]) establishes the case for vertex-based models over
other alternatives.

In this work, we try to adopt the best of both worlds, and we com-
pare ourselves to high performing vertex programming and matrix
programming models (GraphLab & MapGraph and CombBLAS
respectively). We will focus on comparing GraphMat to GraphLab,
CombBLAS, Galois and MapGraph for the reminder of this paper.

3. ALGORITHMS
To showcase the performance and productivity of GraphMat,

we picked five different algorithms from a diverse set of applica-
tions, including machine learning, graph traversal and graph statis-
tics. Our choice covers a wide range of varying functionality (e.g.
traversal or statistics), data per vertex, amount of communication,
iterative vs. non iterative etc. We give a brief summary of the algo-
rithms below.

I. Page Rank (PR): This is an iterative algorithm used to rank
web pages based on some metric (e.g. popularity). The idea is
compute the probability that a random walk through the hyperlinks
(edges) would end in a particular page (vertex). The algorithm iter-
atively updates the rank of each vertex according to the following
equation:

PRt+1(v) = r + (1− r) ∗
∑

u|(u,v)∈E

PRt(u)

degree(u)
(1)

where PRt(v) denotes the page rank of vertex v at iteration t,
E is the set of edges in a directed graph, and r is the probability of
random surfing. The initial ranks are set to 1.0.

II. Breadth First Search (BFS): This is a very popular graph
search algorithm, which is also used as the kernel by the Graph500
benchmark [24]. The algorithm begins at a given vertex (called
root) and iteratively explores all connected vertices of an undirected
and unweighted graph. The idea is to assign a distance to each ver-
tex, where the distance represents the minimum number of edges
needed to be traversed to reach the vertex from the root. Initially,
the distance of the root is set to 0 and it is marked active. The other
distances are set to infinity. At iteration t, each vertex adjacent to
an active vertex computes the following:

Distance(v) = min(Distance(v), t+ 1) (2)
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If the update leads to a change in distance (from infinity to t+1),
then the vertex becomes active for the next iteration.

III. Collaborative Filtering (CF): This is a machine learning
algorithm used by many recommender systems [27] for estimat-
ing a user’s rating for a given item based on an incomplete set of
(user, item) ratings. The underlying assumption is that users’ rat-
ings are based on a set of hidden/latent features and each item can
be expressed as a combination of these features. Ratings depend on
how well the user’s and item’s features match. Given a matrix G
of ratings, the goal of collaborative filtering technique is to com-
pute two factors PU and PV, each one is a low-dimensional dense
matrix. This can be accomplished using incomplete matrix factor-
ization [20]. Mathematically, the problem can be expressed as eq.
(3) where u and v are the indices of the users and items, respec-
tively, Guv is the rating of the uth user for the vth item, pu&pv

are dense vectors of length K corresponding to each user and item,
respectively.

min
PU,PV

∑
(u,v)∈G

(Guv − pT
upv)

2 + λ||pu||2 + λ||pv||2 (3)

Matrix factorization is usually performed iteratively using Stochas-
tic Gradient Descent (SGD) or Gradient Descent (GD). In each it-
eration t, GD performs Equation 4 - 6 for all users and items. SGD
performs the same updates without the summation in equation 5
on all ratings in a random order. The main difference between GD
and SGD is that GD updates all the pu and pv once per iteration
instead of once per rating as in SGD.

euv = Guv − pT
upv (4)

p∗u = pu + γ[
∑

(u,v)∈G

euvpv − λpu] (5)

p∗v = pv + γ[
∑

(u,v)∈G

euvpu − λpv] (6)

IV. Triangle Counting (TC): This is a statistics algorithm use-
ful for understanding social networks, graph analysis and comput-
ing clustering coefficient. The algorithm computes the number of
triangles in a given graph. A triangle exists when a vertex has two
adjacent vertices that are also adjacent to each other. The technique
used to compute the number of triangles is as follows. Each vertex
shares its neighbor list with each of its neighbors. Each vertex then
computes the intersection between its neighbor list and the neigh-
bor list(s) it receives. For a given directed graph with no cycles, the
size of the intersections gives the number of triangles in the graph.
When the graph is undirected, then each vertex in a triangle con-
tributes to the count, hence the size of the intersection is exactly
3 times the number of triangles. The problem can be expressed
mathematically as follows, where Euv denotes the presence of an
(undirected) edge between vertex u and vertex v.

Ntriangles =
∑

u,v,w∈V |u<v<w

(u, v) ∈ E∧(v, w) ∈ E∧(u,w) ∈ E

(7)

V. Single Source Shortest Path (SSSP): This is another graph
algorithm used to compute the shortest paths from a single source
to all other vertices in a given weighted and directed graph. The
algorithm is used in many applications such as finding driving di-
rections in maps or computing the min-delay path in telecommuni-
cation networks. Similar to BFS, the algorithm starts with a given

vertex (called source) and iteratively explores all the vertices in the
graph. The idea is to assign a distance value to each vertex, which is
the minimum edge weights needed to reach a particular vertex from
the source. At each iteration t, each vertex performs the following:

Distance(v) = min
u|(u,v)∈E

{Distance(u) + w(u, v)} (8)

Where w(u, v) represents the weight of the edge (u, v). Initially
the Distance for each vertex is set to infinity except the source
with Distance value set to 0. We use a slight variation on the
Bellman-Ford shortest path algorithm where we only update the
distance of those vertices that are adjacent to those that changed
their distance in the previous iteration.

We now discuss the implementation of GraphMat and its opti-
mizations in the next section.

4. GRAPHMAT
GraphMat is based on the idea that graph analytics via vertex

programming can be performed through a backend that supports
only sparse matrix operations. GraphMat takes graph algorithms
written as vertex programs and performs generalized sparse matrix
vector multiplication on them (iteratively in many cases). This is
possible as edge traversals from a set of vertices can be written
as sparse matrix-sparse vector multiplication routines on the graph
adjacency matrix (or its transpose). To illustrate this idea, a simple
example of calculating in-degree is shown in Figure 1. Multiplying
the transpose of the graph adjacency matrix (unweighted graph)
with a vector of all ones produces a vector of vertex in-degrees. To
get the out-degrees, one can multiply the adjacency matrix with a
vector of all ones.

A B

C D

(a) (b)

(c)

Figure 1: Graph (a) Logical representation (b) Adjacency ma-
trix (c) In-degree calculation as SPMV GTx = y. Vector x is
all ones. The output vector y indicates the number of incoming
edges for each vertex.

4.1 Mapping Vertex Programs to Generalized
SPMV

The high-level scheme for converting vertex programs to sparse
matrix programs is shown in Figure 2. We observe that while vertex
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programs can have slightly different semantics, they are all equiv-
alent in terms of expressibility. Our vertex programming model is
similar to that of Giraph [1].

Vertex program

Send message to
edges

Process incoming
message
Reduce

Operate on vertex

GraphMat

Send message Create
(sparse) vector

Process message SPMV
multiply
Reduce SPMV Add

Apply Apply

Scatter

Gather

Apply

3

Figure 2: Conversion of vertex program to sparse matrix vector
multiply operation.

A typical vertex program has a state associated with each ver-
tex that is updated iteratively. Each iteration starts with a subset of
vertices that are “active” i.e. whose states were updated in the last
iteration, which now have to broadcast their current state (or a func-
tion of their current state) to their neighboring vertices. A vertex
receiving such “messages” from its neighbors processes each mes-
sage separately and reduces them to a single value. The reduced
value is used to update the current state of the vertex. Vertices that
change state then become active for the next iteration. The itera-
tive process continues for a fixed number of iterations or until no
vertices change state (user-specified termination criterion). We fol-
low the Bulk-synchronous parallel model i.e. each iteration can be
considered a superstep.

The user specifies the following for a graph program in Graph-
Mat - each vertex has user-defined property data that is initialized
(based on the algorithm used). A set of vertices are marked ac-
tive. The user-defined function SEND MESSAGE() reads the vertex
data and produces a message object (done for each active vertex),
PROCESS MESSAGE() reads the message object, edge data along
which the message arrived, and the destination vertex data and pro-
duces a processed message for that edge. The REDUCE() function
is typically a commutative function taking in the processed mes-
sages for a vertex and producing a single reduced value. APPLY()
reads the reduced value and modifies its vertex data (done for each
vertex that receives a message). SEND MESSAGE() can be called to
scatter along in- and/or out- edges. We found that this model was
sufficient to express a large number of diverse graph algorithms
efficiently. The addition of access to the destination vertex data
in PROCESS MESSAGE() makes algorithms like triangle counting
and collaborative filtering easier to express than traditional matrix
based frameworks such as CombBLAS. See Section 4.2 for more
details.

Figure 3 shows an example of single source shortest path exe-
cuted using the user-defined functions used in GraphMat. We cal-
culate the shortest path to all vertices from source vertex A. At a
given iteration, we generate a sparse vector using the SEND MESSAGE()
function on the active vertices. The message is the shortest dis-
tance to that vertex calculated so far. PROCESS MESSAGE() adds
this message to the edge length, while REDUCE() performs a min
operation. PROCESS MESSAGE() and REDUCE() together form a
sparse matrix sparse vector multiply operation replacing traditional

SPMV multiply operation with addition and SPMV addition with
min respectively.

4.2 Generalized SPMV
As shown in Figures 1 and 3, generalized sparse matrix vector

multiplication helps implement multiple graph algorithms. These
examples, though simple, illustrate that overloading the multiply
and add operations of a SPMV can produce different graph algo-
rithms. In this framework, a vertex program with PROCESS MESSAGE
and REDUCE functions can be written as a generalized SPMV. As-
suming that the graph adjacency matrix transpose GT is stored in a
Compressed Sparse Column (CSC) format, a generalized SPMV is
given in Algorithm 1. We can also partition this matrix into many
chunks to improve parallelism and load balancing.

Algorithm 1 Generalized SPMV
1: function SPMV(Graph G, SparseVector x, PROCESS MESSAGE, RE-

DUCE)
2: y← new SparseVector()
3: for j in GT .column indices do
4: if j is present in x then
5: for k in GT .columnj do
6: result← PROCESS MESSAGE(xj , G.edge value(k, j),

G.getVertexProperty(k))
7: yk ← REDUCE(yk , result)

return y

We implement SPMV by traversing the non-zero columns inGT .
If a particular column j has a corresponding non-zero at position j
in the sparse vector, then the elements in the column are processed
and values accumulated in the output vector y.

GraphMat’s main advantage over other matrix based frameworks
is that it is easy for the user to write different graph programs with
a vertex program abstraction. With other matrix-based frameworks
such as CombBLAS[3] and PEGASUS [19], the user defined func-
tion to process a message (equivalent to GraphMat’s PROCESS MESSAGE)
can only access the message itself and the value of the edge along
which it is received (similar to the example in Figure 1). This is
very restrictive for many algorithms esp. Collaborative filtering and
Triangle counting. In GraphMat, the message processing function
can access the property data of the vertex receiving the message in
addition to the message and edge value. We have found that this
makes it very easy to write different graph algorithms with Graph-
Mat. While one could technically achieve vertex data access dur-
ing message processing with CombBLAS, it involves non-trivial
accesses to the internal data structures that CombBLAS maintains,
adding to coding complexity of pure matrix based abstractions. For
example with triangle counting, a straightforward implementation
in CombBLAS uses a matrix-matrix multiply which results in long
runtimes and high memory consumption [28]. Triangle Counting
in GraphMat works as two vertex programs. The first creates an
adjacency list of the graph (this is a simple vertex program where
each vertex sends out its id, and at the end stores a list of all its
incoming neighbor id’s in its local state). In the second program,
each vertex simply sends out this list to all neighbors, and each
vertex intersects each incoming list with its own list to find trian-
gles (as described in Section 3-IV). This approach is more efficient
and is faster. Similar issues occur with implementing Collaborative
Filtering in CombBLAS as well.

4.3 Overall framework
The overall GraphMat framework is presented in Algorithm 2.

The set of active vertices is maintained using a boolean array for
performance reasons. In each iteration, this array is scanned to find
the active vertices and a sparse vector of messages is generated.
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Figure 3: Example: Single source shortest path. (a) Graph with weighted edges. (b) Transpose of adjacency matrix (c) Abstract
GraphMat program to find the shortest distance from a source. (d) We find the shortest distance to every vertex from vertex A. Each
iteration shows the matrix operation being performed (PROCESS MESSAGE and REDUCE). Dashed entries denote edges/messages
that do not exist (not computed). The final vector (after APPLY) is the shortest distance calculated so far. On the right, we show the
operations on the graph itself. Dotted lines show the edges that were processed in that iteration. Vertices that change state in that
iteration and are hence active in the next iteration are shaded. The procedure ends when no vertex changes state. Figure best viewed
in color.
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Then, a generalized SPMV is performed using this vector. The
resulting output vector is used to update the state of the vertices.
If any vertices change state, they are marked active for the next
iteration. The algorithm continues for a user-specified maximum
number of iterations or until convergence (no vertices change state).

Algorithm 2 GraphMat overview. x,y are sparse vectors.
1: function RUN GRAPH PROGRAM(Graph G, GraphProgram P )
2: for i = 1 to MaxIterations do
3: for v = 1 to V ertices do
4: if v is active then
5: xv ← P .SEND MESSAGE(v, G)
6: y← SPMV(G, x, P .PROCESS MESSAGE, P .REDUCE)
7: Reset active for all vertices
8: for j = 1 to y.length do
9: v← y.getVertex(j)

10: old vertexproperty← G.getVertexProperty(v)
11: G.setVertexProperty(v, y.getValue(j), P .APPLY)
12: if G.getVertexProperty(v) 6= old vertexproperty then
13: v set to active
14: if Number of active vertices == 0 then
15: break

As shown in Algorithm 2, GraphMat follows an iterative process
of SEND MESSAGE (lines 3-5), SPMV (line 6), and APPLY (lines
8-13). Each such iteration is a superstep.

We limit GraphMat’s vertex programming abstraction to enable
more efficient mapping to matrix programming. Specifically, we
use one message per vertex as opposed to one message per edge
(e.g. Giraph) to avoid memory overflow problems. We have found
this abstraction to be sufficient for a large number of algorithms
(including local neighborhood centric analysis tasks such as trian-
gle counting). Vertex programs that require vertices to send dif-
ferent messages along different edges can be re-written to send the
same message to all edges if the processing is pushed to the PRO-
CESS MESSAGE stage. We have found that all vertex programs
where vertices only access their immediate neighborhood can be
translated into matrix operations.

In addition, GraphMat avoids redundant data copies while gen-
erating messages. For example, in triangle counting, the list of
neighboring vertices need not be copied multiple times but rather
can be passed as pointers to the actual data. This aspect relates to
the implementation more than the programming model itself.

GraphMat uses a bulk-synchronous model i.e. in each iteration,
the properties of the vertices are read-only and updated only at the
end of the iteration. This approach can be slower for certain prob-
lems (e.g. graph coloring) as it can take more iterations than fully
asynchronous execution. GraphMat also assumes in-memory graph
processing, hence does not work on graphs that are too large to fit
in main memory.

4.4 Data structures
We describe the sparse matrix and sparse vector data structures

in this section.

4.4.1 Sparse Matrix
We represent the sparse matrix in the Doubly Compressed Sparse

Column (DCSC) format [9] which can store very large sparse ma-
trices efficiently. It primarily uses four arrays to store a given ma-
trix as briefly explained here: one array to store the column indices
of the columns which have at-least one non-zero element, two ar-
rays storing the row indices (where there are non-zero elements)
corresponding to each of the above column indices and the non-
zero values themselves, and another array to point where the row-
indices corresponding to a given column index begin in the above
array (allowing access to any non-zero element at a given column

index and a row index if it is present). The format also allows an
optional array to index the column indices with non-zero elements,
which we have not used. For more details and examples, please
see [9]. The DCSC format has been used effectively in parallel
algorithms for problems such as Generalized sparse matrix-matrix
multiplication (SpGEMM) [10], and is part of the Combinatorial
BLAS (CombBLAS) library [11]. The matrix is partitioned in a
1-D fashion (along rows), and each partition is stored as an inde-
pendent DCSC structure.

4.4.2 Sparse Vector
Sparse Vectors can be implemented in many ways. Two good

ways of storing sparse vectors are as follows: (1) A variable sized
array of sorted (index, value) tuples (2) A bitvector for storing valid
indices and a constant (number of vertices) sized array with values
stored only at the valid indices. Of these, the latter option pro-
vides better performance across all algorithms and graphs and so is
the only option considered for the rest of the paper. In the SPMV
routine in Algorithm 1, line 4 becomes faster due to use of the
bitvector. Since the bitvector can also be shared among multiple
threads and can be cached effectively, it also helps in improving
parallel scalability. The performance gain from this bitvector use is
presented in Section 5.

4.5 Optimizations
Some of the optimizations performed to improve the performance

of GraphMat are described in this section. The most important op-
timizations improve the performance of the SPMV routine as it ac-
counts for most of the runtime.

1. Cache optimizations such as the use of bitvectors for storing
sparse vectors improve performance.

2. Since the generalized SPMV operations (PROCESS MESSAGE
and REDUCE) are user-defined, using the compiler option to
perform inter-procedural optimizations (-ipo) is essential.

3. Parallelization of SPMV among multiple cores in the system
increases processing speed. Each partition of the matrix is
processed by a different thread.

4. Load balancing among threads can be improved through bet-
ter partitioning of the adjacency matrix. We partition the ma-
trix into many more partitions than number of threads (typi-
cally, 8 partitions per thread) along with dynamic scheduling
to distribute the SPMV load among threads better. Without
this load balancing, the number of graph partitions would
equal the number of threads.

We now discuss the experimental setup, datasets used and the
results of our comparison to other graph frameworks.

5. RESULTS

5.1 Experimental setup
We performed the experiments 1 on an Intel R© Xeon R© 2 E5-

2697 v2 based system. The system contains two processors, each
1Software and workloads used in performance tests may have been optimized for
performance only on Intel microprocessors. Performance tests, such as SYSmark
and MobileMark, are measured using specific computer systems, components, soft-
ware, operations and functions. Any change to any of those factors may cause the
results to vary. You should consult other information and performance tests to as-
sist you in fully evaluating your contemplated purchases, including the performance
of that product when combined with other products. For more information go to
http://www.intel.com/performance
2Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.
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with 12 cores running at 2.7GHz (24 cores in total) sharing 30 MB
L3 cache and 64 GB of memory. The machine runs Red Hat Enter-
prise Linux Server OS release 6.5. The machine also has an Nvidia
Tesla K40 GPU. We used the Intel R© C++ Composer XE 2013 SP1
Compiler 3 and the Intel R© MPI library 5.0 to compile the native
and benchmark code. We used GraphLab v2.2 [5], CombBLAS
v1.3 [3], Galois v2.2.0 [4] and MapGraph v0.3.3 [15] for per-
formance comparisons. In order to utilize multiple threads on the
CPU, GraphMat and Galois use OpenMP only, GraphLab uses both
OpenMP and MPI, and CombBLAS uses MPI only. Since Comb-
BLAS requires the total number of processes to be a square (due
to their 2D partitioning approach), we use 16 MPI processes to run
on the 24 cores system (hence 8 cores remain idle). We found that
running CombBLAS with 25 MPI processes using 24 cores yields
worse performance than running with 16 processes. However the
native code, GraphMat, Galois, and GraphLab use the entire sys-
tem (24 cores). CPU-GPU data transfer times are not considered
for MapGraph. Note that we are being favorable to MapGraph by
not counting CPU-GPU transfer times.

GraphLab, being the most popular vertex programming frame-
work using a Gather-Apply-Scatter model, is a useful choice for
performance comparisons. CombBLAS meanwhile was chosen
as a representative graph framework with a matrix-programming
based frontend and backend. Galois and MapGraph were chosen
purely for performance reasons as they both perform better than ex-
isting frameworks such as GraphLab [25, 15]. We show that Graph-
Mat is more efficient than existing vertex-programming based and
matrix-programming based graph frameworks.

Datasets: We used a mix of real-world and synthetic datasets for
our evaluations. Real-world datasets include Facebook interaction
graphs [32], Netflix challenge for collaborative filtering [8], USA
road network for California and Nevada [7], Livejournal, Wikipedia,
Delaunay and Flickr graphs from the University of Florida Sparse
Matrix collection [14], Twitter follower graph [21] and Friendster
community network [34]. Table 1 provides details of the datasets
used, as well as the algorithms run on these graphs.

Since many real-world datasets are small in size, we augmented
them with synthetic datasets obtained from the Graph500 RMAT
data generator [24]. We adjust the RMAT parameters A,B,C,D de-
pending on the algorithm run (to correspond to previous work).
Specifically, following [28], we use RMAT parameters A = 0.57,
B=C= 0.19 (D is always = 1-A-B-C) for generating graphs for
Pagerank, BFS and SSSP; and different parameters A = 0.45, B=C
=0.15 for Triangle Counting as in [28]. We generate one additional
scale 24 graph for SSSP with parameters A=0.50, B=C=0.10 to
match with that used in [13, 25]. Finally, for collaborative filter-
ing, we used the synthetic bipartite graph generator as described
in [28] to generate graphs similar in distribution to the real-world
Netflix challenge graph.

Both real-world and synthetic graphs obtained occasionally need
pre-processing for specific algorithms. We first remove self-loops
in the graphs. Pagerank and SSSP usually assume all edges in the
graph are directed and work directly with the graphs obtained. For
BFS, we replicate edges (if the original graph is directed) to obtain

3Intel’s compilers may or may not optimize to the same degree for non-Intel micro-
processors for optimizations that are not unique to Intel microprocessors. These op-
timizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any opti-
mization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel micro-architecture are reserved for Intel micropro-
cessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice. Notice revi-
sion #20110804

a symmetric graph. For Triangle Counting, the input graph is ex-
pected to be directed acyclic; hence we first replicate edges as in
BFS to make the graph symmetric and then discard the edges in the
lower triangle of the adjacency matrix. Finally, for collaborative
filtering, the graphs have to be bipartite; both the Netflix graph and
synthetic graph generators ensure this.

We chose the datasets to match those used in previous work [28,
13, 25, 15] so that valid performance comparisons can be made.
Not all algorithms were run on all graphs due to some limitations.
In particular, triangle counting requires a large amount of mem-
ory for all graphs and hence could not be run on large graphs.
Wikipedia graph was also used by MapGraph [15]. SSSP was
run on a slightly different set of graphs (Flickr, USA road and
RMAT24) to facilitate comparisons to other existing work in [13,
25]. Collaborative Filtering requires bipartite graphs and hence
datasets chosen for this algorithm are unique.

Dataset # Vertices # Edges Algorithms Brief Description
Synthetic 1,048,576 16,746,179 Tri Count, Described in

Graph500 [24] Section 5.1
RMAT Scale 20

Synthetic 8,388,608 134,215,380 Pagerank, BFS, Described in
Graph500 [24] SSSP Section 5.1

RMAT Scale 23
Synthetic 16,777,216 267,167,794 SSSP Described in

Graph500 [24] Section 5.1
RMAT Scale 24
LiveJournal [14] 4,847,571 68,993,773 Pagerank, BFS, LiveJournal

Tri Count follower graph
Facebook [32] 2,937,612 41,919,708 Pagerank, BFS, Facebook user

Tri Count interaction graph
Wikipedia [14] 3,566,908 84,751,827 Pagerank, BFS, Wikipedia

Tri Count Link graph
Netflix [8] 480,189 users 99,072,112 Collaborative Netflix Prize

17,770 movies ratings Filtering
Synthetic 996,995 users 248,944,185 Collaborative Described in

Collaborative 20,971 items ratings Filtering Section 5.1
Filtering [28]

Flickr [14] 820,878 9,837,214 SSSP Flickr crawl
USA road [7] 1,890,815 4,657,742 SSSP DIMACS9

(CAL)
Twitter [21] 61,578,415 1,468,365,182 Pagerank, BFS Twitter follower

SSSP graph
Friendster [34] 65,608,366 1,806,067,135 Pagerank, BFS Friendster community

SSSP network

Table 1: Real World and synthetic datasets

5.2 Performance Results
We first compare the runtime performance of GraphMat to other

frameworks. We demonstrate the performance improvement of
GraphMat over a common vertex programming framework (GraphLab
[5]), a high performance matrix programming framework (Comb-
BLAS [3]), a high performance task based framework (Galois [4])
and a GPU-based vertex programming framework (MapGraph [15]).
We then compare GraphMat performance to that of native well-
optimized hand-coded implementations of these algorithms that achieve
performance limited only by hardware [28]. Finally, we show the
scalability of GraphMat as compared to GraphLab, CombBLAS
and Galois.

5.2.1 GraphMat vs. Other frameworks
As mentioned in Section 3, we selected a diverse set of graph

algorithms, and used different real-world and synthetic datasets
for these algorithms (see column “Algorithms” in Table 1 for de-
tails) that were selected to be comparable to previous work. We
report the time taken to run the graph algorithms after loading the
graph into memory (excluding time taken to read the graph from
disk). Figure 4 shows the performance results of running Graph-
Mat, GraphLab, CombBLAS, Galois, MapGraph and GraphMat on
these algorithms and datasets. The y-axis on these figures are to-
tal runtime, except for Pagerank and Collaborative Filtering where
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Figure 4: Performance results for different algorithms on real-world and synthetic graphs. The y-axis represents runtime (in log-scale), therefore
lower numbers are better. Missing numbers are explained in Section 5.2.1. Note that MapGraph runs on an Nvidia Tesla K40 GPU whereas other
frameworks run on an Intel R© Xeon R© E5-2697 v2 platform.

each algorithm iteration takes similar time and hence we report
time/iteration. Since we report runtimes, lower bars indicate bet-
ter performance.

We explain the gaps in Figure 4 here. We enforced a 4 hour time
limit for all runs in Figure 4. CombBLAS (mostly due to slow I/O)
exceeded this time limit on the larger Twitter and Friendster graphs
for Pagerank, BFS and SSSP. For triangle counting, CombBLAS
runs out of main memory for all graphs except RMAT20. For
Pagerank, BFS and SSSP, any missing results for MapGraph indi-
cate that the GPU ran out of memory. Note that the RMAT23 graph
used for BFS and SSSP is bidirectional (hence larger) whereas the
unidirectional RMAT23 graph for Pagerank fits the GPU memory.
MapGraph is unable to run triangle counting and collaborative fil-
tering as its programming model does not allow vertex properties
to be arbitrary (dynamically sized) data structures.

We note that GraphMat is significantly faster than both GraphLab
and CombBLAS on most algorithms and datasets. GraphMat is
faster than Galois and ties with MapGraph on average. As we can
see from Figures 4(a) and 4(b), GraphMat is 4-11X faster than
GraphLab on both real-world and synthetic datasets for Pagerank
and BFS (average of 6.5X for Pagerank and 7.1X for BFS). As has
been shown previously [28] on these datasets, CombBLAS per-
forms better than GraphLab due to its better optimized backend,
but GraphMat is still 2-4X better than CombBLAS. Compared to
Galois, GraphMat is 1.5-4X better on Pagerank and 20% worse
on BFS. GraphMat is faster than MapGraph on Pagerank by 10%
and is within 50% of MapGraph performance on BFS, despite the
vast difference in computing resources available to both of them.

CombBLAS performs poorly in Triangle Counting (Figure 4(c)),
where intermediate results are so large as to overflow memory or
come close to memory limits; CombBLAS fails to complete for
real-world datasets and is about 36X slower than GraphMat on the
synthetic graph. GraphLab is much better optimized for this al-
gorithm due to the use of cuckoo hash data structures and is only
1.5X slower than GraphMat on average. Galois is 20% faster than
GraphMat for triangle counting. On Collaborative Filtering, Fig-
ure 4(d) shows that GraphMat is about 7X faster than GraphLab,
4.8X faster than CombBLAS and 1.5X faster than Galois. These
four algorithms were also studied in [28], and our performance re-
sults for GraphLab, CombBLAS and Galois closely match the re-
sults in that paper.

We consider an additional algorithm in this paper (SSSP) to in-
crease the diversity of applications covered. For Single Source
Shortest Path (SSSP), GraphMat is about 8-10X faster than GraphLab
and CombBLAS (Figure 4(e)). This difference is larger than ones
seen in other algorithms. This arises in part because some of these
datasets are such that SSSP takes a lot of iterations to finish with
each iteration doing a relatively small amount of work (especially
for Flickr and USA-Road graphs). For such computations, Graph-
Mat, which has a small per-iteration overhead performs much bet-
ter than other frameworks. For the other datasets that do more work
per iteration, GraphMat is still 3.6-6.9X better than GraphLab and
CombBLAS. Galois performs better than GraphMat on SSSP by
20%. GraphMat is 1.6X faster than MapGraph on SSSP.

Table 2 summarizes these results. We see from the table that
the geometric mean of the speedup of GraphMat over GraphLab
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and CombBLAS is about 5-7X and speedup over Galois is about
1.1X over the range of algorithms and datasets. GraphMat’s av-
erage performance is almost the same as that of MapGraph even
without including the time taken to transfer the graph data to GPU
over PCI-E. We attribute this fact to MapGraph’s inefficient use of
GPU resources (especially, memory bandwidth). GraphMat, on the
other hand, is optimized to extract the high performance out of the
CPU caches and memory. We defer a more detailed discussion of
the reasons for this performance difference to Section 5.3. In the
next section, we describe how this performance compares to that of
hand-optimized code, and then discuss scalability of GraphMat.

PR BFS TC CF SSSP Overall
GraphLab 6.5 7.1 1.5 7.1 8.2 5.3

CombBLAS 4.1 2.3 36.0 4.8 10.2 6.9
Galois 2.6 0.8 0.8 1.5 0.8 1.1

MapGraph 1.1 0.5 - - 1.6 1.0

Table 2: Summary of performance improvement of GraphMat
over GraphLab, CombBLAS, Galois and MapGraph. Higher
values mean GraphMat is faster.

5.2.2 GraphMat vs. Native
We now compare GraphMat performance to that of hand-optimized

native implementations. We took the performance results of native
PageRank, BFS, Triangle counting, and collaborative filtering im-
plementations from [28], since we used the same datasets and ma-
chines with identical configuration to that work. Table 3 shows the
results of our comparison with the geometric mean over all datasets
for each algorithm. The table shows the slowdown of GraphMat
with respect to native code. We can see that GraphMat is compara-
ble in performance for Pagerank and BFS.

Note that the native performance results from [28] are for Stochas-
tic Gradient Descent (SGD) as opposed to Gradient Descent (GD)
for GraphMat. Prior research has shown that SGD is memory band-
width bound [28]. For both SGD and GD, the number and pattern
of reads and writes to memory are exactly the same (updates to
both vertices once per edge). In fact, GD is worse as it reads from
and writes to different arrays (SGD reads and writes to the same ar-
ray; array offsets remain identical). We also compare only the time
taken per iteration, hence both native implementation and Graph-
Mat do the same amount of work computationally.

Table 3 shows that, on average, GraphMat is only 1.2X slower
than native code. It should be noted that hand-optimized native
code typically requires significant effort to write even for expert
users. Moreover, the effort is not usually very portable across algo-
rithms, and very specific tuning has to be done for each algorithm
and machine architecture. The efforts described in [28] are indeed
difficult to perform for an end-user of a graph framework. However,
GraphMat abstracts away all these optimizations from the user who
only sees a vertex program abstraction (SSSP example in Figure 3
gives an indication of the effort involved). Hence we are able to get
close to the performance of native code with much lower program-
ming effort.

5.2.3 Scalability
As most performance improvements across recent processor gen-

erations have come from increasing core counts, it has become im-
portant to consider scalability when choosing application frame-
works as an end-user. In this context, we now discuss the scalability
of GraphMat and compare it to that of GraphLab, CombBLAS and
Galois. MapGraph was not considered as it runs on GPU hardware.

Algorithm Slowdown compared to
native code in [28]

PageRank 1.2
Breadth First Search 1.2
Triangle Counting 2.1

Collaborative Filtering 0.7
Overall (Geomean) 1.2

Table 3: Comparison of GraphMat performance to native, op-
timized code.

Figure 5 shows the scalability results for two representative appli-
cations - Pagerank and SSSP. Note that the scalability results for the
individual frameworks are with respect to their own single thread
performance. We see that no framework scales perfectly linearly
with cores, but this is expected since there are shared resources
like memory bandwidth that limit the scaling of graph workloads.
However, among the frameworks, we can see that GraphMat scales
about 13-15X on 24 cores, while GraphLab, CombBLAS and Ga-
lois only scale about 8X, 2-6X and 6-12X respectively. The trends
for other applications are similar. As a result, on future platforms
with increasing core counts, we expect GraphMat to continue to
outperform GraphLab, CombBLAS and Galois.
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Figure 5: Scalability of the frameworks using pagerank and single
source shortest path algorithms on facebook and flickr datasets respec-
tively.
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These scaling results do not completely account for the better
performance of GraphMat over GraphLab and CombBLAS; Graph-
Mat performs better than most frameworks even when all frame-
works are run on a single thread (for example, single-threaded Graph-
Mat is 2-2.5X faster than CombBLAS and about 8-12X faster than
GraphLab). Hence even the baseline for Figure 5 is generally better
for GraphMat compared to others. For SSSP alone, Galois has bet-
ter single thread performance (1.5X) compared to GraphMat as it
runs fewer instructions (Section 5.3). However, Galois scales worse
than GraphMat for this algorithm. In the next section, we discuss
the reasons why GraphMat outperforms other frameworks.

5.3 Discussion of performance
To understand the performance of the frameworks, we performed

a detailed analysis with hardware performance counters on the CPU-
based frameworks. Performance counters are collected for the du-
ration of the application run reported in Figure 4 (graphs with more
than a billion edges were excluded). This approach of collecting
cumulative counters results in better fidelity than sampling based
measurements, particularly when the runtimes are small. Figure
6 shows the collected data for four of the applications on all the
frameworks. Since graph analytics operations are mostly memory
bandwidth and latency constrained, we focus on counters measur-
ing memory performance. For space reasons, we present only the
following key metrics that summarize our analysis:

1. Instructions : Total number of instructions executed during the
test run.

2. Stall cycles : Total number of cycles CPU core stalled for any
reason. Memory related reasons accounted for most of the
stalls in our tests.

3. Read Bandwidth : A measure of test’s memory performance.
Write bandwidth is not shown since our tests are mostly read-
intensive.

4. Instructions per cycle (IPC) : A measure of test’s overall CPU
efficiency.

Of these metrics, well-performing code executes fewer instructions,
encounters fewer stalls and achieves high read bandwidth and high
IPC.

In general, an increase in instruction count and lower IPC indi-
cates overheads in code such as lack of vectorization (SSE, AVX),
redundant copying of data and wasted work. Increased stall cycles
and reduced memory bandwidth indicates memory inefficiencies
which can be remedied through techniques like software prefetch-
ing, removing indirect accesses etc. We find that GraphMat is over-
all at the top (or second best) for most of these indicators.

From Figure 6, it is clear that compared to GraphMat, GraphLab
and CombBLAS execute significantly more instructions and have
more stall cycles. This explains the speedup of GraphMat over both
GraphLab and CombBLAS. Even when those frameworks achieve
better memory bandwidth than GraphMat (e.g. Collaborative Fil-
tering), the benefits are still offset by the increase in instruction
count and stall cycles, implying lots of unnecessary memory loads
and wasted work leading to overall slowdown. Galois performs
worse than GraphMat for PageRank due to increased instruction
and stall cycle count as well. However, Galois performs better than
GraphMat on Triangle counting due to better IPC. For Collabora-
tive Filtering, GraphMat has a better IPC and performs better than
Galois. For SSSP, Galois uses asynchronous execution (updated
vertex state can be read immediately before the end of the iteration)
and hence executes fewer instructions, leading to a 1.25X speedup

over GraphMat. With GraphMat, the updated vertex state can be
read only in the next iteration (bulk synchronous).

We now discuss at a higher level the main reasons why GraphMat
performs much better than the other frameworks. With respect to
GraphLab, GraphMat supports a similar frontend but maps the ver-
tex programs to generalized sparse matrix operations as described
in Section 4. This allows capturing of the global structure of the
matrix and allows for various optimizations including better load
balancing, efficient data structures and the use of cache optimiza-
tions such as global bitvectors. Moreover, similar operations have
been well optimized by the HPC community and we leverage some
of their work [35]. All these reasons result in more optimized code
than a vertex program backend like GraphLab can achieve.

On the other hand, CombBLAS uses a similar matrix backend
as GraphMat, but GraphMat still performs about 7X better on av-
erage. There are two primary causes for this. The first is a pro-
gramming abstraction reason: GraphMat allows for vertex state to
be accessed while processing an incoming message (as described
in Section 4.1), while CombBLAS disallows this. There are two
algorithms, namely Triangle Counting and Collaborative Filtering
where this ability is very useful both to reduce code complexity and
to reduce runtime as discussed previously in Section 4.2.

The second reason for GraphMat to perform better than Comb-
BLAS is a better backend implementation. For Pagerank, BFS, and
SSSP, the basic operations performed in the backend are similar in
GraphMat and CombBLAS. However, we have heavily optimized
our generalized SPMV backend as described in Section 4.5.

Compared to GraphMat, Galois’ performance differs by 1.1X.
Galois is a sophisticated worklist management system with support
for different problem-specific schedulers [25], whereas GraphMat
is built on top of sparse matrix operations. There is not a huge
performance difference between the two frameworks on a single
node. Extending an efficient task-queue based framework like Ga-
lois to other systems (co-processors, GPU, distributed clusters etc.)
however, is a difficult task. In contrast, sparse matrix problems are
routinely solved on very large and diverse systems in the High Per-
formance Computing world. We also note that GraphMat scales
better than Galois with increasing core counts. Hence, we believe
GraphMat offers an easier and more efficient path to scaling and
extending graph analytics to diverse platforms.

We next describe the performance impact of the optimizations
described in Section 4.5.

5.4 Effect of optimizations
One of the key advantages of using a matrix backend is that there

are only a few operations that dictate performance and need to be
optimized. In the algorithms described here, most (over 80%) of
the time is spent in the Generalized SPMV operation as described
in Algorithm 1. The key optimizations performed to optimize this
operation are described in Section 4.5. Figure 7 shows the perfor-
mance impact of these four optimizations for Pagerank (running
on the Facebook graph) and SSSP (running on Flickr). The first
bar shows the baseline naive single threaded code normalized to
1. Adding bitvectors to store the sparse vectors to improve cache
utilization itself results in a small performance gain. However, it
enables better parallel scalability. Using the compiler option of -
ipo to perform inter-procedural optimization results in a significant
gain of about 1.5X for SSSP and 1.9X for Pagerank. This third bar
represents the best scalar code.

The fourth and fifth bars deal with parallel scalability. The ad-
dition of bit-vectors allows for a parallel scalability of about 11.7X
and 4.7X on Pagerank and SSSP respectively (without bitvectors,
these numbers were as low as 3.9X and 3.4X on Pagerank and
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Figure 6: Hardware performance counter data for different algorithms averaged over all graphs and normalized to GraphMat. The y-axis is in
log-scale. Lower numbers are better for instructions and stall cycles. Higher numbers are better for Read bandwidth and IPC.

SSSP respectively). These scalability results are multiplicative with
the gains from ipo and bitvectors, resulting in the fourth bar. Fi-
nally, load balancing optimizations result in a further gain of 1.2X
for Pagerank and 2.8X for SSSP. This results in overall gains of
27.3X and 19.9X from naive scalar code for Pagerank and SSSP
respectively. Similar results were obtained for other algorithms and
datasets as well.
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Figure 7: Effect of optimizations performed on naive implementations
of pagerank and single source shortest path algorithms.

From the GraphMat user’s perspective, there is no need to un-
derstand or optimize the backend in any form. In fact, there is very

little performance tuning left to the user (the only tunable ones are
number of threads and number of desired matrix partitions).

To summarize, SPMV operations are heavily optimized and re-
sult in better performance for all algorithms in GraphMat. If one
considers vertex programming to be productive, there is no loss of
productivity in using GraphMat. Compared to matrix programming
models, there are huge productivity gains to be had. Our backend
optimizations and frontend abstraction choices (such as the abil-
ity to read vertex data while processing messages) make GraphMat
productive without sacrificing any performance.

6. CONCLUSION AND FUTURE WORK
We have demonstrated GraphMat, a graph analytics framework

that utilizes a vertex programming frontend and an optimized ma-
trix backend in order to bridge the productivity-performance gap.
We show performance improvements of 1.1-7X when compared to
other optimized frameworks such as GraphLab, CombBLAS and
Galois in addition to scaling better on multiple cores. GraphMat
is about 1.2X off the performance of native, hand-optimized code
on average and even matches the performance of GPU-based graph
frameworks like MapGraph on contemporary GPU hardware de-
spite the large difference in compute resources available to both.
For users of graph frameworks accustomed to vertex programming,
this provides an easy option for improving performance. Given that
GraphMat is based on SPMV, we expect it to scale well from the
current single node version to multiple nodes. Furthermore, im-
provements in single node efficiency translates to fewer nodes used
(for a given problem size) and will lead to better cluster utilization.
Our optimizations to the matrix backend can be adopted by other
frameworks such as CombBLAS as well, leading to better perfor-
mance no matter the choice of programming model. Our work also
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provides a path for array processing systems to support graph ana-
lytics through popular vertex programming frontends.

7. REFERENCES
[1] Apache giraph. http://giraph.apache.org/.
[2] Apache spark. https://spark.apache.org/.
[3] Combinatorial Blas v 1.3.

http://gauss.cs.ucsb.edu/
aydin/CombBLAS/html/ .

[4] Galois v 2.2.0. http://iss.ices.utexas.edu/?p=
projects/galois/download.

[5] Graphlab v 2.2. http://graphlab.org.
[6] SciDB. http://www.scidb.org.
[7] Dimacs implementation challenges.

http://dimacs.rutgers.edu/Challenges/,
2014.

[8] J. Bennett and S. Lanning. The Netflix Prize. In KDD Cup
and Workshop at ACM SIGKDD, 2007.
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