
TuFast: A Lightweight Parallelization Library for
Graph Analytics

Zechao Shang
University of Chicago

zcshang@cs.uchicago.edu

Jeffrey Xu Yu
Chinese University of Hong Kong

yu@se.cuhk.edu.hk

Zhiwei Zhang
Hong Kong Baptist University
cszwzhang@comp.hkbu.edu.hk

Abstract—Recently, there has been significant interest in large-
scale graph analytics systems. However, most of the design
efforts focus on accelerating graph analytics on giant graphs
and/or in a distributed environment. Little attention focuses
on the programmer usability perspective, which is critical on
implementing ad-hoc analytics on moderate size graphs. In this
paper, we present a lightweight transactional memory (TM)
library TUFAST which provides easy-to-use primitives for the end-
user to agilely develop fast shared memory graph parallelization
on a multi-core server. TUFAST exploits recent CPU instructions
set Hardware Transactional Memory (HTM), which has been
available in off-the-shelf CPUs. HTM offers free transactional se-
mantic but also suffers from capacity limitation. Our framework
resolves the capacity challenge and efficiently utilizes HTM on
graph parallelization by exploiting the graph degree information.
Large scale graphs have a power-law degree distribution: a large
proportion of the vertices with a small degree, fits in single HTM
transactions; a small proportion of vertices with a big degree fits a
pessimistic approach like locking; other vertices with a moderate
degree can be processed with an optimistic approach with HTM
acceleration. Our hybrid approach automatically adapts to the
degree of graphs dynamically during the processing. The graph
analytical jobs expressed via our library are straightforward and
concise, and outperform state-of-the-art distributed and multi-
core graph analytical systems by up to 4 orders of magnitude.

I. INTRODUCTION

Graphs have been widely used to depict complex re-
lationships among different objects, and have been exten-
sively used to manage, query, and analyze complex infor-
mation. State-of-the-art multi-core graph processing systems
(i.e. Ligra [1] and Galois [2]) and distributed graph pro-
cessing systems (i.e. PowerGraph [3]) accelerate the graph
analytical jobs by grouping (vertex) operations into batched
operations: they ask the end-users to implement the graph
analytical jobs in a new programming paradigm (i.e. vertex-
centric operation in Pregel [4], map/reduce in Ligra and
Galois, gather/apply/scatter in PowerGraph, sparse matrix-
vector multiplication in GraphMat [5]), and then maximize the
computing throughput by grouping the operations in the new
paradigm into batched computations. Although the batched
computations accelerate the computational time and may have
better scalability, the lack of shared-memory accesses sac-
rifices user-friendliness : despite recent researches [6], [7]
on automatically parallelize monotonic graph programs, it is
usually a nontrivial job to transform the sequential graph
algorithm into the new paradigm, or design a completely new

efficient algorithm for the new paradigm. Thus, these graph
processing systems incur a significant human-power overhead
on designing, implementing, testing, debugging, and deploying
ad-hoc graph analytical jobs.

In this paper, we introduce a lightweight and easy-to-
use library TUFAST, which automatically parallelize graph
analytical jobs in multi-core environments. TUFAST is based
on the transactional memory (TM) semantic: the end-users
implement a sequential program, and mark the region that shall
behave like under sequential execution when being executed
concurrently, replace read/write operations on shared variable
by TM read/write operations, so TUFAST can ensure the
correctness of parallelized graph jobs.1 TUFAST’s users are
relieved from the error-prone manual implementations.

The core of TUFAST is a new hybrid TM scheduler.
TM scheduler coordinates the TM operations, and enforces
the correctness among transactional regions (transactions for
short). We observed that the diversity of graph degrees causes
the heterogeneity of transaction contention rate. Transactions
with higher contention rates are more likely to be interfered
by other concurrent transactions. Therefore we prevent data
race by a more pessimistic approach and pay more beforehand
overheads. Otherwise, we use a low-overhead approach. Based
on this observation, we introduced a three-mode Hybrid TM
(HyTM): the high-contention transactions are protected by
locks; the medium-contention transactions are scheduled by
optimistic transaction schedulers assisted by HTM; and the
low-contention transactions are guarded by the HTM. By care-
fully routing transactions to different sub-schedulers, TUFAST
ensures each transaction can achieve its best performance.
Moreover, to adapt to the runtime fluctuation of contention rate
caused by the graph job itself or execution environment, we
monitor the dynamic contention rate and optimize TUFAST’s
performance by adjusting the performance-critical parameters.

We implemented several graph algorithms in TUFAST, and
conducted experimental studies on real large-scale graphs.
Through experimental results, we demonstrate TUFAST out-
performs manually-implemented parallel graph algorithms that
execute HTM tasks on both high- and low-degree vertices,
state-of-the-art parallel graph processing systems without

1Specifically, TUFAST guarantees serializability semantic, which ensures
the concurrent execution equals to a sequential execution. However, the end-
users can impose appropriate scheduling or synchronization barrier to order
the graph operations as needed. See Section III for more usage examples.

for iter = 1 to N
parallel_for v : all vertices

BEGIN(degree[v]) // a degree hint
if READ(v, match[v]) == null

for u : neighbor of v
if READ(u, match[u]) == null

WRITE(v, match[v], u)
WRITE(u, match[u], v)
break

COMMIT

Fig. 1: Parallelized maximal matching implementation (with
TUFAST support)

Function Description
BEGIN(size) Start with an optional hint SIZE
COMMIT() Commit
ABORT() Abort
READ(v,addr) Read addr (related with vertex v)
WRITE(v,addr,val) Write val to addr (related with vertex v)

TABLE I: TUFAST graph TM functions

HTM, and state-of-the-art distributed graph processing sys-
tems. The superior performance of TUFAST does not only
prove our hybrid strategy outperforms other HyTM and trans-
action schedulers, but also demonstrates graph systems that
support direct in-place-update on shared memory are more
flexible and efficient than batched synchronization graph sys-
tems.

Organization: We demonstrate the syntax of TM and the
exemplar usage of TM-based graph programming in Section
II. We present the preliminarily backgrounds, including an
introduction to Intel HTM, graph properties, and transaction
scheduler performance in Section III. We propose our efficient
HyTM TUFAST in Section IV. We discuss related work in
Section V and report experimental studies in Section VI. We
conclude this paper in Section VII.

II. TM-BASED GRAPH PROGRAMMING

TM: TUFAST provides transactional operations READ
and WRITE, and transaction boundary operations BEGIN,
COMMIT, ABORT. The developer calls READ and WRITE op-
erations to read/write memory addresses, and calls BEGIN and
COMMIT to indicate the beginning and ending of a transaction.
We illustrate the usage of TUFAST API in Figure 1 by an
example of greedy graph maximal matching. Each matching
attempt tries to match one unmatched vertex with one of
its unmatched neighbors. The algorithm executes matching
attempts on all vertices in parallel. We implement matching
attempts as transactions, and access shared read/write variables
(macth[]) via transactional operations (READ and WRITE).

Optional Size Hint: To facilitate TUFAST’s performance, the
developer is suggested to annotate each transaction with a
size hint, which is approximately the number of shared data
that the transaction intends to visit. The optional size hint is
provided to the BEGIN API at the beginning of the transaction
(degree[v] in Figure 1). Such hints are non-binding and

// to be executed on every vertex v
if (currentRound % 4 == 0)

if (match[v] == null)
for u : neighbor of v

send(destination = u, msg = v)
elseif (currentRound % 4 == 1)

if (match[v] == null)
select one incoming message (v, msg = u)
send(destination = u, msg = v)

elseif (currentRound % 4 == 2)
if (exists incoming message (v, msg = u))

match[v] = u
send(destination = u, msg = v)

elseif (currentRound % 4 == 3)
if (exists incoming message (v, msg = u))

match[v] = u

Fig. 2: Maximal matching implementation on vertex-centric
paradigm. It requires a non-trivial transformation from the
sequential algorithm to this “four-way handshake” implemen-
tation.

for v : all vertices
d[v] = infinite

d[source] = 0
push source into Q
while Q is not empty

v = poll(Q)
BEGIN(degree[v])
for u : neighbor of v

if READ(d[u]) + dis[u][v] < READ(d[v])
WRITE(d[v], READ(d[u]) + dis[u][v])
if v is not in Q

push v into Q
COMMIT

Fig. 3: Implementation of shortest path algorithm Bellman-
Ford (with a FIFO queue) or SPFA (with a priority queue)
(with TUFAST support)

do not affect the correctness of TUFAST. Instead, we take
this hint as a suggestion of the transaction’s length and the
transaction’s contention rate. We schedule each transaction to
sub-schedulers for the maximal performance according to the
size hints (c.f. Section IV-D).

Remarks on Usability: Compared with other program-
ming paradigms (i.e. map/reduce, gather/apply/scatter, vertex-
centric programming, sparse matrix-vector multiplication),
TM-based parallelization programming resembles the sequen-
tial programming by allowing the developer to freely read and
write any shared variable at any time. Without any limitation
posed by the programming paradigms, the programmers can
implement parallel graph analytics as easy as implementing
sequential ones. We illustrate the usability via two examples.
The first example is maximal matching we discussed previ-
ously. TM-based implementation (Figure 1) naturally express
the operation that pair vertex v with its neighbor u. In
comparison, the computing paradigms that disallow shared-
variable accesses need to send asynchronous messages to
match a vertex to its neighbor. A typical implementation in
vertex-centric paradigm is illustrated in Figure 2. (Function

send sends messages between vertices.) The vertex-centric
matching works in a four-way handshake: each unmatched
vertex send matching requests to its neighbors; unmatched
neighbor choose request to reply; two vertex confirms the
match and write down the matching information in following
two rounds. This implementation is not intuitive and requires
non-trivial knowledge about the graph algorithms.

Other programming paradigms often aim at optimizing
throughput by batching. Thus, they usually disallow certain
fine-grained control in the computation workflow. Our sec-
ond example is two shortest path algorithms, Bellman-Ford
and SPFA [8]. These two algorithms are almost same: they
iteratively execute “relaxing” operations on each vertices. The
only difference between them is Bellman-Ford uses a round-
robin scheduling, and SPFA prioritizes vertices that are closer
to the sources. Computing paradigms such as BSP [4] cannot
support prioritized scheduling without a considerable effort
(e.g. PrIter [9]) because BSP groups operations in a batch
and disallow fine-grained prioritization within a batch. In
contrast, with TUFAST’s transactional semantic, our imple-
mentation is merely a direct translation from pseudo-code from
Wikipedia [8]. Since TUFAST ensures any transaction does
not interfere other concurrent transactions, we do not need
to worry about the data race, and can switch between two
algorithm by switching between a FIFO queue and a priority
queue.

III. PRELIMINARY

Intel Hardware TM: HTM utilizes the cache coherence
protocol, which has previously been inaccessible to end-users
until wrapped as HTM instructions. Hardware transaction
instruction set was introduced in the Intel Haswell CPU series
in 2013, and is available on most off-the-shelf Intel CPUs.
To use the HTM instruction, programs issue an XBEGIN
instruction to indicate the beginning of the transaction. Af-
ter that, the programs read and write memory and perform
arithmetic instructions as usual. At the end of the transaction,
the programs should issue an XEND instruction to indicate a
transaction commit request. Similar to the database transaction
concurrency control, HTM ensures other CPU cores cannot see
the uncommitted modifications. Once the transaction commits
successfully, all changes become visible to other cores. If
the transaction aborts, the changes are discarded. With HTM,
the transactional semantic is almost free. The transaction
is implemented within the cache coherence protocol. CPU
always enforces the protocol regardless whether programs
issue HTM instructions or not. The (marginal) cost of the HTM
instructions is almost negligible.

The most critical drawback of HTM is the capacity limi-
tation. In the current Intel implementation, HTM utilizes the
cache coherence protocol of its level one (L1) cache, which
has only 32 kilobytes (KB). During the HTM execution, when
the core accesses more than 32KB of distinct memory, cache
overflows and the transaction immediately aborts. In this case,
the whole transaction has to restart. Moreover, since most
programs usually do not have an even memory access pattern

0

0.2

0.4

0.6

0.8

1

1KB 2KB 4KB 8KB 16KB 32KB

A
b
o
rt

 p
ro

b
.

HTM size

Fig. 4: The probability of a raw hardware transaction that
would fail due to capacity overflow

10
2

10
4

10
6

10
0

10
2

10
4

10
6

C
o
u
n
t

Degree

Fig. 5: The degree distribution of dataset twitter-mpi.

and modern CPUs implement set-associate cache, when the
first cache overflow happens at one slot, other cache slots
are still possibly underflow. Therefore, the cache overflow
may occur before 32KB of unique memory access. Early
experiments [10] show that a 10KB random access has up to
25% chance of abort. We conducted experiments by repeatedly
executing transaction: we choose a consecutive 1GB memory,
and pick two cores which continuously execute transactions
at random locations with a specific transaction size and report
their abort rates. We illustrate the probability of transaction
aborting in Figure 4. When the size exceeds 30KB, the abort
probability is almost 1.

Large-Scale Graph: Large-scale graphs like social net-
works and Web networks usually render a power-law degree-
distribution [11]. (Certain graphs like road networks may
have less skewed degree distributions. These smaller graphs
are not the main focus of this paper.) We draw the degree
distribution of a Twitter user’s follower/followee relationship
graph in Figure 5 (c.f. Section VI) The x-axis represents the
(out)degree while the y-axis represents the number of vertices
with such a degree, both in a log scale. The distribution is
close to a straight line in the log scale, which implies power-
law distribution. One of the corollaries of power-law degree
distribution is the existence of a large maximum degree. The
maximum degree of this graph is 3,691,240. Assuming each
int variable occupies 4 bytes, the 32KB HTM capacity
limitation is equivalent to 8,192 ints, which is far less than
the maximum degree of the graphs. It is not possible to use
one single HTM to wrap all accesses to a large-degree vertex’s
neighbors.

Contention Rate and Transaction Processing: Existing
transaction schedulers can be roughly categorized into two
classes: pessimistic and optimistic . The former uses locks to
prevent data races. The latter assumes that data races are rare
and progresses speculatively. After execution, the optimistic

1 10
2

10
4

10
6

Degree

1

10
2

10
4

10
6

D
e

g
re

e
 0

 0.1

 0.2

 0.3

 0.4

 0.5

Fig. 6: Probability of data race on concurrent access.

0

1

2

3

4

5

6

7

[0-0.2) [0.2,0.4) [0.4,0.6) [0.6,0.8) [0.8,1)

T
h
ro

u
g
h
p
u
t

(*
1
0

6
/s

e
c
)

Contention rate

2PL OCC TO

Fig. 7: Transaction scheduler’s performance under various
contention rates.

scheduler verifies the execution and aborts it if anything goes
wrong. The main difference between these two classes is
their assumptions on the probability of data race, or in other
words, the contention rate. The pessimistic schedulers assume
a higher contention rate, and pay locking overheads ahead.
They can efficiently prevent a high number of potential aborts
when the contention rate is high as expected. However when
the contention rate is low, the over-payed overheads hinder
performance. On the other hand, optimistic schedulers assume
a low contention rate. They save on overheads if the actual
contention rate is low as expected. Otherwise, they abort
transactions frequently.

Because the contention rate has a substantial effect on
performance, we analyze the contention rate in graphs. We
took the dataset twitter-mpi as an example, and analyzed
the contention rate in a micro-benchmark. We assume each
transaction reads a vertex and its neighbors, and writes the
vertex. The contention rates are summarized in heat map
Figure 6: each cell represents the the probability that two
concurrent vertices contend, when the degrees of them are
in corresponding x-axis and y-axis. The figure clearly illus-
trate two observations: the contention rate is highly skewed
throughout all vertices; and high-degree vertices have higher
contention rates.

To illustrate how contention rate affects transaction sched-
ulers’ performance, we performed experimental studies on a
synthetic graph. The graph has an even degree distribution, and
we controlled the contention rate by choosing the vertices jobs.
We executed the jobs via three fundamental transaction sched-
ulers: two-phase locking (2PL), optimistic concurrency control
(OCC), and timestamp ordering (TO). The performance results
are shown in Figure 7. We observed that there is no consistent
winner under all contention rate scenarios: 2PL performs better
when the contention rate is higher, while OCC outperforms
when the contention rate is close to zero.

10
2

10
4

10
6

10
0

10
2

10
4

10
6

C
o

u
n

t

Degree

0

1

1KB

P
ro

b
.

HTM size
1MB

Mode H Mode O Mode L

Fig. 8: The three-mode approach. The top shows the degree
distribution of dataset twitter-mpi (c.f. Figure 5). The bot-
tom shows the abort probability (c.f. Figure 4). The middle
shows how we route the transactions into three sub-schedulers
according to the degree of vertex and potential probability of
abort.

IV. EFFICIENT GRAPH PARALLELIZATION

As illustrated in previous sections, no single transaction
scheduler is efficient in a heterogeneous workload. Therefore,
we propose a three-mode HyTM in Section IV-A. We design
three sub-schedulers for low, moderate and high contention
rate scenarios separately. By sharing same locks and meta-
data, they are integrated as one HyTM. We prove the cor-
rectness of our HyTM in Section IV-B, and discuss how to
route transactions to three sub-schedulers in Section IV-C.
We design a novel algorithm to choose the performance-
critical parameters dynamically in Section IV-D. We discuss
implementation details in Section IV-E.

A. A Three-Mode Solution

As discussed before, the heterogeneity of graph degree dis-
tribution calls for a discriminative HyTM. We propose a three-
mode (HTM-only mode, HTM-assisted Optimistic mode, and
Lock mode) HyTM TUFAST and process transactions using
three sub-schedulers. We introduce three sub-schedulers here,
and discuss how to route transactions to them in Section IV-C.

The intuition of the three-mode approach is to process
transactions according to their sizes and conflict rates. If a
transaction is small enough, it should fit within the HTM’s
capacity. We enclose the transaction in one single HTM. This
reduces unnecessary overhead. If the transaction size is large
then there is no approach to improve the parallelism, so we
process the transaction with locks. For these transactions with
a moderate size, we process them in a hardware-assisted
optimistic way. As shown in the bottom of Figure 8, the
transaction size may not fit within the capacity of HTM but
is not too far away. We cut the transaction into several pieces
and process each piece in one HTM. The HTM can help to
detect the conflicts on-the-fly with little overhead: if another
concurrent transaction interferes, HTM detects it immediately.

Algorithm 1 Transaction processing (H mode)
Require: vertices locks L[]

1: procedure START(v)
2: XBEGIN(ABORT_HANDLER)

3: procedure ABORT()
4: XABORT

5: procedure READ(v, addr)
6: Try lock L[v] in shared mode
7: if fails then
8: ABORT()
9: return load(addr)

10: procedure WRITE(v, addr, value)
11: Try lock L[v] in exclusive mode
12: if fails then
13: ABORT()
14: store(addr, value)

15: procedure COMMIT()
16: XEND
17: Release all locks

1

HTM Validation

time

HTM HTM HTM

period

Fig. 9: O Mode with assistance of HTM

If all pieces are executed successfully, we validate the overall
execution using an optimistic transaction validation.

H Mode: In H mode, the read/write operations are enclosed
by HTM instructions. At the beginning, we issue the XBEGIN
instruction to mark the start of transaction. HTM requires
a mandatory fallback handler, which will be jumped to by
HTM on the abort of the transaction. During the transaction
execution, for each read and write operation, we check the
fine-grained lock associated with each vertex respectively. If
the vertex is locked in a non-compatible mode, we abort the
transaction. At the end of transaction, we mark the finish of
transaction by instruction XEND.

O Mode: The O mode is an optimistic transaction scheduler
assisted by HTM. Optimistic scheduler works by performing
operations in a private workspace. All read operations are
read from shared memory, while the read operations and
read results are also recorded. The write operations are not
performed on the shared memory. Instead the write addresses
and values are recorded in the private workspace. At the
ending of the transaction, we verify whether the data read
records are valid, i.e. the values read in past have not been
overwritten during the execution and match the current values
in corresponding addresses. This ensures the write operations
are based on consistent data, and we can write the recorded
write operations to shared memory.

Algorithm 2 Transaction processing (O mode)
Require: vertices locks L[]
18: procedure START(v)
19: retries ← 0
20: reads ← ∅
21: writes ← ∅
22: counter ← 0
23: XBEGIN(ABORT_HANDLER)

24: procedure ABORT()
25: Release all locks

26: procedure READ(v, addr)
27: if counter = period then
28: counter ← 0
29: XEND
30: XBEGIN(ABORT_HANDLER)
31: if v in writes then . Find the vertex in written log
32: return writes[v].val
33: if v not in reads then . Add the read record
34: reads ← reads ∪ {addr, val=load(addr)}
35: return load(addr)

36: procedure WRITE(v, addr, val)
37: writes ← writes ∪ {v, (addr, val)}

38: procedure COMMIT()
39: XEND
40: for v in writes do . Update data and version
41: Request L[v] in exclusive mode
42: if fails then
43: ABORT()
44: for v in reads do . Verify read access
45: if load(reads[v].addr) 6= reads[v].val or v

locked then
46: ABORT()
47: for (addr, val) in writes.values do
48: store(addr, val)
49: Release lock L[v]

Optimistic scheduler, as suggested by the name, takes opti-
mistic view towards the possibilities of transaction contention.
It executes transaction without checking the contentions and
postpone the inspection. However, as discussed before, the
conflict detection via HTM is free. In additional to the tradi-
tional optimistic transaction scheduler, we plan to utilize HTM
to help us detect contentions early. We enclose every period-
th operations by one HTM, as illustrated in Figure 9. HTM
will be notified if it is interfered by concurrent transactions.
However the detection is not perfect. As in the example in
Figure 9, if another thread issues an operation which conflicts
with an operation in red (1st) zone while the optimistic
scheduler is in the green (2nd) zone, this conflict cannot
be detected by HTM. Therefore to ensure correctness, larger
period is more desired. revisionOn the other hand, larger
period may cause more capacity-triggered aborts. We will
discuss how to choose period in Section IV-D.

L Mode: The L mode implements two-phase lock (2PL). For
each read and write operation, 2PL requests corresponding

Algorithm 3 Transaction processing (L mode)
Require: vertices locks L[]
50: procedure START(v)

51: procedure ABORT()
52: Release all locks

53: procedure READ(v, addr)
54: Request lock L[v] for read mode . Request lock first
55: return load(addr)

56: procedure WRITE(v, addr, value)
57: Request lock L[v] for exclusive mode
58: store(addr, value) . Modify the vertex data

59: procedure COMMIT()
60: Release all locks

lock before performing the operation. At the end of the
transaction, 2PL releases all the locks.

B. Correctness

We prove that the protocol specified in Algorithm 1 to 3
only produces strict (conflict) serializable execution. Before
the proof, we introduce some notations. Interested readers may
refer to Weikum et al. [12]. For any two operations o1 and
o2 in two different transactions t1 and t2, we say these two
operations conflict if they access same data and at least one of
two operations is write. In such case, we note o1 ← o2 if and
only if o1 happens before o2. And we say t1 < t2 if o1 ← o2.
For each transaction i, we define its commit time cti as the
time when the user calls COMMIT. For a set of committed
transactions T = {t1, t2, . . . }, we say they are strict conflict
serializable when ti < tj implies cti < ctj .

We prove by enumerating how ti is scheduled. First, if ti
is scheduled by H mode (HTM scheduler), before ti issues
commit instruction, its read/write operations are not visible
to any other transaction at all. Therefore since one of tj’s
operations observes one of ti’s operations, tj’s operation must
occur later than ti’s commit time. Then tj’s commit time is
later than tj’s commit time.

When ti is scheduled by O mode (HTM-accelerated op-
timistic scheduler), the proof is similar to the previous one.
Before ti starts to commit and verify its read set and write
set, other transactions cannot observe ti’s work.

When ti is scheduled by L mode (2PL-based scheduler), just
before ti enters it commit time, it holds the locks for all the
data read or written by ti. Assume cti > ctj . Then one of tj’s
operation is written to the shared memory when ti holds the
corresponding lock. This is impossible: tj will have to wait
for the availability of lock if tj is scheduled by L mode; and
will abort itself if it is scheduled by other two modes.

C. Transaction Scheduling

We process transactions by three sub-schedulers based on
the size of the transactions and the likelihood of transaction
data races. However, the likelihood of data race depends

init

too large?

process in hardware mode

no

abort due
to capacity?

on abort

retries times
exceed

limitation?

no

no

process in optimistic mode

yes

yes

impossible
to reduce
period?

on abort

process in lock mode
yes

yes

reduce period

no

finish

Fig. 10: Workflow of three schedulers

on both the static setting (for example, the graph, and the
graph application) and the runtime execution (for example,
other concurrent transactions). It is impossible to know the
likelihood of data races in advance. However, there is a strong
correlation (c.f. Figure 6) between the size of the transaction
and the number of data races. Thus, the user of TUFAST
can provide an optional hint on the transaction size in the
BEGIN(SIZE). This hint comes from the user’s domain
knowledge on the expected size of the transaction, which is
usually proportional to the degree of the vertex. Our hybrid
transactional memory TUFAST routes transactions base on
these optional size hint.

We illustrate the work flow of the transaction routing in
Figure 10. We start from the H mode unless the size of
transaction makes H/O mode impossible (then we proceed
with L mode). If the H mode fails, we retry several times, as
suggested by Intel [13]. After several retries, we proceed to the
next mode: O mode. However, when an H mode abort is due to
capacity overflow, we do not retry and instead directly proceed
to O mode, because an abort caused by capacity overflow
will repeat on retry. The O mode executes the transaction in
optimistic scheduler accelerated by HTM. In the O mode, if
the transaction has been aborted, we try to restart it, with an
adjustment to the parameter period. If all retries chances
are exhausted, we proceed to the final mode, L mode, which
utilizes locks to schedule the transaction.

D. Parameter Selection

In HyTM TUFAST there are several performance critical
parameters. We discuss how they affect the performance of
TUFAST, and how to choose appropriate values for them. We

choose other parameters which do not have severe impacts on
the performance base on empirical studies.

The first parameter is the length of the HTM in O mode
(c.f. Figure 9) peroid. We wrap every peroid-th operations
in one HTM transaction. We use HTM to detect possible
data races as early as possible. An early detection of data
race reduces the unnecessary works because an optimistic
transaction with data race cannot pass later validation phase.
Therefore, we terminate the transaction when we detect the
data race. For the best effect of detection ability, the period
shall be as large as possible. On the other hand, the bigger the
HTM transaction is, the higher possibility that it will abort.
When it aborts, all uncommitted works are lost, and we have
to start from the beginning of the HTM transaction. Aborted
transaction wastes all efforts and we should avoid it. Base on
these two observations, a careful choice of period is critical.
What makes the choice harder is there is impossible to know
whether the next operation triggers abort until we execute it.
To analyze this problem, we propose a simplified model of
HTM abort. An ongoing HTM will abort on the next operation
with probability p. We reduce our problem to a threshold P :
we choose to proceed with the next read/write operation if
the number of uncommitted operations in the current HTM is
less than or equal to P ; and choose to commit otherwise. The
expectation of committed operation is

(1− p)P × P

We find the maximal value of this expectation is achieved at
P = [1+p

p] ([·] represents the nearest integer). Therefore, we
start with the period as P . If O mode fails to complete
with the current period, we fall back and re-execute the O
mode with a period equals to period/2. We stop reducing
period when period is less than 100 and proceed with L
mode. By continuously monitoring p during the execution, we
enforce this strategy adaptively base on the recent workload.

Another performance-critical parameter is the numbers of
retries before we give up H mode. If a transaction is aborted
due to conflict, it still has a chance to success on a retry.
However, it is a waste of time if we retry too many times.
The retry threshold depends on both the cost of retry and
the success probability. The cost of retry mainly depends
on the cost of memory access. Before the first-time HTM
execution, with high probability that the requested data are
not in the cache. Therefore, the first-time accesses are mostly
cache miss accesses. After the first execution (and an abort),
the successfully executed part of the transaction is already
in the L1 cache line. Accessing them again is much cheaper
than the initial access. As suggested by a experimental study
[14], loading data from memory may costs 355 cycles, and
loading data form L2 and L3 cache costs 11 and 44 cycles,
respectively. Therefore, it is worth to retry the HTM for several
times before giving up and moving to the next phase. We
study how the number of retries affect the performance in
experimental studies.

E. Lock Implementation

L mode directly uses locks to prevent data races. H mode
and O mode also request locks. Generally speaking, lock
requests cause deadlock. We use deadlock detection to avoid
possible deadlocks. If thread A is waiting a lock which is
currently being hold by thread B, we say A waits B. Deadlock
detection prevent cyclic wait relationship to ensure dead-
lock does not happen. Deadlock detection is a relative time-
consuming operation because each time the detector checks all
live wait relationships. Being said so, we observe that H mode
and O mode do not need deadlock detection, because they only
try to request locks. If they cannot successfully acquire the
requested lock, they just abort. In other words, they cannot be
a part of the “hold and wait” deadlock scenario because they
do not wait for other locks. Thus, we only perform deadlock
detection on transactions executed under L mode. In a large-
scale graph, according to the “power-law” degree distribution,
the number of vertices that have large degrees (and being
executed by L mode) is small.

We could also save the deadlock detection in certain scenar-
ios. Although a TM user can access memory arbitrarily, we
observe that in real graph applications, transactions usually
access their neighbors in a certain patten: iterate over all
neighbors (in an unordered way). For example, greedy graph
matching (c.f. Figure 1) inspects all neighbors to find an
unmatched one; Page Rank sums up all neighbors’ Page Rank
values; BFS updates all neighbors’ distance values. When a
graph application satisfies this access pattern, we can prevent
deadlock by deadlock prevention. The user assigns a global
order (usually the natural order of their IDs) to all vertices, and
access each vertex’s neighbors according to this order. Thus,
the locks are requested according to this order, and deadlock
will not occur. In this case, user can choose to disable the
deadlock detection.

V. RELATED WORK

Main Memory Transaction: The recent advance of main
memory database [15], [16], even main memory cloud [17]
stimulates both the theory and the practice of main memory
transaction processing. The Shore-MT [18], [19] team from
EPFL and Hyper [20] team from TU München propose several
new transaction processing methods during the research of
their projects. Other academic transaction processing systems,
to name a few, include VLL [21], Silo [22], ERMIA [23],
MOCC [24], THEDB [25], Quro [26], BCC [27], Orthrus [28],
IC3 [29], TicToc [30]. Industry also adopts main memory
transaction processing in their products including Microsoft
Hekaton [31], [32], PostgreSQL [33] and SAP HANA [34].
Some of them try to address the problem of skewed access
pattern problem by identifying cold and hot records. However,
none of them solves the problem of highly skewed degree
distribution (i.e. transaction size). Consider a transaction which
accesses 106 cold data. The existing schedulers classify the
cold data as low conflict ones and process them via optimistic
(sub-)schedulers. However, we argue they failed to take the

transaction size into consideration. Even it is less likely to
conflict on cold data, a huge number of them still causes
considerably high conflict rate of the transaction itself.

HyTM: First proposed in Herlily et al. [35], transactional
memory (TM) has been an active research topic for the past
two decades. Theory of TM and historical designs can be
found in books [36] and [37]. Representative HyTM protocols
include SigTM [38], HyTM [39], Hybrid NOrec [40], and
Invyswell [41]. However, similar to main-memory transaction
schedulers, these HyTMs that are not targeted towards graph
application fail to address the problem of degree distribution
skew as discussed above.

Besta et al. [42] proposes Atomic Active Messages (AAM)
and utilizes it to build graph applications. Although AAM is
implemented and accelerated by HTM, the semantic of AAM
is close to compare-and-swap (CAS) instead of TM. Thus it
only serves as a primitive tool and cannot be used to parallelize
graph applications directly.

Graph Processing in Single Server: Besides the graph sys-
tems Ligra [1] and Galois [2] introduced in previous sections,
in recent years researchers and industry pioneers proposed
several graph systems which are capable to process graphs
efficiently in a single server, including Graphspan [43], Mosaic
[44], Graphene [45], FlashGraph [46], GraphQ [47], Chaos
[48], TurboGraph [49], and GraphChi [50]. However these
systems store and process graphs in SSD, HDD or NVRAM.
The design choice of secondary storage based system is not
same as the design choice of in-memory systems, and as
shown in following experimental studies, the performance of
secondary storage systems is not close to in-memory systems
due to slower throughput and higher latency.

VI. EXPERIMENT

We briefly introduce the experimental studies we conducted
and analyze our results in details later. First, in Section VI-A,
we compare TUFAST with other graph processing systems,
including main-memory graph systems and distributed ones on
graph application workloads. We then compare TUFAST with
other classical transactional schedulers and state-of-the-art
HTM-based schedulers in Section VI-B. TUFAST outperforms
other schedulers because it carefully schedule vertex jobs to
sub-schedulers tailored for various probability of conflicts.
We then analyze the execution trace of TUFAST to better
understand its performance in Section VI-C and test the
parameter sensitivity of TUFAST in Section VI-D.

Setting: We conducted extensive experiments on a server with
two Intel Xeon E5 26702 V2 @ 2.30GHz CPUs and 48GB
main memory. All experiments are repeated 10 times and the
average value is reported. We compile the programs using
GCC 4.8.2 and Intel TBB 4.4.

Real large graphs: Four real large graph datasets are used
in the experiments (Table II). The dataset friendster is

2Although Intel disabled the HTM instruction temporarily, it can be enabled
by configuring model specific registers [51].

TuFast STM Ligra Galois Polymer

10
0

10
1

10
2

10
3

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(a) PageRank

10
-3

10
-2

10
-1

10
0

10
1

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(b) BFS

10
0

10
1

10
2

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(c) Components

10
-2

10
-1

10
0

10
1

10
2

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(d) Triangle

10
-2

10
-1

10
0

10
1

10
2

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(e) Bellman-Ford

10
-1

10
0

10
1

10
2

10
3

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(f) MIS

Fig. 11: Performance compared with single multi-core systems

Dataset |V | |E| |E|/|V | Size
friendster 65.6M 1806M 27.53 16.0G
twitter-mpi 52.6M 1963M 38.50 17.0G
sk-2005 50.6M 1949M 38.50 17.0G
uk-2007-05 105.8M 3738M 35.31 33.0G

TABLE II: Four real graph datasets

an on-line game network. Two people are connected by an
edge if they are friends. It is available at SNAP.3 The dataset
twitter-mpi is a follower network in Twitter, crawled by MPI
in 2010.4 All other datasets are large social networks graph
and web page graphs used in different domains which can be
downloaded from WebGraph.5 The statistics of datasets are
shown in Table II.

A. Parallelization Performance

We measure TuFast’s performance on graph applications,
and compare it with other systems. We conduct experiments on
Page Rank, breadth-first search (BFS), weakly connected com-
ponents (Components), triangle counting (Triangle), Bellman-
Ford shortest path, and minimal independent set (MIS). For the
shortest path problem, we generate the edge weight randomly.
For the MIS problem, we convert our graphs into undirected
ones.

3http://snap.stanford.edu/data
4http://twitter.mpi-sws.org/
5http://law.di.unimi.it/datasets.php

TuFast PowerGraph PowerLyra GraphChi

10
0

10
1

10
2

10
3

10
4

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(a) PageRank

10
-1

10
0

10
1

10
2

10
3

10
4

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(b) BFS

10
0

10
1

10
2

10
3

10
4

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(c) Components

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(d) Triangle

10
0

10
1

10
2

10
3

10
4

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(e) Bellman-Ford

10
0

10
1

10
2

10
3

friendster
sk-2005

twitter-mpi
uk2007

s
e
c
o
n
d
s

(f) MIS

Fig. 12: Performance compared with graph systems on cluster

We first focus on single multi-core servers. Besides our
solution TUFAST, we also integrate it with a software TM
(STM) solution TinySTM 1.0.5 [52], [53] by replacing all
hardware instructions by software counterparts. We also con-
duct experiments on state-of-art multi-core graph systems
Ligra [1], Galois [2], and a NUMA-aware graph computing
system Polymer [54]. Ligra utilizes a message passing systems
similar to Pregel [4]. Each worker, which is usually a vertex,
communicate with other workers via messages. Messages are
periodically propagated and delivered by the system in a
batched way. Batched communication amortize the commu-
nication overheads to increase the performance of the system.
However, it suffers from other problems, like message queue
maintenance cost, extra memory footprint, message staleness,
lack of global information, etc. Galois is a mixed system: its
default configuration prevents data races using locks like our L
mode. However, it tries to eliminate the locks by static program
analysis, and discard locks if they are not unnecessary (for
example, embarrassingly parallel).

We report the results in Figure 11. TUFAST outperforms
other systems with one or two orders of magnitude on
some algorithms, and performs close to them on the others.
The performance depends on the communication pattern of
workload. For example, BFS requires the system to visit all
vertices. In this case, the system bottleneck is the bandwidth
of memory because there is virtually no computation. Nor
can a system expedite computation by jumping to a far-

away vertex. Therefore, a system with less overheads achieves
better performance. The performance of the systems are close
and Ligra outperforms on dataset twitter-mpi due to lower
overheads. However, Ligra fails to finish on dataset uk-2007-
05 because its architecture requires additional memory to serve
as message buffers. In Triangle algorithm, each vertex only
require information from its neighbors. The system does not
need to perform global communication to finish the task. In
this case, systems with lower overheads perform better. On the
contrary, the algorithm PageRank requires subtle coordination:
the target of the system is to meet a convergence condition.
Informally speaking, systems that spread information faster
have advantage. In this case, TUFAST outperforms Ligra and
Galois because TUFAST supports in-place-update. Therefore,
workers always read the most fresh information as results of
other workers’ recent updates. They do not have to wait until
next super-step to read updates, which is the case in BSP-like
systems like Ligra. Expedited information propagation plays
an important role in Components and MIS as well. Vertices in
Components need newest component ID from their neighbors.
And MIS jobs need to know whether their neighbors are cho-
sen or not. In these cases TUFAST outperforms other systems
by up to two orders of magnitude. Polymer optimizes NUMA
memory access, but suffers from same performance issue that
slows down Ligra or Galois. TUFAST always outperforms
STM due to the lower overhead.

We also conducted experiments on a cluster with 16 node
Amazon EC2 m3.2xlarge (8 cores, 30GB memory). We use
PowerGraph [3], a distributed graph system and PowerLyra
[55], an optimized PowerGraph. Besides them, we perform
experimental studies on GraphChi [50] on a r3.8xlarge
instance with 32 cores, 244GB memory and 320GB SSD. The
memory size for GraphChi is set to 200GB, which is more than
sufficient to store the graphs and other auxiliary data structures
in memory entirely. We exclude all I/O time from the results
reported. We compare TUFAST’s performance in multi-core
server and other three systems’ performance in cluster or large-
memory server and illustrate them in Figure 12. We observe
TUFAST outperforms other systems by one to four orders of
magnitude. Distributed solutions PowerGraph and PowerLyra
fail to complete in some experiments due to memory capacity
limitation. Although the cluster has sufficient resources (CPU
and memory), these systems cannot fully utilize the resources
because graph applications’ computing bottleneck is the com-
munication. GraphChi fails to utilize the memory efficiently
although memory is sufficient.

B. Scheduler Throughput
Besides experimental studies on real graph applications, we

measure the throughput of TUFAST’s scheduler and state-of-
the-art schedulers.

Workloads: Based on the access pattern of real applications,
we design a benchmark has two abstract workloads on differ-
ent scope of read/write operations. Each transaction accesses a
vertex and its all neighbors. One workload reads vertex v and
its neighbors and only writes the v itself, the other reads and

2PL OCC H-TO HSync STM Tufast

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(a) friendster

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(b) sk-2005

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(c) twitter-mpi

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0
18.0

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(d) uk-2007-05

Fig. 13: Throughput on RM (x-axis for number of cores, y axis for throughput)

2PL OCC H-TO HSync STM Tufast

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(a) friendster

0.0

5.0

10.0

15.0

20.0

25.0

30.0

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(b) sk-2005

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(c) twitter-mpi

0.0

5.0

10.0

15.0

20.0

25.0

30.0

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(d) uk-2007-05

Fig. 14: Throughput on RW (x-axis for number of cores, y axis for throughput)

writes v and its neighbors. We note them RM (Read Mostly)
and RW (Read and Write).

Schedulers: We implement two-phase lock (2PL) and an
optimistic transaction scheduler Silo optimized for main-
memory database (OCC) [22]. We adopt a software transac-
tional memory library TinySTM (STM) [52], [53], the hybrid
scheduler HSync (HSync) [56]. We also compare other HTM-
based schedulers, including the HTM-accelerated timestamp
ordering (H-TO) [10].

The throughput of transaction schedulers are illustrated
in Figure 13 and Figure 14, for workload RM and RW
respectively. From the figures, we find our three-mode solution
TUFAST outperforms all others. For RM, TUFAST is 5.00x
to 8.25x faster than the fastest of other solutions. For RW,
TUFAST is 2.03x to 39.46x faster than them.

Besides the confirmation of TUFAST’s superior perfor-
mance, we also discover several interesting trends. First, for
all schedulers, the hybrid ones (TUFAST, HSync) outperform
homogeneous ones (2PL, OCC, STM and HTO). As discussed
in previous sections, this is due to strong skewness in the
graph degree distribution. Homogeneous schedulers are not
able to process high degree vertices, medium degree vertices
and low degree vertices in efficient ways simultaneously. Since
all of these three class of transactions have strong impacts
on the overall efficiency, failing to handle anyone hurts the
throughput. Second, we find HTM-based schedulers performs
better than non-HTM ones. This is due to the low overhead
of HTM.

C. Mode Breakdown

To analyze the execution trace of three modes and to
better understand the root of TUFAST’s superior performance,

we group and aggregate the execution time of committed
transaction by mode. We illustrate the results in Figure 15. In
each figure, H represents the transactions executed in mode
H. O represents the transactions executed in mode O and
successfully committed at the first time. O+ represents the
transactions executed in mode O which aborted in the first trial
but successfully committed after an adjustment of peroid.
O2L represents the transactions executed in mode O and failed,
then finally proceeded in mode L. L represents the transactions
executed in mode L. For both workload RM and RW, we
measure the number of transactions in every class (in 15a and
15c) and the total workload of transactions (i.e. the count of
transactions’ operations) in each class (in 15b and 15d).

We discuss the Figure 15b while the other figures are
similar. In the figure we find the mode H is a major part of
the total workloads. With the help of HTM, we can efficiently
process the transactions without paying too much overhead.
This helps TUFAST save more time. On the other hand,
transactions executed in mode O (O and O+) are also a major
part of the workload. Although these transactions do not fit
within the HTM’s capacity limitation, their sizes are close to
the limitation. If we had gave up using HTM and process
them via traditional OCC or 2PL schedulers instead, we may
pay extra overheads that should have been saved by HTM.
This also shows in a HTM-enabled system, how to make
the maximum utilization of the cost-free HTM is the key
to success. Last, we emphasize the transactions processed by
mode L (including O2L and L). Although their workload is
a small part of total workload, their sizes could be as big as
millions. Optimistic schedulers are not able to handle such big
transactions and we must protect them using locks.

0%

20%

40%

60%

80%

100%

friendster
sk-2005

twitter-mpi
uk-2007

H
O

O+
O2L

L

(a) Num. of transactions (RM)

0%

20%

40%

60%

80%

100%

friendster
sk-2005

twitter-mpi
uk-2007

H
O

O+
O2L

L

(b) Total workload (RM)

0%

20%

40%

60%

80%

100%

friendster
sk-2005

twitter-mpi
uk-2007

H
O

O+
O2L

L

(c) Num. of transactions (RW)

0%

20%

40%

60%

80%

100%

friendster
sk-2005

twitter-mpi
uk-2007

H
O

O+
O2L

L

(d) Total workload (RW)

Fig. 15: Proportion of modes

100 200 300 500 1000

0

5

10

15

20

25

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(a) RM: period

0

5

10

15

20

25

30

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(b) RW: period
10 30 100 300 1000

0
2
4
6
8

10
12
14
16
18
20

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(c) RM: retry

0

5

10

15

20

25

30

1 4 8 16 24 32 48

T
h
ro

u
g
h
p
u
t
(*

1
0

6
/s

e
c
)

Number of cores

(d) RW: retry

Fig. 16: Parameter Sensitivity

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0 1 2 3 4 5
 0

 200

 400

 600

 800

 1000

T
h

ro
u

g
h

p
u

t
(*

1
0

6
/s

e
c
)

P
e

ri
o

d

Time (s)

period
Tufast

unadjusted

Fig. 17: Parameter-aware and parameter-ignorance solution:
PR on uk-2007-05.

D. Parameter Selection

In TUFAST, there are two performance-critical parameters:
the period in mode O, which determines the length of each
fragment; and the number of retries before TUFAST give up
mode H.

We first test the parameter sensitivity. We use the benchmark
presented in Section VI-B, and conduct experiments on dataset
uk-2007-05. The results on other datasets are similar. In
Figure 16a and 16b we illustrate the throughput when we keep
the retry times to 100 and vary the period from 100 to 1000.
In Figure 16c and 16d we fix the period as 100, and vary
the retry times from 10 to 1000. We observe our parallelizer
TUFAST is not sensitive to “medium” parameters, specifically
when period is at least 300 and retry is at least 100.

The above experimental study shows TUFAST is insensitive
to parameter selection when the workload is static. However,
in real graph application, the workload varies as the algorithm
makes progress. For example, in PR algorithm, initially all
vertices are active. As the algorithm progresses, some loosely
connected vertices’ Page Rank values converge to stable ones.
Thus these vertices vote to halt and do not participate in
the computing. Remaining vertices (in a densely connected
subgraph) continue computing. The remaining vertices tend
to have high degrees and they are likely to be cause data
races more frequently. Thus, a static period may not always
be the best choice throughout the computation. We conduct
experiments on dataset uk-2007-05 with PageRank algorithm.
We report the throughput with static parameter (1000), the
throughput with an adaptive period (c.f. Section IV-D) and the
adaptive period itself in Figure 17. We observe adaptive param-
eter selection increases the throughput significantly, compared
with the static parameter.

VII. CONCLUSION

How to efficiently process various graph analytics jobs on
huge size graphs is one of the most important problems in th
“big data” era. Although HTM offers attractable transaction
semantics for free, the size limitation hinders its application on
graph problems. In this paper, we propose a HyTM TUFAST.
The center of the design is to route transactions with different
sizes to different sub- schedulers so each scheduler works
within its favorite conflict rate zone. We confirm TUFAST’s
superior performance with extensive experimental studies.

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their valu-
able comments. The work was supported by grant of Research
Grants Council of the Hong Kong SAR, China No. 14221716,
14203618, 12259116, 12232716, 12201518, and grant of Na-
tional Natural Science Foundation of China No. 61602395.

REFERENCES

[1] J. Shun and G. E. Blelloch. Ligra: A lightweight graph processing
framework for shared memory. PPoPP, pp. 135–146, 2013.

[2] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure
for graph analytics. SOSP, pp. 456–471, 2013.

[3] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Power-
graph: Distributed graph-parallel computation on natural graphs. OSDI,
pp. 17–30, 2012.

[4] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: A system for large-scale graph processing.
SIGMOD, pp. 135–146, 2010.

[5] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J.
Anderson, S. G. Vadlamudi, D. Das, and P. Dubey. Graphmat: High
performance graph analytics made productive. Proc. VLDB Endow.,
8(11):1214–1225, July 2015.

[6] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, Z. Zheng, B. Zhang, Y. Cao, and
C. Tian. Parallelizing sequential graph computations. SIGMOD ’17, pp.
495–510, 2017.

[7] W. Fan, P. Lu, X. Luo, J. Xu, Q. Yin, W. Yu, and R. Xu. Adaptive
asynchronous parallelization of graph algorithms. SIGMOD ’18, pp.
1141–1156, 2018.

[8] Shortest path faster algorithm. https://en.wikipedia.org/wiki/Shortest
Path Faster Algorithm, 2018. [Online; accessed 29-May-2018].

[9] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Priter: A distributed framework
for prioritized iterative computations. SOCC ’11, pp. 13:1–13:14, 2011.

[10] V. Leis, A. Kemper, and T. Neumann. Exploiting hardware transactional
memory in main-memory databases. ICDE, pp. 580–591, 2014.

[11] A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-law distributions
in empirical data. SIAM Rev., 51(4):661–703, Nov. 2009.

[12] G. Weikum and G. Vossen. Transactional Information Systems: Theory,
Algorithms, and the Practice of Concurrency Control and Recovery.
Morgan Kaufmann Publishers Inc., 2001.

[13] Intel Corporation. Intel R© 64 and IA-32 Architectures Optimization
Reference Manual. Number 248966-029. March 2014.

[14] T. David, R. Guerraoui, and V. Trigonakis. Everything you always
wanted to know about synchronization but were afraid to ask. SOSP,
pp. 33–48, 2013.

[15] H. Plattner and A. Zeier. In-Memory Database Management: Technology
and Applications. Springer, 2nd edition, 2011.

[16] P.-A. Larson. Special issue on main-memory database systems. IEEE
Bulletin of the Technical Committee on Data Engineering, 36, 2013.

[17] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich,
D. Mazières, S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S. M.
Rumble, E. Stratmann, and R. Stutsman. The case for RAMClouds:
Scalable high-performance storage entirely in dram. SIGOPS Oper. Syst.
Rev., 43(4):92–105, Jan. 2010.

[18] A. Ailamaki, R. Johnson, I. Pandis, and P. Tözün. Toward scalable
transaction processing: Evolution of Shore-MT. Proc. VLDB Endow.,
6(11):1192–1193, Aug. 2013.

[19] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi.
Shore-mt: A scalable storage manager for the multicore era. EDBT,
pp. 24–35, 2009.

[20] A. Kemper and T. Neumann. Hyper: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. ICDE,
pp. 195–206, 2011.

[21] K. Ren, A. Thomson, and D. J. Abadi. Lightweight locking for main
memory database systems. Proc. VLDB Endow., 6(2):145–156, Dec.
2012.

[22] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy
transactions in multicore in-memory databases. SOSP, pp. 18–32, 2013.

[23] K. Kim, T. Wang, R. Johnson, and I. Pandis. Ermia: Fast memory-
optimized database system for heterogeneous workloads. SIGMOD ’16,
pp. 1675–1687, 2016.

[24] T. Wang and H. Kimura. Mostly-optimistic concurrency control for
highly contended dynamic workloads on a thousand cores. Proc. VLDB
Endow., 10(1):49–60, Oct. 2016.

[25] Y. Wu, C.-Y. Chan, and K.-L. Tan. Transaction healing: Scaling
optimistic concurrency control on multicores. SIGMOD ’16, pp. 1689–
1704, 2016.

[26] C. Yan and A. Cheung. Leveraging lock contention to improve oltp
application performance. Proc. VLDB Endow., 9(5):444–455, Jan. 2016.

[27] Y. Yuan, K. Wang, R. Lee, X. Ding, J. Xing, S. Blanas, and X. Zhang.
Bcc: Reducing false aborts in optimistic concurrency control with low
cost for in-memory databases. Proc. VLDB Endow., 9(6):504–515, Jan.
2016.

[28] K. Ren, J. M. Faleiro, and D. J. Abadi. Design principles for scaling
multi-core oltp under high contention. SIGMOD ’16, pp. 1583–1598,
2016.

[29] Z. Wang, S. Mu, Y. Cui, H. Yi, H. Chen, and J. Li. Scaling multicore
databases via constrained parallel execution. SIGMOD ’16, pp. 1643–
1658, 2016.

[30] X. Yu, A. Pavlo, D. Sanchez, and S. Devadas. Tictoc: Time traveling
optimistic concurrency control. SIGMOD ’16, pp. 1629–1642, 2016.

[31] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-
pher, N. Verma, and M. Zwilling. Hekaton: SQL server ’s memory-
optimized OLTP engine. SIGMOD, pp. 1243–1254, 2013.

[32] P.-A. Larson, S. Blanas, C. Diaconu, C. Freedman, J. M. Patel, and
M. Zwilling. High-performance concurrency control mechanisms for
main-memory databases. Proc. VLDB Endow., 5(4):298–309, Dec. 2011.

[33] T. Horikawa. Latch-free data structures for DBMS: Design, implemen-
tation, and evaluation. SIGMOD, pp. 409–420, 2013.

[34] V. Sikka, F. Färber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhövd.
Efficient transaction processing in sap hana database: The end of a
column store myth. SIGMOD, pp. 731–742, 2012.

[35] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural
support for lock-free data structures. SIGARCH Comput. Archit. News,
21(2):289–300, May 1993.

[36] T. Harris, J. Larus, and R. Rajwar. Transactional Memory. Morgan &
Claypool Publishers, 2nd edition, 2010.

[37] R. Guerraoui and M. Kapalka. Principles of Transactional Memory.
Morgan & Claypool Publishers, 2010.

[38] C. C. Minh, M. Trautmann, J. Chung, A. McDonald, N. Bronson,
J. Casper, C. Kozyrakis, and K. Olukotun. An effective hybrid transac-
tional memory system with strong isolation guarantees. ISCA ’07, pp.
69–80, 2007.

[39] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum. Hybrid transactional memory. ASPLOS XII, pp. 336–346, 2006.

[40] L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott,
and M. F. Spear. Hybrid norec: A case study in the effectiveness of best
effort hardware transactional memory. ASPLOS XVI, pp. 39–52, 2011.

[41] I. Calciu, J. Gottschlich, T. Shpeisman, G. Pokam, and M. Herlihy.
Invyswell: A hybrid transactional memory for haswell’s restricted trans-
actional memory. PACT ’14, pp. 187–200, 2014.

[42] M. Besta and T. Hoefler. Accelerating irregular computations with
hardware transactional memory and active messages. HPDC ’15, pp.
161–172, 2015.

[43] K. Wang, A. Hussain, Z. Zuo, G. Xu, and A. Amiri Sani. Graspan:
A single-machine disk-based graph system for interprocedural static
analyses of large-scale systems code. ASPLOS ’17, pp. 389–404, 2017.

[44] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim. Mosaic:
Processing a trillion-edge graph on a single machine. EuroSys ’17, pp.
527–543, 2017.

[45] H. Liu and H. H. Huang. Graphene: Fine-grained io management
for graph computing. 15th USENIX Conference on File and Storage
Technologies (FAST 17), pp. 285–300, 2017.

[46] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and
A. S. Szalay. Flashgraph: Processing billion-node graphs on an array
of commodity ssds. 13th USENIX Conference on File and Storage
Technologies (FAST 15), pp. 45–58, 2015.

[47] K. Wang, G. Xu, Z. Su, and Y. D. Liu. Graphq: Graph query processing
with abstraction refinement—scalable and programmable analytics over
very large graphs on a single pc. 2015 USENIX Annual Technical
Conference (USENIX ATC 15), pp. 387–401, 2015.

[48] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel. Chaos:
Scale-out graph processing from secondary storage. SOSP ’15, pp. 410–
424, 2015.

[49] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and H. Yu.
Turbograph: A fast parallel graph engine handling billion-scale graphs
in a single pc. KDD ’13, pp. 77–85, 2013.

[50] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph
computation on just a pc. OSDI, pp. 31–46, 2012.

[51] X. Wei, J. Shi, Y. Chen, R. Chen, and H. Chen. Fast in-memory
transaction processing using rdma and htm. SOSP ’15, pp. 87–104,
2015.

[52] P. Felber, C. Fetzer, and T. Riegel. Dynamic performance tuning of
word-based software transactional memory. PPoPP ’08, pp. 237–246,
2008.

[53] P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-based software
transactional memory. IEEE Transactions on Parallel and Distributed
Systems, 21(12):1793–1807, 2010.

[54] K. Zhang, R. Chen, and H. Chen. Numa-aware graph-structured
analytics. PPoPP 2015, pp. 183–193, 2015.

[55] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra: Differentiated graph
computation and partitioning on skewed graphs. EuroSys, 2015.

[56] Z. Shang, F. Li, J. X. Yu, Z. Zhang, and H. Cheng. Graph analytics
through fine-grained parallelism. SIGMOD ’16, pp. 463–478, 2016.

