
GraphPhi: Efficient Parallel Graph Processing on Emerging
Throughput-oriented Architectures

Zhen Peng
College of William & Mary

Williamsburg, Virginia

zpeng01@email.wm.edu

Alexander Powell
College of William & Mary

Williamsburg, Virginia

ajpowell@email.wm.edu

Bo Wu
Colorado School of Mines

Golden, Colorado

bwu@mines.edu

Tekin Bicer
Argonne National Laboratory

Lemont, Illinois

tbicer@anl.gov

Bin Ren
College of William & Mary

Williamsburg, Virginia

bren@cs.wm.edu

ABSTRACT

Modern parallel architecture design has increasingly turned to

throughput-oriented devices to address concerns about energy effi-

ciency and power consumption. However, graph applications can-

not tap into the full potential of such architectures because of highly

unstructured computations and irregular memory accesses. In this

paper, we present GraphPhi, a new approach to graph processing

on emerging Intel Xeon Phi-like architectures, by addressing the

restrictions of migrating existing graph processing frameworks on

shared-memory multi-core CPUs to this new architecture.

Specifically, GraphPhi consists of 1) an optimized hierarchically

blocked graph representation to enhance the data locality for both

edges and vertices within and among threads, 2) a hybrid vertex-

centric and edge-centric execution to efficiently find and process ac-

tive edges, and 3) a uniformMIMD-SIMD scheduler integrated with

a lock-free update support to achieve both good thread-level load

balance and SIMD-level utilization. Besides, our efficient MIMD-

SIMD execution is capable of hiding memory latency by increasing

the number of concurrent memory access requests, thus benefiting

more from the latest High-Bandwidth Memory technique. We eval-

uate our GraphPhi on six graph processing applications. Compared

to two state-of-the-art shared-memory graph processing frame-

works, it results in speedups up to 4X and 35X , respectively.

CCS CONCEPTS

• Computing methodologies→ Parallel computing method-

ologies;

KEYWORDS

Graph Processing, Xeon Phi, MIMD-SIMD Execution

ACM Reference Format:

Zhen Peng, Alexander Powell, BoWu, Tekin Bicer, and Bin Ren. 2018. Graph-

Phi: Efficient Parallel Graph Processing on Emerging Throughput-oriented

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

PACT ’18, November 1–4, 2018, Limassol, Cyprus

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5986-3/18/11. . . $15.00
https://doi.org/10.1145/3243176.3243205

Architectures. In International conference on Parallel Architectures and Com-

pilation Techniques (PACT ’18), November 1–4, 2018, Limassol, Cyprus. ACM,

New York, NY, USA, 14 pages. https://doi.org/10.1145/3243176.3243205

1 INTRODUCTION

Throughput-oriented architectures equip many-core processors

with wide SIMD (Single Instruction, Multiple Data) processing

units to provide massive parallelism and high energy efficiency. For

instance, seven of the top ten supercomputers around the world as

of June 2018 1 rely on the tremendous throughput offered by either

GPUs or Xeon Phis. This trend is expected to continue through the

whole post-Moore’s law era to build future exascale systems.

Among the throughput-oriented architectures, Intel Xeon Phi is

particularly attractive due to two reasons. First, the x86-compatible

Xeon Phi-like processors allow running operating systems natively,

and support various parallelization tools, libraries, and program-

ming models, including OpenMP [12], MPI [16], CilkPlus [8] and

Thread Building Blocks [37], making them friendly to program-

mers [21]. Second, the latest Xeon Phi, Knights Landing [41], can

be used as the host processor, which automatically benefits from a

large host memory hierarchy and eliminates data communication

overhead through the PCIe bus.

It is promising to use the Intel Xeon Phi architecture to accelerate

graph analytics, which plays a critical role in various domains,

including bioinformatics, social networks, machine learning, and

data mining. Unfortunately, it is not straightforward to map such

graph analysis applications onto throughput-oriented architectures

due to the severe mismatch between the significant irregularity

shown by graph algorithms and the underlying many-core and

vector-based processing.

Specifically, efficient graph processing on modern throughput-

oriented architectures brings forward three challenges. First, dif-

ferent processing units may process uneven amounts of workloads

while traversing different portions of the graph. Second, the SIMD

unit cannot automatically resolve write conflicts (i.e., multiple SIMD

lanes by executing the same instruction write to the same memory

location), but the compiler or programmer cannot efficiently elimi-

nate write conflicts due to the irregular accesses. A typical conserva-

tive approach which adds locks to synchronize the threads substan-

tially degrades program scalability. Finally, the random memory

1https://www.top500.org/lists/2018/06/

1

PACT ’18, November 1–4, 2018, Limassol, Cyprus Z. Peng et al.

accesses significantly decrease cache performance and memory

throughput, hence underutilizing the tremendous computational

resources.

There exist several graph processing frameworks and libraries

based on popular many-core processors such as GPUs [23, 44] and

early versions of Xeon Phis [11, 22, 29]. In addition, many other

graph processing frameworks [33, 40] designed for shared-memory

multi-core CPUs are also capable of running on Xeon Phis ow-

ing to their x86-compatibility. However, merely applying these

techniques to emerging Xeon Phi architectures directly without

any further optimization results in suboptimal performance. First,

most of these efforts target either MIMD (Multiple Instruction,

Multiple Data) or SIMD executions but not both by assuming a uni-

form computation capability of different processing units. However,

appropriately combining coarse-grained MIMD parallelism with

fine-grained SIMD parallelism is critical to achieving optimal per-

formance for Xeon Phi-like architectures. Second, the GPU-based

frameworks assume hardware support to handle SIMD divergence

and SIMD level conflicts but lack global synchronization due to

the limitation of the hardware. However, Xeon Phi architectures

have limited SIMD divergence support, no SIMD level locking, but

cheap global synchronization. Third, none of the previous work

has studied the interplay between optimized graph processing and

the newly introduced High-Bandwidth Memory (HBM).

This paper presents the GraphPhi optimizing framework to

bridge graph processing and Intel Xeon Phi-like many-core proces-

sors. Our insight is that the whole graph processing system stack,

from data representation to the execution model to job schedul-

ing, should match the unique features of the hardware. Specifically,

GraphPhi employs a hierarchical data organization for improving

locality and simplifying SIMD processing. It exploits both coarse-

grained MIMD and fine-grained SIMD parallelism in a cache-aware,

lock-free, load-balanced, and SIMD-efficient manner for irregular

graph processing. Moreover, since GraphPhi’s hybrid MIMD and

SIMD execution significantly increases the number of concurrent

memory access requests, it changes latency-bound graph applica-

tions to bandwidth-bound ones, hence benefiting more from the

emerging HBM techniques.

Overall, this paper has the following contributions:

• Describing an optimized hierarchical blocked graph represen-
tation (with tiles/stripes/groups) to enhance the edges’ spatial

data locality, and the vertices’ temporal and spatial data locality

within and among threads;

• Presenting a hybrid graph processing to efficiently find active
edges by a vertex-centric approach and process edges in an

edge-centric manner;

• Designing a uniform MIMD-SIMD scheduler to improve both
thread-level load balance and SIMD-level utilization and lock-

free update support on both thread and SIMD levels.

We implement GraphPhi and evaluate it on six graph applications

with six input data sets, achieving speedups up to 4X and 35X
comparing to two state-of-the-art shared-memory graph processing

frameworks, respectively. Moreover, we empirically prove that our

efficient MIMD-SIMD execution is capable of benefiting more from

the latest HBM techniques.

2 BACKGROUND AND MOTIVATION

Recently, many graph processing frameworks and libraries have

been developed to improve the performance of graph applications

on various platforms. This section introduces the basic graph pro-

cessing models used in these efforts and describes our focused

architecture—latest Xeon Phi. Then it identifies the significant chal-

lenges that are rooted in the mismatch between graph processing

and the hardware features. It also explains the difference between

our work and previous work in GPU-based frameworks.

2.1 Graph Processing

Among the various proposed graph processing model, the two most

relevant ones are vertex-centric and edge-centric models. We hence

discuss them in detail.

The Vertex-centric model, also known as the “think-like-a-

vertex" model, has been broadly adopted by many parallel graph

processing frameworks [23, 24, 40]. Its original implementation in

Google Pregel [30] demonstrates the model’s simplicity, produc-

tivity, and strong scalability. It models parallel graph processing

as an iterative process, which in each iteration traverses the active

vertices in the frontier, processes their incoming and/or out-going

edges, and updates the frontier. The parallelization typically uses

the Bulk Synchronous Parallel (BSP) execution [43] and demands

a global synchronization at the end of each iteration. The whole

process terminates once the frontier becomes empty.

The edge-centric model was first proposed in X-Stream [38]. It

keeps streaming edge partitions, the processing of which involves a

gather stage and a scatter stage. The gather stage generates updates

out of the active edges; the scatter stage applies the updates to

the corresponding vertices. Similar to the vertex-centric model, a

global synchronization is needed after each round of edge partition

streaming to make sure that in the next round the gather stage can

see only the updates generated in the current round.

Vertex-centric and edge-centric models present different bene-

fits. Edge-centric processing avoids random accesses to edges by

streaming on them sequentially, thus resulting in better disk I/O

and memory performance. However, when only a small portion

of the edges generate updates, streaming all the edges incurs sub-

stantial overhead. Such problems can be resolved by vertex-centric

execution, which only processes the edges of active vertices but

may degrade edge loading performance. Therefore, some systems

like Mosaic [29] adopt a hybrid model to take advantage of both

worlds.

2.2 Intel Xeon Phi Architectures

The latest Xeon Phi, Knights Landing (KNL), leverages a new tile

design, which consists of two cores, two vector-processing units

(VPUs) per core, and a 1M of shared L2 cache. A KNL chip has 32

(active) tiles (i.e., 64 cores and 128 VPUs) connected by a 2-D mesh

interconnect. The cores are out-of-order and support all legacy x86

and x86-64 instructions. In addition, KNL has a High-Bandwidth

Memory (MCDRAM) that can offer up to 400+ GB/s bandwidth

in addition to the normal DDR4 main memory with > 90 GB/s

bandwidth according to the test on Stream Triad benchmark2.We

2https://www.cs.virginia.edu/stream/

2

GraphPhi PACT ’18, November 1–4, 2018, Limassol, Cyprus

use the KNL as the central processor, which directly connects to the

main memory hierarchy rather than the PCIe bus.

A Large Number of Concurrent Threads: Each KNL core runs

up to 4 hyper-threads, so the whole chip executes as many as

256 hardware threads that share the same DDR4 and MCDRAM

memory. On the one hand, the massive thread-level parallelism

has the potential to result in high processing throughput to take

advantage of the HBM. On the other hand, the architecture is highly

sensitive to latency-bounded workloads.

Powerful Vector ProcessingUnits (VPUs): The VPU on Knights

Landing is even more sophisticated than the one on Knights Cor-

ner (the previous version of the Xeon Phis architecture). Besides

the gather/scatter and mask operations support in AVX-512 Foun-

dation instructions (AVX-512F), the VPU implements more kinds

of operations. For example, the Intel AVX-512 Conflict Detection

Instructions (CDI) are able to detect the existence of write con-

flicts efficiently during SIMD execution, thus offering us a good

opportunity of exploiting SIMD data parallelism to handle irregular

memory write operations.

2.3 Our Challenges

Although there exist many GPU-based optimization techniques

for irregular workloads [23, 46, 48], we notice significant architec-

tural differences between Xeon Phi and GPUs, which make graph

processing on Xeon Phi architectures uniquely challenging.

Xeon Phi vs. GPU: First, their memory hierarchies are different,

e.g., GPU shared memory is a software-managed cache designed

to reduce memory latency, while Xeon Phis are equipped with

larger hardware-controlled caches and a separate High-Bandwidth

Memory to increase memory bandwidth. Second, different from

GPU’s SIMT (Single Instruction, Multiple Threads) execution that

assumes all threads have the same computation capability, in Xeon

Phi’s hybrid MIMD and SIMD execution, CPU and SIMD threads

have different computation powers. Very importantly, Xeon Phi

supports efficient global synchronization, but GPU programs have

to be implemented in a particular format to enable global synchro-

nization [17]. Third, although Knights Landing has gained much

more flexibilities compared to previous Xeon Phis, many lock-step

features of original SIMD intrinsics (SSE) remain, e.g., lack of atomic

support within and among SIMD operations, and limited hardware

support of SIMD divergences.

Considering the hardware differences introduced above, we high-

light the following challenges of optimizing graph processing on

Xeon Phi architectures:

Data Locality: Due to the irregular data structure, it is notoriously

challenging to layout graphs in modern memory hierarchy for good

data locality, especially in the Xeon Phi architectures that have a

small cache size per core. The memory access pattern to refer to

active vertices and edges depends on the graph topology, algorithms,

and processing models, which is hence unpredictable and leads to

substantial cache misses. Therefore, many graph applications are

latency bounded [45].

MIMD-SIMD Load Balance: Vertex-centric processing does not

naturally match SIMD execution, because the workload assigned

to the SIMD lanes vary substantially due to the skewed degree

• 
• 

• 
• 

• 
• 

Figure 1: Overview of our approach

distribution. Since the SIMD lanes execute instructions in lock-

step, the ones that process low-degree vertices may experience

significant idleness. Edge-centric processing mitigates this problem

but cannot eliminate it, as the same SIMD unit may process a hybrid

workload of active and inactive edges.

Update Conflict: Graph processing usually involves reading at-

tributes in the source vertices and writing attributes in the destina-

tion vertices. An update conflict happens if multiple SIMD lanes

in the same unit update the same destination vertex. As afore-

mentioned, the SIMD unit (i.e., the VPU) does not support atomic

operations. Hence, when an update conflict happens, only the value

produced by one SIMD lane can be successfully stored. One ap-

proach is to carefullymap data to SIMD lanes to avoidwrite conflicts

in the first place, which requires the knowledge of the whole access

sequence at the very beginning of the execution. Another plausible

approach is to detect conflicts once the mapping is established,

which requires careful overhead control.

3 OVERVIEW OF OUR APPROACH

In this section, we present the overview of the GraphPhi framework

as shown in Figure 1. It consists of four major components (� to

�) as follows:

The preprocessing (�) transforms the input graph into a hierar-

chically tiled format based on the well-known COO representation,

including tiles, stripes, and groups from small to large. This format

is able to achieve multiple objectives, including improving temporal

data locality by reducing reuse distance within the same thread and

across threads, supporting later optimized hybrid vertex-centric

and edge-centric graph processing, and enabling co-schedule of

MIMD and SIMD tasks.

The graph processing model (�) is a hybrid vertex-centric and

edge-centric graph processing model to take advantage of their ap-

pealing features. GraphPhi leverages vertex-centric processing to

identify which tiles to process but computes updates and explores

new active vertices within a tile in an edge-centric way. There are

several specific considerations in this design. First, an active tile

that contains active source vertices should be processed. Vertex-

centric processing in GraphPhi records which vertex tiles are active

and only processes those tiles, hence reducing useless computation;

Second, compared to vertex-centric data storage (e.g., Compressed

3

PACT ’18, November 1–4, 2018, Limassol, Cyprus Z. Peng et al.

Figure 2: A hierarchical-blocked format example

Sparse Row, or CSR for short), edge-centric in-tile storage has po-

tential to substantially save storage space, especially for sparse

graphs (details in Section 4). Finally, edge-centric in-tile storage is

more friendly for SIMD processing because it leads to sequential

memory accesses to edge data.

The MIMD/SIMD-aware scheduler (�) addresses load imbalance

through dynamic task conversion, i.e., if the SIMD utilization is

low while extra tasks exist in MIMD level, it merges these tasks and

explores better SIMD parallelism; if some threads are idle in the

MIMD level while there are too many tasks for others, these tasks

will be split and assigned to the idle threads. Moreover, the scheduler

takes care of possible update-conflict complications caused by the

conversions.

The final component (�) represents several extra optimizations

to improve further the overall performance, including the hybrid

pull and push execution and the use of HBM offered by the latest

Xeon Phi architectures.

4 DATA FORMAT AND EXECUTION DESIGN

This section introduces the design of our GraphPhi framework

and explains the design basis and more details of our hierarchical

blocked graph representation, hybrid graph processing, and uni-

form MIMD-SIMD task scheduler. These designs aim at achieving

improved intra- and inter-thread data locality, efficient lock-free

graph processing, and both good MIMD load balance and high

SIMD utilization.

4.1 Hierarchical-blocked Organization

GraphPhi decomposes the adjacency matrix into 2-D disjoint edge

tiles. A certain number of rows of tiles compose a group, which

consists of many columns of tiles, and each called a stripe. The

edges in a tile are stored in COO (coordinate list) format, i.e., each

edge is in the form of (row, column, value). The edges in the same tile

are stored continuously in row major, achieved by sorting the edges

by column IDs (destination vertices), and then by row ids (source

vertices). All tiles in the same stripe are stored contiguously in

column major, which share the same subset of destination vertices.

All stripes in the same group are stored contiguously.

Figure 2 shows an example of this hierarchical-blocked graph

data format. On its left-hand side, we show the topology of a graph

that consists of 16 vertices and 24 edges; while on its right-hand

Figure 3: An example to show CSR problem

side, we represent this graph in our hierarchical-blocked format.

The representation has 16 tiles in total with 7 non-empty tiles with

edges (t0 to t6), 6 stripes (marked with red-dot rectangles) and 2
groups (marked with blue-dot rectangles). Each edge is in COO

format, i.e., the row ID is the source vertex ID while the column

ID is the destination vertex ID, and the edge value is omitted. This

example shows a directed graph, while for undirected graphs, each

edge is treated as a pair of directed edges, one in each direction.

This hierarchical-blocked data format serves as the foundation

of GraphPhi, supporting all the other optimizations. To help to

understand this format design, we explain it from the following

aspects.

4.1.1 Tile COO format design basis. The use of the COO data for-

mat for in-tile edges is an important design choice, which affects

the other parts of GraphPhi. We adopt this design mainly from two

considerations.

On the one hand, although CSR usually results in compressed

data storage, it does not satisfy our requirement well. We explain

the reason by an example in Figure 3. In this example, we convert

a tile (t0) from Figure 2 to a standard CSR format. Although we
have only two edges, we still need to maintain a row point-
ers array of length widtht ile + 1. Assuming there is no empty
tile, we need up to (#vertices/widtht ile)

2 × (widtht ile + 1), i.e.,
O (#vertices2/widtht ile) space to store the row pointers ar-
rays for thewhole graphwhich is unacceptably large. An alternative

solution is to change the row pointers array into another indi-
rection array or a hash table structure, however, with the increased

irregularity of the computation.

On the other hand, COO format results in better storage effi-

ciency when there exist many empty rows as shown in the above

example. Moreover, it stores edge data continuously, leading to se-

quential memory load operations, so it is more suitable for stream-

ing SIMD processing.

4.1.2 Hierarchical design basis and advantages. We partition and

hierarchically organize the whole graph into three levels due to the

following reasons.

Why tile—intra-thread data locality: First, there is potential to

improve the temporal data locality of memory accesses to desti-

nation vertices by organizing and processing the edges in the unit

of a tile because the reuse distance of the same destination vertex

is significantly reduced. For example, in tile t1 of Figure 2, before
tiling, the reuse distance of the destination vertex 6 is 5; while after

tiling, it is 2. In addition, for sparse computation like our graph

processing, tiling is also capable of improving the spatial data lo-

cality by restricting updates within a specific range of destination

vertices even when there is no data reuse. Because an individual

4

GraphPhi PACT ’18, November 1–4, 2018, Limassol, Cyprus

thread processes a tile, these data locality enhancements are treated

as intra-thread.

Why stripe—inter-thread update conflict:We design stripes for

thread-level task scheduling. By default, a stripe is mapped to a

distinct thread. Because stripes in the same group correspond dis-

joint sets of destination vertices, inter-thread update conflicts are

naturally avoided. Such a design is similar to the design of Shards in

GraphChi [24], and G-Shards in CuSha [23]. However, in contrast

with Shards or G-Shards, our stripes contain only a subset of edges

that share the same destination vertices, i.e., we further partition

Shards or G-Shards by their source vertices as shown in Figure 2.

Why group—inter-thread data locality: Stripes that share the same

source vertices are organized into the same group. Between the

execution of two groups, there exists a global synchronization

barrier. This design aims to improve inter-thread data locality for

accesses to the source vertices due to two reasons. First, due to

the global synchronization, the aggregate working set in terms of

source vertices is limited and thus may fit in the cache. Second, the

threads that process different stripes may prefetch source vertices

to the cache for each other.

In addition, our graph preprocessing cost is low because it is con-

venient to convert between our hierarchical blocked representation

and traditional COO/CSR (or CSC, Compressed Sparse Column)

formats.

4.2 Hybrid Graph Processing

Based on our hierarchical blocked graph representation, we design

a hybrid vertex-centric and edge-centric processing model. The basic

idea is as follows: we use vertex-centric processing to find all tiles

containing active source vertices for the current frontier, and use

edge-centric processing to work through these active tiles, updating

destination vertices and generating new active frontier for the next

iteration.

Algorithm 1 shows more details of the hybrid processing. For

each iteration, we maintain an active vertex map (frontier), indicat-

ing which source vertices are active in the current iteration. If it is

not empty (line 1), we iterate through the graph hierarchically from

group to stripe to tile (line 2 to line 5), in which multiple threads

process stripes in parallel in a lock-free manner. If there exists a

tile that contains at least one active source vertex (line 6), we work

through all edges in this tile by finding active edges, computing

destination vertices with source vertices, and generating an active

vertex map for next iteration (line 8 to line 11). We place a global

barrier between two groups’ processing, aiming to further improve

the inter-thread data locality as aforementioned (line 18). In the

end, we prepare the active vertex map for the next iteration (line 20).

Figure 2 illustrates the hybrid processing of Breadth-First Search

(BFS) by marking the active edges in different iterations with dif-
ferent colors. In the first iteration, the active vertex map contains

only one vertex (v0) and activates three tiles (t0, t1, and t3) in three
stripes that belong to the same group. All edges in these tiles are

processed, and active ones are colored purple. After such process-

ing, seven vertices (v2, v4, v5, v6, v7, vC , and vD) are marked with
active and processed in the second iteration. Four active tiles are

belonging to three stripes in two groups in the second iteration (t0,

Algorithm 1 Hyb_Process (block_дraph, active_map)

1: while active_map is not empty do

2: for all дroup ∈ block_дraph do

3: � parallel processed by threads

4: for all str ipe ∈ дroup do in parallel

5: for all t ile ∈ str ipe do

6: if ∃ vertex ∈ t ile .src_ver tices is active then
7: � parallel processed by SIMD

8: for all edдe ∈ t ile do in parallel

9: if edдe .src is active then

10: update_vertex(edдe .dest , edдe .src)

11: next_active_map .add(edдe .dest)

12: end if

13: end for

14: end if

15: end for

16: end for

17: � global barrier between two groups processing

18: __synchthreads ()

19: end for

20: swap(active_map , next_active_map)

21: end while

t1, t2, and t5), in which, active edges are colored green. We keep
such processing until all vertices are processed.

Our hybrid graph processing is able to take advantages of both

vertex-centric and edge-centric models, i.e., on the one hand, we

avoid processing inactive edges by skipping those tiles efficiently

(benefits from vertex-centric); on the other hand, we decrease the

difficulty of performing a lock-free and load-balanced execution

and increase the SIMD efficiency (benefits from edge-centric).

Discussion—mixed-tile problem and related optimization: For graph

traversal applications, we notice an important performance issue

that wemay have to unnecessarily run throughmany inactive edges

due to the edge-centric tile processing. For instance, in our BFS ex-
ample in Figure 2, we need to access two edges when we process t0
in the first iteration— the active purple one and the inactive green

one respectively, although the inactive edge only requires checking

its source vertex status. This problem causes duplicated checking

for the same edge, incurring non-neglectable overheads. We call it

the mixed-tile problem.

We identify a significant source of this problem, i.e., there are

too few active vertices in a frontier for some iterations. Correspond-

ingly, we leverage an existing optimization to mitigate this problem,

i.e., incorporating a push-based execution to our hybrid graph pro-

cessing similar to Ligra [40]. More details of this optimization will

be elaborated in Section 5. To the end, we would like to achieve

that when a tile is active, most of its edges are active; otherwise,

this tile is inactive.

4.3 Uniform MIMD-SIMD Scheduler

Based on basic hybrid graph processing, we establish a uniform

MIMD-SIMD task scheduler to achieve both good thread load bal-

ance and SIMD utilization. We present its design basis as follows.

4.3.1 Dynamic Conversion of MIMD and SIMD Tasks. Our uniform

MIMD-SIMD task scheduler is able to selectively execute stripes

either in MIMD+SIMD or MIMD-only to dynamically maintain a

5

PACT ’18, November 1–4, 2018, Limassol, Cyprus Z. Peng et al.

Figure 4: A MIMD-SIMD schedule example

high SIMD utilization and MIMD load balance. In particular, we

have three execution modes as follows:

• Basic Execution: By default, each stripe is assigned to an indi-

vidual thread with each tile executed in a SIMD manner. Mean-

while, we explore coarse-grained MIMD parallelism among

multiple stripes with dynamic scheduling.

• Stripe Merging: To maintain a high SIMD utilization, we de-

sign two levels of stripe merging—intra-stripe and inter-stripe.

If a tile in a stripe contains too few tasks (< merдinд_threshold),
resulting in a low SIMD utilization, an intra-stripe (inter-tile)

merging operation happens. Similarly, if a stripe contains too

few tasks, an inter-stripe merging is activated to consolidate

current stripe with next one, guaranteeing a certain SIMD uti-

lization.

• Stripe Splitting: To enhance MIMD load balance, we design

a stripe splitting mode as follows. If a stripe has too many tasks

(>> merдinд_threshold) while there exist more than one idle
threads, this stripe will be assigned to multiple threads, with

a tile as the minimal assignment unit. After stripe splitting,

there may exist update conflicts among threads, so we have to

process these tasks in a MIMD-only way with atomic update

support. Because such execution is inefficient, we restrict our

stripe splitting to a condition that more than half threads are

idle. This case may only happen if there are any highly skewed

inputs and at the end of a group processing.

We show an execution example with all three scheduling modes

in Figure 4. It contains four stripes (stripe0 to stripe3) in the same
group and two MIMD threads (thread0 and thread1). We set the
merдinд_threshold as 8, i.e., when the number of edges is less than
8, a merging operation will happen to guarantee a good SIMD uti-

lization. In this example, thread0 performs an intra-stripe merging

while thread1 performs an inter-stripe merging. Assume after com-

pleting stripe0, thread0 gets stripe3 and finds it has too many edges.
A stripe splitting operation will happen, in which t5 is assigned to
(stolen by) thread1 to achieve a better thread load balance.
In summary, our uniform MIMD-SIMD execution dynamically

toggles among these modes. If we treat a group as a 2-D space

with the row representing the number of stripes and the column

representing the length of stripes, our MIMD execution is a row-

major (or row-preferred) task schedule, i.e., an idle thread seeks

for unprocessed tasks in the row direction preferentially. Such

design is aimed to maximize the benefit of SIMD execution while

(a) Connection (b) Update vertex by sum edge vals

Figure 5: A write-conflict example

minimizing the performance degradation caused by the atomic

operation involved execution, and also to achieve a MIMD load

balance in case the input is highly skewed.

4.3.2 Update Conflict Resolving. Our MIMD-SIMD scheduler re-

quires resolving possible update conflicts. In MIMD-level, for basic

execution and stripe merging modes, the update conflicts have been

handled by the stripe data organization. For stripe splitting mode,

we need to run a lock-based code for tiles in the same stripe as we

mentioned before. In SIMD-level, as opposed to previous efforts

based on a heavy data reorganization preprocessing [11], we rely

on the built-in conflicts detection intrinsics provided by Xeon Phi to

dynamically address the possible update conflicts.

5 IMPLEMENTATION

GraphPhi includes several optimizations in its implementation to

support efficient MIMD-SIMD execution.

5.1 Dynamic Write-conflicts Processing

Our hierarchical blocked data representation naturally resolves the

coarse-grained thread-level write conflicts. However, write conflicts

still happen in SIMD level whenmultiple lanes of a SIMD instruction

attempt to update the same memory location, Figure 5 shows an

example, in which multiple edges update the same destination

vertices. If one SIMD write performs these updates, write conflicts

occur. In particular, every vertex sums up its in-edges’ values in

this example. If any conflicts happen, the sum result will not be

guaranteed.

We handle SIMD-level update conflicts by a dynamic fine-grained

solution based on emerging SIMD conflict detection intrinsics. In a

SIMD operation, the conflict lanes with the same destination can

be grouped. We call it a conflict group. For example, we mark such

conflict groups by different colors in Figure 5(b). On the latest Xeon

Phi, only the last value in a conflict group will be stored into the

memory in a SIMD write. Hence, we accumulate all edge values

in a conflict group to its last element and then perform a scatter

operation on all conflict groups to update destinations.

We show our implementation in Algorithm 2. At first, it uses

AVX-512 conflict detection (CD) intrinsic to detect update conflicts

(line 2). If any conflicts exist, we get the position of the immedi-

ately previous conflict for each conflict starting from the second

one in each group (line 5 to line 7). For example, in Figure 5(b), for

conflicts in the yellow group with the common destination index

of 1, the second yellow 1’s immediately previous conflict position

is the position of the first yellow 1. We maintain an array (pIDs)
holding such immediately previous conflict positions for all conflicts.

With this information, it is possible for us to accumulate the update

6

GraphPhi PACT ’18, November 1–4, 2018, Limassol, Cyprus

Algorithm 2 cumulative_sum (data, indices)

1: � detect if there exist conflicts in indices

2: cd_mask = conflict_detect(indices)

3: if cd_mask not all false then

4: � get the immediately-before conflict position in the same group for

all conflicts starting from the second one in each conflict group

5: for all conflict index i ∈ cd_mask do

6: pIDs[i] = indx immediate before i in conflict group

7: end for

8: � in each group, keep merging the value in the first conflict position

to the value in the second, and set the first conflict position as false

until all conflict values merged to the value in the last position

9: repeat

10: for all conflict group do

11: pos2 = the index of 2nd conflict in this group

12: data[pos2] += data[pIDs[pos2]]

13: cd_mask[pos2] = false

14: end for

15: until cd_mask all false

16: end if

values with common destinations from the first to the last itera-

tively, beginning with adding the first value to the second (in the

position of pos2) (line 10 to line 14). Such accumulations among
different conflict groups are performed in parallel, and the largest

group decides the number of repeated iterations. Eventually, the

element at the end of each conflict group holds the cumulative sum

of all conflicted updates of that group, to be stored into memory by

a SIMD scatter operation (omitted in our algorithm). The conflict

detection at line 2, the for-loop at line 5 and line 10 are all imple-

mented in AVX-512 intrinsics. Moreover, we may also apply this

algorithm to other update scenarios besides cumulative addition

by changing the operation at line 12 accordingly.

5.2 Push/Pull Execution

This techniquewas first proposed by Beamer et al. [36] as a direction-

optimization for accelerating BFS, and generalized in Ligra [40]

and a later study [7]. Its basic idea is a hybrid execution consisting

of a push (top-down) stage, where the vertices in the current fron-

tier explore their neighbors, pushing updates to them and adding

unvisited neighbors to the next frontier, and a pull (bottom-up)

stage, where the unvisited vertices search for their parents in the

active frontier, pulling updates from their active parents and adding

themselves to the next frontier.

These two stages show different strengths. The push stage works

better when the current frontier is small, while the pull stage works

better when the current frontier is large. This is because as the fron-

tier gets larger, there exist too many edges connected to the same

unvisited vertex, causing redundant checking or update conflicts

when push is used. Usually, such redundancy and conflicts can be

avoided from another direction by asking the unvisited vertices to

pull the updates. However, the pull approach requires visiting all

vertices, too expensive when the frontier is small.

OurMixed-tile problemmakes our hybrid processing prefer large

active frontiers, similar to the bottom-up pull stage. Therefore, to

accelerate the small frontier situation for applications like BFS, we
combine our approach with a top-down push execution like Ligra.

Table 1: User APIs and Pre-defined Functions

User Defined Functions Description

bool compute_cond (Edge e,

Frontier f)

Decide if the edge is active in

this iteration.

void compute (Edge e) Perform computation for active

edges.

bool update_cond (Vertex v) Decide if the vertex is active in

next iteration.

Pre-defined Functions Description

void scheduler (Frontier f,

Group g)

Traverse a group and process its

stripes in parallel; run kernel
for every tile.

void kernel (Frontier f, Tile t) Process edges in a tile according

to user-defined compute_-
cond and compute

Frontier update() Traverse vertices and mark ac-

tive vertices for next itera-

tion according to user-defined

update_cond.

Correspondingly, we keep an untiled CSR format of graph data in

addition to our hierarchical blocked graph. As shown in section 6,

we can significantly reduce the unnecessary edge checking with

this solution.

5.3 High-Bandwidth Memory

Our efficient MIMD-SIMD execution thoroughly explores the mas-

sive system parallelism, thus naturally increasing the number of

concurrent memory access requests. In many cases, GraphPhi be-

comes into memory bandwidth bound. As we mentioned before,

KNL is equipped with a High-BandwidthMemory (HBM)withmore

than 4X bandwidth than traditional DDR4. Our GraphPhi is capa-
ble of taking advantage of this feature, i.e., allowing users to place

the graph (or a portion of the graph) on HBM. This is important

because modern memory hierarchies are becoming increasingly

heterogeneous.

In our implementation, we configure our machine into a flat

mode with DRAM as node 0 and HBM as node 1. We use numactl
(NUMA control utility) with “-m 1” option to bind our application
to HBM. However, for some large graphs, 16 GB HBM is not big

enough to hold the whole graph. Thus, we also specify a “-p 1”
option that states a preference for HBM, i.e., part of it will be stored

in regular DRAM if the graph is too big.

5.4 Application Programming Interface

Our GraphPhi framework provides a set of user APIs and pre-

defined functions (Table 1) to assist users in developing new appli-

cations. The pre-defined functions, including scheduler, ker-
nel, and update, are aimed to offer a basic execution skeleton for
graph processing, while the user APIs, including compute_cond,
compute, and update_cond, are designed for users to specify
the applications’ computation logic.

In general, the scheduler function traverses groups of the
input graph. For each group, it assigns stripes to threads, and each

thread calls the kernel function to process all the tiles in its as-
signed stripe. The stripes in a group are processed in parallel. In

7

PACT ’18, November 1–4, 2018, Limassol, Cyprus Z. Peng et al.

the kernel function, the user needs to specify the user-defined
functionscompute_cond andcompute to perform specific com-
putations according to the application’s requirement. Specifically,

the kernel function traverses all edges in each tile and runs the
compute function upon those edges whose return values from
compute_cond function are true. After the whole graph is pro-
cessed, the update function traverses all vertices and mark them
as active for the next iteration if their return values from update_-
cond function are true. It also resets the update condition for all
vertices. The iterative process stops if there are no active vertices

anymore.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of our GraphPhi ap-

proach by comparing it with the other two popular graph processing

frameworks for shared-memory CPUs, Galois3 and Ligra4 on six

graph applications and six graph datasets. There are four objectives

in our evaluation: first, demonstrating that our GraphPhi outper-

forms other graph processing systems that are not optimized specif-

ically for Xeon Phi; second, confirming that our uniform MIMD-

SIMD execution results in good scalability and SIMD speedup; third,

studying some key underlying reasons for our performance bene-

fits, such as the effect of our hierarchical blocking, push and pull

optimization, and SIMD utilization improved with stripe merging;

and finally, empirically proving that GraphPhi can perform even

better by leveraging the High-Bandwidth Memory.

6.1 Platform and Benchmarks

Platform: We evaluate our GraphPhi approach on the latest ver-

sion of Intel Xeon Phi, Knights Landing. It is a 64-core Xeon Phi

7210 processor with up to 256 hyper-threads, running at 1.30 GHz,

supporting efficient 512-bit AVX-512 intrinsics, with 1M L2 cache

shared between every two cores. We use it as a CPU host with

96 GB DRAM and 16 GB HBM (MCDRAM) as main memory. We

configure the DRAM and HBM in a flat mode.

BenchmarkApplications:Weevaluate our GraphPhi on six graph

applications. These benchmark applications are written in C++ and

compiled with the icc-17.0.1 compiler with -O3. We use the default
setting for prefetching because the -qopt-prefetch=5 option
does not yield noticeable performance difference. Here are more

details:

• Breadth-First Search (bfs) traverses graphs in frontiers and
calculates the minimal hop distance from the source to all other

vertices. Ligra adopts a push/pull hybrid execution to switch be-

tween sparse and dense frontiers. Our implementation follows

Ligra and uses the same threshold for the switch. We choose

barrierWithCas as Galois’ algorithm option.
• PageRank (pagerank) approximates the impact of every ver-
tex by calculating its rank based on its neighbors’ ranks. Our

implementation accesses all edges in a data-driven manner. All

implementations run 1 iteration. Galois uses a pull model and

requires a weighted graph. We use its graph conversion tool

to add weights randomly to edges for our graphs. Ligra and

GraphPhi use unweighted graphs.

3http://iss.ices.utexas.edu/?p=projects/galois
4https://github.com/jshun/ligra

Table 2: Character and configuration of graphs

Datasets # Vertices # Edges Tile Width Stripe Length

Pokec [4] 1.6M 30.6M 8192 (4096) 64 (16)

LiveJournal [3] 4.8M 68.5M 16384 (16384) 64 (128)

RMAT24 16.8M 268.4M 16384 (32768) 128 (256)

RMAT27 134.2M 2.1B 16384 (16384) 4096 (2048)

Twitter [5] 41.7M 1.5B 16384 (32768) 1024 (512)

Friendster [1] 68.3M 2.1B 65536 (131072) 512 (128)

• Single-Source Shortest Path (sssp) computes the shortest
distance from a source vertex to others. Ligra and Galois imple-

ment a frontier-based modified Bellman-Ford algorithm. Our

implementation follows Ligra’s algorithm. All Ligra, Galois,

and GraphPhi require a weighted graph as input. We choose

asyncPP as Galois’ algorithm option.
• Connected Components (cc) finds a maximal set of vertices
reachable from each other. We implement it based on label prop-

agation in GraphChi5. We choose async as Galois’ algorithm
option.

• Betweenness Centrality (bc) calculates the betweenness cen-
trality index for every vertex. It contains two phases where the

first phase is very similar to bfs and the second is a reversed
traversal of the first phase. Our implementation follows Ligra

that the estimated betweenness centrality value is based on only

one traverse of BFS. We choose async as Galois’ algorithm
option and set -t=1.
• Maximal Independent Set (mis) finds a maximal set of ver-
tices that form an independent set (and not a subset of any

other independent set). Our implementation follows Ligra. We

choose nondet as Galois’ algorithm option.

Input Graph Datasets:We evaluate GraphPhi on six graphs as

shown in Table 2. They are all downloaded from their website. The

synthetic scale-free graphs RMAT24 and RMAT27 were generated

from the RMAT generator in Ligra, following the same configu-

ration used by the Graph500 benchmark [2]. The RMAT24 has

parameters a = 0.5,b = c = 0.1,d = 0.3. The RMAT27 has pa-
rameters a = 0.57,b = c = 0.19,d = 0.3. We also show graphs’
hierarchical block configuration in Table 2 where the number in

parenthesis is for pagerank and another one is for all other appli-
cations. Particularly, for sssp, we use randomly weighted edges,
a tile width of 65536, and a stripe length of 128.

6.2 Overall Performance

Figure 6 shows the overall performance of GraphPhi compared

to Galois and Ligra on all benchmarks and input graphs. We run

all tests for 10 times with 64 threads in parallel. We report mini-

mum, maximum, and average execution time. We also report the

geometric mean (gmean) of the average execution time for each
benchmark on all input graphs. In addition, to ensure a fair com-

parison, all tests are performed on DRAM only. We will perform

an extra performance study for HBM later.

5https://github.com/GraphChi/graphchi-cpp/blob/master/example_apps/
connectedcomponents.cpp

8

GraphPhi PACT ’18, November 1–4, 2018, Limassol, Cyprus

����� �� �	
 �	� ������ �������������
�

�

	

�

�
	�

�

����� � �

���!��"

������

(a) bfs

����� �� �	
 �	� ������ �������������
�

	

�

�

��
��

���

(b) pagerank

����� �� �	
 �	� ������ �������������
�

�

��

��

	�

��
���
	��

(c) sssp

����� �� �	
 �	� ������ �������������
�

	

�

��
��
��

���� !�!�

���"��#

������

(d) cc

����� �� �	
 �	� ������ �������������
�

	

�

��
��
��

(e) bc

����� �� �	
 �	� ������ �������������
�

	

�

�

(f) mis

Figure 6: Overall performance. x-axis: graph datasets; y-axis: execution time (s)

� � � � �� �� ��
�

�

�

�

��

��

��

��	
��

�������

(a) bfs

� � � � �� �� ��
�

�

�

�

��

��

��

(b) pagerank

� � � � �� �� ��
�

�

�

�

��

��

��

(c) sssp

� � � � �� �� ��
�

�

�

�

��

��

��

(d) cc

� � � � �� �� ��
�

�

�

�

��

��

��

(e) bc

� � � � �� �� ��
�

�

�

�

��

��

��

(f) mis

Figure 7: Scalability. x-axis: number of threads; y-axis: speedup over 1-thread

��
�

��
��
��
	

��
�� �� �� �

�
���

���

���

���

���

�
�
�
�
�
�
�
	
��
�

�
��
�
�

��	
����

����

������������

�

�

�

�

�

�
��

�
��
�
�
�
�
�
�

(a) Pokec

��
�

��
��
��
	

��
�� �� �� �

�
�

�

�

�
��
��

�
�
�
�
�
�
�
	
��
�

�
��
�
�

�

�

�

�
��

�
��
�
�
�
�
�
�

(b) Twitter

Figure 8: Performance: non-SIMD vs SIMD

GraphPhi outperforms Galois and Ligra for most cases, except

mis on R24 (an abbreviation for RMAT24) and Friend (an abbre-
viation for Friendster), when Galois works better than Graph-
Phi. For pagerank, GraphPhi shows the best geometric mean

speedup over Galois and Ligra (35.4X and 4.0X , respectively), be-
cause our pagerank implementation traverses all edges tile by
tile without any redundant accesses, benefiting most from both

data locality improvement and SIMD execution. For other applica-

tions, GraphPhi’s geometric mean speedups over Galois range from

1.2X to 16.5X , and over Ligra range from 1.2X to 3.4X . In terms of
different datasets, GraphPhi obtains average speedups over Galois

from 5.8X to 19.3X , and over Ligra from 1.6X to 4.3X .

6.3 MIMD-SIMD Scheduler Efficacy

To further study the efficacy of our MIMD-SIMD scheduler, we

report our scalability and SIMD speedup results in Figure 7 and

Figure 8, respectively. Constraint by our space, we only show results

on two representative graphs; one is small (Pokec), and another
one is large (Twitter). All tests were run 10 times, too; however,
we only show the average execution time to make the figures more

readable.

6.3.1 Scalability. Figure 7 illustrates that all our six benchmarks

scale well on both Pokec and Twitter. Particularly, tests on
Twitter exhibit better scalability than onPokec, becausePokec
has fewer workloads, rendering the parallel execution overhead

more noticeable. Moreover, some benchmarks cannot scale perfectly

from 32 threads to 64, e.g., pagerank and bc. This is because they

9

PACT ’18, November 1–4, 2018, Limassol, Cyprus Z. Peng et al.

� �� ��� ��� ��������
�	�

�	�

�	�

�	

�	�

�	�

�
�
��

�
��
�
	

��
�
�
	

������������

�����������������������

����������� �!����"�

����#�$$�%���

�	��

�	��

�	��

�	��

�	��

�
�
��

��
�
��
�
�	

Figure 9: Trade-off of cache

and synchronize

����� ���		�

����

����

����

����

����

����

����

�
�
�
�
��
�
�
�
�
�
�	

�
�

����������

��
������

��
��������������

�

� �

� �

� �

� �

�

�
�
�
�
�
�
�

Figure 10: Pull-only and

push/pull comparison

are increasingly memory bandwidth bound as the concurrency in-

creases since these tests are on DRAM. Later tests further prove

that these applications are more likely to benefit from the High-

Bandwidth Memory.

6.3.2 SIMD Speedup. Figure 8 compares the performance of SIMD

codes and non-SIMD codes with 64 threads and reports the speedup

of SIMD over non-SIMD. For all six benchmarks, SIMD execution

results in an average speedup of 2.3 and 1.7 on Pokec and Twit-
ter, respectively. We do notice that the execution time fluctuates
more for the relatively small graphs like Pokec, while running
large graphs like Twitter produces more stable speedups. For
different kinds of applications, the speedup stems from different

reasons. On the one hand, most topology-driven graph applications

like bfs and bc are memory latency bound with MIMD-only exe-
cution, and an extra SIMD execution is able to increase the number

of concurrent memory access requests, thus hiding memory latency.

We confirm this with a memory throughput comparison test that

is omitted due to our space constraint. The later HBM study can

prove this from another perspective. On the other hand, data-driven

graph applications like pagerank are computation bound with
MIMD-only execution, and SIMD execution can accelerate their

kernel computations.

6.4 Understanding the Performance

We now explore several important optimizations that significantly

affect our performance.

6.4.1 Effect of Hierarchical Blocking. Our hierarchical blocking,

specifically, the design of partitioning a graph into multiple groups,

is aimed to improve both intra- and inter-thread data locality. How-

ever, the introduction of groups also requires additional global

barriers, thus incurring synchronization overhead. Therefore, the

overall performance stems from a combination of both data locality

and synchronization overhead. We show the study on pagerank
application running on the Twitter graph (tile width 4096) with
64 threads and report the results in Figure 9. This study shows that

as we increase the group size (stripe length), the L2 miss rate will

increase while the synchronization overhead will decrease. The

former is because of the increasingly worse data locality, while the

latter is owing to the decrease of global barrier counts. Eventually,

our best performance is a trade-off between these two factors and

achieved with the tile width of 64.

���������	

��

�

��

��

���

�
��

�
��

��
	�

�
��
�

��
�
�

����������

������

��������

����

����

����

����

����

�
�
�
�
�
�
�

(a) Pokec

��� ������	

��

�

��

��

���

���

���

���

���

���

�
�
�
�
�
�
�

�
��

�
	

��
��
�
��
�
�
	�
�
�

(b) Twitter

Figure 11: SIMD utilization: merge vs w/o merge

��
�

��
��
��
	

��
�� �� �� �

�

��
�
��
	�

���

���

���

���

���

���

�
�
�
��
�
�
�
�
�
� �	
����

����
�

(a) Pokec

��
�

��
��
��
	

��
�� �� �� �

�

��
�
��
	�

���

���

���

���

���

���

�
�
�
��
�
�
�
�
�
�

(b) Twitter

Figure 12: HBM speedup for GraphPhi and Ligra

6.4.2 Effect of Push-based Execution. The aforementioned mixed-

tile issue significantly affects our overall performance for topology-

driven applications like bfs, thus we also evaluate the efficacy
of our push-based execution. Our evaluation is performed on bfs
application with both Pokec and Twitter graphs, running with
64 threads. We compare both the number of accessed edges and the

execution time between a pull-only version (Only Pull) and a
hybrid push/pull version (GraphPhi) of GraphPhi, and report the
results in Figure 10. The results demonstrate that with push-based

execution, GraphPhi is able to reduce around 43% and 40% total

edge processing, resulting in 1.7X and 1.9X speedup, respectively.

6.4.3 SIMD Utilization Study. We also perform a SIMD utilization6

study to help our understanding of the efficacy of the stripe merging

execution in our scheduler. We evaluate two representative appli-

cations, bfs and pagerank with Pokec and Twitter graphs,
and compare the SIMD utilization before and after this optimization.

The result in Figure 11 shows that stripe merging optimization is

able to improve the SIMD utilization by up to 25% and provide a

speedup up to 1.3X .

6.5 Extra HBM Benefit

Previous studies are all performed on DRAM.We also test GraphPhi

on HBM and compare the performance with Ligra. This evaluation

is conducted on all benchmarks with Pokec and Twitter graphs.
We use 128 threads (i.e., 2 hyper threads per core) because each KNL

core has 2 VPUs, and 128 threads result in the best performance for

both Ligra and GraphPhi. We calculate the speedups of GraphPhi

and Ligra with HBM configuration over without HBM and report

6SIMDutilization is defined as the ratio of SIMD executedworkloads over all workloads.

10

GraphPhi PACT ’18, November 1–4, 2018, Limassol, Cyprus

them in Figure 12. While the execution time fluctuates for Pokec,
a relatively small graph, the running on Twitter produces a more
stable performance. For GraphPhi, the use of HBM yields additional

1.2X and 1.45X geometric mean speedups on these two graphs,
respectively; while for Ligra, it results is either slightly slowdown

or unnoticeable speedup. The reason is as follows. Ligra imple-

mentation does not seek the help of SIMD. Thus, the memory stall

still dominates the overall execution time for these applications.

However, Xeon Phi HBM only optimizes the memory bandwidth,

and its memory latency is similar to or even worse than DRAM.

Alternatively, our GraphPhi leverages extra SIMD parallelism to

hide memory latency by more concurrent memory requests (like

GPUs), thus more thirsty to memory bandwidth. Such results em-

pirically prove that our GraphPhi is more suitable for future HBM

architectures.

7 RELATEDWORK

Due to the significant importance of graph analytics, there have

been many efforts to efficiently parallelize graph processing on

modern multi-core or many-core architectures in recent years. We

describe some of them closely related to our work.

Graph processing on CPUs: There exist many popular graph

processing engines and frameworks on CPUs nowadays, however,

they are designed for different scenarios, thus facing very different

problems. Inspired by the BSP model [43], Google Pregel [30] was

proposed as the first vertex-centric graph processing model mainly

for large-scale distributed clusters. Such a model has been adopted

by many other distributed graph processing engines since then,

such as GraphLab [28] and PowerGraph [15]. The primary chal-

lenge for these distributed graph processing systems is how to effi-

ciently partition graphs, store partitions on multiple machines, and

perform low-cost communications. Out-of-core graph execution en-

gines, such as GraphChi [24] and X-Stream [38], focus on reducing

disk traffic when processing large-scale graphs which do not fit in

the main memory of a single-machine. In-memory single-machine

graph processing frameworks, such as Polymer [49], Galois [33],

and Ligra [40], are similar to GraphPhi. Polymer focuses on optimiz-

ing graph processing on multi-CPU NUMA machines rather than

our platform. Although Galois and Ligra either offer more general

APIs or perform an efficient hybrid execution on CPU platforms,

they do not mainly match the Xeon Phi-like architectures, either,

because their current design does not consider the emerging hard-

ware features, such as wide SIMD units and the HBM. In contrast,

GraphPhi is carefully designed and implemented to take advantage

of those features.

Graph processing on GPU and Xeon Phi: There are also many

graph processing frameworks on GPUs [9, 18, 19, 23, 32, 34, 39,

44, 50]. However, they also concern different problems compared

to our work. For example, efforts like GraphReduce [39] and Gra-

phie [18] aim at reducing CPU-GPU traffic for the processing of

large graphs which do not fit in the GPU memory, while works

like CuSha [23] and Gunrock [44] optimize for load balance and

memory coalescing. GraphPhi focuses on a different throughput-

oriented architecture and explores many unique features that are

not shown on GPUs. There are also some optimization techniques

for Xeon Phi [6, 11, 22]. Although they comprehensively explore

advanced SIMD execution, none of them offer a general graph pro-

cessing framework by effectively exploiting both MIMD and SIMD

execution, or emerging HBM techniques. For example, Chen et

al.’s effort [11] requires a relatively heavy preprocessing to resolve

update conflicts and includes a basic MIMD scheduling method

that groups all tiles in the same column together, while our work

dynamically resolves conflicts through careful data organization

and computation schedule with an optimized MIMD-SIMD sched-

uling technique. In addition, several graph processing frameworks

are designed for hybrid CPU and coprocessors [10, 14, 20, 29], but

their main focus is on workload partition instead of exploiting the

SIMD units. In particular, Chen et al. [10] employ a vertex-centric

message passing model and resolves update conflicts by a costly

reordering process. Mosaic [29], a heterogeneous processing engine

uses both the CPU and multiple Xeon Phi cards as co-processors to

perform graph computation without supporting SIMD execution,

while our work focuses on a single Xeon Phi card used as the host

processor with SIMD support.

Specific graph algorithms and other important algorithms:

Besides these general graph processing systems, there are also

many efforts on parallelizing specific graph applications or graph

related operations on modern parallel architectures that are related

to our work, e.g., BFS [26, 27, 32, 36], Connected-Components [42],

Betweenness Centrality [31], Single Source Shortest Path [13], and

SpMV [25, 47]. In contrast, our goal is to provide a more general

graph processing framework on an emerging throughput-oriented

architecture. There also exist some research efforts using Xeon Phi

for algorithms other than graph processing, such as FFT [35], an

important scientific computing kernel. However, scaling FFT and

graph computation on KNL are different. The challenge for scaling

graph computation arises from irregular parallelism and memory

accesses.

8 CONCLUSION

This paper presented GraphPhi, a new optimization framework to

process graphs efficiently on Xeon Phi architectures. It consists

of an optimized graph representation, a hybrid vertex-centric and

edge-centric execution design, and an efficient MIMD-SIMD sched-

uler with lock-free update support. Inherited from edge-centric

processing, GraphPhi may process redundant edges. However, com-

pensated by our advanced SIMD acceleration together with a push-

based execution for sparse frontiers, GraphPhi produces better

performance than state-of-the-art graph execution frameworks,

such as Galois and Ligra. In addition, we showed that GraphPhi,

by efficiently utilize the SIMD units, converts latency-bound graph

applications into bandwidth-bounded ones, hence taking advantage

of the HBM.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their

helpful suggestions and comments. This work was performed in

part using computing facilities at the College of William and Mary

which were provided by contributions from the National Science

Foundation, the Commonwealth of Virginia Equipment Trust Fund

and the Office of Naval Research. This work was also supported in

part by an NSF award CNS-1618912.

11

PACT ’18, November 1–4, 2018, Limassol, Cyprus Z. Peng et al.

REFERENCES
[1] 2017. Friendster network dataset – KONECT. http://konect.uni-koblenz.de/

networks/friendster
[2] 2017. Graph500: Benchmark Specification. http://graph500.org/?page_id=12#tbl:

classes
[3] 2017. LiveJournal network dataset – KONECT. http://konect.uni-koblenz.de/

networks/soc-LiveJournal1
[4] 2017. Pokec network dataset – KONECT. http://konect.uni-koblenz.de/networks/

soc-pokec-relationships
[5] 2017. Twitter (WWW) network dataset – KONECT. http://konect.uni-koblenz.

de/networks/twitter
[6] Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten Hoefler. 2017.

SlimSell: A Vectorizable Graph Representation for Breadth-First Search. In Parallel
and Distributed Processing Symposium (IPDPS), 2017 IEEE International. IEEE, 32–
41.

[7] Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten
Hoefler. 2017. To Push or To Pull: On Reducing Communication and Synchroniza-
tion in Graph Computations. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing. ACM, 93–104.

[8] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. 1996. Cilk: An Efficient Multithreaded Runtime
System. J. Parallel and Distrib. Comput. 37, 1 (1996), 55–69.

[9] Shuai Che, Bradford M Beckmann, Steven K Reinhardt, and Kevin Skadron. 2013.
Pannotia: Understanding Irregular GPGPU Graph Applications. In Workload
Characterization (IISWC), 2013 IEEE International Symposium on. IEEE, 185–195.

[10] Linchuan Chen, Xin Huo, Bin Ren, Surabhi Jain, and Gagan Agrawal. 2015. Effi-
cient and Simplified Parallel Graph Processing over CPU and MIC. In Proceedings
of the IEEE International Parallel & Distributed Processing Symposium. IEEE.

[11] Linchuan Chen, Peng Jiang, and Gagan Agrawal. 2016. Exploiting Recent SIMD
Architectural Advances for Irregular Applications. In Proceedings of the 2016
International Symposium on Code Generation and Optimization. ACM, 47–58.

[12] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: an Industry Standard API
for Shared-memory Programming. IEEE Computational Science and Engineering
5, 1 (1998), 46–55.

[13] Andrew Davidson, Sean Baxter, Michael Garland, and John D Owens. 2014. Work-
efficient Parallel GPU Methods for Single-Source Shortest Paths. In Parallel and
Distributed Processing Symposium, 2014 IEEE 28th International. IEEE, 349–359.

[14] Abdullah Gharaibeh, Lauro Beltrão Costa, Elizeu Santos-Neto, and Matei Ripeanu.
2012. A Yoke of Oxen and a Thousand Chickens for Heavy Lifting Graph Pro-
cessing. In Proceedings of the 21st international conference on Parallel architectures
and compilation techniques, PACT. ACM, 345–354.

[15] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs..
In OSDI, Vol. 12. 2.

[16] William Gropp, Ewing Lusk, and Anthony Skjellum. 1999. Using MPI: Portable
Parallel Programming with the Message-passing Interface. Vol. 1. MIT Press.

[17] Kshitij Gupta, Jeff A. Stuart, and John D. Owens. 2012. A Study of Persistent
Threads Style GPU Programming for GPGPU Workloads. In Innovative Parallel
Computing. 14.

[18] Wei Han, Daniel Mawhirter, Bo Wu, and Matthew Buland. 2017. Graphie: Large-
Scale Asynchronous Graph Traversals on Just a GPU. In 2017 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT),. IEEE,
233–245.

[19] Changwan Hong, Aravind Sukumaran-Rajam, Jinsung Kim, and P Sadayappan.
2017. MultiGraph: Efficient Graph Processing on GPUs. In 26th International
Conference on Parallel Architectures and Compilation Techniques (PACT). IEEE,
27–40.

[20] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. 2011. Efficient Parallel
Graph Exploration on Multi-core CPU and GPU. In 2011 International Conference
on Parallel Architectures and Compilation Techniques (PACT). IEEE, 78–88.

[21] James Jeffers, James Reinders, and Avinash Sodani. 2016. Intel Xeon Phi Processor
High Performance Programming: Knights Landing Edition. Morgan Kaufmann.

[22] Peng Jiang, Linchuan Chen, and Gagan Agrawal. 2016. Reusing Data Reorgani-
zation for Efficient SIMD Parallelization of Adaptive Irregular Applications. In
Proceedings of the 2016 International Conference on Supercomputing. ACM, 16.

[23] Farzad Khorasani, Keval Vora, Rajiv Gupta, and Laxmi N Bhuyan. 2014. CuSha:
Vertex-centric Graph Processing on GPUs. In Proceedings of the 23rd international
symposium on High-performance parallel and distributed computing. ACM, 239–
252.

[24] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. 2012. Graphchi: Large-Scale
Graph Computation on Just a PC. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). USENIX.

[25] Changxi Liu, Biwei Xie, Xin Liu, Wei Xue, Hailong Yang, and Xu Liu. 2018.
Towards Efficient SpMV on Sunway Many-core Architectures. In Proceedings of
the 32th ACM on International Conference on Supercomputing, ICS, Vol. 18. 12–15.

[26] Hang Liu and H Howie Huang. 2015. Enterprise: Breadth-First Graph Traversal
on GPUs. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. ACM, 68.
[27] Hang Liu, H Howie Huang, and Yang Hu. 2016. iBFS: Concurrent Breadth-

First Search on GPUs. In Proceedings of the 2016 International Conference on
Management of Data. ACM, 403–416.

[28] Yucheng Low, Joseph E Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E Guestrin,
and Joseph Hellerstein. 2014. Graphlab: A New Framework for Parallel Machine
Learning. arXiv preprint arXiv:1408.2041 (2014).

[29] SteffenMaass, ChangwooMin, Sanidhya Kashyap,Woonhak Kang,MohanKumar,
and Taesoo Kim. 2017. Mosaic: Processing a Trillion-Edge Graph on a Single
Machine. In Proceedings of the Twelfth European Conference on Computer Systems.
ACM, 527–543.

[30] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A System for Large-
scale Graph Processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data. ACM, 135–146.

[31] Adam McLaughlin and David A Bader. 2014. Scalable and High Performance
Betweenness Centrality on the GPU. In Proceedings of the International Conference
for High performance computing, networking, storage and analysis. IEEE Press,
572–583.

[32] Duane Merrill, Michael Garland, and Andrew Grimshaw. 2012. Scalable GPU
Graph Traversal. In ACM SIGPLAN Notices, Vol. 47. ACM, 117–128.

[33] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A Lightweight
Infrastructure for Graph Analytics. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 456–471.

[34] Sreepathi Pai and Keshav Pingali. 2016. A Compiler for Throughput Optimiza-
tion of Graph Algorithms on GPUs. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications. ACM, 1–19.

[35] Jongsoo Park, Ganesh Bikshandi, Karthikeyan Vaidyanathan, Ping Tak Peter
Tang, Pradeep Dubey, and Daehyun Kim. 2013. Tera-Scale 1D FFT With Low-
Communication Algorithm and Intel® Xeon Phi™ Coprocessors. In Proceedings of
the International Conference on High Performance Computing, Networking, Storage
and Analysis. ACM, 34.

[36] Scott Beamer Krste Asanovic David Patterson. 2012. Direction-Optimizing
Breadth-First Search. SC12, November (2012), 10–16.

[37] James Reinders. 2007. Intel Threading Building Blocks: Outfitting C++ for Multi-core
Processor Parallelism. " O’Reilly Media, Inc.".

[38] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-
centric Graph Processing using Streaming Partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. ACM, 472–488.

[39] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten Schwan.
2015. GraphReduce: Processing Large-scale Graphs onAccelerator-based Systems.
In 2015 SC-International Conference for High Performance Computing, Networking,
Storage and Analysis, SC. IEEE, 1–12.

[40] Julian Shun and Guy E Blelloch. 2013. Ligra: a Lightweight Graph Processing
Framework for Shared Memory. In ACM Sigplan Notices, Vol. 48. ACM, 135–146.

[41] Avinash Sodani. 2015. Knights Landing (KNL): 2nd Generation Intel® Xeon Phi
Processor. In Hot Chips 27 Symposium (HCS), 2015 IEEE. IEEE, 1–24.

[42] Jyothish Soman, Kothapalli Kishore, and PJ Narayanan. 2010. A Fast GPU Al-
gorithm for Graph Connectivity. In Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on. IEEE, 1–8.

[43] Leslie G Valiant. 1990. A Bridging Model for Parallel Computation. Commun.
ACM 33, 8 (1990), 103–111.

[44] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and
John D Owens. 2016. Gunrock: A High-Performance Graph Processing Library
on the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. ACM, 11.

[45] Hao Wei, Jeffrey Xu Yu, Can Lu, and Xuemin Lin. 2016. Speedup Graph Process-
ing by Graph Ordering. In Proceedings of the 2016 International Conference on
Management of Data. ACM, 1813–1828.

[46] Bo Wu, Zhijia Zhao, Eddy Zheng Zhang, Yunlian Jiang, and Xipeng Shen. 2013.
Complexity Analysis and Algorithm Design for Reorganizing Data to Minimize
Non-Coalesced Memory Accesses on GPU. In ACM SIGPLAN Notices, Vol. 48.
ACM, 57–68.

[47] Biwei Xie, Jianfeng Zhan, Xu Liu, Wanling Gao, Zhen Jia, Xiwen He, and Lixin
Zhang. 2018. CVR: Efficient Vectorization of SpMV on X86 Processors. In Proceed-
ings of the 2018 International Symposium on Code Generation and Optimization.
ACM, 149–162.

[48] Eddy Z Zhang, Yunlian Jiang, Ziyu Guo, Kai Tian, and Xipeng Shen. 2011. On-the-
fly Elimination of Dynamic Irregularities for GPU Computing. In ACM SIGARCH
Computer Architecture News, Vol. 39. ACM, 369–380.

[49] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware Graph-
Structured Analytics. ACM SIGPLAN Notices 50, 8 (2015), 183–193.

[50] Jianlong Zhong and Bingsheng He. 2014. Medusa: Simplified Graph Processing
on GPUs. IEEE Transactions on Parallel and Distributed Systems 25, 6 (2014),
1543–1552.

12

GraphPhi PACT ’18, November 1–4, 2018, Limassol, Cyprus

A ARTIFACT APPENDIX

A.1 Abstract

This artifact contains the source code of all graph benchmarks

implemented according to our proposed approach, GraphPhi. There

are 6 benchmarks in total (including bfs, pagerank, sssp, cc,
bc, and mis) as mentioned in the evaluation section. In addition,
this artifact also includes the bash scripts to run these benchmarks

and the scripts to show the corresponding results.

Because it requires AVX-512 intrinsics for SIMD implementation

and High Bandwidth Memory (HBM) for partial results collection,

this artifact needs to run on Intel Xeon Phi (Knights Landing) with

Intel C++ compiler (icc/icpc) and OpenMP support. Moreover,
all source code is tested in the environment of Linux CentOS 7.

A.2 Artifact check-list (meta-information)

• Algorithm: Breadth-First Search (bfs), PageRank (pager-
ank) Single-Source Shortest Path (sssp), Connected Com-
ponents (cc), Betweenness Centrality (bc), and Maximal
Independent Set (mis).
• Program: The C++ implementation of those algorithms. For

comparison, the artifact also contains running scripts for the

benchmark implementations provided by Galois 2.2.1 (http:

//iss.ices.utexas.edu/?p=projects/galois) and Ligra (https://

github.com/jshun/ligra), respectively.

• Compilation: Intel C++ compiler (icc/icpc).
• Binary: GraphPhi’s source code and scripts are included to

generate binaries.

• Data set: 6 datasets including Pokec, LiveJournal,
RMAT24, RMAT27, Twitter, and Friendster, as men-
tioned in the evaluation section.

• Run-time environment: The artifact has been developed

and tested on Linux (CentOS 7) environment. The source

code is compiled by Intel C++ compiler with OpenMP sup-

port. One of the evaluation results requires Intel VTune

Amplifier for profiling. For benchmarks of Galois and Ligra,

Python 2.7 is needed for extracting the output.

• Hardware: The artifact is supposed to run on Intel Xeon

Phi (Knights Landing).

• Execution: Bash scripts are provided for execution.

• Output: Benchmark results include Execution Time (sec-

ond) with corresponding number of threads, Speedup, SIMD

Utilization, and other profiling results.

• Workflow frameworks used?: No.

• Publicly available?: Yes.

A.3 Description

A.3.1 How delivered. The source code is available as a public repos-

itory on Zenodo (https://zenodo.org/record/1318418) with DOI:

10.5281/zenodo.1318418 as well as the GitHub (https://github.com/

johnpzh/graphphi).

A.3.2 Hardware dependencies. The artifact has been developed

and tested on the KNL machine.

A.3.3 Software dependencies. In order to use Intel C++ compiler

and VTune profiler, the following script needs to be included in the

~/.bashrc file.

source /opt/intel/compilers_and_libraries/

linux/bin/compilervars.sh -arch intel64

-platform linux

source /opt/intel/vtune_amplifier_xe/

amplxe-vars.sh

The specific path might need to be modified according to the instal-

lation path of the icc/icpc compiler.
The parallel implementation in the artifact is based on OpenMP.

The artifact also includes PAPI library (http://icl.utk.edu/papi/) to

profile the L2 cache miss rate.

A.3.4 Data sets. Data sets need to be preprocessed by the tool

provided in our GitHub repository. We will include this tool in a

later version of our Zenodo repository.

A.4 Installation

Assume the root directory of the repository is pact2018/, in the
pact2018/apps/ directory, the following make command is
able to regenerate binaries.

$ make clean && make -j

A.5 Experiment workflow

After navigating to pact2018/apps/, we can run all bench-
marks of GraphPhi consecutively by one script with this command:

$./run.sh

Those subdirectories in pact2018/apps/ are organized accord-
ing to the evaluation section in the paper. Each subdirectory also

includes an independent run.sh script for performing the evalua-
tion for individual subsections. Moreover, in each benchmark folder

of a subdirectory, there also exists a run.sh script to run a single
benchmark. In summary, those run.sh scripts work in a recursive
way—each run.sh script is aimed to run all its subdirectories’
run.sh scripts. Note that the data path in every benchmark’s
run.sh script need to be changed accordingly. In future edition,
we plan to let those scripts be able to accept path as input.

For comparison, the artifact also contains scripts to run bench-

marks provided by Galois and Ligra. Under pact2018/apps/,
the subdirectory 620_galois_performance/ contains the
scripts for running benchmarks provided by Galois. We provide the

following command to run those benchmarks in the subdirectory:

$./galois_run.sh

Note the paths of binaries and data in the benchmarks’ scripts also

need to be modified accordingly.

Similarly, Under pact2018/apps/, the two subdirectories
620_ligra_performance/ and 650_ligra_hbm/ contain
the scripts for running benchmarks provided by Ligra. Under these

two subdirectories, the execution command is:

$./ligra_run.sh

13

PACT ’18, November 1–4, 2018, Limassol, Cyprus Z. Peng et al.

A.6 Evaluation and expected result

After running the run.sh script under pact2018/apps/, eval-
uation results will show up in the terminal. Here is an introduction

to the subdirectories under pact2018/apps/. At first, the fol-
lowing subdirectories are for our GraphPhi testing, including both

source code and running scripts.

• 620_overall_performance: it reports the overall perfor-

mance of GraphPhi. It contains all 6 benchmarks running

on all 6 datasets. Every benchmark runs 10 times with 64

threads. At first, it reports the number of threads and exe-

cution time. Then, it reports the average execution time as

well as the min and max among the 10-time runs.

• 631_scalability: it shows how all 6 benchmarks scale on

Pokec and Twitter. Every benchmark reports its execu-
tion time with the number of threads ranging from 1 to 64

on both datasets, respectively.

• 632_simd_performance: it reports 6 benchmarks’ execu-

tion time with SIMD and without SIMD implementation,

respectively. All benchmarks are running with 64 threads

on Pokec and Twitter. Every benchmark reports the ex-
ecution time of SIMD and non-SIMD, respectively at first,

followed by the SIMD speedup over non-SIMD.

• 641_block_tradeoff: it reports the results of pagerank
with different stripe lengths on Twitter, running with 64
threads. The cache miss rate and normalized execution time

are shown in the terminal. For the overhead time, it runs the

command of VTune Amplifier to generate the report. After

the script is done, the following command is able to run the

VTune Amplifier GUI.

$ amplxe-gui &

After the GUI profiler is open, one can click on the "Open

Result" from the welcome screen. The .amplxe report file
is in the folder in the following format.

pact2018/apps/641_block_tradeoff/

pagerank_overhead/report_<time>

_stripe-length-<sl>

where “<time>” is the time it generated and “<sl>” is the
stripe length. After the report is open, there is an overhead

time result in the Summary tab. This is the overhead time
for the corresponding stripe length.

• 642_push_pull: it reports the results of bfswith push/pull
execution and pull-only execution, respectively, running on

Pokec and Twitter. It reports the edge access count of
both types of execution and the push/pull speedup over pull-

only.

• 643_simd_utilization: it reports the SIMD utilization of

bfs and pagerank with and without the stripe merging

optimization, running on Pokec and Twitter. It also re-
ports the speedup of merged versions over without-merge

ones.

• 650_hbm: it reports the speedup of HBM versions over

DRAM ones for all 6 benchmarks running on Pokec and
Twitter with 128 threads.

The artifact also contains the scripts for running benchmarks

provided by Galois.

• 620_galois_performance: it reports the execution time of

all 6 benchmarks provided by Galois on all input graphs with

64 threads. We also include a small Python script to extract

performance information from the raw output.

At last, the artifact also provides the scripts for running bench-

marks provided by Ligra.

• 620_ligra_performance: it reports the execution time of

all 6 benchmarks provided by Ligra on all input graphs with

64 threads. Note that the BellmanFord in Ligra is the
counterpart to sssp in GraphPhi and Galois.
• 650_ligra_hbm: it reports the speedup of the 6 benchmarks

provided by Ligra running on HBM for Pokec and Twit-
ter with 128 threads.

A.7 Experiment customization

Because the artifact needs a long time to run and the output is

numerous, it might be a good idea to save the output into a file. The

following command is able to show the output in the terminal and

also to redirect it into a file.

$:> output.txt && ./run.sh 2>&1 | tee

output.txt

where “2>&1” redirects the stderr to the stdout and “tee”
prints the output into the file output.txt and on the screen at
the same time. And “:> output.txt” is able to create an empty
file at first in case it disappears during the running.

A.8 Notes

For the large graphs such as RMAT27 and Friendster, it may
take a long time (more than half an hour) to run, due to our unopti-

mized disk I/O. By default, all benchmarks run 10 times to get the

average execution time. For the purpose of saving time, the scripts

galois_run.sh and ligra_run.sh are able to accept a num-
ber as the repeat times for running. For example, the following

command runs Galois and Ligra 3 times, respectively.

$./galois_run.sh 3

$./ligra_run.sh 3

14

