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Abstract—Graph analytics has been routinely used to solve problems in a wide range of real-life applications. Efficiently processing
concurrent graph analytics queries in a multiuser environment is highly desirable as we enter a world of edge device oriented services.
Existing research, however, primarily focuses on analyzing a single, large graph dataset and leaves the efficient processing of multiple
mid-sized graph analytics queries an intriguing yet challenging open problem. In this work, we investigate the scheduling of concurrent
graph analytics queries on NUMA machines. We analyze the performance of several graph analytics algorithms and observe that they
have diminishing performance returns as the number of processor cores increases. With concurrent graph analytics, such diminishing
returns translate to no or even negative performance gains because of increasing contention on shared hardware resources. We also
demonstrate the unpredictability of memory bandwidth usage for numerous graph analytics algorithms, which can lead to sub-optimal
performance due to its potential to cause severe memory bandwidth contention. Motivated by the above observations, we propose
CongraPlus, a NUMA-aware scheduler that intelligently manages concurrent graph analytics queries for better system throughput and
memory bandwidth efficiency. CongraPlus collects the memory bandwidth consumption characteristics of graph analytics queries via
offline profiling and eliminates memory bandwidth contention by computing the optimal sequence to launch queries. It also avoids
computation resource contention by assigning a certain number of processor cores to the individual queries. We implement
CongraPlus in C++ on top of the Ligra graph processing framework and test it with judiciously selected graph processing query
combinations. Our results reveal that CongraPlus-based schemes improve query throughput by 30% compared to the conventional
approach. It also exhibits a much better quality of service and scalability.

Index Terms—Concurrent graph analytics, query scheduling, memory bandwidth, efficiency, throughput.
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1 INTRODUCTION

COMPUTATION over graph big data has become a
hotspot due to its broad application in social network

analysis, web page analysis, protein structure research, etc.
Graph structures can model a wide range of entities and
the links between them. Recent research literature witnessed
the proposal of numerous frameworks that provide graph-
specific optimizations, with an emphasis on effectively han-
dling a single, large-scale graph dataset [1], [2].

While existing systems are efficient for single graph
analytics query, they provide little support for processing
concurrent graph analytics queries. It is not unusual for
graph processing engines to serve requests in a multi-user
environment. For example, ubiquitous edge devices running
smart applications may need to correlate data with other
devices to provide context-aware services continuously [3].
Multi-player mobile games need to monitor and react on
the status change of each player and their interactions [4].
A group of analysts may issue multiple graph analytics
queries to analyze financial patterns or customer behaviors
through pattern matching algorithms such as subgraph
isomorphism detection [5].

The conventional way of handling concurrent queries
is to create one process for each query and to run them
at the same time. Unfortunately, this does not work well
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for concurrent graph analytics. It is generally accepted that
memory bandwidth is the bottleneck for parallel graph
processing [6], [7]. For concurrent graph analytics, numer-
ous analytic queries can cause severe memory bandwidth
contention and significantly degrade the response time for
all queries that are running in parallel.

What is worse for conventional concurrency handling
is the unpredictability of memory bandwidth consumption
characteristics for a specific graph analytic application. Ap-
plications that feature a certain degree of data exploration
(e.g., BFS) tend to have a decreasing number of active
vertices as the number of iteration grows. In other words,
these applications may consume less memory bandwidth
over time. Some computation-intensive graph applications
(e.g., PageRank), on the other hand, iterate over the same
set of vertices until numerical values converge. These appli-
cations are observed to consume almost constant memory
bandwidth.

Another obstacle to efficient concurrent graph analytics
is the diminishing performance returns of single analytic ap-
plication with increasing number of processor cores. Shared-
memory graph processing frameworks rely heavily on more
threads to achieve significant performance improvement [8].
However, our experiments indicate such improvement gets
smaller as the number of threads grows larger. With con-
current graph analytics queries, the performance degrada-
tion due to computation resource contention outweighs the
performance gained via increasing utilized threads. Thus
an intelligent query scheduling scheme should be able to
appropriately assign processor cores to each query so that
the overall performance gained (i.e., the speedup achieved
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through parallel processing minus the performance de-
graded due to resource contention) is maximized.

To tackle the above challenges, we use profiling to
achieve accurate memory bandwidth prediction and effi-
cient computation resource allocation. We propose Con-
graPlus, a novel scheme for scheduling graph analytics
queries on NUMA machines, based on our prior Congra
scheduler [9]. CongraPlus extends existing shared-memory
graph analytics framework in two aspects. First, it enables
conventional single-graph oriented designs to efficiently
serve multiple users. CongraPlus uses a resource-aware
query-colocation scheme to ensure the performance impact
of resource sharing is minimized. Second, it allows multiple
shared-memory based systems to be easily organized as
a graph analytics cluster and automates the QoS-aware
scheduling of incoming analytic queries.

We have built a prototype of CongraPlus based on
Ligra, a lightweight graph processing framework on shared-
memory machines [8]. The system profiles single analytic
queries while it is offline. During the online phase, it ef-
fectively schedules concurrent analytic queries by consid-
ering their memory bandwidth requirement, performance
gains through multithreading, and the interference caused
by computation and bandwidth resource contention. While
CongraPlus is implemented on top of Ligra, it is largely
orthogonal to the underlying infrastructure and can be
extended to support a variety of shared memory graph
analytics frameworks.

This paper makes the following contributions:

• We characterize the resource consumption behavior
of graph analytics applications on shared-memory
machines and discuss the design trade-offs in such
system.

• We propose CongraPlus, a NUMA-aware scheduling
scheme that extends our prior Congra scheduler [9]
with load balancing and thread assignment tech-
nique to support efficient concurrent graph analytics
on commodity servers.

• We implement and evaluate CongraPlus system
with carefully selected combinations of representa-
tive graph analytics algorithms and input graphs.

The rest of this paper is organized as follows. Section 2 in-
troduces background and further motivates our design. Sec-
tion 3 proposes the framework and algorithm for schedul-
ing multiple graph processing queries. Section 4 presents
our implementation details. Section 5 describes evaluation
methodology followed by section 6 showing our experiment
results. Finally, Section 7 discusses related work and Sec-
tion 8 concludes this paper.

2 BACKGROUND AND MOTIVATION

In the past several years, most research focuses on process-
ing a single large graph analytics workload (e.g., Web data,
social network, and large scientific datasets) [1], [2]. Many
of the proposed parallel frameworks in this scenario adopt a
message-passing communication model rather than shared-
memory [10], [11], [12].

Processing concurrent small or mid-sized graph analyt-
ics queries, however, requires a different design approach. It

is preferable to analyze the graph on single shared-memory
machines. State-of-the-art NUMA commodity servers that
feature multiple processors and up to several terabytes of
main memory are widely deployed in data centers. The
abundance of computation and storage resources makes the
processing of concurrent graph analytics queries possible.
Moreover, the memory access in shared-memory systems
has much smaller overhead than their message-passing
counterparts, which is ideal for graph analytics as they are
inherently data-intensive [13].

In this paper we focus on concurrent graph analytics of
small to mid-sized graph structures on individual commod-
ity servers. Large graph structures with billions of edges
and vertices are generally proprietary data of companies
and organizations who can afford private server clusters to
analyze these data. The graph analytic workload of public
cloud service providers, whose users have their own private
but smaller graph structures to be analyzed, tend to be a
mix of small to mid-sized graph analytic queries. However,
simply treating each analytic query as either a traditional
batch task or latency-critical task is inefficient: running a
series of analytic queries in parallel leads to severe resource
contention, which degrades performance, and dedicating
the entire server to a mid-sized analytic tasks leads to low
server utilization.

Our goal of efficient processing on concurrent graph
analytics queries is two-fold: 1) the system should max-
imally utilize the computation and bandwidth resources
installed to the NUMA server to increase cost efficiency;
2) the system should avoid performance degradation due
to parallel execution of independent queries. To realize this
goal, the scheduler must be 1) able to identify the bandwidth
requirement for each query and ensure the memory band-
width is not over contended during the entire execution
process; and 2) capable of assigning an appropriate number
of processor cores to each query such that they are optimally
co-located. This can be challenging for two reasons: opaque
bandwidth usage and limited thread scalability.

2.1 Opaque Bandwidth Usage

Graph analytics applications involve heavy communication
between main memory and processor. Memory bandwidth
is therefore deemed the bottleneck for most parallel graph
analytics applications [6], [14]. The traditional scheduling
scheme, which executes all analytic queries in parallel,
can lead to severe contention in memory bandwidth and
degrades the overall performance of the graph analytics
engine.

Better scheduling decisions (i.e., resource-aware schedul-
ing) can be made if the memory bandwidth usage patterns
can be obtained for each analytic query. Unfortunately,
such runtime patterns are typically opaque to the system
and hard to predict before execution. We run three typical
graph analytics algorithms and keep track of their memory
bandwidth usage to demonstrate the versatility of memory
bandwidth usage patterns. Fig. 1 presents the bandwidth
usage traces of BellmanFord, KCore, and PageRank algo-
rithms. Their average bandwidth usage is shown in Fig. 2.

Fig. 1a shows the three stages of memory bandwidth
usage that Bellman-Ford shortest path application goes
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Fig. 1. Memory bandwidth usage traces of different algorithms with rMatGraph10m input graph. (a) exhibits high and low memory bandwidth
utilization at different execution stages; (b) has similar bandwidth utilization distribution as (a) but exhibits a periodic change in its last execution
stage; (c) has constant bandwidth usage during the entirety of its execution, with periodic fluctuation. All three presented algorithms have vastly
different memory bandwidth usage patterns which are hard to predict before execution.
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Fig. 2. Memory bandwidth usage of different algorithms with rMat-
Graph10m input graph. Bandwidth usage typically grows larger with
more threads, but varies significantly among different algorithms.
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Fig. 3. Execution time of different algorithms with rMatGraph10m input
graph. Performance is generally better with more threads, with speedups
decreasing w.r.t. number of threads.

through: the high consumption stage, where the applica-
tion is actively loading the graph structure from the hard
disk; the low consumption stage, where the number of
active vertices in the current vertex front is low; and the
graph-dependent stage, where the bandwidth consumption
depends on both the graph topology and whether the
lengths of shortest paths have converged. The bandwidth
usage of the K-Core algorithm in Fig. 1b resembles that of
Fig. 1a in the loading stage. The following stage features de-
creasing bandwidth usage with periodic fluctuation, which
corresponds to the iterative computation of input graph’s
K-decomposition. PageRank algorithm in Fig. 1c features
almost constant bandwidth usage with periodic fluctuation,
due to its iterative updating to the rank values of all vertices.
Fig. 2 further summarizes the average bandwidth usage
for different analytic applications. Even in simple average
value, the bandwidth usage varies significantly across dif-
ferent algorithms.

To conclude, our experiments indicate that the mem-
ory bandwidth usage patterns of graph analytics applica-
tions are often vastly different across different algorithms.
Such versatility makes the usage patterns hard to predict,
which prevents the system from performing resource-aware
scheduling.

2.2 Limited Thread Scalability
A few key techniques, such as multiprocessing, multi-
core processor, and hyper-threading, are ubiquitous among
shared-memory commodity servers with NUMA architec-
ture. When combined, they benefit parallel graph analytics
greatly as abundant parallel worker threads can be utilized
by carefully designed and implemented graph analytics
frameworks [8].

However, the performance improvement diminishes
when the number of threads grows larger. We run six graph
analytics algorithms with different number of threads to
capture the thread scalability of different algorithms. Fig. 3
presents the execution time of the algorithms with respect
to the number of threads. The speedup from single thread to
double threads is significant (1.79X). Doubling the threads
from 2 to 4 decreases the speedup to 1.60X. Further increas-
ing the number of threads, although does help improve the
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Fig. 4. Overview of CongraPlus system. During offline phase, the combination of analytic algorithms and graph structures will be enumerated and
profiled with varying threads. Key run-time information such as execution time and memory bandwidth usage (¬, ) will be handed to the online
phase to enable better scheduling decision. During the online phase, CongraPlus will first divide query stream into fixed time interval. The query
assigner will assign queries into different nodes in the NUMA system and balances the load among them. The local scheduler determines the
optimal execution sequence and thread number for each query to run with on the local node.

performance of each application, leads to less performance
gained per thread. One cause of the reduced performance
gain is the increased cost of maintaining cache coherence
across more cores. When processors in more than one socket
are involved in a single program (for threads larger than 20
in Fig. 3), the expensive remote memory accesses also has a
negative performance impact.

The diminishing performance gain is problematic for
concurrent graph analytics. First, allocating all processor
cores to each analytic query is inefficient in a concurrent
environment. The results from Fig. 3 indicates that doubling
threads does not necessarily half the query’s execution
time. Therefore, assigning fewer processor cores to more
queries can be more efficient in the sense that it reduces
the overall execution time. Second, enforcing optimal per-
formance for individual query inevitably leads to contention
on shared processor resources such as reservation stations,
reorder buffer, last level cache, etc. The contention will
negatively impact system performance and even outweigh
the speedups achieved by utilizing more threads.

Our insight from the experiments is that blindly pursu-
ing optimal performance for the individual query will hurt
the whole system’s performance due to aggressive query
co-location and low per-core efficiency. Optimal system
performance can be achieved through intelligent processor
core allocation with which shared resource contention is
minimized, and each core achieves maximal speedup.

3 CONGRAPLUS SYSTEM DESIGN

Judiciously co-locating analytic queries can improve hard-
ware resource utilization without sacrificing the overall sys-
tem performance. An intelligent scheduling scheme should

be able to identify resource utilization characteristics of
applications to achieve optimal system performance. In this
section, we propose CongraPlus, a resource-aware analytic
query scheduler for NUMA commodity servers.

Fig. 4 presents the structure of CongraPlus scheduler. We
divide our scheduling scheme into two phases: the offline
profiling phase and the online scheduling phase. In offline
profiling phase, CongraPlus profiles all combinations of an-
alytic algorithms and graph structures available to the sys-
tem. In online scheduling phase, CongraPlus works on an
analytic query stream and assigns each query to one certain
processor in a way that ensures balanced loads across all
processors. Each local scheduler will subsequently compute
the optimal launch sequence and number of threads for each
query, with which the queries will be launched.

CongraPlus system is based on our previous concurrent
graph analytics framework Congra [9]. Congra targets gen-
eral shared-memory machines and assumes a single-socket
configuration. CongraPlus is different from Congra in that
1) it is aware of the NUMA architecture that most modern
servers deploy to reduce remote memory accesses and 2)
it uses an optimized local scheduler, whose unoptimized
version is also included in Congra systems. Apart from
these differences, they also share some similarities. Both
systems are built to support efficient concurrent graph an-
alytic queries. The profiling phase of CongraPlus is based
on Congra’s and both systems can share the same profiled
characteristics.

3.1 Offline Profiling
The offline phase is mainly responsible for collecting run-
time information that is valuable to scheduling such as
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memory bandwidth usage and application execution time.
The opaque bandwidth usage problem described in Sec-
tion 2.1 is handled by synthesizing possible analytic applica-
tions and profiling them with varying threads. The profiling
results reveal the application’s resource usage patterns and
resource utilization efficiency, both of which will be later (in
the online scheduling phase) used to optimize the overall
system performance.

This section is organized as follows: section 3.1.1 pro-
vides detailed information on how the profiled analytic
applications are synthesized; section 3.1.2 describes the
structure of the monitor that records hardware resource
information at profile time.

3.1.1 Analytic Application Synthesis
The offline phase begins with the synthesis of analytic ap-
plications which will later be profiled. Each analytic appli-
cation can be represented by two components: the analytic
algorithm and the graph structure it runs on. The offline
phase thus synthesizes analytic applications via enumerat-
ing the algorithms and graphs available to the system.

For concurrent graph analytics system deployed at the
cloud, the analytic algorithms used in profiling can be
deduced from the analytic services provided by the plat-
form. For example, computing relative importance of each
vertex in a graph structure is an important task for data
mining applications. This task generally involves PageRank
algorithm and its variants [15]. Therefore, the platforms
that provide similar data mining services should profile
PageRank algorithm and its variants. For platforms that try
to provide more general-purpose graph analytic functional-
ities, breadth-first search (BFS) and depth-first search (DFS)
should be profiled as they can serve as the primitives that
help traverse a graph structure [16].

Collecting graph structures, however, is not trivial. Users
of graph analytics services may have interests analyzing
public graph structures which contain information related
to them (exploring common neighbors in a social network,
computing the shortest path from the user’s starting point in
a city street grid, etc.) or work on private graph structures.
In the former case, the graph structure can be collected and
profiled with permission from its owner as such structures
tend to be updated infrequently [17]. Profiling private graph
structures can be cost-inefficient since only its owner work
on them. Besides, the users may be reluctant about sharing
their data with cloud service providers due to privacy con-
siderations. A workaround for this situation is to establish
reasonable approximation for their run-time information,
which is beyond the scope of this paper, and monitor these
applications in the online scheduling phase.

3.1.2 Resource Monitor
To record the detailed resource consumption behavior of
each analytic application, the resource monitor module is
used to collect data from processors’ performance counters
and interpret them as meaningful run-time information.
Specifically, the resource monitor includes a set of perfor-
mance event names that are to be monitored. These names
are first encoded into OS-compatible event names and
then fed to monitor daemon, which will be responsible for
reading data from corresponding performance counters at

processors and interpreting them. The output of the resource
monitor is a sequence of numerical quantities recorded
with timestamps, which can be further analyzed or sent
to CongraPlus online phase to assist in scheduling decision
making.

3.2 Online Scheduling

The online phase aims to solve two problems that hinder
efficient co-location of analytic queries: 1) how to assign
queries to processors since assigning each query to all
processors results in sub-optimal overall performance; 2)
what is the optimal launch sequence and number of threads
to execute each query. The above problems are addressed in
the QueryAssigner1 and LocalScheduler modules in Fig. 4
respectively, both of which will be described below.

This section is organized as follows: section 3.2.1
presents how CongraPlus assigns analytic queries to an
individual processor and achieves well-balanced load across
all processors; section 3.2.2 describes how CongraPlus com-
putes the optimal launch sequence and thread number of
each query.

3.2.1 Query Assigner
Single graph analytics application benefits from multipro-
cessing which provides more parallel worker threads. How-
ever, assigning all processor cores to each query, which we
will refer to as a shared scheme, is cost-inefficient because of
diminishing speedups discussed in section 2.2. The shared
scheme can also incur severe contention on the last level
cache, memory bandwidth, cross-socket link bandwidth, etc.

CongraPlus adopts a private assigning scheme, where
each query can be executed only on a single processor to
avoid performance degradation due to aggressive query
co-location. More specifically, the query assigner maintains
query queue for each processor in the system. With n pro-
cessors, the workloads of queries are well-balanced among
all processors if equation 1

OverallLoad = max
1≤i≤n

∑
Qj∈Queuei

ExecTime(Qj) (1)

is minimized. Here, Queuei represents one of the query
queues that corresponds to the processors, and Qj indicates
the query that is in the queue. The execution time of each
query, which has been profiled during the offline phase, will
serve as an alternative indication of query’s workload.

Minimizing OverallLoad term in equation 1 is equiva-
lent to the multiprocessing scheduling optimization prob-
lem, which is NP-hard [18]. Section 4.2.1 will detail the
approximate algorithm CongraPlus used to solve it.

3.2.2 Local Scheduler
The local scheduler is responsible for scheduling and
launching the queries assigned to its corresponding pro-
cessor. The remaining section will focus on discussing how
to determine the optimal query launch sequence and with

1. In this paper we assume a single machine environment. But
CongraPlus can be easily scaled out to more machines by having a
query allocator that dynamically allocates each incoming query to one
local query stream (the concurrent query stream in Fig. 4).
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how many threads a query should be run, both of which are
critical to the overall system performance.
A. Query Set

CongraPlus computes the optimal query launch se-
quence with a generate-and-check method. Queries of
the light workload are prioritized to be added to the
query set, which will be examined by the selection
unit for resource contention and the optimal number of
threads. The details of the query set generation will be
discussed at section 4.

B. Selection Unit
The selection unit takes a query set as input and checks
whether launching all queries in this query set incurs
resource contention. If not, the selection unit will also
output the optimal thread allocation for each query.

Contention detection involves the run-time hard-
ware resource usage information collected at the offline
phase. It compares the sum of the current and provi-
sioned resource usage with the total resource available,
and determines whether resource contention occurs.
With the contention detection unit, the local scheduler
ensures that the resource usage is limited within the
system’s capability.

The thread allocation unit adopts an iterative ascent
algorithm to compute the optimal number of threads
for each query in the query set. During the ascent
process, the query which benefits most from running
with more threads is chosen and the threads allocated
to it is increased. This process will iterate until resource
contention occurs under the current query set and thread
allocation scheme. The scheme in the second-to-last iter-
ation is deemed optimal because it maximizes the per-
formance gained from increasing number of threads. The
iterative ascent algorithm will be detailed at section 4.2.3.

C. Context Unit
Either computing the optimal launch sequence or thread
allocation scheme requires the knowledge of the status
of the currently active queries. The context unit keeps
track of the status of all launched queries so that the
scheduling happening in selection unit is up-to-date.

D. Execution Unit
CongraPlus is compatible with all shared-memory graph
analytics frameworks. Once the optimal thread alloca-
tion scheme is determined, the underlying execution
engine will be called to run the analytic program.

3.3 Applicability Discussion

The scheduling techniques of CongraPlus are not exclusive
to graph analytic workloads. It can be applied to other
workloads if the following restrictions are satisfied: 1)the
resource usage characteristics of this workload does not
change significantly between each execution, 2) the work-
load is memory-bound and benefits from multi-threading
and 3) concurrent execution of such workloads has consid-
erable benefit in server utilization or performance and does
not hurt the quality of the service provided by the service
provider. The first restriction ensures the profiling overhead
is acceptable. The second restriction is derived from the two
challenges, opaque bandwidth usage and limited thread
scalability, that the scheduler tries to tackle. The third re-

striction makes sure the adopting our scheduling techniques
leads to benefits at an acceptable cost.

We argue that graph analytics is an ideal type of work-
load for the online scheduler. First, the graph datasets be-
tween each execution has little or no change so that the pro-
filing results can be reused a large number of times before
a new profiling is needed. For example, the Twitter graph,
used in generating the user-to-follow recommendation, is
updated less frequently than once a day [17]. For smaller
graphs, the graph structure mutation has less impact on
performance than with large-scale graph structures. Second,
we have shown in section 2.1 and section 2.2 that opaque
bandwidth usage and limited thread scalability cause inef-
ficient concurrent execution of graph analytic applications.
And finally, as we will show in section 6, mid-sized graph
analytic applications benefit from our scheduling techniques
in both execution time and throughput without compromis-
ing quality of service.

4 CONGRAPLUS IMPLEMENTATION

This section provides more details about the CongraPlus
implementation. Our prototype aims at commodity servers
with Linux kernel and state-of-the-art Intel processors.
Overall, the CongraPlus prototype we build includes about
600 lines of C++ code for constructing the online scheduler
and about 370 lines of C++ code for offline profiling, with a
few bash scripts for automated profiling and Python code
for data analysis. CongraPlus uses Ligra, a light-weight
parallel graph analytics framework [8], as its execution
engine.

4.1 Offline Profiling Phase

This section focuses on the details of the resource monitor
module. The analytic algorithms and graph structures will
be described at section 5.1.

4.1.1 Resource Monitor
The resource monitor takes performance event names as in-
put. It records and interprets the data collected from the cor-
responding hardware performance counters. libpfm4 library
assists in encoding human-readable names into kernel-
compatible strings. Monitor daemon (a background process
periodically waken up to record readings from processors’
performance counters) collects and interprets the hardware
resource usage information. In this paper we set the wake
up period to be 0.1 second so as to plot detailed resource
usage curves. In real applications, this period can be much
larger (1 second to 10 second) as long as the performance
counters do not overflow. The overhead of profiling with
monitor daemon is low: even with the aggressive wake
up period of 0.1 second we did not observe performance
degradation of the analytic workload.

As an example, CongraPlus records memory bandwidth
usage for each query during the profiling phase. According
to Intel Software Developers’ Manual, the number of Col-
umn Address Strobe (CAS) read and write commands at the
integrated memory controller (iMC) side serves as a good
indicator of memory bandwidth usage [19]. libpfm4 suggests
the name of this performance event is UNC_M_CAS_COUNT.
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Require: Query = {Q1, Q2, ...}
Ensure: Each Qi ∈ Query be assigned to local scheduler

1: procedure QUERYASSIGNER(Query)
2: Sort(Query, ExecT ime, Descending)
3: for each Qi ∈ Query do . LPT algo.
4: Queuej ← Queuej ∪ {Qi} where
5: ·

∑
Qk∈Queuej

ExecTime(Qk) is minimal
6: end for
7: for Queuej do . Assign queries to local schedulers
8: LOCALSCHEDULERj(Queuej , ∅)
9: end for

10: end procedure
Require: Queue = {Q1, Q2, ..., Qn}; Ctxt: active queries
Ensure: Each Qi ∈ Queue be run with optimal # of threads

1: procedure LOCALSCHEDULER(Queue, Ctxt)
2: Sort(Queue, ExecT ime, Ascending)
3: S ← ∅
4: repeat when resources are released or idle
5: for each Qi ∈ Queue do
6: S ← S ∪ {Qi}
7: Ready(S)← CONTENTIONDETECT(S, Ctxt)
8: T (S)← ITERATIVEASCENT(S, Ctxt)
9: end for

10: Find S′ ⊆ S such that
11: · S′ = S at some point in the previous for-loop
12: · Ready(S′) = True
13: · Perf(S′,T (S′)) is maximized
14: QLA ← Qi where
15: · Qi ∈ Queue ∧Qi has maximal ExecT ime
16: PerfLA ← Gain(QLA,T (S

′)) - Loss(Ctxt)
17: if PerfLA > Perf(S′,T (S′)) then
18: continue
19: end if
20: LAUNCH(S′, T (S′), Ctxt)
21: Queue← Queue\S′
22: until Queue = ∅
23: end procedure
Require: S = {Q1, Q2, ..., Qn}; Ctxt: current active queries
Ensure: T : optimal number of threads for each Qi ∈ S

1: function ITERATIVEASCENT(S, Ctxt)
2: T ′ ←MinimalThread
3: repeat
4: T = T ′

5: Find Qi ∈ S such that
6: · Gain(Qi,T) is maximized
7: T ′(Qi)← Inc(T (Qi))
8: until

∑
Qi∈Ctxt

BW(Qi,T)+
∑

Qi∈S
BW(Qi,T

′)>Limit

9: return T
10: end function

Fig. 5. Pseudo code for algorithms of CongraPlus Online Scheduling
Phase. QueryAssigner, LocalScheduler correspond to QueryAs-
signer and LocalScheduler modules in Fig. 4. Optional look-ahead
(LA) optimization is marked in red.

Adding up the readings from performance counters at dif-
ferent iMC yields the total memory bandwidth usage.

It is also worth noting that UNC_M_CAS_COUNT event
is socket-wide, which means it cannot distinguish which
application generates how much of the bandwidth traffic if
multiple processes are running at the same time. Therefore,
the server needs to be idle before commencing profiling
(one application after another) to ensure the recorded data
correctly reflects the behavior of the profiled application.

4.2 Online Scheduling Phase

Fig. 5 describes the algorithms of query assigner, local
scheduler, and iterative ascent in pseudo code.

4.2.1 Query Assigner Algorithm
As mentioned in section 3.2.1, the problem of balancing
the query workload among processors is equivalent to the
NP-hard multiprocessor scheduling optimization problem.
CongraPlus uses the Least Processing Time (LPT) approxi-
mation algorithm to obtain good approximation results in
the practical time limit. To be specific, the query assigner
always assigns the query with the heaviest workload to
the queue whose total workload is minimal. This simple
yet effective algorithm has been proved to have decent
approximation upper bound to the optimal solution [20].

4.2.2 Selection Unit
As part of the generate-and-check method, the selection unit
mainly serves as the ”checker” who decides which query
set can be launched. Two aspects will be considered before
the selection unit makes its launching decision: whether this
query set incurs memory bandwidth contention and how
much speedups can be obtained from this query set and
thread allocation scheme.

The contention detection part can be done by compar-
ing the sum of current bandwidth usage and provisioned
bandwidth usage with total available bandwidth. That is,
contention might be incurred if equation 2 holds∑
Qi∈Ctxt

MemBW(Qi)+
∑
Qi∈S

MemBW(Qi) ≥ MemBWLimit

(2)
where S is the query set to be examined and Ctxt
is the set of currently running queries. In our proto-
type, MemBWLimit constant is measured while performing
STREAM benchmark [21].

4.2.3 Iterative Ascent Algorithm
Iterative ascent algorithm is used to compute the optimal
thread allocation scheme for a given query set and active
queries. The algorithm is described in Fig. 5. Let S be the
query set and Ctxt be the set of currently running queries.
This algorithm starts with minimum thread allocation for
each query Qi ∈ S. During each iteration, one query that
benefits most from running with more thread number has
its thread number increased (an ”ascent”). This process is
repeated until memory bandwidth contention occurs due to
aggressive thread allocation. The thread allocation scheme
in the last but one iteration is the output of iterative ascent
algorithm.
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One detail is under existing thread allocation scheme
T , how CongraPlus measures the performance gained (de-
noted as Gain(Q, T)) of query Q from increasing running
threads. Mathematically, equation 3 uses the difference of
execution time as the measure of gained performance

Gain(Q,T) = ExecTime(Q,t)−ExecTime(Q,Inc(t))
(3)

where
t = T (Q) (4)

ExecTime() returns the execution time of a certain query
running with certain number of threads, and Inc() returns
a number of threads larger than its input.

Iterative ascent algorithm increases the performance
gained from thread number at every iteration. This property
ensures the output of iterative ascent maximizes overall per-
formance gained of the input query set, as well as avoiding
bandwidth resource contention.

4.2.4 LookAhead Optimization

Since the local scheduler schedules whenever any query
finishes releasing resources, it is possible that the released
resources are inadequate to support the following heavy
workload query. The motivation behind lookahead (LA)
optimization is that reserving released resources by not
launching query can lead to more performance reward
in the future. This optimization is critical when currently
available resources only afford to execute the next query
with several threads, but it requires dozens not to keep
incoming queries waiting too long.

CongraPlus implements the LA optimization by com-
puting the performance gained from LA strategy (PerfLA)
and comparing that with the reward of normal strategy.
The reward of normal strategy Perf(S′, T (S′)) is defined
by equation 5, where MinT stands for minimal number
of threads. The LA strategy gains performance reward by
reserving resources for future use but also loses immediate
performance reward because the scheduler has to wait till at
least one query finishes to launch the next query. Equation 6
defines the loss function as a function of currently running
queries. Note that Equation 6 is just a rough estimation of
the time needed till one query finishes.

Perf(S,T) =∑
Q∈S

ExecTime(Q,T (Q))− ExecTime(Q,MinT) (5)

Loss(Ctxt) = Average(ExecTime(Ctxt)) (6)

4.2.5 Thread Allocation Implementation

According to the thread allocation scheme, each query
should be bound to specific threads to reduce contention
of shared resources. In Linux this can be achieved by calling
the sched_setaffinity() system call. After the thread
allocation is finished, CongraPlus calls Ligra, a lightweight
graph analytics framework for shared-memory systems [8],
to execute the analytic program.

It is worth noting that enforcing thread allocation
scheme naturally enforces the local allocation of memory.

TABLE 1
Evaluated Server Configuration

Parameter Setup

# of Sockets 2
Processor Intel Xeon E5-2630 v4 @ 2.20GHz × 2

Total Logical Cores 20 × 2 1

Main Memory 128GB × 2 DDR4 SDRAM 2

L1 ICache 32KB
L1 DCache 32KB
L2 Cache 256KB
L3 Cache 25MB

Linux Kernel Version 4.4.87
Compiler g++ 5.4.03

1 Hyper threading is enabled
2 Each socket is installed with 128GB DRAM
3 Comes with full support for Cilk Plus

TABLE 2
Graph Datasets Used in Evaluation

Graphs ‖V‖ ‖E‖ Description
Code Name

GL1 LiveJournal 4.0M 34.7M social network
GL2 rMatGraph10m 16.8M 100M power graph
GL3 randLocal10m 10.0M 100M random graph
GS1 citePatents 3.8M 16.5M temporal, labeled
GS2 roadCA 2.0M 2.8M road network/grid

In Linux kernel, the default memory policy is set to first-
touch, which means the memory pages will be allocated
from the node which triggers the page fault. By assigning
threads from the same processor to the queries, the thread
that triggers the page fault can only come from the query’s
local node. This implied consequence eliminates expensive
remote memory accesses that often occur in NUMA systems
and further avoids possible contention on cross-socket link
bandwidth.

5 EVALUATION METHODOLOGY

In this section, we present the hardware configuration and
software scheduling schemes that we use in our evalua-
tion. Section 5.1 details what analytic algorithms and graph
structures we use in the offline profiling phase. Section 5.2
discusses the scheduling schemes we evaluate, either to
serve as the baseline or to demonstrate the effectiveness of
our prototype.

We evaluate our prototype on a Linux commodity server
with two processors. The configuration of our server is
presented in table 5.

5.1 Test Set Synthesis

To evaluate our scheduler prototype, We synthesize 9 query
test sets based on six graph analytics algorithms and five
widely used graph instances. Table 2 and table 3 present the
algorithms and graphs used in our synthesis, and table 4
details the synthesized test sets. We also use the algorithms
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TABLE 3
Algorithms Used in Evaluation

Algorithms To Compute Property
Code Name

AH1 PageRank relative importance
Bandwidth
consumingAH2 KCore k-core decomposition

AH3 BellmanFord shortest path

AL1 BFS breadth-first search
Bandwidth
conservingAL2 Components connected components

AL3 Triangle the number of triangles

and graphs presented in table 2 and table 3 to perform
application synthesis in the offline profiling phase.

Three graphs used in evaluation (i.e., LiveJournal,
citePatents, and roadCA) come from a public real-world net-
work data repository [22]. We also consider a random graph
(randLocal10m) and a synthetic graph (rMatGraph10m)
generated by the RMAT graph generator [23] which fol-
lows a power-law distribution. Of the all three real-world
graphs, LiveJournal describes, the ”friendship” relation in a
social network; citePatents records the citing relation among
patents; roadCA is generated from the road network of
California. We categorize the graphs according to their size
and mark LiveJournal, rMatGraph10m, randLocal10m as
large graphs (GL) and citePatents, roadCA as small graphs
(GS).

We use six representative graph analytics applications
implemented with Ligra framework in our evaluation. The
applications are categorized according to their memory
bandwidth consumption. PageRank, KCore, and Bellman-
Ford are deemed as algorithms of high bandwidth con-
sumption (AH) because of their need of (iterative) graph
traversal with additional computation. BFS, Components,
and Triangle are deemed as algorithms of relatively low
bandwidth usage (AL) because these algorithms tend to
spend time mainly on exploring graph structure without
doing much computation.

The synthesized test sets include nine query sets, which
are shown in table 4. Each query set is specified by N input
analytic algorithms and M graph instances and contains
N×M ordered pairs with the form (Algorithm, Graph). For
example, the Heavy query set features 15 queries generated
by three bandwidth-consuming analytic algorithms and five
graph instances.

5.2 Evaluated Schemes

Three scheduling schemes are evaluated in our experi-
ments: the baseline, CongraPlus (denoted as Congra+), and
CongraPlus with lookahead optimization (denoted as Con-
gra+LA). We adopt an operating system governed approach
as the baseline of our evaluation because it represents the
conventional way of dealing with concurrent queries. The
baseline scheme blindly parallelizes the execution of every
query in the query set, which has a high possibility of
incurring resource contention and thus having degraded
performance. The CongraPlus scheme follows a judicious
co-location principle where the loading balancing algorithm

and intelligent thread allocation ensure efficient execution
of co-located queries. With lookahead optimization, Con-
graPlus becomes better in dealing with heavy work queries
by reserving shared resources for them.

6 EVALUATION RESULTS

We present the results of our experiments evaluated using
the above methodology. Our evaluation includes perfor-
mance, QoS implication, and the scalability of the system.

6.1 Query Throughput

We measure the query throughput of the synthesized test
sets under different scheduling schemes. The throughput
is defined as the number of queries finished per time
unit. Fig. 6 presents the normalized throughput of test
sets under all evaluated schemes. The results indicate Con-
gra+LA scheme outperforms the baseline 30% on average,
which validates the effectiveness of our workload-aware
optimization. Without optimization, Congra+ still achieves
20% throughput improvement on average.

Both Congra+ and Congra+LA achieve high throughput
improvement on the Heter-S1 test set. This set includes
mainly medium and light workload queries and performing
resource-aware scheduling on them has enormous space
for improving system performance. During the experiment,
both CongraPlus-based schemes dedicate a full processor
socket to medium workload queries and reduce the threads
allocated to light workload queries so that the contention
on shared resources are alleviated. Under the Heter-S1 test
set, the above method improves the throughput by 80% as
compared to the baseline.

On the Heavy test set, Congra+ and Congra+LA have
tremendously different throughput results with up to 2X
throughput difference. The Congra+ scheme tends to be
conservative in allocating threads for queries, which leads to
longer execution time by allocating an insufficient number
of threads to the heavy workload queries. Congra+LA,
on the other hand, adopts the lookahead optimization to
reserve threads for heavy workload queries. The perfor-
mance of these queries under Congra+LA thus benefits
more from an increased number of threads than under
Congra+ scheme.

One interesting fact is that both CongraPlus-based
schemes do not significantly improve the throughput on
Heter-L1 and Heter-S2 test sets. Further investigation on the
results shows that both test sets include an exceptionally
heavy workload query (AH1 on GL2 for Heter-L1 and AH2
on GS1 for Heter-S2). CongraPlus intelligently dedicates
a full processor socket to these queries but only achieves
minor speedups because the threads available in a single
socket is limited. Even in this worst case situation where
the resource requirement of heavy workload queries cannot
be fully satisfied, Congra+ and Congra+LA still manage
to achieve performance improvement because the baseline
scheme incurs excessive hardware resource contention, a
detriment to system performance.
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TABLE 4
Query Sets Used in Evaluation

Query Set Algorithm Graph Alg. Heterogeneity Data Property

Heavy {AH1, AH2, AH3} {GL1, GL2, GL3, GS1, GS2}
A mix of similar graph algorithms A mix of different graphs

Light {AL1, AL2, AL3} {GL1, GL2, GL3, GS1, GS2}

Heter-L1 {AH1, AL1, AL2} {GL1, GL2}
More heterogeneous Large graphs only

Heter-L2 {AH2, AH3, AL3} {GL1, GL2}

Heter-S1 {AH1, AL1, AL2} {GS1, GS2}
More heterogenous Small graphs only

Heter-S2 {AH2, AH3, AL3} {GS1, GS2}

Homo-1 {AH1} {GL1, GL2, GL3, GS1, GS2}
More homogeneous A mix of different graphsHomo-2 {AH2} {GL1, GL2, GL3, GS1, GS2}

Homo-3 {AH3} {GL1, GL2, GL3, GS1, GS2}

OS-Govered (Baseline)
Congra+
Congra+LA

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0.8

1.0

1.2

1.4

1.6

1.8

Heavy Light Heter-L1 Heter-L2 Heter-S1 Heter-S2 Homo-1 Homo-2 Homo-3 Average

1 1 1 1 1 1 1 1 1 1

0.598

1.17
1.06

1.28

1.81

1.08
1.12

1.37
1.28

1.2

1.55

1.15

1.06

1.27

1.81

1.08
1.12

1.39

1.23
1.29

Fig. 6. Normalized query throughput under different scheduling schemes. On average, Congra+LA scheme achieves better overall throughput,
followed by Congra+ scheme. Note that under Heavy test set, Congra+ scheme achieves only 60% throughput of the baseline scheme, but
Congra+LA scheme improves the baseline throughput by 55%. The result indicates the effectiveness of lookahead optimization in processing
heavy workload queries.
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Fig. 7. Normalized test set execution time under different scheduling
schemes. On average, Congra+LA scheme reduces the total execution
time by 20%.

6.2 Execution Time

We evaluate the impact of CongraPlus on test set execution
time, which is defined as the total time needed to finish all
queries in a specific test set. Fig. 7 presents the normalized
execution time of each test set. The results of execution time
are generally compatible with those of throughput, where
high throughput test sets also have short execution time.
On average, Congra+ and Congra+LA reduce the execution
time of query sets by 10% and 20%, respectively.

The utilization of memory bandwidth during the exper-
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Fig. 8. Memory bandwidth usage trace of Heavy query set under dif-
ferent scheduling schemes. Compared to baseline, Congra+ scheme
remains conservative in launching queries which results in under-utilized
memory bandwidth. Congra+LA scheme reserves bandwidth resource
for these heavy worload queries, a strategy that improves the memory
bandwidth utilization.

iment is crucial to better understanding the impact of our
scheduling schemes. Fig. 8 presents the memory bandwidth
usage trace of the Heavy test set under different schemes.
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Fig. 10. Query set finish time under different scheduling schemes. In
both cases, the query throughputs of Congra+ and Congra+LA do
not decrease with the increase of number of queries. The stability of
CongraPlus system throughput indiecates good scalability of the system
even under large number of concurreng queries.

The conservative thread allocation of Congra+ scheme leads
to fewer threads allocated to each query, and therefore the
much lower bandwidth utilization. The baseline scheme
aggressively launches all queries with all available threads,
causing severe contention on resources such as reservation
stations, reorder buffer, cross-socket link, etc. Such con-
tention prevents the processors from issuing more memory
access instructions and limits the bandwidth utilization.
Through judicious query co-location, Congra+LA scheme
avoids the above resource contention and achieves much
higher bandwidth utilization. The insights from this exper-
iment are that the memory bandwidth utilization is critical
to system performance, and that query co-location without
causing resource contention is a viable approach to achieve
better system performance.

6.3 Quality of Service
Another interesting metric we evaluate is the QoS (Quality
of Service)2 of our concurrent graph analytics system. We
define the QoS violation of a query to be its response time
(total time spent from being submitted to the server until
successful retirement) dividing the expecting execution time
as it is profiled. Smaller QoS violation suggests users will
wait shorter time than what is needed for the results to
return, a crucial property to improve user experience in the
cloud side. We present the QoS violation of each query in
Fig. 9 and also marks the QoS improvement of the median
query. Both CongraPlus-based schemes achieve significant
improvement ranging from 1.8X to 5.4X.

The QoS violation improvements should be mainly at-
tributed to the optimal launch sequence and alleviation of
resource contention. In determining the launch sequence,
CongraPlus scheduler prioritizes light workload queries,
a strategy to improve their QoS and reserve more re-
sources for heavy workload queries in the future. Resource
contention is also alleviated (by techniques discussed in
section 3.2.2) so that the queries can run without being
”dragged down” by other queries. On the contrary, under
the baseline scheme, the execution time of each query be-
comes longer than expected because all queries contend
the shared resources. This experiment result suggests that
CongraPlus-based schemes have the potential to not only
improve the overall system performance, but also the expe-
rience of the individual user compared to the conventional
approach.

6.4 Scalability
We also evaluate the scalability of CongraPlus-based
schemes, which reflects the system’s performance under

2. The authors are aware that the definition of QoS in cloud services
is different from what used to demonstrate our ideas here. We use this
term to explain CongraPlus’s capability to improve per-query response
time, a metric related to the quality of graph analytics services.
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a growing amount of concurrent queries. We conduct a
stress test with numerous either heavy or light workload
queries and record the query throughput under CongraPlus
based schemes3. Fig. 10 presents the query throughput with
respect to the number of queries.

For heavy workload queries, the query throughput first
drops then increases back to normal. With a small number
of heavy workload queries, the scheduler can dedicate full
resources to a few queries. Increasing query number in-
evitably decreases throughput at this stage as more queries
have to wait for resource released by finished queries. For
light workload queries, the query throughput first rises then
remain relatively stable. The rising phase corresponds to
the stage when all lightweight queries cannot fully utilize
system resources, and increasing query number increases
co-located queries. When the number of lightweight queries
grows so large that efficient co-location of all queries is
impossible, some queries have to wait for others to release
resources, which leads to stable throughput. This result
shows CongraPlus-based schemes are capable of achieving
stable throughput even when the number of concurrent
queries is large.

7 RELATED WORK

In this section we discuss existing research that is most
relevant to our work.

7.1 Graph Analytics Framework

Many prior works have investigated the parallel process-
ing of graph analytics workloads [1], [2]. For example,
GPS [10] combines message-passing based design with dy-
namic graph partition to achieve efficient distributed graph
processing. With graph partition and some other novel
techniques, GraphChi shows that a shared-memory-based
design with a disk as secondary data storage can process
extremely large graphs efficiently [24]. Trinity, a graph
analytics engine deployed at the cloud, jointly optimizes
the memory management and network communication of
graph analytics applications [25]. GraphX is a general-
purpose graph processing framework built upon Spark, a
widely-used distributed dataflow system [11]. It enjoys the
advantage of existing dataflow system infrastructure such
as fault-tolerance and broad applicability, as well as high
efficiency. Most of these works focus on accelerating the
processing of a single large graph.

In our work, we implement CongraPlus on top of Ligra,
a light-weight shared-memory framework, as our graph
processing engine [8]. Ligra uses carefully implemented
parallel abstractions and multi-threading to speed up graph
analytics applications.

7.2 Concurrent Graph Analytics

Processing concurrent graph analytics queries in a multi-
user environment has been gaining increasing attention [4],
[5], [26], [27]. Kim et al. [4] devised methods for enabling

3. The experiment is not conducted under the baseline scheme be-
cause it has decreasing throughput when query number increases, a
clear indication of its poor scalability.

efficient processing of multiple graph queries using MapRe-
duce. Feher et al. [5] utilized the parallelization mecha-
nism of MapReduce to solve the graph pattern matching
problem. Xue et al. [26], [27] investigated concurrent graph
processing queries and proposed a graph structure sharing
mechanism to avoid memory storage waste. Then et al.
[28] proposed MS-BFS, which makes use the small-world
network property of most real-world graphs, to efficiently
support concurrent BFS traversals on the same graph.
Ren et al. [29] explored the multiple-query optimization
of subgraph isomorphism search with efficient common
subgraph detection, storage, and query execution. Liu et
al. [30] proposed iBFS algorithm that is capable of effi-
ciently executing concurrent BFS traversals on a GPU by
exploiting the shared frontiers among different traversals
and optimized bitwise operations on GPUs. These works
focus on adapting existing graph processing models to a
multi-user environment and optimizing the performance
of concurrent analytic queries by taking advantage of the
common computation among different queries on a single,
shared graph. In contrast, CongraPlus targets concurrent
graph analytic queries that potentially run vastly different
analytic algorithms on different graph datasets. To achieve
high performance, CongraPlus scheduler uses a scheduling
mechanism that is jointly guided by hardware resources and
graph analytics query characteristics and aims to achieve
efficient co-location of analytic queries.

7.3 Architectural Support for Graph Processing
Another group of research work focuses on the exploring
graph processing workload from an architectural perspec-
tive or designing new hardware architecture to support
such workloads. For example, Ahmad et al. [31] devised
a benchmark suite to help understanding multi-threaded
graph algorithms on shared-memory multicore processors.
Beamer et al. [13] show that various graph analytics work-
loads do not fully utilize the system’s off-chip memory
bandwidth. Several recent studies have devised domain-
specific accelerators for graph analytics workloads [6], [7],
[14]. Our work explores improving the performance of
concurrent graph analytics frameworks through resource-
aware scheduling on a shared-memory commodity server.

8 CONCLUSION

There is a growing demand for processing and analyz-
ing a variety of small graphs concurrently on a shared-
memory commodity server. Nevertheless, the opaque mem-
ory bandwidth usage and the limited thread scalability
of shared-memory graph analytics applications make con-
current graph analytics a challenging task. In this work
we propose CongraPlus, a novel scheduling mechanism
that enables efficient query co-location for NUMA archi-
tecture shared-memory systems. By utilizing the informa-
tion collected through offline profiling, CongraPlus achieves
balanced workloads across all processors and computes
the optimal query launch sequence and thread allocation
scheme. Our evaluation over a wide range of synthesized
applications shows that CongraPlus significantly improves
the throughput and execution time of the conventional ap-
proach. It also has good scalability under a massive amount
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of queries and enhances the quality of concurrent graph
analytics services. We expect CongraPlus will enable shared-
memory machines of NUMA architecture to better serve the
needs of graph analytics services on the cloud side.
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