
RealGraph: A Graph Engine Leveraging the Power-Law
Distribution of Real-World Graphs

Yong-Yeon Jo
Hanyang University

Seoul, Korea
jyy0430@hanyang.ac.kr

Myung-Hwan Jang
Hanyang University

Seoul, Korea
sugichiin@hanyang.ac.kr

Sang-Wook Kim∗

Hanyang University
Seoul, Korea

wook@hanyang.ac.kr

Sun-Ju Park
Yonsei University

Seoul, Korea
boxenju@yonsei.ac.kr

ABSTRACT
As the size of real-world graphs has drastically increased in recent
years, a wide variety of graph engines have been developed to deal
with such big graphs efficiently. However, the majority of graph
engines have been designed without considering the power-law
degree distribution of real-world graphs seriously. Two problems
have been observed when existing graph engines process real-world
graphs: inefficient scanning of the sparse indicator and the delay
in iteration progress due to uneven workload distribution. In this
paper, we propose RealGraph, a single-machine based graph engine
equipped with the hierarchical indicator and the block-based work-
load allocation. Experimental results on real-world datasets show
that RealGraph significantly outperforms existing graph engines in
terms of both speed and scalability.

CCS CONCEPTS
• Information systems→Graph-based databasemodels;Database
management system engines; Computing platforms.

KEYWORDS
Graph engine, single machine, real-world graph, power-law degree
distribution
ACM Reference Format:
Yong-Yeon Jo, Myung-Hwan Jang, Sang-Wook Kim, and Sun-Ju Park. 2019.
RealGraph: A Graph Engine Leveraging the Power-Law Distribution of
Real-World Graphs. In Proceedings of the 2019 World Wide Web Conference
(WWW ’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3308558.3313434

1 INTRODUCTION
Graphs are widely used data structures for representing relation-
ships between objects in various real-world domains, such as the
web, social networks, protein networks, etc. Recently, with their
∗Corresponding author.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313434

increasing usage, the size of real-world graphs has increased rapidly.
Such real-world graphs are called big graphs. To meet the demand
for efficient handling of real-world big graphs, various graph en-
gines have been developed [1, 6, 18, 25, 30]. These graph engines
provide a simple programming interface to help programmers easily
develop and execute graph algorithms for big graphs [14, 21].

Since all graph algorithms could be iteratively performed, ex-
isting graph engines adopt an iterative processing method, where
an iteration starts to proceed after all the nodes to be processed
at its previous iteration are completely processed [8, 19, 24]. Each
iteration consists of two phases. At the first phase, the graph engine
scans the indicator consisting of a bit vector [14, 29] to identify
the nodes to be processed. At the second phase, it processes the
identified nodes in parallel through multi-threading. Both phases
of the iteration in existing graph engines, however, have been de-
veloped without careful considerations on the degree distribution
of real-world graphs.

Most real-world graphs follow the power-law degree distribution,
which is characterized by very few nodes having a very high degree
(i.e., hub nodes), while most nodes (i.e., non-hub nodes) having a
low degree [15]. The power-law degree distribution of real-world
graphs causes following two phenomena when existing graph en-
gines execute graph algorithms. First, the distribution of the nodes
processed at iterations is skewed where the majority of nodes are
processed at less than first half iterations while only a small number
of nodes are processed at the remaining iterations1. Second, at some
iterations, the nodes with very large degree disparity (i.e., hub and
non-hub nodes) are processed together.

These phenomena cause the following two problems, which
slows down the performance of the graph engines. The problem
related to the first phase of the iteration is inefficient scanning of
the indicator. Existing graph engines use a single flat indicator [14,
25, 29, 30]. They scan the whole indicator linearly at each iteration
to identify the nodes to be processed. In the majority of iterations,
the number of nodes to be processed tends to be very small, which
makes the indicator very sparse in those iterations. Linear scanning
of the very sparse indicator causes unnecessary computations and
leads to the performance degradation of the graph engines.

The problem related to the second phase of the iteration is the
delay for the progress of the next iteration due to uneven workload
1Note that this phenomenon does not happen in the graph algorithms that processes
all nodes at each iteration, such as PageRank.

807

https://doi.org/10.1145/3308558.3313434
https://doi.org/10.1145/3308558.3313434


allocation over threads. Existing graph engines adopt the node-based
workload allocation, where each thread processes an individual
node with its edges [6, 14, 18, 30]. Since the workload of each thread
is proportional to the number of edges, the node-based allocation
produces huge difference in the workload between the threads that
process hub nodes and the others that process non-hub nodes. This
causes the threads that process non-hub nodes to wait for the ones
that process hub nodes to complete, which delays the start of the
next iteration.

To solve these two problems, we propose a new single-machine
based graph engine2 called RealGraph. RealGraph is designed based
on the principles of well-known database systems [3, 4, 7] to man-
age big data efficiently. Furthermore, When storing graph data,
RealGraph preserves data locality by adopting efficient data lay-
out [12] that stores the data accessed together in adjacent storage
space. In addition, we propose two new techniques considering the
characteristics of real-world graphs to execute the graph algorithms
efficiently.

First, we propose the hierarchical indicator that consists of multi-
level bit vectors designed to skip easily the ranges of the indicator
to be unnecessarily scanned. The lowest-level bit vector is the same
as the flat indicator in existing graph engines. A higher-level bit
vector compresses some range of its lower-level bit vector using
a single bit. A bit set as 1 of each level bit vector denotes that a
corresponding range at its lower-level bit vector should be scanned.
The process starts from the highest-level bit vector; it scans the
range of the lower-level bit vector corresponding to the bit (if each
higher-level bit vector has a bit set as 1). Unlike the existing flat
indicator, the hierarchical indicator reduces unnecessary scanning
of the sparse indicator dramatically.

Second, we propose the block-based workload allocation which
assigns a block to each thread, instead of a node and its edges in
the node-based one. A block is a fixed-size standard I/O unit of the
graph engine, which stores multiple nodes and their edges together.
Since the block size is fixed, the total number of edges stored in
each block is almost the same. Thus, the graph engine can allocate
almost the same workload to each thread. This reduces the waiting
time among threads at every iteration, which eventually accelerates
the start of the next iteration.

We show the effectiveness of the proposed techniques through
extensive experiments. The results indicate that RealGraph im-
proves the performance considerably when using the proposed tech-
niques together rather than individually. We also demonstrate the
performance of RealGraph by comparing it with five well-known
single-machine based graph engines [14, 21, 25, 29, 30] and four
distributed-system based graph engines [1, 9, 16, 26]. For experi-
ments, we used seven graph algorithms and six real-world graphs.
For all graph algorithms and datasets, RealGraph shows the best
performance in terms of processing speed and scalability compared
with existing graph engines.

The contributions of this paper are as follows.

• First, we point out the problems that occur when existing
graph engines deal with real-world graphs.

2Existing graph engines can be classified into two categories: single-machine based
ones and distributed-system based ones.

• Second, we propose two techniques for efficient processing
of real-world graphs: (1) the hierarchical indicator to reduce
unnecessary scanning and (2) the block-based workload al-
location to balance the workload among threads.
• Third, we propose RealGraph, a single-machine based graph
engine employing with these techniques.
• Finally, we verify the superiority of RealGraph through ex-
tensive experiments.

The organization of the paper is as follows. Section 2 addresses
our motivation. Section 3 overviews our RealGraph. Section 4 ex-
plains the hierarchical indicator. Section 5 describes the block-based
workload allocation. Section 6 shows experimental results. Finally,
Section 7 summarizes and concludes the paper.

2 MOTIVATION
This section describes the execution procedure of a graph algorithm
in existing graph engines, explains the characteristics of real-world
graphs, and points out the problems when existing graph engines
process real-world graphs.

The graph engine is a general-purpose software framework that
aims to process various graph algorithms, rather than targeting
specific graph algorithms [6, 9, 13, 14, 16–19, 21, 25, 26, 29, 30]. Al-
though some graph algorithms could be processed asynchronously
without synchronization between threads, all graph algorithms
can be executed synchronously where threads are synchronized at
regular intervals [8]. Therefore, most graph engines adopt iterative
processing based on synchronous execution3, where all the nodes
to be processed at each iteration are processed completely and then
the next iteration starts [24].

At each iteration, the graph engine executes a graph algorithm
with two phases [13, 14, 25]: (1) identifying the nodes to be pro-
cessed and (2) processing the identified nodes and their edges. In
the first phase, the graph engine identifies the nodes to be processed
by scanning the indicator consisting of a bit vector4 of the length
equal to the number of nodes [14, 25, 30]. If the bit is set as 1, it
means that the node corresponding to the bit is to be processed
at the current iteration. In the second phase, threads process the
identified nodes and their edges in parallel. The existing graph
engines adopt the node-based workload allocation that assigns a
node and its edges to each thread [6, 18, 30].

However, both phases were designed without careful considera-
tion of the degree distribution of real-world big graphs. Note that
most real-world graphs show the power-law degree distribution,
consisting of a small number of hub nodes and a very large number
of non-hub nodes [15].

3Some graph engines adopt an asynchronous execution based processing [10, 24].
4For the indicator composed of a bit vector, the space required for representing a node
is a single bit. Therefore, even when dealing with a big graph with a large number
of nodes, the graph engine requires only a small, fixed space. The downside of using
a bit vector is that many bits are left unused when only a small number of nodes
are processed in an iteration. A linked list may be considered as an alternative data
structure. The linked list, however, requires much more space to represent a single
node (e.g., 4 bytes in the case of using an integer for a node). In the iteration that
processes only a small number of nodes, there is an advantage of using only a very
small space for the nodes. But there would be a significant overhead of allocating
and releasing a number of nodes for a linked list at each iteration. In particular, if the
number of nodes that need to be processed in an iteration exceeds the given memory
space, the graph engine could not run. This is the reason why most graph engines
employ the simple and small bit vector for the indicator.

808



For example, Figure 1 shows the degree distribution of the Yahoo
dataset used in our experiments, where the x-axis represents the
degree of a node, and the y-axis does the number of nodes having
the degree. We observe this dataset also follows the power-law
degree distribution. This power-law degree distribution of the real-
world graph causes the following phenomenon at each phase, which
degrades the performance of graph engines.

For example, Figure 1 shows the degree distribution of the Yahoo
dataset used in our experiments, where the x-axis represents the
degree of a node, and the y-axis does the number of nodes having
the degree. We observe this dataset also follows the power-law
degree distribution. This power-law degree distribution of the real-
world graph causes the following phenomenon at each phase, which
degrades the performance of graph engines.

100 101 102 103 104
100
102
104
106
108
1010

Node degree (in log scale)

N
um

be
ro

fn
od

es
(in

lo
g
sc
al
e)

Figure 1: Degree distribution of the Yahoo dataset.

First, the distribution of the nodes processed at iterations is
skewed. Since hub nodes are connected to many other nodes, they
are highly likely to be accessed at early iterations in general regard-
less of the starting node. Also, a large number of nodes connected
to the hub nodes are accessed together in the following iteration.
As a result, the majority of nodes tend to be processed at early
iterations, and only a small number of nodes that are multiple hop
away from the hub nodes are likely to be handled at remaining
iterations.

Figure 2 shows the cumulative number of the nodes processed up
to each iteration, when the breadth first search (BFS) is performed
on all the datasets used in experiments. Since the total number of
iterations is different for each dataset, the x-axis represents the
ratio of the number of processed iterations to that of the entire
iterations. The y-axis indicates the cumulative percentage of the
processed nodes. At early 30% or less of iterations, almost 90% of
nodes are processed, and fewer than 10% nodes are processed over
the remaining 70% of iterations. It is also observed that only a few
nodes are processed across at more than half of the remaining
iterations.

0 20 40 60 80 1000

25

50

75

100

Ratio of the numbers of processed iterations
to that of the entire iterations (%)

Cu
m
ul
at
iv
e

pe
rc
en
ta
ge

(%
)

Wiki UK
Twitter SK
Friend Yahoo

Figure 2: Cumulative number of the nodes processed up to
each iteration when BFS is performed.

This phenomenon makes the indicator very sparse in most it-
erations. Since the existing graph engines linearly scan the entire
indicator, the scanning becomes very inefficient. As the graph size
increases, this linear scanning becomes even more impractical. In
fact, with 1.4 billion nodes in the Yahoo dataset, the largest dataset

used in our experiments, the scanning overhead for the indicator
takes up to 50% of the total BFS execution time.

Secondly, the degrees of the nodes processed at each iteration
vary significantly. In particular, the degree difference between nodes
is very large at the iterations where hub nodes and non-hub nodes
are processed together. Figure 3 shows the degree difference be-
tween the nodes processed at each iteration, when BFS is performed
on all the datasets. The results for the first 100 iterations are shown5.
The x-axis represents the iteration number, and the y-axis shows
the ratio of the minimum node degree to the maximum node de-
gree in log scale. We observe the existence of significant degree
difference at every iteration, and in extreme cases the difference is
up to 106 times more.

0 20 40 60 80 100100

102

104

106

Iteration number
D
eg
re
e
di
ffe

re
nc
e

(in
lo
g
sc
al
e)

Wiki UK Twitter
SK Friend Yahoo

Figure 3: Degree difference between the nodes processed at
each iteration when BFS is performed.

The degree difference between nodes causes uneven distribu-
tion of workload among threads in existing node-based workload
allocation. Because the workload of threads is proportional to the
degree of the assigned node in the node-based allocation [14, 25, 29]
the workload among threads varies, which in turn delays the com-
pletion of the iteration. This is particularly true at the iteration
which processes the hub nodes, because the threads with non-hub
nodes should wait until the ones with the hub nodes to complete
their executions. This delays the start of the next iteration, which
eventually slows down the graph engine.

These observations motivate us to develop our RealGraph, a
graph engine equipped with our two novel techniques: (1) efficient
scanning of the sparse indicator and (2) uniformworkload allocation
over threads to minimize the delay for the progress of the next
iteration.

3 OVERVIEW OF REALGRAPH
In this section, we describe the general architecture of our Real-
Graph and the efficient data layout for graph storage in RealGraph.
In the following Sections 4 and 5, we describe how RealGraph solves
the problems mentioned in Section 2.

3.1 Architecture
RealGraph employs, as a programming model, the vertex-centric
programming model [14, 30] that performs a graph algorithm per
the node with its edges. As a memory model, RealGraph employs
the external-memory model [21, 29] that utilizes external storage
when graph data exceeds the main memory.

5We show the results for the first 100 iterations, since the numbers of total iterations
are different across datasets.

Figure 1: Degree distribution of the Yahoo dataset.

First, the distribution of the nodes processed at iterations is
skewed. Since hub nodes are connected to many other nodes, they
are highly likely to be accessed at early iterations in general regard-
less of the starting node. Also, a large number of nodes connected
to the hub nodes are accessed together in the following iteration.
As a result, the majority of nodes tend to be processed at early
iterations, and only a small number of nodes that are multiple hop
away from the hub nodes are likely to be handled at remaining
iterations.

Figure 2 shows the cumulative number of the nodes processed up
to each iteration, when the breadth first search (BFS) is performed
on all the datasets used in experiments. Since the total number of
iterations is different for each dataset, the x-axis represents the
ratio of the number of processed iterations to that of the entire
iterations. The y-axis indicates the cumulative percentage of the
processed nodes. At early 30% or less of iterations, almost 90% of
nodes are processed, and fewer than 10% nodes are processed over
the remaining 70% of iterations. It is also observed that only a few
nodes are processed across at more than half of the remaining
iterations.

For example, Figure 1 shows the degree distribution of the Yahoo
dataset used in our experiments, where the x-axis represents the
degree of a node, and the y-axis does the number of nodes having
the degree. We observe this dataset also follows the power-law
degree distribution. This power-law degree distribution of the real-
world graph causes the following phenomenon at each phase, which
degrades the performance of graph engines.

100 101 102 103 104
100
102
104
106
108
1010

Node degree (in log scale)

N
um

be
ro

fn
od

es
(in

lo
g
sc
al
e)

Figure 1: Degree distribution of the Yahoo dataset.

First, the distribution of the nodes processed at iterations is
skewed. Since hub nodes are connected to many other nodes, they
are highly likely to be accessed at early iterations in general regard-
less of the starting node. Also, a large number of nodes connected
to the hub nodes are accessed together in the following iteration.
As a result, the majority of nodes tend to be processed at early
iterations, and only a small number of nodes that are multiple hop
away from the hub nodes are likely to be handled at remaining
iterations.

Figure 2 shows the cumulative number of the nodes processed up
to each iteration, when the breadth first search (BFS) is performed
on all the datasets used in experiments. Since the total number of
iterations is different for each dataset, the x-axis represents the
ratio of the number of processed iterations to that of the entire
iterations. The y-axis indicates the cumulative percentage of the
processed nodes. At early 30% or less of iterations, almost 90% of
nodes are processed, and fewer than 10% nodes are processed over
the remaining 70% of iterations. It is also observed that only a few
nodes are processed across at more than half of the remaining
iterations.

0 20 40 60 80 1000

25

50

75

100

Ratio of the numbers of processed iterations
to that of the entire iterations (%)

Cu
m
ul
at
iv
e

pe
rc
en
ta
ge

(%
)

Wiki UK
Twitter SK
Friend Yahoo

Figure 2: Cumulative number of the nodes processed up to
each iteration when BFS is performed.

This phenomenon makes the indicator very sparse in most it-
erations. Since the existing graph engines linearly scan the entire
indicator, the scanning becomes very inefficient. As the graph size
increases, this linear scanning becomes even more impractical. In
fact, with 1.4 billion nodes in the Yahoo dataset, the largest dataset

used in our experiments, the scanning overhead for the indicator
takes up to 50% of the total BFS execution time.

Secondly, the degrees of the nodes processed at each iteration
vary significantly. In particular, the degree difference between nodes
is very large at the iterations where hub nodes and non-hub nodes
are processed together. Figure 3 shows the degree difference be-
tween the nodes processed at each iteration, when BFS is performed
on all the datasets. The results for the first 100 iterations are shown5.
The x-axis represents the iteration number, and the y-axis shows
the ratio of the minimum node degree to the maximum node de-
gree in log scale. We observe the existence of significant degree
difference at every iteration, and in extreme cases the difference is
up to 106 times more.

0 20 40 60 80 100100

102

104

106

Iteration number
D
eg
re
e
di
ffe

re
nc
e

(in
lo
g
sc
al
e)

Wiki UK Twitter
SK Friend Yahoo

Figure 3: Degree difference between the nodes processed at
each iteration when BFS is performed.

The degree difference between nodes causes uneven distribu-
tion of workload among threads in existing node-based workload
allocation. Because the workload of threads is proportional to the
degree of the assigned node in the node-based allocation [14, 25, 29]
the workload among threads varies, which in turn delays the com-
pletion of the iteration. This is particularly true at the iteration
which processes the hub nodes, because the threads with non-hub
nodes should wait until the ones with the hub nodes to complete
their executions. This delays the start of the next iteration, which
eventually slows down the graph engine.

These observations motivate us to develop our RealGraph, a
graph engine equipped with our two novel techniques: (1) efficient
scanning of the sparse indicator and (2) uniformworkload allocation
over threads to minimize the delay for the progress of the next
iteration.

3 OVERVIEW OF REALGRAPH
In this section, we describe the general architecture of our Real-
Graph and the efficient data layout for graph storage in RealGraph.
In the following Sections 4 and 5, we describe how RealGraph solves
the problems mentioned in Section 2.

3.1 Architecture
RealGraph employs, as a programming model, the vertex-centric
programming model [14, 30] that performs a graph algorithm per
the node with its edges. As a memory model, RealGraph employs
the external-memory model [21, 29] that utilizes external storage
when graph data exceeds the main memory.

5We show the results for the first 100 iterations, since the numbers of total iterations
are different across datasets.

Figure 2: Cumulative number of the nodes processed up to
each iteration when BFS is performed.

This phenomenon makes the indicator very sparse in most it-
erations. Since the existing graph engines linearly scan the entire
indicator, the scanning becomes very inefficient. As the graph size
increases, this linear scanning becomes even more impractical. In

fact, with 1.4 billion nodes in the Yahoo dataset, the largest dataset
used in our experiments, the scanning overhead for the indicator
takes up to 50% of the total BFS execution time.

Secondly, the degrees of the nodes processed at each iteration
vary significantly. In particular, the degree difference between nodes
is very large at the iterations where hub nodes and non-hub nodes
are processed together. Figure 3 shows the degree difference be-
tween the nodes processed at each iteration, when BFS is performed
on all the datasets. The results for the first 100 iterations are shown5.
The x-axis represents the iteration number, and the y-axis shows
the ratio of the minimum node degree to the maximum node de-
gree in log scale. We observe the existence of significant degree
difference at every iteration, and in extreme cases the difference is
up to 106 times more.

For example, Figure 1 shows the degree distribution of the Yahoo
dataset used in our experiments, where the x-axis represents the
degree of a node, and the y-axis does the number of nodes having
the degree. We observe this dataset also follows the power-law
degree distribution. This power-law degree distribution of the real-
world graph causes the following phenomenon at each phase, which
degrades the performance of graph engines.

100 101 102 103 104
100
102
104
106
108
1010

Node degree (in log scale)

N
um

be
ro

fn
od

es
(in

lo
g
sc
al
e)

Figure 1: Degree distribution of the Yahoo dataset.

First, the distribution of the nodes processed at iterations is
skewed. Since hub nodes are connected to many other nodes, they
are highly likely to be accessed at early iterations in general regard-
less of the starting node. Also, a large number of nodes connected
to the hub nodes are accessed together in the following iteration.
As a result, the majority of nodes tend to be processed at early
iterations, and only a small number of nodes that are multiple hop
away from the hub nodes are likely to be handled at remaining
iterations.

Figure 2 shows the cumulative number of the nodes processed up
to each iteration, when the breadth first search (BFS) is performed
on all the datasets used in experiments. Since the total number of
iterations is different for each dataset, the x-axis represents the
ratio of the number of processed iterations to that of the entire
iterations. The y-axis indicates the cumulative percentage of the
processed nodes. At early 30% or less of iterations, almost 90% of
nodes are processed, and fewer than 10% nodes are processed over
the remaining 70% of iterations. It is also observed that only a few
nodes are processed across at more than half of the remaining
iterations.

0 20 40 60 80 1000

25

50

75

100

Ratio of the numbers of processed iterations
to that of the entire iterations (%)

Cu
m
ul
at
iv
e

pe
rc
en
ta
ge

(%
)

Wiki UK
Twitter SK
Friend Yahoo

Figure 2: Cumulative number of the nodes processed up to
each iteration when BFS is performed.

This phenomenon makes the indicator very sparse in most it-
erations. Since the existing graph engines linearly scan the entire
indicator, the scanning becomes very inefficient. As the graph size
increases, this linear scanning becomes even more impractical. In
fact, with 1.4 billion nodes in the Yahoo dataset, the largest dataset

used in our experiments, the scanning overhead for the indicator
takes up to 50% of the total BFS execution time.

Secondly, the degrees of the nodes processed at each iteration
vary significantly. In particular, the degree difference between nodes
is very large at the iterations where hub nodes and non-hub nodes
are processed together. Figure 3 shows the degree difference be-
tween the nodes processed at each iteration, when BFS is performed
on all the datasets. The results for the first 100 iterations are shown5.
The x-axis represents the iteration number, and the y-axis shows
the ratio of the minimum node degree to the maximum node de-
gree in log scale. We observe the existence of significant degree
difference at every iteration, and in extreme cases the difference is
up to 106 times more.

0 20 40 60 80 100100

102

104

106

Iteration number
D
eg
re
e
di
ffe

re
nc
e

(in
lo
g
sc
al
e)

Wiki UK Twitter
SK Friend Yahoo

Figure 3: Degree difference between the nodes processed at
each iteration when BFS is performed.

The degree difference between nodes causes uneven distribu-
tion of workload among threads in existing node-based workload
allocation. Because the workload of threads is proportional to the
degree of the assigned node in the node-based allocation [14, 25, 29]
the workload among threads varies, which in turn delays the com-
pletion of the iteration. This is particularly true at the iteration
which processes the hub nodes, because the threads with non-hub
nodes should wait until the ones with the hub nodes to complete
their executions. This delays the start of the next iteration, which
eventually slows down the graph engine.

These observations motivate us to develop our RealGraph, a
graph engine equipped with our two novel techniques: (1) efficient
scanning of the sparse indicator and (2) uniformworkload allocation
over threads to minimize the delay for the progress of the next
iteration.

3 OVERVIEW OF REALGRAPH
In this section, we describe the general architecture of our Real-
Graph and the efficient data layout for graph storage in RealGraph.
In the following Sections 4 and 5, we describe how RealGraph solves
the problems mentioned in Section 2.

3.1 Architecture
RealGraph employs, as a programming model, the vertex-centric
programming model [14, 30] that performs a graph algorithm per
the node with its edges. As a memory model, RealGraph employs
the external-memory model [21, 29] that utilizes external storage
when graph data exceeds the main memory.

5We show the results for the first 100 iterations, since the numbers of total iterations
are different across datasets.

Figure 3: Degree difference between the nodes processed at
each iteration when BFS is performed.

The degree difference between nodes causes uneven distribu-
tion of workload among threads in existing node-based workload
allocation. Because the workload of threads is proportional to the
degree of the assigned node in the node-based allocation [14, 25, 29]
the workload among threads varies, which in turn delays the com-
pletion of the iteration. This is particularly true at the iteration
which processes the hub nodes, because the threads with non-hub
nodes should wait until the ones with the hub nodes to complete
their executions. This delays the start of the next iteration, which
eventually slows down the graph engine.

These observations motivate us to develop our RealGraph, a
graph engine equipped with our two novel techniques: (1) efficient
scanning of the sparse indicator and (2) uniformworkload allocation
over threads to minimize the delay for the progress of the next
iteration.

3 OVERVIEW OF REALGRAPH
In this section, we describe the general architecture of our Real-
Graph and the efficient data layout for graph storage in RealGraph.
In the following Sections 4 and 5, we describe how RealGraph solves
the problems mentioned in Section 2.

3.1 Architecture
RealGraph employs, as a programming model, the vertex-centric
programming model [14, 30] that performs a graph algorithm per
the node with its edges. As a memory model, RealGraph employs
the external-memory model [21, 29] that utilizes external storage
when graph data exceeds the main memory.
5We show the results for the first 100 iterations, since the numbers of total iterations
are different across datasets.

809



As shown in Figure 4, RealGraph consists of four layers: storage
management layer, buffer management layer, object management
layer, and thread management layer. The lower three layers manage
memory and storage space. They are designed on the basis of well-
known database storage systems, such as WiSS [7], Exodus [4], and
Shore [3]. The thread management layer executes graph algorithms
and is implemented with two techniques proposed in this paper. On
top of them, we also provide a web-based user interface6. Using the
user interface, anyone could execute a graph algorithm provided
by RealGraph on their own graphs and download its result. The
roles and components of each layer except for the interface are as
follows.

Www 2019

Buffer

Graph data

Buffer index

IndicatorAttribute data

Thread pool <Main & Worker>

Object index

Vector 

Vector 

Storage 
management

Buffer 
management

Object 
management

Thread 
management

Cur. bit vector

Next bit vector

Disk

Memory

IO

Web-based User Interface

Graph
Upload

Algorithm 
Execution

Results 
Download

Figure 4: Architecture of RealGraph.
The storage management layer manages storage space. The

graph data is divided into blocks and stored in storage space. A
block is the standard I/O unit, and each block contains one or more
objects. Here, an object is composed of a node and its edges7. If the
size of an object exceeds the block size, it is stored across several
blocks. This layer also manages I/Os of these blocks.

The buffer management layer manages the space for blocks in
the main memory. It consists of a buffer and a buffer index. A buffer
is a space with a given size in mainmemory and keeps blocks within
that space. The buffer index has the indices for blocks loaded in
buffer, which helps to access the blocks in the buffer quickly. This
index is always loaded in the main memory.

The object management layer manages the location information
for blocks and objects of the graph data. There is an object index
which contains the indices of objects and blocks stored in storage
device. It is always loaded in the main memory.

The thread management layer performs a graph algorithm. It
consists of three components: thread pool, attribute data, and two
indicators (i.e., current and next). The thread pool has two types
of threads: worker threads that actually perform graph algorithms
and one main thread that manages worker threads. The attribute
data stores intermediate and final results for either nodes or edges
obtained when performing a graph algorithm (e.g., nodes visited
in BFS, node ranks in PageRank). The attribute data consists of
6http://166.104.110.75:20080
7Since RealGraph uses the adjacency list, each object is stored as a node and the edges
pointing to its adjacent nodes.

several attribute vectors, each of which has the same number of
elements as that of nodes. The element of each vector is the attribute
corresponding to the node. If the size of the attribute data exceeds
that of a given memory, they are divided into several chunks and
stored in the secondary storage; each chunk required by a graph
algorithm is loaded into memory. The current/next indicator stores
the information about the nodes to be processed at the current/next
iteration. Both indicators are always loaded in the main memory.

On the basis of the above architecture, each iteration of a graph
algorithm is executed as follows. First, the main thread identifies
the nodes to be processed at the current iteration by scanning the
current indicator. Next, using the object index, the main thread finds
the locations of the blocks including the objects corresponding to
the identified nodes, and checks if the block exists in the buffer.
Then, the main thread assigns each block to be processed to each
worker thread in order. If it does not, the worker thread requests
the block to the storage management layer and loads it into the
buffer. After loading, the worker thread executes the function of
a graph algorithm and updates the results in the corresponding
attribute data. Then, it sets the next indicator such that the nodes
connected to the processed nodes in the current iteration are to be
processed at the next iteration. Finally, before the start of the next
iteration, the next indicator is switched to the current indicator, and
the current indicator is initialized to be used as the next indicator.

3.2 Efficient data layout
A good placement of nodes and edges in storage (i.e., data layout)
would improve both CPU and I/O performances of a graph engine.
Existing graph engines, however, have aimed at maximizing the
utilization of computing resources through system optimization,
overlooking the importance of data layout [14, 25].

Recognizing this, we have borrowed the concept of efficient data
layout [12] and applied it to RealGraph. The main idea for this data
layout is, the data accessed together in executing graph algorithms
are placed in the same or adjacent storage space. Since RealGraph
stores objects (each having a node and its edges) in blocks in the
ascending order of node IDs as other graph engines [21, 29], we
assign consecutive node IDs to the nodes likely to be accessed
together at the same or successive iteration(s) by a graph algorithm.
This idea makes the objects accessed together in a graph algorithm
to be stored in the same or adjacent block(s).

Based on reference [12] to assign consecutive node IDs to nodes
to be accessed together in various graph algorithms, breadth first
search (BFS) is used as follows: BFS is performed from an arbitrary
starting node in a graph given; the nodes accessed by BFS are
recorded one by one in the order; the node ID used in a graph
engine is determined by this order. The data layout obtained by
this idea makes the nodes and edges accessed together at the same
or successive iteration(s) of graph algorithms placed in the same or
adjacent block(s) successfully.

This data layout transformation is performed at the preprocess-
ing step where RealGraph stores a graph8. The data layout trans-
formation is required only once for each graph to be stored in

8Most graph engines also perform the preprocessing step when storing a graph. For ex-
ample, GraphChi divides a graph into shards and then stores them in its preprocessing
step.

810



RealGraph, and the graph stored in this new data layout is ben-
eficial to the performance of many graph algorithms running on
RealGraph. This implies that the transformation overhead is shared
by many graph algorithms running on RealGraph.

Reference [12] reports that the data layout determined by BFS
enables a graph engine not only to reduce the number of block
accesses but also to face more sequential accesses of blocks, rather
than random accesses, thereby improving its performance consid-
erably.

Figure 5 shows two data layouts. A data layout has nine blocks
represented by rectangles. A circle represents a node and its edges in
a block. The numbers in circles indicate the order of access requests
by a given graph algorithm. For processing, a graph engine should
load 8 nodes into the main memory in Figure 5. In this case, by
changing into the efficient data layout from existing data layout,
we improve the I/O and CPU performances of RealGraph.

데이터 로컬리티 그림

Existing data layout Efficient data layout

5 8 4

3 1 7

2 6

1 2 3 4 5 6

7 8

Figure 5: Data layout transformation.

When performing graph algorithms, worker threads need fre-
quent access to blocks and attribute data. Even when it is not pos-
sible to load all of the blocks into memory, since the objects to be
processed together are more likely to be located in the same or suc-
cessive blocks, the number of I/O requests would be decreased and
the sequential access rate could be increased. In Figure 5, RealGraph
accesses only four blocks sequentially, instead of 8 blocks randomly.
Similarly, the I/O performance would be increased when entire
attribute data could not be loaded into memory, since the same or
successive chunks of attribute data are more likely to be updated.
In both cases, it is more likely to re-access the data already loaded
in the main memory, which results in the increased cache hit ratio
and improves the CPU performance. In addition, since adjacent bits
are more likely to be set at each iteration in the current indicator,
the cache hit ratio for the indicator would be increased.

Through experiments, we evaluate the performance of the effi-
cient data layout when applied to RealGraph and also examine the
synergy effects when the efficient data layout is used in combination
with our two techniques in the following sections.

4 HIERARCHICAL INDICATOR
As explained in Section 2, linear scanning of the sparse indicator is
very inefficient. For efficient scanning, we propose a hierarchical
indicator that skips efficiently the ranges that do not need to be
scanned.

The hierarchical indicator is made up of two or more bit vec-
tors, where the upper-level bit vector determines the ranges to be
scanned in the lower-level bit vector. Each level bit vector is divided
into a set of ranges with a fixed length. The lowest-level bit vector
is the same as the flat indicator used in existing graph engines.
Each higher-level bit vector consists of a number of bits as many
as the number of ranges in each lower-level bit vector. Each bit

of the higher-level bit vector refers to the corresponding range of
its lower-level bit vector. Both the current and next indicators are
configured in the same way.

Figure 6 shows the hierarchical indicator consisting of three level
bit vectors with a range length of 3. The top-level bit vector consists
of three bits. The middle-level bit vector has three ranges with 9
bits. The bottom-level bit vector has a total of 9 ranges with 27 bits.

Dev. 15, 2017 Page 5/73

Solution: Hierarchical Indicator

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 1 0

Bottom-level

Middle-level

Top-level

Figure 6: 3-level hierarchical indicator.

The current and next hierarchical indicators are used as fol-
lows. At each iteration, the main thread identifies the nodes to be
processed in the top-down manner from the current hierarchical
indicator. It scans each higher-level bit vector to identify the bits set
as 1, and determines the ranges to be scanned of the lower-level bit
vector. Then, it scans those ranges only. The main thread repeats
this process and finds the nodes to be processed corresponding to
the bits set as 1 in the lowest-level bit vector. By using the current
hierarchical indicator, the main thread in RealGraph could skip all
the ranges of the lower-level bit vector corresponding to the bits
with 0 of the higher-level bit vector.

In Figure 6, the main thread scans the top-level bit vector and
identifies the second bit set as 1. Only the second range of the
middle-level bit vector is scanned, and the sixth bit with 1 is found.
The sixth range of the bottom-level bit vector is scanned, and node
17 is identified as the node to be processed at the current iteration.
In this example, the main thread scans only 9 bits, instead of all 27
bits of the bottom-level bit vector.

For the next hierarchical indicator, the worker threads set the
nodes to be processed at the next iteration in the bottom-up manner.
Each worker thread sets the bits corresponding to the nodes to be
processed in the lowest-level bit vector as 1. Then, it sets the bit
of the higher-level bit vector corresponding to the range including
the bit set as 1 of the lower-level bit vector. This process is repeated
until the top-level bit vector is reached.

Suppose Figure 6 is the next hierarchical indicator where the
worker thread sets the 17th bit in the bottom-level bit vector. It
also sets the sixth bit in the middle-level bit vector corresponding
to the sixth range including the 17th bit in the bottom-level bit
vector. Finally, it sets the second bit of the top-level bit vector
corresponding to the second range containing the sixth bit in the
middle-level bit vector.

To construct the hierarchical indicator, two parameters are re-
quired: the range length and the height of the hierarchical indicator.
Since the height is automatically determined once the range length
is fixed, the hierarchical indicator could be configured by determin-
ing the range length.

Figure 7 shows the result of BFS by changing the range length
on the Yahoo dataset. Figure 7-(a) shows the scanning time, and
Figure 7-(b) shows the memory usage and the height of the hier-
archical indicator in levels. The experimental results show that as

811



26 28 210 212 214 216 218 220 222 224 226 228 230Flat
0

100
200
300
400
500

5 6 6 8 11 19 38 70
158

264

403 424 450
498

Range length

Sc
an
ni
ng

tim
e
(se

c.)

(a) Scanning overhead

26 28 210 212 214 216 218 220 222 224 226 228 230Flat
335

340

345

Range length

M
em

or
y
us
ag
e
(M

iB
)

(b) Memory usage

6 levels

5 levels
4 levels 3 levels 2 levels

Figure 7: Scanning overhead and memory usage of the hier-
archical indicator.

the range length increases, the scanning time increases, and the
memory usage decreases. When considering both scanning time
and memory usage, the range length of 210 bits is the most efficient.
The hierarchical indicator with the range length of 210 bits uses
only 0.1% more memory than the flat indicator employed in exist-
ing graph engines and reduces the scanning time dramatically to
one-hundredth. In subsequent experiments, therefore, we use 210
bits for the range length of the hierarchical indicator.

5 BLOCK-BASEDWORKLOAD ALLOCATION
As mentioned in Section 2, the degree difference at each iteration
causes uneven workload distribution among threads in the node-
based workload allocation. This delays the progress of an iteration,
which leads to degradation of the overall performance of the graph
engine.

To solve the delay for the progress of the next iteration, we
propose the block-based workload distribution which assigns a
block to each thread, rather than an object (i.e., a node with its
edges). A block may contain multiple objects of different sizes, but
the sum of their sizes is almost the same. In RealGraph, threads are
given with almost equal workloads due to the block-based workload
distribution, which reduces the disparity of the completion times
between threads.

Since the block size affects the performance of RealGraph, we
examine the appropriate block size for RealGraph.

Figure 8 shows the execution time of PageRank9 with 20 iter-
ations, starting at 64KiB and increasing the block size by 4 times
on the Yahoo dataset. The x-axis represents the block size, and the
9BFS accesses part of nodes at each iteration, which results in random accesses to
blocks. The random access of blocks influences some other factors such as buffer
replacement policy to affect the performance of the graph algorithm. PageRank, on the
other hand, causes sequential accesses to blocks, because it sequentially accesses all
the nodes at each iteration. With the sequential access of blocks, other factors are less
likely to affect the performance of the graph algorithms. Therefore, in this experiment,
we use PageRank to observe the change of performance according to the block size as
much as possible.

y-axis represents the execution time. The result confirms that the
1024KiB block shows the best performance. Thus, we use 1024KiB
as the block size for RealGraph in the following experiments.

64 256 1,024 4,096 16,384
2,000

2,500

3,000

3,500

Block size (KiB)

Ex
ec
ut
io
n
tim

e
(se

c.)

Figure 8: Execution time of PageRank with different block
sizes.

To verify the superiority of the block-based workload allocation
compared to the node-based one, we apply both node and block
allocation techniques to RealGraph and measure the workload of
each thread (i.e., the number of processed edges) at each iteration
while performing PageRank on the Yahoo dataset. Figure 9 shows
the result where the x-axis represents the iteration number, and the
y-axis represents the standard deviation of the workload among
threads. There exist a few cases where the standard deviation of
the workload in the block-based allocation is larger than that in
the node-based allocation. In overall, however, the block-based
allocation has a much smaller standard deviation than the node-
based one. This indicates the block-based allocation distributes the
workload more evenly across threads.

5 10 15 200
1 · 108
2 · 108
3 · 108
4 · 108

Iteration number

St
d.
de
v.
of

w
or
kl
oa
d Block-based Node-based

Figure 9: Standard deviation of workload over threads at
each iteration

Note that the block-based workload allocation requires addi-
tional thread synchronization when handling a large object. A sin-
gle object stored across multiple blocks, such as the object for a
hub node, is handled by multiple threads in RealGraph. If multiple
threads that handle a single object need to update the result of
the same attribute, thread synchronization is required, making the
threads progress in sequence. Since thread synchronization is an
operation with large overhead, frequent thread synchronization
could degrade the performance of the graph engine. If many objects
are stored over several blocks, the performance of RealGraph could
slow down.

Fortunately, in real-world graphs, these objects occupy only a
small fraction. For all the datasets used in the experiment, when
the block size is 1024KiB, only 0.0003% of the objects are stored in
several blocks on average. Because the frequency of thread synchro-
nization is very rare during the execution of the graph algorithm,

Figure 7: Scanning overhead and memory usage of the hier-
archical indicator.

the range length increases, the scanning time increases, and the
memory usage decreases. When considering both scanning time
and memory usage, the range length of 210 bits is the most efficient.
The hierarchical indicator with the range length of 210 bits uses
only 0.1% more memory than the flat indicator employed in exist-
ing graph engines and reduces the scanning time dramatically to
one-hundredth. In subsequent experiments, therefore, we use 210
bits for the range length of the hierarchical indicator.

5 BLOCK-BASEDWORKLOAD ALLOCATION
As mentioned in Section 2, the degree difference at each iteration
causes uneven workload distribution among threads in the node-
based workload allocation. This delays the progress of an iteration,
which leads to degradation of the overall performance of the graph
engine.

To solve the delay for the progress of the next iteration, we
propose the block-based workload distribution which assigns a
block to each thread, rather than an object (i.e., a node with its
edges). A block may contain multiple objects of different sizes, but
the sum of their sizes is almost the same. In RealGraph, threads are
given with almost equal workloads due to the block-based workload
distribution, which reduces the disparity of the completion times
between threads.

Since the block size affects the performance of RealGraph, we
examine the appropriate block size for RealGraph.

Figure 8 shows the execution time of PageRank9 with 20 iter-
ations, starting at 64KiB and increasing the block size by 4 times
on the Yahoo dataset. The x-axis represents the block size, and the

9BFS accesses part of nodes at each iteration, which results in random accesses to
blocks. The random access of blocks influences some other factors such as buffer
replacement policy to affect the performance of the graph algorithm. PageRank, on the
other hand, causes sequential accesses to blocks, because it sequentially accesses all
the nodes at each iteration. With the sequential access of blocks, other factors are less
likely to affect the performance of the graph algorithms. Therefore, in this experiment,
we use PageRank to observe the change of performance according to the block size as
much as possible.

y-axis represents the execution time. The result confirms that the
1024KiB block shows the best performance. Thus, we use 1024KiB
as the block size for RealGraph in the following experiments.

26 28 210 212 214 216 218 220 222 224 226 228 230Flat
0

100
200
300
400
500

5 6 6 8 11 19 38 70
158

264

403 424 450
498

Range length

Sc
an
ni
ng

tim
e
(se

c.)

(a) Scanning overhead

26 28 210 212 214 216 218 220 222 224 226 228 230Flat
335

340

345

Range length

M
em

or
y
us
ag
e
(M

iB
)

(b) Memory usage

6 levels

5 levels
4 levels 3 levels 2 levels

Figure 7: Scanning overhead and memory usage of the hier-
archical indicator.

the range length increases, the scanning time increases, and the
memory usage decreases. When considering both scanning time
and memory usage, the range length of 210 bits is the most efficient.
The hierarchical indicator with the range length of 210 bits uses
only 0.1% more memory than the flat indicator employed in exist-
ing graph engines and reduces the scanning time dramatically to
one-hundredth. In subsequent experiments, therefore, we use 210
bits for the range length of the hierarchical indicator.

5 BLOCK-BASEDWORKLOAD ALLOCATION
As mentioned in Section 2, the degree difference at each iteration
causes uneven workload distribution among threads in the node-
based workload allocation. This delays the progress of an iteration,
which leads to degradation of the overall performance of the graph
engine.

To solve the delay for the progress of the next iteration, we
propose the block-based workload distribution which assigns a
block to each thread, rather than an object (i.e., a node with its
edges). A block may contain multiple objects of different sizes, but
the sum of their sizes is almost the same. In RealGraph, threads are
given with almost equal workloads due to the block-based workload
distribution, which reduces the disparity of the completion times
between threads.

Since the block size affects the performance of RealGraph, we
examine the appropriate block size for RealGraph.

Figure 8 shows the execution time of PageRank9 with 20 iter-
ations, starting at 64KiB and increasing the block size by 4 times
on the Yahoo dataset. The x-axis represents the block size, and the
9BFS accesses part of nodes at each iteration, which results in random accesses to
blocks. The random access of blocks influences some other factors such as buffer
replacement policy to affect the performance of the graph algorithm. PageRank, on the
other hand, causes sequential accesses to blocks, because it sequentially accesses all
the nodes at each iteration. With the sequential access of blocks, other factors are less
likely to affect the performance of the graph algorithms. Therefore, in this experiment,
we use PageRank to observe the change of performance according to the block size as
much as possible.

y-axis represents the execution time. The result confirms that the
1024KiB block shows the best performance. Thus, we use 1024KiB
as the block size for RealGraph in the following experiments.

64 256 1,024 4,096 16,384
2,000

2,500

3,000

3,500

Block size (KiB)

Ex
ec
ut
io
n
tim

e
(se

c.)

Figure 8: Execution time of PageRank with different block
sizes.

To verify the superiority of the block-based workload allocation
compared to the node-based one, we apply both node and block
allocation techniques to RealGraph and measure the workload of
each thread (i.e., the number of processed edges) at each iteration
while performing PageRank on the Yahoo dataset. Figure 9 shows
the result where the x-axis represents the iteration number, and the
y-axis represents the standard deviation of the workload among
threads. There exist a few cases where the standard deviation of
the workload in the block-based allocation is larger than that in
the node-based allocation. In overall, however, the block-based
allocation has a much smaller standard deviation than the node-
based one. This indicates the block-based allocation distributes the
workload more evenly across threads.

5 10 15 200
1 · 108
2 · 108
3 · 108
4 · 108

Iteration number

St
d.
de
v.
of

w
or
kl
oa
d Block-based Node-based

Figure 9: Standard deviation of workload over threads at
each iteration

Note that the block-based workload allocation requires addi-
tional thread synchronization when handling a large object. A sin-
gle object stored across multiple blocks, such as the object for a
hub node, is handled by multiple threads in RealGraph. If multiple
threads that handle a single object need to update the result of
the same attribute, thread synchronization is required, making the
threads progress in sequence. Since thread synchronization is an
operation with large overhead, frequent thread synchronization
could degrade the performance of the graph engine. If many objects
are stored over several blocks, the performance of RealGraph could
slow down.

Fortunately, in real-world graphs, these objects occupy only a
small fraction. For all the datasets used in the experiment, when
the block size is 1024KiB, only 0.0003% of the objects are stored in
several blocks on average. Because the frequency of thread synchro-
nization is very rare during the execution of the graph algorithm,

Figure 8: Execution time of PageRank with different block
sizes.

To verify the superiority of the block-based workload allocation
compared to the node-based one, we apply both node and block
allocation techniques to RealGraph and measure the workload of
each thread (i.e., the number of processed edges) at each iteration
while performing PageRank on the Yahoo dataset. Figure 9 shows
the result where the x-axis represents the iteration number, and the
y-axis represents the standard deviation of the workload among
threads. There exist a few cases where the standard deviation of
the workload in the block-based allocation is larger than that in
the node-based allocation. In overall, however, the block-based
allocation has a much smaller standard deviation than the node-
based one. This indicates the block-based allocation distributes the
workload more evenly across threads.

26 28 210 212 214 216 218 220 222 224 226 228 230Flat
0

100
200
300
400
500

5 6 6 8 11 19 38 70
158

264

403 424 450
498

Range length

Sc
an
ni
ng

tim
e
(se

c.)

(a) Scanning overhead

26 28 210 212 214 216 218 220 222 224 226 228 230Flat
335

340

345

Range length

M
em

or
y
us
ag
e
(M

iB
)

(b) Memory usage

6 levels

5 levels
4 levels 3 levels 2 levels

Figure 7: Scanning overhead and memory usage of the hier-
archical indicator.

the range length increases, the scanning time increases, and the
memory usage decreases. When considering both scanning time
and memory usage, the range length of 210 bits is the most efficient.
The hierarchical indicator with the range length of 210 bits uses
only 0.1% more memory than the flat indicator employed in exist-
ing graph engines and reduces the scanning time dramatically to
one-hundredth. In subsequent experiments, therefore, we use 210
bits for the range length of the hierarchical indicator.

5 BLOCK-BASEDWORKLOAD ALLOCATION
As mentioned in Section 2, the degree difference at each iteration
causes uneven workload distribution among threads in the node-
based workload allocation. This delays the progress of an iteration,
which leads to degradation of the overall performance of the graph
engine.

To solve the delay for the progress of the next iteration, we
propose the block-based workload distribution which assigns a
block to each thread, rather than an object (i.e., a node with its
edges). A block may contain multiple objects of different sizes, but
the sum of their sizes is almost the same. In RealGraph, threads are
given with almost equal workloads due to the block-based workload
distribution, which reduces the disparity of the completion times
between threads.

Since the block size affects the performance of RealGraph, we
examine the appropriate block size for RealGraph.

Figure 8 shows the execution time of PageRank9 with 20 iter-
ations, starting at 64KiB and increasing the block size by 4 times
on the Yahoo dataset. The x-axis represents the block size, and the
9BFS accesses part of nodes at each iteration, which results in random accesses to
blocks. The random access of blocks influences some other factors such as buffer
replacement policy to affect the performance of the graph algorithm. PageRank, on the
other hand, causes sequential accesses to blocks, because it sequentially accesses all
the nodes at each iteration. With the sequential access of blocks, other factors are less
likely to affect the performance of the graph algorithms. Therefore, in this experiment,
we use PageRank to observe the change of performance according to the block size as
much as possible.

y-axis represents the execution time. The result confirms that the
1024KiB block shows the best performance. Thus, we use 1024KiB
as the block size for RealGraph in the following experiments.

64 256 1,024 4,096 16,384
2,000

2,500

3,000

3,500

Block size (KiB)

Ex
ec
ut
io
n
tim

e
(se

c.)

Figure 8: Execution time of PageRank with different block
sizes.

To verify the superiority of the block-based workload allocation
compared to the node-based one, we apply both node and block
allocation techniques to RealGraph and measure the workload of
each thread (i.e., the number of processed edges) at each iteration
while performing PageRank on the Yahoo dataset. Figure 9 shows
the result where the x-axis represents the iteration number, and the
y-axis represents the standard deviation of the workload among
threads. There exist a few cases where the standard deviation of
the workload in the block-based allocation is larger than that in
the node-based allocation. In overall, however, the block-based
allocation has a much smaller standard deviation than the node-
based one. This indicates the block-based allocation distributes the
workload more evenly across threads.

5 10 15 200
1 · 108
2 · 108
3 · 108
4 · 108

Iteration number

St
d.
de
v.
of

w
or
kl
oa
d Block-based Node-based

Figure 9: Standard deviation of workload over threads at
each iteration

Note that the block-based workload allocation requires addi-
tional thread synchronization when handling a large object. A sin-
gle object stored across multiple blocks, such as the object for a
hub node, is handled by multiple threads in RealGraph. If multiple
threads that handle a single object need to update the result of
the same attribute, thread synchronization is required, making the
threads progress in sequence. Since thread synchronization is an
operation with large overhead, frequent thread synchronization
could degrade the performance of the graph engine. If many objects
are stored over several blocks, the performance of RealGraph could
slow down.

Fortunately, in real-world graphs, these objects occupy only a
small fraction. For all the datasets used in the experiment, when
the block size is 1024KiB, only 0.0003% of the objects are stored in
several blocks on average. Because the frequency of thread synchro-
nization is very rare during the execution of the graph algorithm,

Figure 9: Standard deviation of workload over threads at
each iteration

Note that the block-based workload allocation requires addi-
tional thread synchronization when handling a large object. A sin-
gle object stored across multiple blocks, such as the object for a
hub node, is handled by multiple threads in RealGraph. If multiple
threads that handle a single object need to update the result of
the same attribute, thread synchronization is required, making the
threads progress in sequence. Since thread synchronization is an
operation with large overhead, frequent thread synchronization
could degrade the performance of the graph engine. If many objects
are stored over several blocks, the performance of RealGraph could
slow down.

Fortunately, in real-world graphs, these objects occupy only a
small fraction. For all the datasets used in the experiment, when
the block size is 1024KiB, only 0.0003% of the objects are stored in
several blocks on average. Because the frequency of thread synchro-
nization is very rare during the execution of the graph algorithm,

812



the performance degradation of RealGraph due to the thread syn-
chronization is negligible.

6 PERFORMANCE EVALUATION
This section demonstrates the superiority of RealGraph through
experiments. Section 6.2 validates the techniques applied to Real-
Graph. Section 6.3 compares the performance of RealGraph with
existing single-machine based graph engines. Section 6.4 compares
the performance of RealGraph with those of existing distributed-
system based graph engines.

6.1 Experimental Setup
We employed five state-of-the-art single-machine based graph en-
gines: GraphChi [14], TurboGraph [25], GridGraph [30], Flash-
Graph [29], and X-Stream [21]. These engines and RealGraph were
performed on PCs with Intel i7-7700K, 1TiB SSD, and 64GiB mem-
ory. We also compared RealGraph with four distributed-system
based graph engines: PowerGraph [9], GraphLab [16], GraphX [26],
and Giraph [1].

As experimental datasets, we used six real-world graphs of vary-
ing sizes. Table 1 shows the specifications of each dataset, where
#Nodes is the number of nodes, #Edges is the number of edges, and
Size is the data size. The descriptions of datasets are as follows10.
Wiki is the hyperlinked data of wiki pages in English Wikipedia.
UK is the dataset representing the relationships of web pages hav-
ing the .uk domain. Twitter is the dataset with the relationships of
tweets collected on Twitter. SK is the dataset with the relationships
of web pages having the .sk domain. Friend is the dataset with all
links among users in the online gaming social network, Friendster.
Yahoo is the hyperlinked data of web pages in Yahoo! AltaVista.

Table 1: Graph datasets

Datasets Real-world graphs
Wiki UK Twitter SK Friend Yahoo

#Nodes (M) 12 39 61 50 68 1,413
#Edges (B) 0.37 0.93 1.4 1.9 2.5 6.6
Size (GiB) 5.7 16 24 32 44 114

We employed seven graph algorithms widely used in various
fields: breadth first search (BFS) [22], weakly connected compo-
nent (WCC) [23], betweenness centrality (BC) [2], PageRank [20],
random walk with restart (RWR) [28], belief propagation (BP) [11],
and sparse matrix and vector multiplication (SpMV) [27]. Since BFS,
WCC, and BC are the algorithm that accesses part of nodes at each
iteration, the indicator is used. For the remaining four graph algo-
rithms (i.e., PageRank, RWR, BP, and SpMV), the indicator is not
used, because they access all the nodes at each iteration 11. Since
BFS, WCC, and BC differ in the number of iterations according to
the datasets, they are performed until their termination conditions
10 Wiki: http://konect.uni-koblenz.de/networks/wikipedia_link_en, UK: http://law.
di.unimi.it/webdata/uk-2005, Twitter: an.kaist.ac.kr/traces/WWW2010, SK: http://law.
di.unimi.it/webdata/sk-2005, Friend: https://archive.org/details/friendster-dataset-
201107, Yahoo: http://webscope.sandbox.yahoo.com
11There are many other graph algorithms, such as single source shortest path, depth
first search, community detection, and triangle counting that use indicators for their
executions. However, since existing graph engines do not provide them, we were not
able to include them in our experiments.

are satisfied. For the other four graph algorithms (i.e., PageRank,
RWR, BP, and SpMV), the number of iterations is fixed as 20.

6.2 Evaluation of proposed techniques
In this section, we verify the effectiveness of the techniques applied
to RealGraph: Hierarchical indicator (H), Block-based workload
allocation (B), and efficient Data layout (D). We performed two
algorithms — BFS as a representative algorithm for accessing part of
nodes at each iteration and PageRank as a representative algorithm
for accessing all nodes at each iteration — on the Yahoo dataset, the
largest one in experimental datasets. We set the number of threads
of RealGraph as 8. The memory size is limited to 16GiB for the
executions of out-of-core algorithms.

Figure 10 shows the results. The x-axis represents RealGraph
with each technique applied. In the x-axis, Null means RealGraph
with none of the proposed techniques (i.e., employing the flat in-
dicator and node-based workload allocation), and each alphabet
represents RealGraph equipped with the technique referring to its
initial. For example, HB indicates RealGraph with the hierarchical
indicator (H) and the block-based workload allocation (B). Ω repre-
sents RealGraph with all techniques applicable to each algorithm.
The y-axis represents the execution time. And now, we describe
the result in a way that compares the performance of RealGraph
including any proposed technique with that of Null.

the performance degradation of RealGraph due to the thread syn-
chronization is negligible.

6 PERFORMANCE EVALUATION
This section demonstrates the superiority of RealGraph through
experiments. Section 6.2 validates the techniques applied to Real-
Graph. Section 6.3 compares the performance of RealGraph with
existing single-machine based graph engines. Section 6.4 compares
the performance of RealGraph with those of existing distributed-
system based graph engines.

6.1 Experimental Setup
We employed five state-of-the-art single-machine based graph en-
gines: GraphChi [14], TurboGraph [25], GridGraph [30], Flash-
Graph [29], and X-Stream [21]. These engines and RealGraph were
performed on PCs with Intel i7-7700K, 1TiB SSD, and 64GiB mem-
ory. We also compared RealGraph with four distributed-system
based graph engines: PowerGraph [9], GraphLab [16], GraphX [26],
and Giraph [1].

As experimental datasets, we used six real-world graphs of vary-
ing sizes. Table 1 shows the specifications of each dataset, where
#Nodes is the number of nodes, #Edges is the number of edges, and
Size is the data size. The descriptions of datasets are as follows10.
Wiki is the hyperlinked data of wiki pages in English Wikipedia.
UK is the dataset representing the relationships of web pages hav-
ing the .uk domain. Twitter is the dataset with the relationships of
tweets collected on Twitter. SK is the dataset with the relationships
of web pages having the .sk domain. Friend is the dataset with all
links among users in the online gaming social network, Friendster.
Yahoo is the hyperlinked data of web pages in Yahoo! AltaVista.

Table 1: Graph datasets

Datasets Real-world graphs
Wiki UK Twitter SK Friend Yahoo

#Nodes (M) 12 39 61 50 68 1,413
#Edges (B) 0.37 0.93 1.4 1.9 2.5 6.6
Size (GiB) 5.7 16 24 32 44 114

We employed seven graph algorithms widely used in various
fields: breadth first search (BFS) [22], weakly connected compo-
nent (WCC) [23], betweenness centrality (BC) [2], PageRank [20],
random walk with restart (RWR) [28], belief propagation (BP) [11],
and sparse matrix and vector multiplication (SpMV) [27]. Since BFS,
WCC, and BC are the algorithm that accesses part of nodes at each
iteration, the indicator is used. For the remaining four graph algo-
rithms (i.e., PageRank, RWR, BP, and SpMV), the indicator is not
used, because they access all the nodes at each iteration 11. Since
BFS, WCC, and BC differ in the number of iterations according to
the datasets, they are performed until their termination conditions
10 Wiki: http://konect.uni-koblenz.de/networks/wikipedia_link_en, UK: http://law.
di.unimi.it/webdata/uk-2005, Twitter: an.kaist.ac.kr/traces/WWW2010, SK: http://law.
di.unimi.it/webdata/sk-2005, Friend: https://archive.org/details/friendster-dataset-
201107, Yahoo: http://webscope.sandbox.yahoo.com
11There are many other graph algorithms, such as single source shortest path, depth
first search, community detection, and triangle counting that use indicators for their
executions. However, since existing graph engines do not provide them, we were not
able to include them in our experiments.

are satisfied. For the other four graph algorithms (i.e., PageRank,
RWR, BP, and SpMV), the number of iterations is fixed as 20.

6.2 Evaluation of proposed techniques
In this section, we verify the effectiveness of the techniques applied
to RealGraph: Hierarchical indicator (H), Block-based workload
allocation (B), and efficient Data layout (D). We performed two
algorithms — BFS as a representative algorithm for accessing part of
nodes at each iteration and PageRank as a representative algorithm
for accessing all nodes at each iteration — on the Yahoo dataset, the
largest one in experimental datasets. We set the number of threads
of RealGraph as 8. The memory size is limited to 16GiB for the
executions of out-of-core algorithms.

Figure 10 shows the results. The x-axis represents RealGraph
with each technique applied. In the x-axis, Null means RealGraph
with none of the proposed techniques (i.e., employing the flat in-
dicator and node-based workload allocation), and each alphabet
represents RealGraph equipped with the technique referring to its
initial. For example, HB indicates RealGraph with the hierarchical
indicator (H) and the block-based workload allocation (B). Ω repre-
sents RealGraph with all techniques applicable to each algorithm.
The y-axis represents the execution time. And now, we describe
the result in a way that compares the performance of RealGraph
including any proposed technique with that of Null.

Null H B D HB HD BD Ω
0

400

800

1,200 1,149

757
591

279
115 35

253
19

Combinations

Ex
ec
ut
io
n
tim

e
(se

c.)

(a) BFS

Null B D Ω
0

1,000
2,000
3,000
4,000 3,236

2,434

747 385

Combinations

Ex
ec
ut
io
n
tim

e
(se

c.)

(b) PageRank

Figure 10: Performance of proposed techniques.

Figure 10-(a) shows the result of BFS. The hierarchical indicator
(H) improves the performance about 1.5 times by reducing the
scanning overhead, the block-based workload allocation (B) about
1.9 times by the nice load balancing, and the efficient data layout
(D) about 4 times by increasing the degree of sequential access and
the cache hit for attribute data and blocks, respectively.

When using both the hierarchical indicator and the block-based
workload allocation (HB), the performance of RealGraph is im-
proved 9.9 times. This is because the scanning overhead of the
indicator at each iteration is reduced and the delay of the progress
for the next iteration is prevented by even workload distribution.
In addition, the main thread communicates with worker threads

Figure 10: Performance of proposed techniques.

Figure 10-(a) shows the result of BFS. The hierarchical indicator
(H) improves the performance about 1.5 times by reducing the
scanning overhead, the block-based workload allocation (B) about
1.9 times by the nice load balancing, and the efficient data layout
(D) about 4 times by increasing the degree of sequential access and
the cache hit for attribute data and blocks, respectively.

When using both the hierarchical indicator and the block-based
workload allocation (HB), the performance of RealGraph is im-
proved 9.9 times. This is because the scanning overhead of the
indicator at each iteration is reduced and the delay of the progress
for the next iteration is prevented by even workload distribution.
In addition, the main thread communicates with worker threads

813



Wiki UK Twitter SK Friend Yahoo
100

102

104
547 344 187 316 451

33 55 36 100
439

12,415

7 16 24 30 79
843

4 11 14 18 28 19

Ex
ec
ut
io
n
tim

e
(se

c.
in

lo
g
sc
al
e)

(a) BFS

GraphChi GridGraph TurboGraph RealGraph

O
.O
.T

Wiki UK Twitter SK Friend Yahoo
100

102

104

26
99 222 241 458

52 61 43 98 291

14,078

33
145 70

266 441

8 19 34 38 67
269

Ex
ec
ut
io
n
tim

e
(se

c.
in

lo
g
sc
al
e)

(b) WCC

In
fe
as
ib
le

O
.O
.T

Wiki UK Twitter SK Friend Yahoo
100

102

104
99 148

754 360
1,453

6,811

32 80 166 173
794

3,673

42 81
333 139

768
2,709

18 32
103 67

254 385

Ex
ec
ut
io
n
tim

e
(se

c.
in

lo
g
sc
al
e)

(c) PageRank

Figure 11: Performance comparison with graph engines with the same model.

per each block (rather than each node), which reduces the com-
munication overhead. This further improves the performance of
RealGraph.

The synergy is greater when combining the hierarchical indicator
and the efficient data layout (HD). As mentioned in Section 3.2, the
performance of RealGraph is improved by the efficient data layout
when handling attribute data and graph data. Moreover, the number
of ranges to be scanned in the current indicator decreases when
efficient data layout is employed, because the bits corresponding
to nodes to be processed tend to be clustered in a few ranges with
efficient data layout. The cache hit ratio in the next indicator is also
increased, because the bits in the same or adjacent ranges are likely
to be set. This results in the dramatic performance improvement of
RealGraph by 32.8 times.

The combination of the block-based workload allocation and
the efficient data layout (BD) also shows synergy, improving the
performance of RealGraph by 4.4 times. The magnitude, however,
is somewhat smaller than the previous two cases (HB and HD). The
reason is as follows. The efficient data layout aggregates the nodes
to be processed into one or adjacent blocks. If an iteration processes
a small number of nodes, the number of blocks to be processed may
be less than the number of threads in RealGraph. Since each thread
processes a block by the block-based workload allocation, all the
given threads could have not been fully utilized in this case.

Finally, the combination of all three technologies (Ω) enhances
the performance of RealGraph by 60 times.

Figure 10-(b) shows the results of PageRank. In PageRank where
the indicator is not used, we could apply the block-based work-
load allocation (B) and the efficient data layout (D) to RealGraph.
Each technique improves the performance by 1.3 and 4.3 times,
respectively. The performance of RealGraph is improved 8.4 times

when using both techniques together (Ω). The efficient data lay-
out increases the probability that the nodes with sequential node
IDs and the nodes connected to them take adjacent node IDs. If
these nodes are processed by a single thread, the cache hit ratio for
attribute data can be further increased. Because the block-based
workload allocation assigns each thread the nodes in a single block
with sequential node IDs, the performance is further improved by
the synergy between the block-based allocation and the efficient
data layout.

Through above experiments, we showed that each technique of
RealGraph is effective, and that their combinations create a signifi-
cant synergy effect. We also demonstrated that these techniques
are all effective regardless of the type of graph algorithms.

6.3 Comparisons with single-machine based
graph engines

In this experiment, we evaluate the performance of RealGraph by
comparing it with existing single-machine based graph engines.
Section 6.3.1 evaluates the performance of the single-machine based
graph engines following the same model as RealGraph. Section 6.3.2
evaluates the performance of the single-machine based graph en-
gines adopting different models from RealGraph. In these two sec-
tions, we used BFS, WCC, and PageRank, which are commonly
provided by all graph engines. Section 6.3.3 shows the performance
of other graph algorithms provided by different graph engines such
as BC, RWR, BP, and SpMV.

6.3.1 Single-machine based graph engines with the same model. We
employed TurboGraph [25], GridGraph [30], and GraphChi [14],
all of which follow the same model as RealGraph. They adopt
the vertex-centric model and the external-memory model. Since

Figure 11: Performance comparison with graph engines with the same model.

per each block (rather than each node), which reduces the com-
munication overhead. This further improves the performance of
RealGraph.

The synergy is greater when combining the hierarchical indicator
and the efficient data layout (HD). As mentioned in Section 3.2, the
performance of RealGraph is improved by the efficient data layout
when handling attribute data and graph data. Moreover, the number
of ranges to be scanned in the current indicator decreases when
efficient data layout is employed, because the bits corresponding
to nodes to be processed tend to be clustered in a few ranges with
efficient data layout. The cache hit ratio in the next indicator is also
increased, because the bits in the same or adjacent ranges are likely
to be set. This results in the dramatic performance improvement of
RealGraph by 32.8 times.

The combination of the block-based workload allocation and
the efficient data layout (BD) also shows synergy, improving the
performance of RealGraph by 4.4 times. The magnitude, however,
is somewhat smaller than the previous two cases (HB and HD). The
reason is as follows. The efficient data layout aggregates the nodes
to be processed into one or adjacent blocks. If an iteration processes
a small number of nodes, the number of blocks to be processed may
be less than the number of threads in RealGraph. Since each thread
processes a block by the block-based workload allocation, all the
given threads could have not been fully utilized in this case.

Finally, the combination of all three technologies (Ω) enhances
the performance of RealGraph by 60 times.

Figure 10-(b) shows the results of PageRank. In PageRank where
the indicator is not used, we could apply the block-based work-
load allocation (B) and the efficient data layout (D) to RealGraph.
Each technique improves the performance by 1.3 and 4.3 times,
respectively. The performance of RealGraph is improved 8.4 times

when using both techniques together (Ω). The efficient data lay-
out increases the probability that the nodes with sequential node
IDs and the nodes connected to them take adjacent node IDs. If
these nodes are processed by a single thread, the cache hit ratio for
attribute data can be further increased. Because the block-based
workload allocation assigns each thread the nodes in a single block
with sequential node IDs, the performance is further improved by
the synergy between the block-based allocation and the efficient
data layout.

Through above experiments, we showed that each technique of
RealGraph is effective, and that their combinations create a signifi-
cant synergy effect. We also demonstrated that these techniques
are all effective regardless of the type of graph algorithms.

6.3 Comparisons with single-machine based
graph engines

In this experiment, we evaluate the performance of RealGraph by
comparing it with existing single-machine based graph engines.
Section 6.3.1 evaluates the performance of the single-machine based
graph engines following the same model as RealGraph. Section 6.3.2
evaluates the performance of the single-machine based graph en-
gines adopting different models from RealGraph. In these two sec-
tions, we used BFS, WCC, and PageRank, which are commonly
provided by all graph engines. Section 6.3.3 shows the performance
of other graph algorithms provided by different graph engines such
as BC, RWR, BP, and SpMV.

6.3.1 Single-machine based graph engines with the same model. We
employed TurboGraph [25], GridGraph [30], and GraphChi [14],
all of which follow the same model as RealGraph. They adopt
the vertex-centric model and the external-memory model. Since

814



Wiki UK Twitter SK Friend Yahoo
100

102

104

16

2,842
401

1,756 979

5 11 16 19 27
122

4 11 14 18 27 19

Ex
ec
ut
io
n
tim

e
(se

c.
in

lo
g
sc
al
e)

(a) BFS

X-Stream FlashGraph RealGraph

O
.O
.T

Wiki UK Twitter SK Friend Yahoo
100

102

104

25

3,243 1,184 2,302 1,460

8
37 29 52 87

8 19 34 37 65
263

Ex
ec
ut
io
n
tim

e
(se

c.
in

lo
g
sc
al
e)

(b) WCC

O
.O
.T

O
.O
.M

Wiki UK Twitter SK Friend Yahoo
100

102

104

32

897 1,415 1,878 2,490 8,016

28 74 221 124 388

16 29 94 57
235 353

Ex
ec
ut
io
n
tim

e
(se

c.
in

lo
g
sc
al
e)

(c) PageRank

O
.O
.M

Figure 12: Performance comparison with graph engines with the different models.

TurboGraph fixed the number of threads identically as six, we set
the number of threads of all the graph engines to six.

Figure 11 shows the results. The x-axis represents the graph
datasets, and the y-axis represents the execution time in log scale.
The experimental results show that overall execution time is in
order of GraphChi, GridGraph, TurboGraph, and RealGraph. Re-
alGraph provides the best performance universally for all graph
algorithms and for all datasets. In particular, RealGraph is better
than TurboGraph, the best performer among existing ones, up to
about 44 times in the best case (i.e., BFS on the Yahoo dataset).
We note that TurboGraph does not work in the Wiki dataset (i.e.,
infeasible), and GraphChi could not get the results of BFS and WCC
on the Yahoo dataset within 24 hours (i.e., out of time, O.O.T).

6.3.2 Single-machine based graph engines with different models. In
this experiment, we employed two graph engines with different
models from that of RealGraph: FlashGraph [29] and X-Stream [21].
FlashGraph adopts the vertex-centric model and the semi-external
memory model. X-Stream adopts the edge-centric model and the
external-memory model. The number of threads was set identically
as 8. We performed BFS, WCC, and PageRank, as in the previous
experiments.

Figure 12 shows the experimental results. The x-axis represents
the graph datasets, and the y-axis represents the execution time
in log scale. RealGraph has the same or better performance than
FlashGraph except for WCC on the Twitter dataset. In particular,
the performance of RealGraph is up to six times better than that of
FlashGraph (i.e., BFS on the Yahoo dataset). Since the graph engine
with the semi-external memory model does not work if whole
attribute data cannot be loaded into the given memory, FlashGraph
could not perform PageRank andWCCon the Yahoo dataset (i.e., out
of memory, O.O.M), while RealGraph performs all the algorithms.

Compared with X-Stream, RealGraph has always better perfor-
mance for all graph algorithms and all datasets. In the case of
PageRank on the Yahoo dataset, RealGraph outperforms X-Stream
up to 250 times. Since the graph engines with the edge-centric
model sequentially read the entire graph data at each iteration, it
is inefficient for the algorithms that need to process only a few
nodes at each iteration such as BFS and WCC. X-Stream does not
work on BFS and WCC on the Yahoo dataset within 24 hours (i.e.,
O.O.T), while RealGraph works in maximum 360 seconds. These
results show that RealGraph has superior scalability and better
performance compared to two graph engines with different models.

6.3.3 Performance on other graph algorithms. This experiment
shows that RealGraph is effective for other graph algorithms pro-
vided by different graph engines. BC is provided by RealGraph,
GraphChi, and X-Stream; RWR is provided by RealGraph, Flash-
Graph, and X-Stream; BP is provided by RealGraph, GridGraph,
and X-Stream; SpMV is provided by RealGraph, GraphChi, and
X-Stream. TurboGraph does not provide any additional graph algo-
rithms except for the common graph algorithms (i.e., BFS, PageRank,

Table 2: Execution times of other graph algorithms

Graph engines Graph algorithms
BC RWR BP SpMV

RealGraph 125.7 313.9 3017.3 112.2
TurboGraph - - - -
GridGraph - - - 226.9
GraphChi - 6082.6 8418.3 -
FlashGraph O.O.M - - -
X-Stream O.O.T 8016.3 O.O.M 538.3

(Execution time unit: sec.)

Figure 12: Performance comparison with graph engines with the different models.

TurboGraph fixed the number of threads identically as six, we set
the number of threads of all the graph engines to six.

Figure 11 shows the results. The x-axis represents the graph
datasets, and the y-axis represents the execution time in log scale.
The experimental results show that overall execution time is in
order of GraphChi, GridGraph, TurboGraph, and RealGraph. Re-
alGraph provides the best performance universally for all graph
algorithms and for all datasets. In particular, RealGraph is better
than TurboGraph, the best performer among existing ones, up to
about 44 times in the best case (i.e., BFS on the Yahoo dataset).
We note that TurboGraph does not work in the Wiki dataset (i.e.,
infeasible), and GraphChi could not get the results of BFS and WCC
on the Yahoo dataset within 24 hours (i.e., out of time, O.O.T).

6.3.2 Single-machine based graph engines with different models. In
this experiment, we employed two graph engines with different
models from that of RealGraph: FlashGraph [29] and X-Stream [21].
FlashGraph adopts the vertex-centric model and the semi-external
memory model. X-Stream adopts the edge-centric model and the
external-memory model. The number of threads was set identically
as 8. We performed BFS, WCC, and PageRank, as in the previous
experiments.

Figure 12 shows the experimental results. The x-axis represents
the graph datasets, and the y-axis represents the execution time
in log scale. RealGraph has the same or better performance than
FlashGraph except for WCC on the Twitter dataset. In particular,
the performance of RealGraph is up to six times better than that of
FlashGraph (i.e., BFS on the Yahoo dataset). Since the graph engine
with the semi-external memory model does not work if whole
attribute data cannot be loaded into the given memory, FlashGraph
could not perform PageRank andWCCon the Yahoo dataset (i.e., out
of memory, O.O.M), while RealGraph performs all the algorithms.

Compared with X-Stream, RealGraph has always better perfor-
mance for all graph algorithms and all datasets. In the case of
PageRank on the Yahoo dataset, RealGraph outperforms X-Stream
up to 250 times. Since the graph engines with the edge-centric
model sequentially read the entire graph data at each iteration, it
is inefficient for the algorithms that need to process only a few
nodes at each iteration such as BFS and WCC. X-Stream does not
work on BFS and WCC on the Yahoo dataset within 24 hours (i.e.,
O.O.T), while RealGraph works in maximum 360 seconds. These
results show that RealGraph has superior scalability and better
performance compared to two graph engines with different models.

6.3.3 Performance on other graph algorithms. This experiment
shows that RealGraph is effective for other graph algorithms pro-
vided by different graph engines. BC is provided by RealGraph,
GraphChi, and X-Stream; RWR is provided by RealGraph, Flash-
Graph, and X-Stream; BP is provided by RealGraph, GridGraph,
and X-Stream; SpMV is provided by RealGraph, GraphChi, and
X-Stream. TurboGraph does not provide any additional graph algo-
rithms except for the common graph algorithms (i.e., BFS, PageRank,

Table 2: Execution times of other graph algorithms

Graph engines Graph algorithms
BC RWR BP SpMV

RealGraph 125.7 313.9 3017.3 112.2
TurboGraph - - - -
GridGraph - - - 226.9
GraphChi - 6082.6 8418.3 -
FlashGraph O.O.M - - -
X-Stream O.O.T 8016.3 O.O.M 538.3

(Execution time unit: sec.)

815



Table 3: Performance comparison of RealGraph with distributed-system based graph engines

Graph engines Graph algorithms System environment
WCC PageRank Machine #Cores Mem. Size Storage

RealGraph 34 94 Single PC with Intel i7 4 16G SSD
PowerGraph - 72 64 Amazon EC2 cc1.4xlarge 8 23G HDD
GraphLab 244 249 16 Amazon EC2 m2.4xlarge 8 68G HDD
GraphX 251 419 16 Amazon EC2 m2.4xlarge 8 68G HDD
Giraph 200 596 16 Amazon EC2 m2.4xlarge 8 68G HDD

(Execution time unit: sec.)

and WCC). The number of threads of all graph engines was identi-
cally set as 8. We performed the algorithms on the largest Yahoo
dataset.

Table 2 shows the execution times of the algorithms on the
graph engines. The hyphen (-) means that the execution time is
not measured because the graph engine does not provide the corre-
sponding algorithm. The experimental results show that RealGraph
has the best performance for all graph algorithms, which proves
that RealGraph are effective in various domains using real-world
graphs.

6.4 Comparisons with distributed-system
based graph engines

Finally, we compared RealGraph with four distributed-system based
graph engines: PowerGraph [9], GraphLab [16], GraphX [26], and
Giraph [1]. Since prior research [9, 26] has evaluated the perfor-
mance of these four distributed-system based graph engines, we
quote their results for comparisonwhile measuring the performance
of our RealGraph. Table 3 presents the performance comparison
between RealGraph and distributed-system based graph engines for
WCC and PageRank which are the only graph algorithms whose
performances on the four distributed-system based graph engines
are commonly reported [9, 26]) on the Twitter dataset. Table 3
also shows the system environment of each graph engine. where
Machine indicates the number of and type of the machines, and
for each machine, #Cores means the number of cores, Mem. Size
does the size of memory, and Storage does the type of storage. The
hyphen (-) means that no result is available.

Under typical configuration, the distributed-system based graph
engine uses 16 or more machines, each of which has 8 cores and
20GiB or morememory. In other words, they have computing power
much higher than RealGraph. Nonetheless, the result shows that
RealGraph equipped with low computing power performs better
than distributed-system based engines except PowerGraph.

When executing PageRank, PowerGraph employs 64 machines,
each of which is equipped with 8 cores, while RealGraph uses a
single machine with 4 cores. That is, PowerGraph uses 128 times
more cores than RealGraph, notwithstanding other computing re-
sources. The performance of PowerGraph, however, is only 25%
better than that of RealGraph. Simply put, RealGraph achieves
reasonable performance using much smaller computing resources.

The reasons are as follows. The graph algorithm is performed
through multiple iterations, producing intermediate results pro-
portional to the number of nodes at each iteration. To proceed to
the next iteration, each machine in the distributed graph engine
should maintain the same intermediate results. Thus, intermediate

results should be synchronized through communication among
machines, which may cause more overhead than processing of the
graph algorithm [5]. We claim that RealGraph is more effective
if multiple machines are not required and the given a graph can
reside within a single machine.

7 CONCLUSIONS
Most real-world graphs follow the power-law degree distribution,
which with a small number of hub nodes having a high degree and
most nodes having a low degree. We have observed two important
problems that occur when existing single-machine based graph
engines process such real-world graphs: (1) inefficient scanning
of the sparse indicator and (2) the delay for the progress of the
iterations due to uneven workload distribution.

In order to solve these problems, we developed a new graph
engine, RealGraph, designed on the basis of well-known database
systems. We applied not only an efficient data layout with good data
locality, but also following two techniques that efficiently process
real-world graphs into RealGraph.

First, we proposed a hierarchical indicator where the higher-
level indicator compresses a range of a lower-level indicator using a
single bit. This helps to skip unnecessary ranges of each lower-level
indicator by scanning each higher-level indicator, which provides
efficient indicator scanning at every iteration.

Second, we devised a block-based workload allocation where Re-
alGraph assigns blocks to threads. Since a block is a fixed-size stan-
dard I/O unit, the total size of objects in each block is almost the
same. This prevents the delay for the progress of the next iteration.

Through extensive experiments, we verified the superiority of
RealGraph. We first evaluated the effectiveness of each proposed
technique. Each technology improves the performance of Real-
Graph, and the combination of technologies further improves its
performance with synergy. For various graph algorithms and real-
world graphs, RealGraph has the best performance in terms of
speed and scalability compared to existing single-machine based
and distributed-system based graph engines.

ACKNOWLEDGMENTS
This work was supported by (1) the National Research Foundation
of Korea (NRF) funded by the Ministry of Science and ICT (MSIT)
(NRF-2017R1A2B3004581) and (2) Next-Generation Information
Computing Development Program through NRF funded by MSIT
(NRF-2017M3C4A7069440). Also, we appreciate Samsung Electron-
ics’ university program [Flash Solutions for Emerging Applications]
that significantly helps train our lab. members.

816



REFERENCES
[1] Ching Avery. 2011. Giraph: Large-scale graph processing infrastructure on

hadoop. In Hadoop Summit. 5–9.
[2] Ulrik Brandes. 2001. A faster algorithm for betweenness centrality. Journal of

Mathematical Sociology 25, 2 (2001), 163–177.
[3] Michael J Carey, David J DeWitt, Michael J Franklin, Nancy E Hall, Mark L

McAuliffe, Jeffrey F Naughton, Daniel T Schuh, Marvin H Solomon, CK Tan,
Odysseas G Tsatalos, Seth J White, and Michael J Zwilling. 1994. Shoring up
persistent applications. In Proceedings of the ACM international conference on
management of data (SIGMOD). 383–394.

[4] Michael J Carey, David J DeWitt, Joel E Richardson, and Eugene J Shekita. 1986.
Object and file management in the EXODUS extensible database system. University
of Wisconsin-Madison. Computer Sciences Department.

[5] Rong Chen, Xin Ding, Peng Wang, Haibo Chen, Binyu Zang, and Haibing Guan.
2014. Computation and communication efficient graph processing with dis-
tributed immutable view. In Proceedings of the international symposium on high-
performance parallel and distributed computing (HPDC). 215–226.

[6] Yuze Chi, Guohao Dai, Yu Wang, Guangyu Sun, Guoliang Li, and Huazhong
Yang. 2016. NXgraph: An efficient graph processing system on a single machine.
In Proceedings of the IEEE international conference on data engineering (ICDE).
409–420.

[7] H-T Chou, David J Dewitt, Randy H Katz, and Anthony C Klug. 1985. Design
and implementation of the Wisconsin storage system. Software: Practice and
Experience 15, 10 (1985), 943–962.

[8] Martin Erwig. 1992. Graph algorithms= iteration+ data structures?. In Interna-
tional workshop on graph-theoretic concepts in computer science. 277–292.

[9] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed graph-parallel computation on natural graphs.
In Proceedings of the USENIX symposium on operating systems design and imple-
mentation (OSDI). 17–30.

[10] Minyang Han and Khuzaima Daudjee. 2015. Giraph unchained: barrierless asyn-
chronous parallel execution in pregel-like graph processing systems. Proceedings
of the VLDB Endowment 8, 9 (2015), 950–961.

[11] Min-Hee Jang, Christos Faloutsos, Sang-Wook Kim, U Kang, and Jiwoon Ha.
2016. Pin-trust: Fast trust propagation exploiting positive, implicit, and negative
information. In Proceedings of the ACM international conference on information
and knowledge management (CIKM). 629–638.

[12] Yong-Yeon Jo, Jiwon Hong, Myung-Hwan Jang, Jae-Geun Bang, and Sang-Wook
Kim. 2016. Data Locality in graph engines: Implications and preliminary experi-
mental results. In Proceedings of the ACM international conference on information
and knowledge management (CIKM). 1885–1888.

[13] Min-Soo Kim, Kyuhyeon An, Himchan Park, Hyunseok Seo, and Jinwook Kim.
2016. GTS: A fast and scalable graph processing method based on streaming topol-
ogy to GPUs. In Proceedings of the ACM international conference on management
of data (SIGMOD). 447–461.

[14] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-scale
graph computation on just a pc. In Proceedings of the USENIX symposium on
operating systems design and implementation (OSDI). 31–46.

[15] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densification and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data 1, 1 (2007), 1–41.

[16] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola,
and Joseph M Hellerstein. 2012. Distributed GraphLab: A framework for machine
learning and data mining in the cloud. Proceedings of the VLDB Endowment 5, 8
(2012), 716–727.

[17] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai. 2017. Garaph:
Efficient GPU-accelerated graph processing on a single machine with balanced
replication. In Proceedings of the USENIX annual technical conference (ATC). 195–
207.

[18] SteffenMaass, ChangwooMin, Sanidhya Kashyap,Woonhak Kang,MohanKumar,
and Taesoo Kim. 2017. Mosaic: Processing a trillion-edge graph on a single
machine. In Proceedings of the ACM european conference on computer systems
(EuroSys). 527–543.

[19] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A system for large-
scale graph processing. In Proceedings of the ACM international conference on
management of data (SIGMOD). 135–146.

[20] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[21] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the ACM
symposium on operating systems principles (SOSP). 472–488.

[22] Robert Sedgewick and Kevin Wayne. 2011. Algorithms. Addison-wesley profes-
sional.

[23] Kenji Suzuki, Isao Horiba, and Noboru Sugie. 2003. Linear-time connected-
component labeling based on sequential local operations. Computer Vision and
Image Understanding 89, 1 (2003), 1–23.

[24] Guozhang Wang, Wenlei Xie, Alan J Demers, and Johannes Gehrke. 2013. Asyn-
chronous large-scale graph processing made easy. In Proceedings of biennial
conference on innovative data systems research (CIDR). 3–6.

[25] Wook-Shin, Sangyeon Lee, Kyungyeol Park, Jeong-Hoon Lee, Min-Soo Kim,
Jinha Kim, and Hwanjo Yu. 2013. TurboGraph: A fast parallel graph engine han-
dling billion-scale graphs in a single PC. In Proceedings of the ACM international
conference on knowledge discovery and data mining (KDD). 77–85.

[26] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica. 2013.
GraphX: A resilient distributed graph system on spark. In Proceedings of the inter-
national workshop on graph data management experiences and systems (GRADE).
1–6.

[27] Xintian Yang, Srinivasan Parthasarathy, and Ponnuswamy Sadayappan. 2011.
Fast sparse matrix-vector multiplication on GPUs: Implications for graph mining.
Proceedings of the VLDB Endowment 4, 4 (2011), 231–242.

[28] Hilmi Yildirim and Mukkai S Krishnamoorthy. 2008. A random walk method for
alleviating the sparsity problem in collaborative filtering. In Proceedings of the
ACM conference on recommender systems (RecSys). 131–138.

[29] Da Zheng, Disa Mhembere, Randal Burns, Joshua Vogelstein, Carey E Priebe,
and Alexander S Szalay. 2015. FlashGraph: Processing billion-node graphs on
an array of commodity SSDs. In Proceedings of the USENIX conference on file and
storage technologies (FAST). 45–58.

[30] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-scale
graph processing on a single machine using 2-level hierarchical partitioning. In
Proceedings of the USENIX annual technical conference (ATC). 375–386.

817


	Abstract
	1 Introduction
	2 Motivation
	3 Overview of RealGraph
	3.1 Architecture
	3.2 Efficient data layout

	4 Hierarchical Indicator
	5 Block-Based Workload Allocation
	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Evaluation of proposed techniques
	6.3 Comparisons with single-machine based graph engines
	6.4 Comparisons with distributed-system based graph engines

	7 Conclusions
	References

