PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs

RONG CHEN, JIAXIN SHI, YANZHE CHEN, BINYU ZANG, HAIBING GUAN, and HAIBO CHEN, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, China

Natural graphs with skewed distributions raise unique challenges to distributed graph computation and partitioning. Existing graph-parallel systems usually use a "one-size-fits-all" design that uniformly processes all vertices, which either suffer from notable load imbalance and high contention for high-degree vertices (e.g., Pregel and GraphLab) or incur high communication cost and memory consumption even for low-degree vertices (e.g., PowerGraph and GraphX). In this article, we argue that skewed distributions in natural graphs also necessitate differentiated processing on high-degree and low-degree vertices. We then introduce PowerLyra, a new distributed graph processing system that embraces the best of both worlds of existing graph-parallel systems. Specifically, PowerLyra uses centralized computation for low-degree vertices to avoid frequent communications and distributes the computation for high-degree vertices to balance workloads. PowerLyra further provides an efficient hybrid graph partitioning algorithm (i.e., hybrid-cut) that combines edge-cut (for low-degree vertices) and vertex-cut (for high-degree vertices) with heuristics. To improve cache locality of inter-node graph accesses, PowerLyra further provides a locality-conscious data layout optimization. Power-Lyra is implemented based on the latest GraphLab and can seamlessly support various graph algorithms running in both synchronous and asynchronous execution modes. A detailed evaluation on three clusters using various graph-analytics and MLDM (Machine Learning and Data Mining) applications shows that PowerLyra outperforms PowerGraph by up to 5.53X (from 1.24X) and 3.26X (from 1.49X) for real-world and synthetic graphs, respectively, and is much faster than other systems like GraphX and Giraph, yet with much less memory consumption. A porting of hybrid-cut to GraphX further confirms the efficiency and generality of PowerLyra.

CCS Concepts: • Information systems \rightarrow Computing platforms; • Computing methodologies \rightarrow Distributed computing methodologies; Distributed programming languages;

Additional Key Words and Phrases: Graph computation, graph partitioning, power-law degree distribution, skewed graph, locality-conscious data layout

ACM Reference format:

Rong Chen, Jiaxin Shi, Yanzhe Chen, Binyu Zang, Haibing Guan, and Haibo Chen. 2019. PowerLyra: Differentiated Graph Computation and Partitioning on Skewed Graphs. *ACM Trans. Parallel Comput.* 5, 3, Article 13 (January 2019), 39 pages.

https://doi.org/10.1145/3298989

This work was supported in part by the National Key Research & Development Program of China (No. 2016YFB1000104) and the National Natural Science Foundation of China (No. 61772335 and 61572314).

This article extends a prior conference version that received the "Best Paper Award" of the Tenth ACM SIGOPS European Conference on Computer Systems (EuroSys 2015) [12].

Authors' addresses: R. Chen, J. Shi, Y. Chen, and H. Chen, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China; Corresponding author: H. Chen (haibochen@sjtu.edu.cn).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

2329-4949/2019/01-ART13 \$15.00

https://doi.org/10.1145/3298989

13:2 R. Chen et al.

1 INTRODUCTION

Graph-structured computation has be come increasingly popular, which is evidenced by its adoption in a wide range of areas including social computation, web search, natural language processing, and recommendation systems [5, 25, 54, 67, 88, 98]. The intense desire for efficient and expressive programming models for graph-structured computation has recently driven the development of numerous distributed graph-parallel systems such as Pregel [47], GraphLab [43], and PowerGraph [24]. They usually follow the "think like a vertex" philosophy [47] by coding graph computation as vertex-centric programs to process vertices in parallel and communicate across edges.

On the other hand, the distribution of real-world graphs tends to be diverse and constantly evolving [41]. For example, some real-world datasets exhibit a skewed power-law distribution [21, 52] where a small number of vertices have a significant number of neighboring vertices, while some other existing datasets (e.g., road networks) exhibit a more balanced distribution. The diverse properties inside and among graph datasets raise new challenges to efficiently partition and process such graphs [1, 24, 42].

Unfortunately, existing graph-parallel systems usually adopt a "one size fits all" design where different vertices are equally processed, leading to suboptimal performance and scalability. For example, Pregel [47] and GraphLab [43] centralize their designs in making resources locally accessible to hide latency. This is done by evenly distributing vertices to machines, which may result in imbalanced computation and communication for vertices with high degrees (i.e., the number of neighboring vertices). In contrast, PowerGraph [24] and GraphX [26] focus on evenly parallelizing the computation by partitioning edges among machines, which incurs high communication cost among partitioned vertices even with low degrees.

Furthermore, prior graph partitioning algorithms may result in suboptimal performance for both skewed and nonskewed (i.e., regular) graphs. For example, edge-cut [36, 61, 68, 72], which divides a graph by cutting cross-partition edges among subgraphs with the goal of evenly distributing vertices, usually results in excessive replication of edges as well as imbalanced messages with high contention. In contrast, vertex-cut [8, 24, 31], which partitions vertices among subgraphs with the goal of evenly distributing edges, incurs high communication overhead among partitioned vertices and excessive memory consumption.

In this article, we make a comprehensive analysis of existing graph-parallel systems over skewed graphs and argue that the diverse properties of different graphs and the skewed vertex distributions demand differentiated computation and partitioning on low-degree and high-degree vertices. Based on our analysis, we introduce PowerLyra, a new distributed graph processing system that embraces the best of both worlds of existing systems. The key idea of PowerLyra is to process different vertices adaptively according to their degrees.

PowerLyra follows the GAS (i.e., Gather, Apply and Scatter) programming interface of Power-Graph [24] and can seamlessly support existing graph algorithms running in either synchronous and asynchronous execution mode. Internally, PowerLyra distinguishes the processing of low-degree and high-degree vertices: It uses centralized computation for low-degree vertices to avoid frequent communications and only distributes the computation for high-degree vertices to balance workloads.

To efficiently partition a skewed graph, PowerLyra is built with a balanced *p*-way hybrid-cut algorithm to partition different types of vertices for a skewed graph. The random (i.e., hash-based) hybrid-cut evenly distributes low-degree vertices along with their edges among machines (like edge-cut) and evenly distributes edges of high-degree vertices among machines (like vertex-cut). We further provide a greedy heuristic to improve partitioning of low-degree vertices in a skewed graph.

Finally, PowerLyra mitigates the poor locality and high interference among threads during the communication phase by a locality-conscious data layout optimization built atop hybrid-cut. It trades a small increase of preprocessing time for a notable speedup during graph computation.

We have implemented PowerLyra¹ based on GraphLab PowerGraph v2.2² (released in February 2015), which comprises about 3,000 lines of C++ code. Since the first release of PowerLyra in 2015, there have been a number of graph-structured systems inspired by our hybrid approach [10, 56, 64, 73, 91, 95], employing hybrid partitioning algorithms [32, 84, 93, 94], or directly implemented based on PowerLyra [33, 40, 75, 77]. The hybrid-cut algorithm has also been used by WeChat, one of the world's largest social platforms with more than 1 billion active users, for anomaly detection in its social platform [70].

Our evaluation on three different clusters using various graph-analytics and MLDM applications shows that PowerLyra outperforms PowerGraph by up to 5.53X (from 1.24X) and 3.26X (from 1.49X) for real-world and synthetic graphs, respectively, and it consumes much less memory due to a significantly reduced replication factor, less communication cost, and better locality in computation and communication. A porting of the hybrid-cut to GraphX further confirms the efficiency and generality of PowerLyra.

This article makes the following contributions:

- A comprehensive analysis that uncovers some performance issues of existing graph-parallel systems (§2).
- The PowerLyra model that supports differentiated computation on low-degree and highdegree vertices, as well as adaptive communication with minimal messages while not sacrificing generality (§3).
- A hybrid-cut algorithm with heuristics that provides more efficient partitioning and computation (§4), as well as a locality-conscious data layout optimization (§5).
- A comprehensive evaluation that demonstrates the performance benefits of PowerLyra (§6).

2 BACKGROUND AND MOTIVATION

Many graph-parallel systems, including PowerLyra, abstract computation as a vertex-centric program P, which is executed in parallel on each vertex $v \in V$ in a sparse graph $G = \{V, E\}$. The scope of computation and communication in each P(v) is restricted to the neighboring vertices n through edges where $(v, n) \in E$.

This section briefly introduces skewed graphs and illustrates why prior graph-parallel systems fall short using Pregel, GraphLab, PowerGraph, and GraphX as examples, as they are representatives of existing systems.

2.1 Skewed Graphs

Natural graphs, such as social networks (e.g., follower, citation, and co-authorship), email and instant messaging graphs, or web graphs (hubs and authorities), usually exhibit a skewed distribution, such as the power-law degree distribution [21]. This implies that a large fraction of vertices have relatively few neighbors (i.e., low-degree vertex), while a small fraction of vertices has a significant number of neighbors (i.e., high-degree vertex). Given a positive power-law constant α , the probability that the vertex has the degree d under the power-law distribution is

$$P(d) \propto d^{-\alpha}$$

¹The source code and a brief instruction of PowerLyra are available at http://ipads.se.sjtu.edu.cn/projects/powerlyra.html ²GraphLab prior to 2.1 runs the distributed GraphLab engine (i.e., GraphLab [43]).

13:4 R. Chen et al.

	Pregel-like	GraphLab	GraphLab PowerGraph GraphX		PowerLyra
Graph Placement	Edge-cuts	Edge-cuts	Vertex-cuts	Vertex-cuts	Hybrid-cuts
Comp. Pattern	Local	Local	Distributed	Distributed	L: local H: distributed
Comm. Cost	≤ #edge-cuts	$\leq 2 \times \#mirrors$	$\leq 5 \times \#mirrors$	$\leq 4 \times \#mirrors$	$\begin{array}{l} L: \leq \# mirrors \\ H: \leq 4 \times \# mirrors \end{array}$
Dynamic Comp.	No	Yes	Yes	Yes	Yes
Workload Balance	No	No	Yes	Yes	Yes

Table 1. A Summary of Typical Distributed Graph-Parallel Systems

L and H represent low-degree and high-degree vertex respectively.

```
Compute (v, M)
                                       G Gather (v, n):
                                             return n.rank / #outNbrs(v)
  foreach (m in M)
   sum += m
                                           Acc (a, b): return a + b
  v.rank = 0.15 + 0.85 * sum
                                          Apply (v, sum)
  if (!converged(v))
                                             v.rank = 0.15 + 0.85 * sum
    foreach (n in outNbrs(v))
      m = v.rank / #outNbrs(v)
                                           Scatter (v, n):
      send (n, m)
                                             if ( !converged(v) )
  else done()
                                               activate(n)
     (a) Pregel/GraphLab
                                              (b) PowrGraph/PowerLyra
```

Fig. 1. The sample code of PageRank on various systems.

The lower exponent α implies that a graph has higher density and more high-degree vertices. For example, the *in* and *out* degree distribution of the Twitter follower graph is close to 1.7 and 2.0, respectively [24]. Although there are also other models [41, 58, 59, 82] for skewed graphs, we restrict the discussion to the power-law distribution due to space constraints. However, PowerLyra is not bound to such a distribution and should benefit other models (e.g., bipartite graph [13, 14]) with skewed distributions as well (having high-degree and low-degree vertices).

2.2 Existing Graph-Parallel Systems

Although a skewed graph has different types of vertices, existing graph systems usually use a "one size fits all" design and compute equally on all vertices, which may result in suboptimal performance. Table 1 provides a comparative study of typical distributed graph-parallel systems. Additional related work can be found in Section 7.

Pregel and its open-source relatives (e.g., Giraph, ³ Hama, ⁴ and GPS [60]) use the *Bulk Synchronous Parallel* (BSP) model [74] with explicit messages to fetch all resources for the vertex computation. Figure 1(a) illustrates an example implementation of PageRank [5] in Pregel. The Compute function sums up the ranks of neighboring vertices through the received messages *M* and sets it as the new rank of the current vertex. The new rank will also be sent to its neighboring vertices by messages until reaching a global convergence estimated by a distributed aggregator. As shown in Figure 2, Pregel adopts a traditional edge-cut [61, 68, 72] to evenly assign vertices among machines

³Apache Giraph: http://giraph.apache.org/

⁴Apache Hama: http://hama.apache.org/

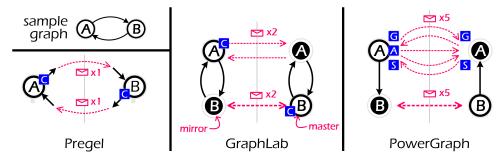


Fig. 2. A comparison of distributed graph-parallel models.

and provides interaction between vertices by message-passing along edges. Since the communication is restricted to push-mode algorithms (e.g., vertex A cannot actively pull data from vertex B), Pregel does not support dynamic computation⁵ [34, 43].

GraphLab replicates vertices for all edges spanning machines and leverages an additional vertex activation message to support dynamic computation [43]. In Figure 2, GraphLab also uses edge-cut as does Pregel, but creates replicas (i.e., mirrors) and duplicates edges in both machines (e.g., for the edge from vertex A to B, there are one edge and one replica in both machines). The communication between replicas of a vertex is bidirectional (i.e., sending updates from a master to its mirrors and activation messages from mirrors to the master). PageRank implemented in GraphLab is similar to that of Pregel, except that it uses replicas to exchange messages from neighboring vertices.

PowerGraph abstracts computation into the Gather, Apply and Scatter (GAS) model and uses vertex-cut [24, 31] to assign edges evenly among machines with replicated vertices. A single vertex can be split into multiple replicas in different machines to parallelize the computation on it. Figure 1(b) uses the Gather and the Acc functions to accumulate the rank of neighboring vertices along in-edges, the Apply function to calculate and update a new rank to vertex, and the Scatter function to send messages and activate neighboring vertices along out-edges. Five messages for each replica are used to parallelize vertex computation to multiple machines in each iteration (i.e., two for Gather, one for Apply, and two for Scatter), three of them are used to support dynamic computation. As shown in Figure 2, the edges of a single vertex are assigned to multiple machines to distribute workloads evenly, and the replicas of the vertex are placed in machines with its edges.

GraphX [26] builds on top of Apache Spark [90], a general dataflow framework, by recasting graph-specific operations into analytics pipelines formed by basic dataflow operators such as Join, Map, and Group-by. GraphX also adopts vertex replication, incremental view maintenance, and vertex-cut partitioning to support dynamic computation and balance the workloads for skewed graphs.

There also have many single-machine graph-parallel systems [39, 46, 53, 57, 65, 66, 92, 101] designed for the case where a graph can fit within a single machine. This largely mitigates the cost of distributed graph computation and partitioning. However, they are unlikely to completely displace distributed graph-parallel systems. For example, industrial-scale graphs like those from Google [47] and Facebook [6] are unlikely to be fit within a single machine, making distributed graph computation indispensable to process them in a timely manner. It can be evidenced by the fact that many well-known companies like Google [47], Facebook [19], and Alibaba [30] deployed

⁵Dynamic computation allows only some of the vertices to be active in each iteration.

13:6 R. Chen et al.

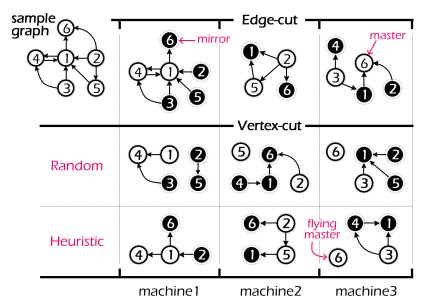


Fig. 3. A comparison of graph partitioning algorithms. The unshaded and shaded circles represent the masters and mirrors, respectively.

distributed graph-parallel systems in their production systems. Hence, in this article, we mainly focus on distributed graph-parallel systems.

2.3 Issues with Graph Computation

To exploit *locality* during computation, both Pregel and GraphLab use edge-cut to accumulate all resources (i.e., messages or replicas) of a vertex in a single machine. However, a skewed distribution of degrees among vertices implies skewed workload, which leads to substantial imbalance when being accumulated on a single machine. Even if the number of high-degree vertices is much more than the number of machines to balance workload [29], it still incurs heavy network traffic among machines to accumulate all resources for high-degree vertices. Furthermore, high-degree vertices would be the center of contention when performing scatter operations on all edges in a single machine. As shown in Figure 3, there is significant load imbalance for edge-cut in Pregel and GraphLab, as well as high contention on vertex 1 (high-degree) when its neighboring vertices activate it in parallel. This situation will be even worse with the increase of machines and degrees of vertices.

PowerGraph and GraphX address the load imbalance issue using vertex-cut and decomposition under the GAS model, which splits a vertex into multiple replicas across machines. However, this splitting also comes at a cost, including more computation, communication, and synchronization required to gather values and scatter the new value from/to its replicas (see Figure 2). However, as a large fraction of vertices only has a small degree in a skewed graph, splitting such vertices is not worthwhile. Furthermore, while the GAS model provides a general abstraction, many algorithms only gather or scatter in one direction (e.g., PageRank). Unfortunately, both PowerGraph and GraphX still require redundant communications and data movements. The workload is always distributed to all replicas even without such edges. Under the Random vertex-cut in Figure 3, the computation on vertex 4 still needs to follow the GAS model, even though all in-edges are located together with the master of vertex 4.

2.4 Issues with Graph Partitioning

Graph partitioning plays a vital role in reducing communication and ensuring load balance. Traditional balanced *p*-way **edge-cut** [61, 68, 72] evenly assigns *vertices* of a graph to *p* machines to minimize the number of *edges* spanning machines. Under edge-cut in Figure 3, six vertices are randomly (i.e., hash modulo #machine) assigned to three machines. Edge-cut creates replicated vertices (e.g., mirrors) and edges to form a locally consistent graph state in each machine. However, natural graphs with skewed distributions are difficult to partition using edge-cut [1] since skewed vertices will cause a burst of communication cost and work imbalance. Vertex 1 in Figure 3 contributes about half of the replicas of vertices and edges and incurs load imbalance on machine 1, which has close to half of edges.

The balanced p-way **vertex-cut** [24] evenly assigns edges to p machines to minimize the number of vertices spanning machines. Compared to edge-cut, vertex-cut avoids replication of edges and achieves load balance by allowing edges of a single vertex to be split over multiple machines. However, randomly constructed vertex-cut leads to much higher replication factor (λ) (i.e., the average number of replicas for a vertex) since it incurs poor placement of low-degree vertices. In Figure 3, Random vertex-cut creates a mirror for vertex 3 even if it has only two edges.⁶

To reduce the replication factor, PowerGraph uses a *greedy* heuristic [24] to accumulate adjacent edges on the same machine. In practice, applying the greedy heuristic to all edges (i.e., Coordinated [24]) incurs a significant penalty during graph partitioning [29], mainly caused by exchanging vertex information among machines. Yet using greedy heuristics independently on each machine (i.e., Oblivious [24]) will notably increase the replication factor.

The *constrained* vertex-cut [31] (e.g., Grid) is proposed to strike a balance between preprocessing and execution time. It follows the classic 2D partitioning [9, 89] to restrict the locations of edges within a small subset of machines to approximate an optimal partitioning. Since the set of machines for each edge can be calculated on each machine independently by hashing, constrained vertex-cut can significantly reduce the preprocessing time.⁷ However, the ideal upper bound of replication factor is still too large for a good placement of low-degree vertices (e.g., $2\sqrt{N} - 1$ for Grid [31]). Furthermore, constrained vertex-cut necessitates the number of partitions (N) close to being a square number for a reasonably balanced graph partitioning.

Some prior work (e.g., [29]) argues that intelligent graph placement schemes may dominate and hurt the total execution time. However, such an argument just partially⁸ holds for *greedy heuristic partitioning and simple graph algorithms*. First, a naive random partitioning scheme does not necessarily imply high efficiency in preprocessing time due to a lengthy time to create an excessive number of mirrors. Second, with the increasing sophistication of graph algorithms (e.g., MLDM), the preprocessing time will become relatively small compared to the overall computation time. In addition, unlike graph computation, graph partitioning only needs to be performed once for each graph, and the resulting partitions can be reused later to amortize the preprocessing time across multiple runs.

Table 2 illustrates a comparison of various state-of-the-art vertex-cuts of PowerGraph for 48 partitions. *Random* vertex-cut performs worst in both preprocessing and computation time due to the highest replication factor. *Coordinated* vertex-cut achieves both small replication factor

⁶PowerGraph mandates the creation of a *flying* master of vertex (e.g., vertex 5 and 6) in its hash-based location to support simple external querying for some algorithms even without edges. PowerLyra also follows this rule.

⁷Coordinated greedy vertex-cut has been deprecated due to its excessive preprocessing time, and it is buggy; meanwhile both PowerGraph and GraphX have adopted Grid-like vertex-cut as the preferential partitioning algorithm.

 $^{^8}$ GraphLab has been highly optimized in the v2.2 release, especially for preprocessing time with parallel loading.

13:8 R. Chen et al.

Table 2. A Comparison of Various Vertex-Cuts for 48 Partitions Using Pagerank (10 Iterations) on the Twitter Follower Graph and ALS (d=20, the Magnitude of Latent Dimension.) on the Netflix Movie Recommendation Graph

Algorithm &	Vertex-cut	λ	Time (Sec)		
Graph	vertex-cut	λ.	Pre-processing	Execution	
	Random	16.0	263	823	
PageRank	Coordinated	5.5	391	298	
& Twitter follower	Oblivious	12.8	289	660	
& Twitter follower	Grid	8.3	123	373	
	Hybrid	5.6	138	155	
	Random	36.9	21	547	
ALS (<i>d</i> =20)	Coordinated	5.3	31	105	
& Netflix movie	Oblivious	31.5	25	476	
recommendation	Grid	12.3	12	174	
	Hybrid	2.6	14	67	

 $[\]lambda$ presents replication factor. Preprocessing times include loading graph into memory and building local graph structures

and execution time but at the cost of excessive preprocessing time. *Oblivious* vertex-cut reduces pre-processing time (but still slower than Random) while doubling replication factor and overall execution time. *Grid* vertex-cut outperforms coordinated vertex-cuts in preprocessing time by 2.8X but decreases graph computation performance. In addition, the percent of preprocessing time for PageRank on the Twitter follower graph with 10 iterations⁹ of graph computation ranges from 24.2% to 56.8%, while for ALS on Netflix movie recommendation graph it only ranges from 3.6% to 22.8%. The random *Hybrid-cut* of PowerLyra (Section 4) provides optimal performance by significantly decreasing execution time while only slightly increasing preprocessing time (even compared to Grid).

3 GRAPH COMPUTATION IN POWERLYRA

This section describes the graph computation model in PowerLyra, which combines the best from prior systems by differentiating the processing on high-degree and low-degree vertices. Moreover, PowerLyra supports both the highly parallel synchronous execution mode as well as the computationally efficient asynchronous execution mode. Finally, to preserve generalization, PowerLyra proposes an adaptive way to downgrade the computation model for low-degree vertices. Without loss of generality, the rest of this article will use *in-degree* of the vertex to introduce the design of PowerLyra's hybrid computation model.

3.1 Graph-Parallel Abstraction

Like others, a vertex-program P in PowerLyra runs on a directed graph $G = \{V, E\}$ and computes in parallel on each vertex $v \in V$. Users can associate arbitrary vertex data D_v where $v \in V$, and edge data $D_{s,t}$ where $v \in V$. Computation on vertex v can gather and scatter data from/to neighboring vertex v where v where v can graph partitioning (Section 4), PowerLyra replicates vertices to construct a local graph on each machine, all of which are called **replicas**. Like PowerGraph, PowerLyra also elects a replica randomly (using vertex's hash) as **master** and other replicas as

⁹Increasing iterations [29, 47] will further reduce the proportion.

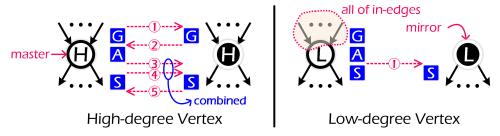


Fig. 4. The computation model on high-degree and low-degree vertex for algorithms gathering along inedges and scattering along out-edges.

mirrors. PowerLyra still strictly conforms to the GAS model and hence can seamlessly run all existing applications in PowerGraph.

3.2 Differentiated Vertex Computation

PowerLyra employs a simple loop to express the iterative computation of graph algorithms and processes vertices differently according to the vertex degrees. Figure 5(b) illustrates the detailed vertex computation semantics of high-degree and low-degree vertex.

Processing high-degree vertex: To exploit the **parallelism** of vertex computation, Power-Lyra follows the GAS model in PowerGraph to process high-degree vertices. In the Gather phase, two messages are sent by the master vertex (hereinafter "master") to activate all mirrors to run the gather function locally and accumulate results back to the master. In the Apply phase, the master runs the apply function and then sends the updated vertex data to all its mirrors. Finally, all mirrors execute the scatter function to activate their neighbors, and the master will similarly receive notification from activated mirrors. Unlike PowerGraph, PowerLyra groups the two messages from master to mirrors in the Apply and Scatter phases (see the left part of Figure 4), to reduce message exchanges.

Processing low-degree vertex: To preserve access locality of vertex computation, Power-Lyra introduces a new GraphLab-like computation model to process low-degree vertices. However, PowerLyra does not provide bidirectional (i.e., both in and out) access locality like GraphLab, which necessitates edge replicas and doubles messages. We observe that most graph algorithms only gather or scatter data in only one direction. For example, PageRank only gathers data along in-edges and scatters data along out-edges. PowerLyra leverages this observation to provide unidirectional access locality by placing vertices along with edges in only one direction (which has already been indicated by application code). As the update message from master to mirrors is inevitable after computation (in the Apply phase), PowerLyra adopts local gathering and distributed scattering to minimize the communication overhead.

As shown in the right part of Figure 4 since all edges required by gathering have been placed locally, both the Gather and Apply phases can be done locally by the master without the help of its mirrors. The message to activate mirrors (that further scatter their neighbors along out-edges) is combined with the message for updating vertex data (sent from master to mirrors) in the Apply phase.

Finally, the notifications from mirrors to master in the Scatter phase are no longer necessary since only the master will be activated along in-edges by its neighbors. Compared to GraphLab, PowerLyra requires no replication of edges and only incurs up to *one* (update) message per mirror in each iteration for low-degree vertices. In addition, the unidirectional message from master to

13:10 R. Chen et al.

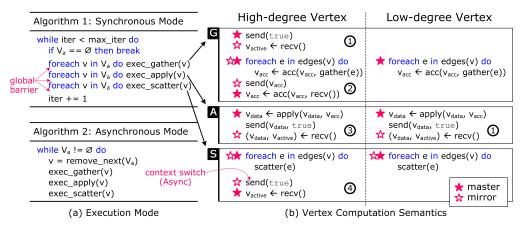


Fig. 5. The algorithms of an execution engine in synchronous and asynchronous mode and the vertex execution semantics of high-degree and low-degree vertex. The solid and hollow stars indicate the master and mirror of vertex, respectively, and the numbered circles indicate message-passing.

mirrors avoids potential contention on the receiving end of communication [11] since each mirror will receive at most one message (from its master) in each iteration.

3.3 Execution Mode

PowerLyra separates the computation mode of each vertex from the execution mode of the program. The PowerLyra engine maintains a set of *active* vertices V_a regardless of high-degree or low-degree vertex and executes the vertex-program P on each of them until none remains *active*. A vertex v will be added to the set V_a when activated by neighboring vertices or itself and removed from the set V_a when its computation finishes. The PowerLyra engine can execute the *active* vertices in both synchronous (Sync) and asynchronous (Async) modes. The main difference between two modes is the scheduling order of vertex computation, which provides difference tradeoffs in convergence rate, runtime overhead, and execution determinism [85].

Synchronous Execution: In synchronous mode, PowerLyra abstracts graph processing as a sequence of iterations (i.e., super-step) [47], in which all active vertices execute the vertex program in parallel using the values of neighboring vertices updated in the prior iteration. Inspired by Power-Graph [24], PowerLyra divides a super-step into several *mini-steps*, each of which synchronously completes the same phase of all active vertices with a global barrier at the end (see Algorithm 1 in Figure 5). Unlike PowerGraph, the low-degree vertices in PowerLyra can skip some operations (messages) in mini-steps (e.g., accumulation and networking in the Gather phase for all mirrors).

Asynchronous Execution: In asynchronous mode, PowerLyra abstracts graph processing as an iterative computation on the set of active vertices (see Algorithm 2 in Figure 5). Compared to the synchronous execution, the computation on an active vertex will directly use the latest value of its neighboring vertices. Since the execution on a vertex may be blocked for communication with its mirrors, a large number of user-mode worker threads are spawned to hide the effects of network latency. When the current worker thread is blocked, the underlying system thread will switch to another user-mode worker thread. The blocked thread will be rescheduled after receiving the required number of results from mirrors. Unlike PowerGraph, the worker thread on low-degree vertices does not need to send messages in the Gather phase and to wait for messages from the mirrors in the Scatter phase. Therefore, in asynchronous mode, the hybrid approach can simplify the task scheduling and further reduce the cost from context switches for the low-degree vertices.

Type	gather_edges	scatter_edges	Example Algorithms
Natural	in_edges or none	out_edges or none	PR, SSSP
Naturai	out_edges or none	in_edges or none	DIA [35]
Other	any	any	CC, ALS [99]

Table 3. A Classification of Various Graph Algorithms

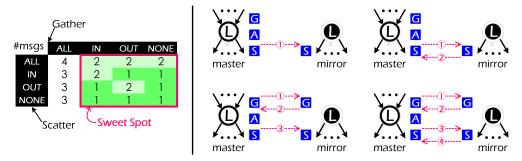


Fig. 6. The matrix of communication cost and sample computation models on low-degree vertex for various algorithms.

3.4 Generalization

PowerLyra applies a simplified model for low-degree vertices to minimize communication Overhead. However, this may limit its expressiveness to some graph algorithms that may require gathering or scattering data in *both in and out* directions. PowerLyra introduces an adaptive approach to handling different graph algorithms. Note that PowerLyra only needs to use such an approach for low-degree vertices since communication on high-degree vertices is already bidirectional.

PowerLyra classifies algorithms according to the directions of edges accessed in gathering and scattering, which are returned from the gather_edges and scatter_edges interfaces¹⁰ of PowerGraph, respectively. Hence, it can be checked at runtime without any changes to applications. Table 3 summarizes the classification of graph algorithms. PowerLyra seamlessly supports the *Natural* algorithms that gather data along one direction (e.g., in/out_edges) or none and scatter data along another direction (e.g., out/in_edges) or none, such as *PageRank* (PR), *Single-Source Shortest Paths* (SSSP) and *Approximate Diameter* (DIA) [35].¹¹ For such algorithms, PowerLyra needs up to one message per mirror for a low-degree vertex in each iteration.

For *Other* algorithms that gather or scatter data via any edges, PowerLyra requires mirrors to do gathering or scattering operations like those of high-degree vertices, but only *on demand*. For example, the *Connected Components* (CC) application gathers data via none edges and scatters data via all_edges, so that PowerLyra only requires one additional message in the Scatter phase to notify the master by the activated mirrors, and thus it still avoids unnecessary communication in the Gather phase.

Figure 6 lists the detailed communication cost for all combinations of the access models in Gather and Scatter phases and illustrates four corresponding computation models with the unidirectional access locality along in-edges. PowerLyra only requires at most two messages in a large *sweet spot*

¹⁰The gather/scatter_edges interface returns the set of edges on which to run the gather/scatter function. The default edge direction is in/out edges.

¹¹The detailed description of algorithms can be found in Section 6.1.

13:12 R. Chen et al.

(see the left of Figure 6) as long as the algorithm does not gather data in both directions (i.e., in and out). The two messages in Gather phase can be avoided, relying on unidirectional access locality provided by PowerLyra.

4 DISTRIBUTED GRAPH PARTITIONING

For distributed graph processing systems, graph partitioning plays a vital role in reducing communication and ensuring workload balance. Existing edge-cut and vertex-cut commonly use a "one-size-fits-all" design that uniformly places all vertices and edges. However, the skewed power-law degree distribution in natural graphs calls for differentiated mechanisms to process high-degree and low-degree vertices along with edges. In addition, the PowerLyra's abstraction relies on graph partitioning to provide unidirectional access locality for low-degree vertices.

This section describes a new hybrid-cut algorithm that uses differentiated partitioning strategies for low-degree and high-degree vertices, which embraces the locality of edge-cut and the parallelism of vertex-cut. Based this, a new heuristic, called *Ginger*, is provided to optimize partitioning for PowerLyra further. Finally, theoretical analysis, as well as empirical validation, are provided to compare new hybrid approaches with prior vertex-cut algorithms.

4.1 Balanced p-way Hybrid-Cut

Since vertex-cut evenly assigns edges to machines and only replicates vertices to construct a local graph within each machine, the memory and communication overhead highly depend on the replication factor (λ). Hence, existing vertex-cut algorithms mostly aim at reducing the overall λ of all vertices. However, we observe that the key is to reduce λ of *low-degree* vertices, since high-degree vertices inevitably need to be replicated on most of the machines. Distributing massive edges of high-degree vertex may incur a bursting increase of replicas for low-degree vertices. Nevertheless, many current heuristics for vertex-cuts have a bias toward high-degree vertices while paying little attention to low-degree vertices.

We propose a balanced p-way hybrid-cut that focuses on reducing the λ of low-degree vertices. It uses differentiated partitioning to low-degree and high-degree vertices. To minimize replication of edges, each edge exclusively belongs to its target vertex (the destination of the edge). For low-degree vertices, hybrid-cut adopts low-cut to evenly assign vertices along with in-edges to machines by hashing their target vertices. For high-degree vertices, hybrid-cut adopts high-cut to distribute all in-edges of vertices to machines by hashing their source vertices. After that, hybrid-cut creates replicas and constructs local graphs, as done in typical vertex-cut. One of the replicas is also randomly nominated as the master (by hashing), and the rest are mirrors.

As shown in Figure 7, assume that the user-defined threshold (θ) is 3 and the hash function is hash(X) = (X-1)%3. All vertices along with their in-edges are assigned as low-degree vertices except vertex 1, whose in-edges are assigned as a high-degree vertex. For example, the edges (1,4) and (3,4) are placed in machine 0 with the master of low-degree vertex 4, while the edges (2,1) and (5,1) are placed in machine 1 with the mirror of high-degree vertex 1. The partition constructed by the hybrid-cut only yields four mirrors and achieves good load balance.

The hybrid-cut addresses the major issues in edge-cut and vertex-cut on skewed graphs. First, the hybrid-cut can provide a much lower replication factor. For low-degree vertices, all in-edges are grouped with their target vertices, and there is no need to create mirrors for them. For high-degree vertices, the upper bound of increased mirrors due to assigning a new high-degree vertex along

¹²The edge could also exclusively belong to its source vertex, which depends on the direction of locality preferred by the graph algorithm. Without loss the generality, we assume the unidirectional access locality along in-edges in the remainder of this article.

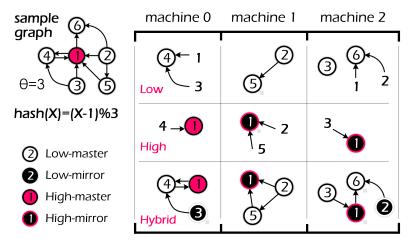


Fig. 7. The hybrid-cut on sample graph. The "Low" and "High" in each row represent the partitioning on low-degree and high-degree vertices, respectively, and the combination of "Low" and "High" in each column (i.e., machine) means "Hybrid."

with all its in-edges is equal to the number of partitions (i.e., machines) rather than the degree of vertex; this completely avoids new mirrors of low-degree vertices and restricts the bursting increase of replication factor. Second, the hybrid-cut provides unidirectional access locality for low-degree vertices, which can be used by the hybrid computation model (Section 3) to reduce communication cost at runtime. Third, hybrid-cut is very efficient in distributed preprocessing since it is a wholly hash-based partitioning scheme for both low-degree and high-degree vertices. All vertices and edges can be independently assigned to the designated machines without coordination. Finally, the partitions constructed by the hash-based (random) hybrid-cut are naturally balanced on both vertices and edges. The randomized placement of low-degree vertices leads to the balance of vertices, which is almost equivalent to the balance of edges for low-edge vertices. For high-degree vertices, all in-edges are assigned to the owner machine of source vertices, which are also assigned to random machines by hashing.

Constructing hybrid-cut: A natural approach to constructing a hybrid-cut is adding an extra reassignment phase for high-degree vertices to the original streaming graph partitioning. The left part of Figure 8 illustrates the execution flow of preprocessing using hybrid-cut, and the right part shows the results of sample graph in each stage. Figure 9 further shows the pseudo-code of the hash-based (random) hybrid-cut. First, the worker thread on each machine *loads* a piece of raw graph data (e.g., edge list) from the underlying distributed file system (e.g., HDFS) in parallel and *dispatches* edges to machines by hashing their target vertices (Lines 2–4). Each worker counts the in-degree of vertices (Lines 5–6) and compares it with a user-defined threshold (θ)¹³ to identify high-degree vertices (Lines 13–15). After that, in-edges of high-degree vertices are *reassigned* by hashing their source vertices (Lines 16–18). Finally, each worker thread creates replicas to construct a local graph as normal vertex-cut. This approach is compatible with existing formats of raw graph data, but incurs some network transmission cost due to reassigning in-edges of high-degree vertices. For some graph file formats (e.g., adjacent list), the worker can directly identify high-degree vertices and distribute edges in the loading stage to avoid extra reassignment since the in-degree and a list of all source vertices are grouped in one line.

 $^{^{13}\}mathrm{A}$ detailed discussion about the optimal threshold can be found in Section 6.6.

13:14 R. Chen et al.

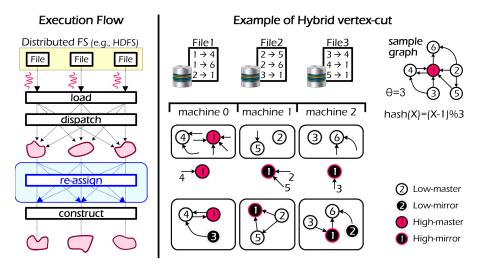


Fig. 8. The execution flow of hybrid-cut.

```
HYBRID INGRESS()
                                     12 //Reassign (high-degree)
   //Load & Dispatch
                                     13
                                        foreach v in vset
   while e = get edge() do
                                           degree = v.size
                                     14
      p = HASH(e.target)
                                           if (degree > threshold)
                                     1.5
      SEND(p, e)
                                     16
                                             foreach e in v.list
   while e = RECV() do
                                     17
                                               p = HASH(e.source)
     vset[e.target].add(e)
                                     18
                                               SEND(p, e)
                                         while e = RECV() do
                                     19
 7
   foreach v in vset
                                     20
                                           elist.add(e)
 8
     degree = v.size
 9
     if (degree <= threshold)</pre>
                                     21 //Construct
10
        foreach e in v.list
11
          elist.add(e)
```

Fig. 9. The pseudo-code of random hybrid-cut.

4.2 Heuristic Hybrid-Cut

To further reduce the replication factor of low-degree vertices, we propose a new greedy heuristic algorithm, namely **Ginger**, inspired by Fennel [72], which is a greedy, streaming, edge-cut framework. Ginger places the next *low-degree* vertex along with in-edges on the machine that minimizes the expected replication factor.

Formally, given that the set of partitions for assigned low-degree vertices are $P = (S_1, S_2, \ldots, S_p)$, a low-degree vertex v is assigned to partition S_i such that $\delta g(v, S_i) \geq \delta g(v, S_j)$, for all $j \in \{1, 2, \ldots, p\}$. We define the **score formula** $\delta g(v, S_i) = |N(v) \cap S_i| - \delta c(|S_i|^V)$, where N(v) denotes the set of neighbors along in-edges of vertex v, and $|S_i^V|$ denotes the number of vertices in S_i . The former component $|N(v) \cap S_i|$ corresponds to the degree of vertex v in the subgraph induced by S_i . The **balance formula** $\delta c(x)$ can be interpreted as the marginal cost of adding vertex v to partition S_i , which is used to balance the size of partitions.

Considering the special requirements of hybrid-cut, Ginger differs from Fennel in several aspects to improve performance and balance, as shown in Table 4. First, Fennel is inefficient to partition skewed graphs due to high-degree vertices. Hence, Ginger just uses this heuristic to improve the

	Fennel	Ginger
What to partition?	Low & High	Low
How to partition?	In-edge & Out-edge	In-edge
How to balance?	Vertex	Vertex & Edge

Table 4. A Comparison of the Heuristic in Fennel and Ginger

```
GINGER_INGRESS()
                                     Н1
                                          //Heuristic (low-degree)
                                     Н2
                                          foreach v in vset
      vset[e.target].add(e)
                                     нЗ
                                           degree = v.size
                                     H4
                                            if (degree <= threshold)
                                     Н5
                                              p = GINGER(v, \&BT_S)
                                     Н6
                                              SEND(p, v)
                                     Н7
                                              PT_V[v] = p
                                     Н8
                                              if (++inc%IN)
                                     Н9
                                                SYNC (PTv, BTs)
    //Reassign (high-degree)
                                    H10
                                         SYNC (PTv, BTs)
                                    H11
                                         while e = RECV() do
         foreach <u>e in v.list</u>
                                    H12
                                            elist.add(e)
          p = PT<sub>V</sub>[e.source]
           SEND(p, e)
```

Fig. 10. The pseudo-code of heuristic hybrid-cut.

placement of low-degree vertices. Second, as Fennel is designed to minimize the fraction of edges being cut, it estimates all adjacent edges in *both* directions to determine the host machine. By contrast, Ginger only estimates edges in one direction to decrease the preprocessing time. Finally, Fennel focuses only on the balance of vertices by using the number of vertices $|S_i^V|$ as the only parameter of the balance formula $(\delta c(x))$. Consequently, it usually causes a significant imbalance of edges even for regular graphs due to the derandomized placement of low-degree vertices. To improve the balance of edges, we add the normalized number of edges $\mu |S_i^E|$ into the parameter of the balance formula, where μ is the ratio of vertices to edges, and $|S_i^E|$ is the number of edges in S_i . The composite balance parameter becomes $(|S_i^V| + \mu |S_i^E|)/2$.

Constructing heuristic hybrid-cut: Based on the randomized hybrid-cut (Figure 9), a natural approach to constructing a greedy hybrid-cut is adding an extra *heuristic* phase between the *dispatch* and *reassign* phase (see Figure 10), which runs Ginger heuristic on all low-degree vertices (Lines H1–H7). Similar to Coordinated vertex-cut [24], Ginger also requires coordination among machines (Lines H8–H10). The distributed tables PT_V and BT_S are used to store the current vertex partitions $P = (S_1, S_2, \ldots, S_p)$ and the balance of p partitions, respectively, and will be periodically updated by all machines. Each machine also maintains a local cache to reduce communication at the expense of freshness of P. In the subsequent *reassigning* phase, instead of hashing, the table PT_V is used to locate the target machine for in-edges of high-degree vertices (Line 17).

4.3 Theoretical Comparison

We perform a theoretical analysis to compare hybrid-cut with prior vertex-cut, which partially follows that of [24]. We suppose that vertex v spans a set of machines A(v), where $A(v) \subseteq \{1, 2, ..., p\}$ containing its adjacent edges. |A(v)| is used to denote the expected number of replicas of vertex v. Therefore, by linearity of the expected replication factor for a graph partition, it is

¹⁴Since the results of greedy heuristics highly depend on the sequence of edges in raw graph data and their coordinated strategies among machines, we only consider random (hash-based) graph partitioning algorithms, which are the current preferential partitioning algorithm of most distributed graph-parallel systems, such as Giraph, PowerGraph, and GraphX.

R. Chen et al. 13:16

equal to the average of expected replication factor of all vertices (Equation (1)).

$$\mathbb{E}\left[\frac{1}{|V|}\sum_{v\in V}|A(v)|\right] = \frac{1}{|V|}\sum_{v\in V}\mathbb{E}\left[|A(v)|\right] \tag{1}$$

The expected replication factor $\mathbb{E}[|A(v)|]$ can be computed by considering the process of randomly assigning a set of adjacent edges S(v), which may incur replicas. Let the indicator P_i denote the event that vertex v has at least one of S(v) on machine i. The expectation $\mathbb{E}[P_i]$ is then:

$$\mathbb{E}[P_i] = 1 - \left(1 - \frac{1}{p}\right)^{D_s[v]}$$

where $D_s[v]$ denotes the number of edges in S(v). For various vertex-cut algorithms, S(v) denotes various candidate sets. In the following equations, we relate the expected normalized replication factor of various vertex-cut algorithms to the number of machines p and the power-law constant

Random Vertex-cut. All edges of vertex v are randomly assigned to p machines, so the expected replication factor of Random vertex-cut [24] is:

$$\mathbb{E}\Big[|A(\upsilon)|\Big] = \sum_{i=1}^{p} \mathbb{E}[P_i] = p\bigg(1 - \bigg(1 - \frac{1}{p}\bigg)^{D[\upsilon]}\bigg) \tag{2}$$

where D[v] denotes the degree of vertex v, which is treated as a Zipf random variable:

$$\mathbb{E}\Big[D[v]\Big] = \frac{\mathbf{h}_{|V|}(\alpha - 1)}{\mathbf{h}_{|V|}(\alpha,)}$$

where $\mathbf{h}_{|V|}(\alpha) = \sum_{d=1}^{|V|-1} d^{-\alpha}$ is the normalizing constant of the power-law Zipf distribution [24]. **Grid Vertex-cut**. All edges of vertex v are randomly assigned to a grid-based constrained set

on p machines; then the expected replication factor of Grid vertex-cut [31] is:

$$\mathbb{E}\left[|A(v)|\right] = \mathbf{f}(p)\left(1 - \left(1 - \frac{1}{\mathbf{f}(p)}\right)^{D[v]}\right) \tag{3}$$

where f(p) denotes the size of constrained set on p machines to host edges of vertex v, and equals $2\sqrt{p}-1$ in Grid vertex-cut. In addition, the reduction of upper bound from p to $2\sqrt{p}-1$ may incur load imbalance of both vertices and edges.

Random Hybrid-cut. For low-degree vertex v, all in-edges and out-edges linked with highdegree vertices (i.e., high-degree edges) are assigned to the master of vertex v. Consequently, only the out-edges linked with low-degree vertices (i.e., low-degree edges) may incur replicas; then the expected replication factor on p machines is:

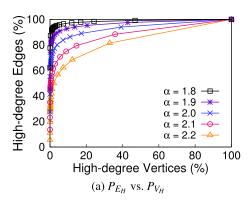
$$\mathbb{E}\left[|A(v)|\right] = p\left(1 - \left(1 - \frac{1}{p}\right)^{D_{out}[v](1 - P_{E_H})}\right) \tag{4}$$

where $D_{out}[v]$ denotes the degree of out-edges of vertex v and P_{E_H} denotes the percentage of highdegree edges where the target vertex has high-degree.

For high-degree vertex v, all of in-edges and the out-edges linked with low-degree vertices may incur replicas. Therefore, the expected replication factor on p machines is:

$$\mathbb{E}\left[|A(v)|\right] = p\left(1 - \left(1 - \frac{1}{p}\right)^{D_{in}[v] + D_{out}[v](1 - P_{E_H})}\right) \tag{5}$$

where $D_{in}[v]$ denotes the degree of in-edges of vertex v.



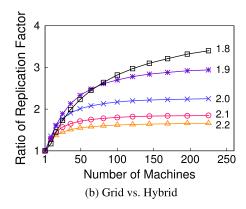


Fig. 11. (a) The relation between the percentage of high-degree vertices and edges for power-law graphs with different constants (α). (b) The ratio of the expected replication factor of Grid vertex-cut to Random hybrid-cut with increasing machines.

Finally, the expected replication factor of Random hybrid-cut is:

$$\mathbb{E}\left[\frac{1}{|V|}\sum_{v\in V}|A(v)|\right] = (1 - P_{V_H})\frac{1}{|V_L|}\sum_{v\in V_L}\mathbb{E}[|A(v)|] + P_{V_H}\frac{1}{|V_H|}\sum_{v\in V_H}\mathbb{E}[|A(v)|]$$
(6)

where V_L and V_H denotes the set of low-degree and high-degree vertices respectively, and P_{V_H} denotes the percentage of high-degree vertices. For a power-law graph with constant α and threshold θ , P_{V_H} and P_{E_H} are:

$$P_{V_H} = 1 - \frac{\mathbf{h}_{|\theta|}(\alpha)}{\mathbf{h}_{|V|}(\alpha)}, \text{ and } P_{E_H} = 1 - \frac{\mathbf{h}_{|\theta|}(\alpha - 1)}{\mathbf{h}_{|V|}(\alpha - 1)}.$$

For a skewed power-law graph, a small percentage of high-degree vertices (P_{VH}) corresponds to a large percentage of high-degree edges (P_{EH}) . Figure 11(a) illustrates the relation between them for various power-law constants, where 1% vertices adjacent to more than 45% and 84% edges for α =2.2 and 1.8, respectively. With the increase of P_{VH} , the expected replication factor of both low-degree and high-degree vertex will rapidly decrease, while the percentage of high-degree vertices will also slowly increase. Hence, the expected replication factor of Random hybrid-cut for power-law graphs will first rapidly decrease dominated by low-degree vertices (Equation (4)) and then slowly increase dominated by high-degree vertices (Equation (5)).

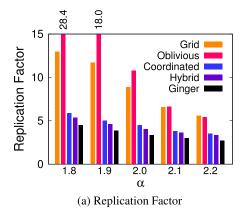
Compared to Random vertex-cut (Equation (2)), the expected replication factor of Random hybrid-cut (Equation (6)) is always better since the set of adjacent edges S(v) of Random hybrid-cut that may incur replicas is merely a subset of that of Random vertex-cut. Compared to Grid vertex-cut, since the strategies adopted by Grid vertex-cut (Equation (3)) and Random hybrid-cut are much different, it is rather difficult to directly compare the equation of the expected replication factor. Therefore, we simulate the ratio of the expected replication factor of Grid vertex-cut to Random hybrid-cut using 10-million vertex power-law graphs with different constants. Random hybrid-cut uses a fixed threshold (θ =100). As shown in Figure 11(b), Random hybrid-cut can outperform Grid vertex-cut in all cases, and the effective gains increase with lower power-law constant (α). For example, the replication factor on 100 machines decreases from 5.76 to 3.55 and from 18.54 to 6.59 for α =2.2 and 1.8, respectively.

13:18 R. Chen et al.

Table 5.	A Collection of Real-World Graphs and Randomly Constructe	d
Powe	er-Law Graphs with Varying $lpha$ and Fixed 10-Million Vertices	

Real-world graphs	V	E	α	V	E
Twitter (TW) [38]	42M	1.47B	1.8	10M	673M
UK-2005 (UK) [4]	40M	936M	1.9	10M	249M
Wiki (WK) [28]	5.7M	130M	2.0	10M	105M
LJournal (LJ) [18]	5.4M	79M	2.1	10M	53.8M
GWeb (GW) [42]	0.9M	5.1M	2.2	10M	39.0M

Smaller α produces denser graphs.



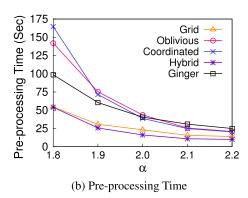


Fig. 12. The replication factor and preprocessing time of the power-law graphs with different constants (α) on the 48-node 1GbE cluster.

4.4 Empirical Comparison

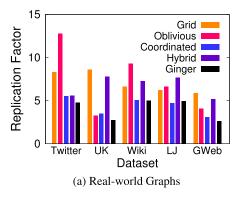
We use a collection of real-world and synthetic power-law graphs to compare various graph partitioning algorithms, as shown in Table 5. Most real-world graphs were from the Laboratory for Web Algorithmics¹⁵ and Stanford Large Network Dataset Collection.¹⁶ Each synthetic graph has 10 million vertices and a power-law constant (α) ranging from 1.8 to 2.2. Smaller α produces denser graphs. They were generated by tools in PowerGraph, which randomly sample the in-degree of each vertex from a Zipf distribution [2] and then add in-edges such that the out-degrees of each vertex are nearly identical. Detailed testbed configurations can be found in Section 6. Note that hybrid-cuts use a fixed threshold (θ =100) and retain balanced load (ρ ≤1.01)¹⁷ for both edges and vertices in all cases.

In Figure 12, we compare the replication factor and preprocessing time of hybrid-cut against various vertex-cuts for the power-law graphs with different constants (α) on our 48-node cluster. Random hybrid-cut notably outperforms Grid vertex-cut with slightly less preprocessing time, and the gap increases with the growing of skewness of the graph, reaching up to 2.4X (α =1.8). Oblivious vertex-cut has larger replication factor and more preprocessing time for the power-law graphs. Although Coordinated vertex-cut provides comparable replication factor with Random hybrid-cut (10% higher), it triples the preprocessing time. Ginger can further reduce the replication factor by more than 20% (see Figure 12(a)), but also increases preprocessing time like Coordinated

 $^{^{15}}LAW: http://law.di.unimi.it/datasets.php\\$

¹⁶SNAP: http://snap.stanford.edu/data/

¹⁷Normalized maximum load $\rho = \frac{maximum \ load}{average \ load}$. Grid vertex-cut reaches up to 1.50 on 48 machines.



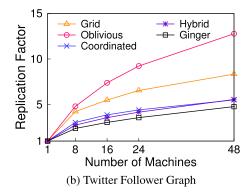
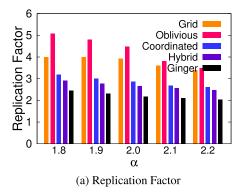


Fig. 13. The replication factor of the real-world graphs on the 48-node 1GbE cluster and the replication factor of the Twitter follower graph with increasing machines.



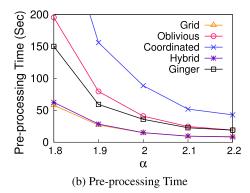


Fig. 14. The replication factor and preprocessing time of the power-law graphs with different constants (α) on the 6-node 10GbE cluster.

vertex-cut. The overhead of Ginger is mainly from the exchange of mapping tables for low-degree vertices, which can be amortized with more edges in denser graphs (e.g., α =1.8).

For real-world graphs (see Figure 13(a)), the improvement of Random hybrid-cut against Grid is smaller and sometimes slightly negative since the skewness of some graphs is moderate and randomized placement is not suitable for highly adjacent low-degree vertices (e.g., UK and GWeb). However, Ginger still performs much better in such cases, up to a 3.11X improvement over Grid on UK. Figure 13(b) compares the replication factor with an increasing number of machines on the Twitter follower graph. Random hybrid-cut provides comparable results to Coordinated vertex-cut with just 35% preprocessing time, and it outperforms Grid and Oblivious vertex-cut by 1.74X and 2.67X, respectively.

To understand the influence of fewer machines and high-performance networking for the replication factor and preprocessing time on skewed graphs, we evaluate various graph partitioning algorithms for the power-law graphs with different constants (α) on our 6-node cluster connected via 10Gb Ethernet. As shown in Figure 14(a), hybrid-cuts still outperform prior vertex-cuts even on fewer machines. For example, Random hybrid-cut and Ginger can reduce up to 32.2% (from 27.1%) and 24.2% (from 21.9%) replicas compared to Grid and Coordinated vertex-cut, respectively. Figure 14(b) shows a similar trend of preprocessing time (see Figure 12(b)). Furthermore, fewer machines will increase the time for graph loading due to less parallelism, while high-performance

13:20 R. Chen et al.

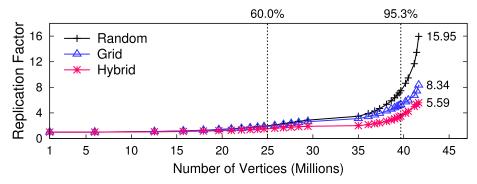


Fig. 15. The replication factor of the Twitter follower graph on 48 machines with the increase of vertices.

networking will decrease the time for dispatching edges. Since the main cost of greedy algorithms is from the heuristic edge-placement during graph loading, the preprocessing phase of them is relatively more efficient on large-scale clusters, especially for denser graphs (e.g., α =1.8). Note that the parallel loading is disabled for Coordinated vertex-cut due to unknown bugs for 6 machines.

We further evaluate the effectiveness of various partitioning algorithms on low-degree and high-degree vertices. Figure 15 illustrates the growth of replication factor (λ) on 48 machines with the increase of vertices from the Twitter follower graph according to the order of their in-degrees. We set 100 as the threshold of Random hybrid-cut (θ =100), and then the percentage of low-degree vertices is about 95.3% in the Twitter follower graph. For low-degree vertices, the replication factor of Random hybrid-cut is only 3.50, much lower than that of Random (7.46) and Grid (5.27) vertex-cut. The main reason is that there are few adjacencies among low-degree vertices in natural graphs, and assigning one vertex with in-edges to a single machine (i.e., hybrid-cut) introduces fewer replicas compared to assigning edges of one vertex to different machines (i.e., vertex-cut). For the first 60% vertices with the lowest degree, the difference of replication factor between Grid and Random vertex-cut is only less than 5% (1.85 vs. 1.93) because the upper bound of Grid (i.e., $2\sqrt{N}-1$) is still too large for most low-degree vertices. In contrast, the replication factor of Random hybrid-cut is 1.49 for these vertices.

For the 5% of vertices with the highest degree, the replication factor for Random vertex-cut increases dramatically from 7.46 to 15.96 since the edges are randomly assigned to machines, resulting in a large number of new replicas of its neighboring vertices (major low-degree vertices). Using Grid heuristics could relatively mitigate the increase of the replication factor (from 5.27 to 8.34) through constraining the target machines. However, it still cannot avoid introducing new replicas of low-degree vertices. The replication factor of Random hybrid-cut is confined to 5.59 (from 3.50), thanks to assigning all edges of high-degree vertices to the master of their neighboring vertices.

5 LOCALITY-CONSCIOUS GRAPH LAYOUT

Graph computation usually exhibits poor data access locality [44, 50] due to irregular traversal of neighboring vertices along edges as well as frequent message exchanges between master and mirror vertices. The internal data structure of PowerLyra is organized to improve data access locality. Specifically, PowerLyra splits different (meta)data for both masters and mirrors to separate arrays and assigns unique local IDs sequentially in each machine to the local vertices for indexing, which are mapped to global vertex IDs. As shown in Figure 16, in each phase, the worker thread sequentially traverses vertices and executes user-defined functions. The messages across machines are batched and sent periodically.

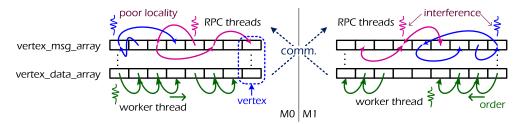


Fig. 16. An example of execution along with communication.

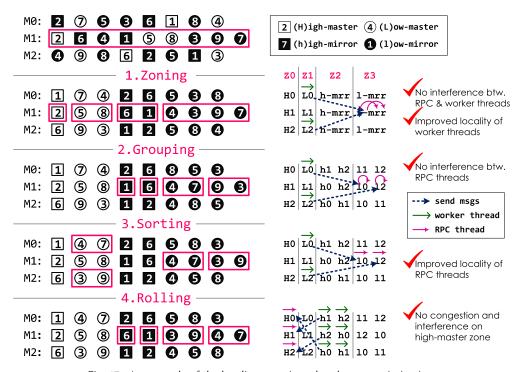
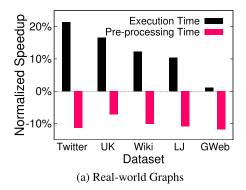


Fig. 17. An example of the locality-conscious data layout optimization.

After the synchronization in each phase, all messages received from different machines will be updated to vertices in parallel by multiple RPC threads, and the order of accessing vertices is only determined by order of the senders. However, since the order of messages is predefined by the traversal order, the accesses to vertices have poor locality due to a mismatch of orders between senders and receivers. Even worse, messages from multiple machines are processed in parallel and heavily interfere with each other (shown in the upper part of Figure 16). Though it appears that both problems could be addressed partially at runtime by sorting or dispatching messages on the fly [11], our experience shows that this will cause notable overhead instead of performance boost due to nontrivial additional CPU cycles.

PowerLyra mitigates these problems by extending hybrid-cut in four steps, as shown in Figure 17. The left part shows the arrangement of masters and mirrors in each machine after each step, and the right part provides a thumbnail with some hints about the ordering. Before the relocation, since the input graph files will be sequentially processed without additional sorting, all masters and mirrors of high-degree and low-degree vertices are mixed and stored in random

13:22 R. Chen et al.



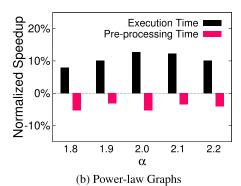


Fig. 18. The effect of locality-conscious optimization on the real-world and power-law graphs for PageRank using 48 machines.

orders. For example, the order of update messages from masters (i.e., 7, 1, and 4) in machine 0 (M0) mismatches the order of their mirrors stored in machine 1 (M1) (see Figure 17).

First, hybrid-cut divides the vertex space into 4 **zones** to store high-degree masters (Z0), low-degree masters (Z1), high-degree mirrors (Z2), and low-degree mirrors (Z3), respectively. This is friendly to message batching since the processing on vertices in the same zone is similar. Furthermore, it also improves the locality of worker threads by skipping the unnecessary vertex traversal and avoids interference between worker and RPC threads. For example, in the Apply phase, only masters (Z0 and Z1) participate in the computation and only mirrors (Z2 and Z3) receive messages.

Second, the mirrors in Z2 and Z3 are further **grouped** according to the location of their masters, which could further reduce the working set and the interference when multiple RPC threads update mirrors in parallel. For example, in M1, mirrors 4 and 7 are grouped in 10 while mirrors 9 and 3 are grouped in 12. The processing of messages from the master of low-degree vertices in M0 (L0) and M2 (L2) is restricted to different groups (10 and 12) on M1.

Third, hybrid-cuts **sort** the masters and mirrors within a group according to the global vertex IDs and sequentially assign their local IDs. Because the order of messages follows the order of local IDs, sorting ensures that both masters and mirrors have the consistent relative order of local IDs to exploit spatial locality. For example, the low-degree master in M0 (L0) and their mirrors in M1 (10) are sorted in the same order (i.e., 4 followed by 7). The message from L0 in M0 and L2 in M2 would be sequentially applied to mirrors (10 and 12) in M1 in parallel.

Finally, since messages from different machines are processed simultaneously after synchronization, if the mirror groups in each machine have a similar order, it would lead to contention and interference on the master zones (Z0 and Z1). For example, messages from mirrors in M1 and M2 (h0 and 10) will be updated simultaneously to the master in M0 (H0 and L0). Therefore, hybrid-cuts place mirror groups in a **rolling** order: The mirror groups in machine n for p partitions start from $(n+1) \mod p$. For example, the mirror groups of high-degree vertices in M1 start from h2 then h0, where n=2 and p=3.

Though we separately describe the preceding four steps, they are actually implemented as one step of hybrid-cuts after the reassignment of high-degree vertices. All operations are executed *independently* on each machine, and there is no additional communication and synchronization. Hence, the increase of preprocessing time due to the preceding optimization is modest (less than 5% for the power-law graphs and around 10% for real-world graphs), resulting in a usually more than 10% speedup (21% for the Twitter follower graph), as shown in Figure 18. The speedup for the Google Web graph is negligible, as the number of vertices is very small. Since locality-conscious layout

essentially trades off the preprocessing time for faster graph computation, it should be worthwhile for graph computation that processes a graph with multiple iterations and even multiple times in memory.

6 EVALUATION

We have implemented PowerLyra based on the latest GraphLab PowerGraph v2.2 (released in February 2015), and can seamlessly run all existing graph algorithms in GraphLab and respect the fault tolerance model. PowerLyra currently supports both synchronous and asynchronous execution modes. To illustrate the efficiency and generality of PowerLyra, we further port the Random hybrid-cut to GraphX.

We evaluate PowerLyra with hybrid-cut (Random and Ginger) against PowerGraph with vertex-cut (Grid, Oblivious, and Coordinated) and report the average results of five runs for each experiment. Most experiments are performed on a dedicated, VM-based 48-node EC2-like cluster. Each machine has four AMD Opteron cores and 12GB DRAM. All machines are connected via 1Gb Ethernet. To avoid exhausting memory and slow convergence, a six-node in-house physical 1GbE cluster with a total of 144 AMD Opteron cores and 384GB DRAM is used to evaluate the scalability in terms of data size (Section 6.3) , the performance of the asynchronous engine (Section 6.9), and the comparison with other systems (Section 6.11). We further use a new cluster of six machines connected by 10Gb Ethernet to understand the influence of high-performance networking for distributed graph-parallel systems. Each machine has two 10-core Intel Xeon E5-2650 v3 processors and 64GB of DRAM. We use the graphs listed in Table 5 and set 100 and 20 as the default threshold of hybrid-cut during our evaluation for the 48-node and 6-node clusters, respectively.

6.1 Graph Algorithms

We choose three different typical graph-analytics algorithms representing three types of algorithms regarding the set of edges in the Gather and Scatter phases:

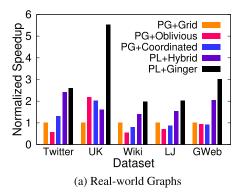
PageRank (PR) computes the rank of each vertex based on the ranks of its neighbors [5], which belongs to Natural algorithms that gather data along in-edges and scatter data along out-edges. PowerLyra should have significant speedup for both synchronous and asynchronous engines. Unless specified, the execution time of PageRank is the average of 10 iterations of synchronous execution.

Approximate Diameter (DIA) estimates an approximation of diameter for a graph by probabilistic counting, which is the maximum length of shortest paths between each pair of vertices [35]. DIA belongs to the inverse Natural type of algorithms that gather data along out-edges and scatter none, which prefers the unidirectional access along out-edges. In such a case, PowerLyra is still expected to show notable improvements.

Connected Components (CC) calculates a maximal set of vertices that are reachable from each other by iterative label propagation. CC belongs to *Other* algorithms that gather none and scatter data via all edges. It benefits less from PowerLyra's computation model since the execution on PowerLyra is similar to that on PowerGraph. Fortunately, PowerLyra still outperforms PowerGraph due to hybrid-cut and locality-conscious data layout optimizations.

Graph Coloring (GC) assigns a color to each vertex and ensures that no adjacent vertices share the same color. The greedy implementation [23] simultaneously picks minimum colors not used by any of their neighbors for all vertices, which cannot converge in synchronous execution due to using the stale colors of neighbors. GC belongs to Other algorithms that gather and scatter data via all edges. PowerLyra still outperforms PowerGraph due to hybrid-cut and lower scheduling cost of the asynchronous engine.

13:24 R. Chen et al.



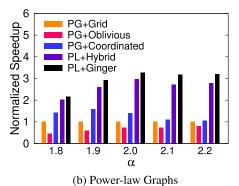


Fig. 19. Overall performance comparison between PowerLyra and PowerGraph on the real-world and power-law graphs for PageRank using 48 machines.

6.2 Performance

We compare the execution time of different systems and partitioning algorithms as in the Power-Graph paper [24]. Figure 19(a) shows the speedup of PowerLyra over PowerGraph on real-world graphs. The largest speedup comes from the UK graph for the Ginger hybrid-cut due to a relatively high reduction of replication factor (from 8.62 to 2.77, Figure 13). In this case, PowerLyra using Ginger outperforms PowerGraph with Grid, Oblivious, and Coordinated vertex-cut by 5.53X, 2.54X, and 2.72X, respectively. For Twitter, PowerLyra also outperforms PowerGraph by 2.60X, 4.49X, and 2.01X for Grid, Oblivious , and Coordinated vertex-cut, respectively. Even though the replication factor of Wiki and LJournal using Random hybrid-cut is slightly higher than that of Grid and Coordinated, PowerLyra still outperforms PowerGraph using Grid by 1.40X and 1.73X for Wiki and 1.55X and 1.81X for LJournal, respectively, due to the better computing efficiency of low-degree vertices.

As shown in Figure 19(b), PowerLyra performs better for the power-law graphs using hybrid-cut, especially for high power-law constants (i.e., α) due to the higher percentage of low-degree vertices. In all cases, PowerLyra outperforms PowerGraph with Grid vertex-cut by more than 2X, from 2.02X to 3.26X. Even compared with PowerGraph with Coordinated vertex-cut, PowerLyra still provides a speedup ranging from 1.42X to 2.63X. Though not clearly shown in Figure 19(b), PowerLyra with Ginger outperforms Random hybrid-cut from 7% to 17%. Such a relatively smaller speedup for the power-law graphs is because Random hybrid-cut already has a balanced partition with a small replication factor (see Figure 12).

6.3 Scalability

We study the scalability of PowerLyra in two aspects. First, we evaluate the performance for a given graph (Twitter follower graph) with the increase of resources. Second, we fix the resources using the six-node cluster while increasing the size of the graph.

Figure 20 shows that PowerLyra has similar scalability with PowerGraph, and it keeps the improvement with increasing machines and data size. With the increase of machines from 8 to 48, the speedup of PowerLyra using Random hybrid-cut over PowerGraph with Grid, Oblivious, and Coordinated vertex-cut ranges from 2.41X to 2.76X, 2.14X to 3.78X, and 1.86X to 2.09X, respectively. For the increase of graph from 10 to 400 million vertices with fixed power-law constant 2.2, PowerLyra with Random hybrid-cut stably outperforms PowerGraph with Grid, Oblivious, and Coordinated vertex-cut by up to 2.89X, 2.83X, and 1.94X, respectively. Note that only PowerLyra

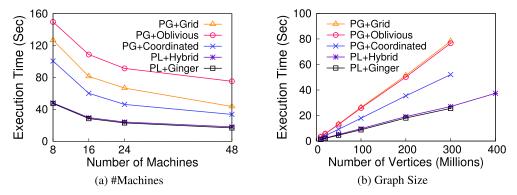


Fig. 20. A comparison between PowerLyra and PowerGraph for the Twitter follower graph with increasing machines and for the power-law graph (α =2.2) on the six-node cluster with increasing data size.

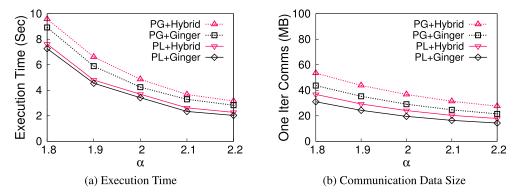


Fig. 21. A comparison between PowerLyra and PowerGraph for PageRank using the power-law graphs with different constants (α) on 48 machines. Both PowerLyra and PowerGraph use Hybrid and Ginger hybrid-cut.

with Random hybrid-cut can handle the graph with 400 million vertices due to the reduction of memory in graph computation and partitioning.

6.4 Effectiveness of Graph Engine

Hybrid-cut can also be applied to the original PowerGraph engine, which we use to quantify the performance benefit from the hybrid computation model. We run both PowerGraph and PowerLyra engine using the same hybrid-cut on 48 machines for the power-law graphs. As shown in Figure 21(a), PowerLyra outperforms PowerGraph by up to 1.40X and 1.41X using Random and Ginger hybrid-cut, respectively, due to the elimination of more than 30% of communication cost (see Figure 21(b)).

6.5 Communication Cost

The improvement of PowerLyra is mainly from reducing communication cost. In PowerLyra, only high-degree vertices (a small fraction) require significant communication cost, while low-degree vertices (a large fraction) only require one message exchange in each iteration. As shown in Figure 22, PowerLyra has much less communication cost compared to PowerGraph. For the power-law graphs, PowerLyra can reduce data transmitted by up to 75% and 50% using Random hybrid-cut, and up to 79% and 60% using Ginger, compared to PowerGraph with Grid and Coordinated

13:26 R. Chen et al.

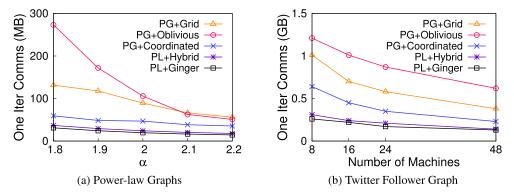


Fig. 22. One iteration communication data size for the power-law graphs with different constants (α) on 48 machines and for the Twitter follower graph with increasing machines.

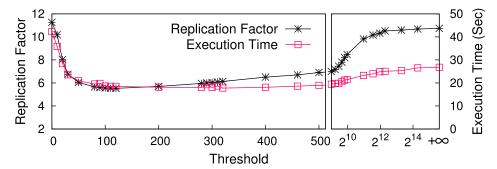


Fig. 23. The impact of threshold in PowerLyra on replication factor and execution time for the Twitter follower graph using PageRank.

vertex-cut, respectively. PowerLyra also significantly reduces the communication cost for the Twitter follower graph up to 69% and 52% using Random hybrid-cut, and up to 74% 59% using Ginger, compared to PowerGraph with Grid and Coordinated vertex-cut, respectively.

6.6 Threshold

To study the impact of different thresholds, we run PageRank on the Twitter follower graph with different thresholds. As shown in Figure 23, using high-cut (θ =0) or low-cut (θ =+ ∞) for all vertices results in poor replication factor due to the negative impact from skewed vertices in terms of outedge or in-edge. With an increasing threshold, the replication factor (λ) rapidly decreases and then slowly increases. The best runtime performance usually occurs a little after the lowest replication factor since the increase of threshold also reduces the number of high-degree vertices, which is beneficial to the overall performance. Consequently, the execution time is relatively stable for a large range of thresholds. In Figure 23, the difference of execution time under threshold from 100 to 500 is lower than 1 second.

Therefore, an intuitive way to find the threshold (θ) of optimal performance is approximately equal to find the threshold of the lowest replication factor. However, the replication factor is still determined by multiple factors other than the threshold, including the number of machines (p) and the skewness of input graphs (α). Fortunately, we observe that, given the number of machines, there exists a range of thresholds that can provide acceptable results (less than 10% overhead) for various power-law graphs. In Figure 24, we measure the replication factor of random hybrid-cut to

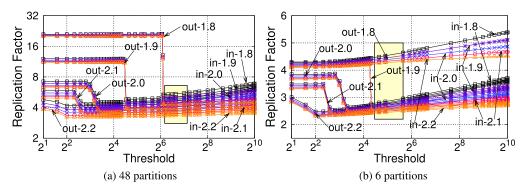


Fig. 24. The replication factor of random hybrid-cut with the increase of thresholds for 48 and 6 partitions using various power-law graphs. Each graph is combined by two synthetic power-law graphs with skewed in- and out-degree distributions (α =1.8-2.2) separately. The yellow box marks the range of thresholds for acceptable replication factor (less than 10% overhead).

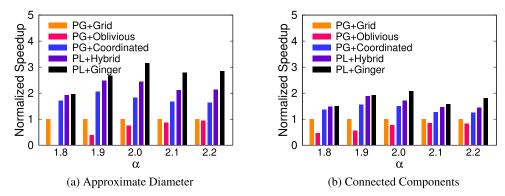


Fig. 25. A comparison between PowerLyra and PowerGraph on the power-law graphs for Approximate Diameter (DIA) and Connected Components (CC) on 48 machines.

partition a large number of typical power-law graphs into 48 and 6 partitions. Since the power-law graphs generated by tools in PowerGraph have only one-direction skewed degree distribution, we combine two synthetic graphs skewed in different directions to represent real-world graphs. For example, the power-law constant (α) of in- and out-degree distributions for the Twitter follower graph is approximate 1.7 and 2.0 , respectively [24]. As shown in Figure 24, the range of thresholds to provide less than 10% overhead of replication factor for all graphs is from 70 to 140 and from 20 to 50 for 48 and 6 partitions, respectively. Therefore, users can determine a reasonable threshold for a given cluster by offline sampling of several typical synthetic graphs.

6.7 Other Algorithms and Graphs

To study the performance of PowerLyra on different algorithms, we evaluate DIA and CC on the power-law graphs. As shown in Figure 25(a), PowerLyra outperforms PowerGraph with Grid vertex-cut by up to 2.48X and 3.15X using Random and Ginger hybrid-cut, respectively, for DIA. Even compared with PowerGraph with Coordinated vertex-cut, the speedup still reaches 1.33X and 1.74X for Random and Ginger hybrid-cut. Note that the missing data for PowerGraph with Oblivious is because of exhausted memory.

13:28 R. Chen et al.

Algorithm	Vontor	1	Time (Sec)		
& Graph	Vertex-cut	λ	Pre-processing	Execution	
	Coordinated	2.28	26.9	50.4	
PageRank & RoadUS [20] V =23.9M E =58.3M	Oblivious	2.29	13.8	51.8	
	Grid	3.16	15.5	57.3	
	Hybrid	3.31	14.0	32.2	
	Ginger	2.77	28.8	31.3	

Table 6. A Comparison of Various Graph Partitioning Algorithms on 48 Machines
Using Pagerank (10 Iterations) for the RoadUS Graph

Since PowerLyra treats execution in the Scatter phase of low-degree vertices the same as high-degree vertices, the improvement on CC is mainly from hybrid-cut, which reduces the communication cost by decreasing the replication factor. For the power-law graphs, PowerLyra can still outperform PowerGraph with Grid vertex-cut by up to 1.88X and 2.07X using Random and Ginger hybrid-cut, respectively (see Figure 25(b)).

We also investigate the performance of PowerLyra for non-skewed graphs like road networks. Table 6 illustrates a performance comparison between PowerLyra and PowerGraph for PageRank with 10 iterations on RoadUS [20], the road network of the United States. The average degree of RoadUS is less than 2.5 (there are no high-degree vertices). Even though Oblivious and Coordinated vertex-cut have lower replication factors due to the greedy heuristic, PowerLyra with hybrid-cut still notably outperforms PowerGraph with vertex-cut by up to 1.78X, thanks to improved computation locality of low-degree vertices.

6.8 MLDM Applications

We further evaluate PowerGraph and PowerLyra on machine learning and data mining applications. Two different collaborative filtering algorithms, Alternating Least Squares (ALS) [99] and Stochastic Gradient Descent (SGD) [69], are used to predict the movie ratings for each user on the Netflix movie recommendation dataset [99], in which the users and movies are presented as vertices, and the ratings are presented as edges. Both the memory consumption and computational cost depend on the magnitude of latent dimension (d), which also impacts the quality of approximation. The higher d produces the higher accuracy of prediction while increasing both memory consumption and computational cost. As shown in Table 7, with the increase of latent dimension (d), the speedup of PowerLyra using Random hybrid-cut over PowerGraph with Grid vertex-cut ranges from 1.45X to 4.13X and 1.33X to 1.96X for ALS and SGD, respectively. Note that PowerGraph fails for ALS using d=100 due to exhausted memory as well.

6.9 Asynchronous Engine (Async)

To study the performance improvement of PowerLyra compared to PowerGraph with the asynchronous engine, we run Graph Coloring on our six-node cluster until convergence, which is hard or impossible in synchronous execution.

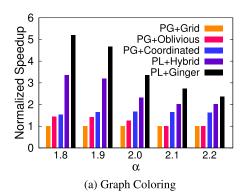
Figure 26(a) shows the speedup of PowerLyra over PowerGraph on power-law graphs. In all cases, PowerLyra outperforms PowerGraph with Grid vertex-cut by more than 2X (from 2.01X to 3.34X) due to a lower replication factor. Even compared with PowerGraph with Coordinated vertex-cut, PowerLyra can still provide a speedup ranging from 1.22X to 2.18X due to good locality. In addition, PowerLyra with Ginger outperforms Random hybrid-cut from 17% to 55% due to a relatively significant improvement of the replication factor on a smaller cluster (six nodes), reducing more than 16% replicas.

Table 7. Performance (Preprocessing/Execution Time in Seconds) Comparison Between PowerLyra and PowerGraph on Netflix Movie Recommendation Dataset Using Collaborative Filtering Algorithms

Netflix Movie Recommendation [99]				Replic	ation Factor
V	E	Vertex Data	Edge Data	Grid	Hybrid
0.5M	99M	8d + 13	16	12.3	2.6

ALS [99]	d=5	d=20	d=50	d=100
PowerGraph w/ Grid	10 / 33	11 / 144	16 / 732	Failed
PowerLyra w/ Hybrid	13 / 23	13 / 51	14 / 177	15 / 614
SGD [69]	d=5	d=20	d=50	d=100
PowerGraph w/ Grid	15 / 35	17 / 48	21 / 73	28 / 115
PowerLyra w/ Hybrid	16 / 26	19 / 33	19 / 43	20 / 59

The vertex and edge data are measured in bytes and the $\,d$ is the size of the latent dimension.



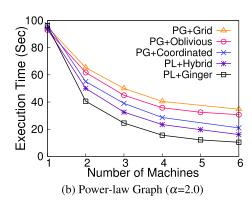


Fig. 26. A performance and scalability comparison between PowerLyra and PowerGraph using asynchronous engine for Graph Coloring (GC) on the power-law graphs with different constants (α) and increasing machines.

We also evaluate the performance for a given power-law graph (α =2.0) with increasing machines. As shown in Figure 26(b), PowerLyra with hybrid-cuts has a better performance trend compared to PowerGraph with vertex-cuts. Note that Grid vertex-cut performs relatively poorly for a smaller cluster because the upper bound of the replication factor is too large (e.g., 3 for 3 machines). ¹⁸

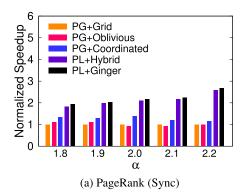
6.10 High-Performance Networking

To understand the influence of high-performance networking for distributed graph-parallel systems, we evaluate PowerGraph and PowerLyra on a six-node cluster with a total of 120 cores and 384GB DRAM and connected with 10GbE Infiniband NICs.

Figure 27(a) shows the speedup of PowerLyra over PowerGraph with the synchronous engine on power-law graphs for PageRank. Although the high-bandwidth networking mitigates the communication overhead, PowerLyra still can benefit from less computation cost due to a lower

 $^{^{18}}$ The missing data of Grid vertex-cut on five machines is because of the prerequisite in PowerGraph that Grid vertex-cut can only be used to the number of partitions closed to a perfect square number. Further, using Coordinated vertex-cut on five machines also failed due to unknown bugs during preprocessing.

13:30 R. Chen et al.



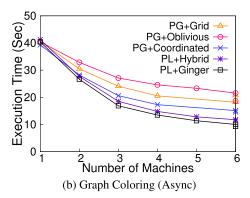


Fig. 27. A performance and scalability comparison between PowerLyra and PowerGraph for PageRank on the power-law graphs with different constants (α) using synchronous engine and Graph Coloring on the power-law graph (α =2.0) with increasing machines using asynchronous engine.

replication factor and good locality in both computation and communication. PowerLyra with Random hybrid-cut can outperform PowerGraph with Grid and Coordinated vertex-cut up to 2.58X (from 1.84X) and 2.26X (from 1.37X), respectively. The performance difference between Random and Ginger hybrid-cut merely ranges from 3% to 6% since the improvement on the replication factor by the greedy heuristic is quite limited on six machines. We believe with a larger scale cluster, PowerLyra would have a much larger performance speedup.

We also evaluate the performance of the asynchronous engine for Graph Coloring with increasing machines using a power-law graph (α =2.0). As shown in Figure 27(b), the overall performance of PowerLyra and PowerGraph is improved due to efficient CPU and networking (see Figure 26(b)). For example, the execution time of Grid vertex-cut on six machines decreases from 34.7s to 13.3s. Though the profit from high-performance networking for PowerLyra is relatively smaller than that for PowerGraph because of lower communication costs (Section 6.5), PowerLyra with hybrid-cuts can still achieve better performance and scalability.

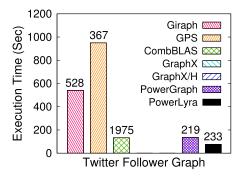
6.11 Comparison with Other Systems

Readers might be interested in how the performance of PowerLyra compares to other graph processing systems, even if they adopt different designs, such as graph-parallel abstraction [24, 29, 37, 47, 60], dataflow operators [26], sparse matrix operations [7], or declarative programming [62]. We evaluate PageRank on such systems to provide an end-to-end performance comparison, as the implementation of PageRank is almost identical and well-studied on different systems. We deployed the latest Giraph 1.1, GPS, CombBLAS 1.4, and GraphX 1.1¹⁹ on our six-node cluster.²⁰

Figure 28 shows the execution time of PageRank with 10 iterations on each system for the Twitter follower graph and the power-law graph with 10 million vertices. The preprocessing time is also labeled separately on the histogram. PowerLyra outperforms other systems by up to 9.01X (from 1.73X) due to less communication cost and improved locality from differentiated computation and partitioning. Although CombBLAS has the closest runtime performance (around 50% slower), its preprocessing stage takes a very long time (1,975 and 172 seconds) for data transformation due to the limitation of the programming paradigm (sparse matrix), reaching 1,975 and 172 seconds for

¹⁹The source code of LFGraph [29] is not available, and Naiad [51] only provides a C# version. SociaLite [62] and Mizan [37] have some bugs when run on our clusters, which could not be fixed in time by their authors.

²⁰Both Giraph and GraphX ran out of memory on our 48-node cluster for the Twitter follower graph. Missed data for GraphX and GraphX/H on the Twitter follower graph are because of exhausted memory.



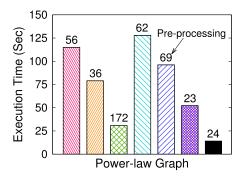


Fig. 28. Performance comparison for various systems on the Twitter follower and power-law (α =2.0) graphs using PageRank. GraphX/H indicates GraphX with random hybrid-cut. The labels on the histogram are preprocessing times.

Table 8. Performance (in Seconds) Comparison with Polymer (PO), Galois (GA), X-Stream (XS), and GraphChi (GC) on PageRank (10 Iterations) for Both In-Memory and Out-of-Core Graphs Using One Machine of Our Six-Node Cluster

Graph	PL/6	PL/1	PO	GA	XS	GC
α =2.0 V =10M	14	45	6.3	9.8	9.0	115
α =2.2 V =400M	186	-	_	-	710	1666

PL/N indicates PowerLyra running on N machines.

Twitter and power-law graph, respectively. We further port the Random hybrid-cut to GraphX (i.e., GraphX/H), leading to a 1.33X speedup even without heuristics²¹ and differentiated computation engines. Compared to default 2D partitioning in GraphX, random hybrid-cut can reduce vertex replication by 35.3% and data transmitted by 25.7% for the power-law graph.

We further change the comparison targets to systems on a single-machine platform. First, we compare the performance using a simple graph-analytics application (PageRank). One machine of our six-node cluster (24 cores and 64GB DRAM) is used to run in-memory (Polymer [92] and Galois [53]) and out-of-core (X-Stream²² [57] and GraphChi [39]) systems for both in-memory and out-of-core graphs using PageRank with 10 iterations. As shown in Table 8, PowerLyra performs comparably to Polymer and Galois for the 10-million vertex graph, while significantly outperforming X-Stream and GraphChi for the 400-million vertex graph. Considering six times the resources used by PowerLyra, single-machine systems would be more economical for graphs that can fit within the memory of a single machine, while distributed ones are more efficient for larger graphs that cannot fit in the memory of a single machine. The current PowerLyra focuses on the distributed platform, resulting in a relatively poor performance on a single machine (45s of PL/1). We believe that PowerLyra can further improve the performance for both in-memory and out-of-core graphs by adopting the novel techniques of single-machine systems, such as aNUMA-aware access strategy [92, 100]. In addition, a recent system, Musketeer [22], 23 can automatically choose the right execution engine depending on the properties of input data, such as the size of the graph.

²¹We only implement Random hybrid-cut on GraphX for preserving its graph partitioning interface.

 $^{^{22}}$ X-Stream provides both in-memory and out-of-core engines. We use the latest release from the authors, which can disable direct I/O and sufficiently leverage page cache.

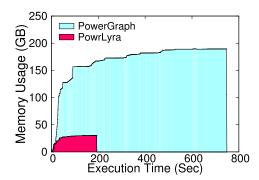
²³Musketeer has announced support for PowerLyra.

13:32 R. Chen et al.

Table 9. Performance (in Seconds) Comparison Between PowerLyra (PL) and X-Stream
(XS) Using Alternating Least Squares (ALS) on Netflix Movie Recommendation Dataset

ALS [99]	d=5	d=20	d=50	d=100
X-Stream (in-memory/244GB)	10.3	30.8	130	318
PowerLyra w/ Hybrid + 1GbE	17.5	31.6	93	291
PowerLyra w/ Hybrid + 10GbE	9.2	15.8	46	145

X-Stream runs on an AWS EC2 r3.8x large instance (32 vCPUs and 244GB DRAM). Power Lyra runs on two 6-node in-house clusters with 1GbE and 10GbE networking respectively. The d is the size of the latent dimension.



	GraphX	GraphX/H
Memory Usage (GB)		
RDD	30.7	25.4
Garbage Collection		
Number	33	18
Time (Sec)	17.6	10.0

Fig. 29. (a) Comparison of memory footprint between PowerLyra and PowerGraph for Netflix movie recommendation graph using ALS (d=50) on the 48-node cluster. (b) The memory and GC behavior of GraphX w/ and w/o hybrid-cut on the power-law graph (α =2.0) for PageRank using the 6-node cluster.

Finally, the prevalence of cloud computing drives an easy, cost-efficient way to launch distributed systems (e.g., PowerLyra) over flexible and elastic computing resources, even crossing multiple clouds (e.g., JointCloud [76]).

Second, we compare the performance using a popular MLDM application (ALS). A high-performance instance of AWS EC2 (r3.8xlarge) with 244GB DRAM is used to conduct the inmemory execution of X-Stream. As shown in Table 9, compared to X-Stream, PowerLyra can provide a comparable performance on the six-node cluster with 1GbE and up to 2.83X speedup (from 1.11X) with high-performance networking.

6.12 Memory Consumption

In addition to performance improvement, PowerLyra can also mitigate memory pressure due to significantly fewer vertex replicas and messages. The overall effectiveness depends on the ratio of vertices to edges and the size of vertex data. As shown in the left part of Figure 29, both the size and the duration of memory consumption on PowerLyra is notably less than that on PowerGraph for ALS (d=50) with the Netflix movie recommendation graph, reducing by nearly 85% peak memory consumption (30GB vs. 189GB) and by 75% elapsed time (194s vs. 749s). We also use *jstat*, a memory tool in JDK, to monitor the GC behavior of GraphX and GraphX/H. Integrating hybrid-cut to GraphX also reduces about 17% memory usage for RDD and causes fewer GC operations even on only six machines for PageRank with a power-law graph (α =2.0). We believe the measured reduction of memory would be significantly larger if GraphX executes on a larger cluster or memory-intensive algorithms.

7 OTHER RELATED WORK

PowerLyra is inspired by and departs from prior graph-parallel systems [24, 26, 43, 47], but it differs from them in adopting a novel differentiated graph computation and partitioning scheme for vertices with different degrees.

Distributed graph processing systems: LFGraph [29] proposes a publish-subscribe mechanism to reduce communication cost but restricts graph algorithms just to the one-way access. Mizan [37] leverages vertex migration for dynamic load balancing. Imitator [16, 79] reuses computational replication for fault tolerance in large-scale graph processing to provide low-overhead normal execution and fast crash recovery. Giraph++ [71] and Blogel [87] provide several algorithmspecific optimizations for graph traversal and aggregation applications relying on the graphcentric and block-centric models with partitioning information. PowerSwitch [85] embraces the best of both synchronous and asynchronous execution modes by adaptively switching graph computation between them. GPS [60] also features an optimization on skewed graphs by partitioning the adjacency lists of high-degree vertices across multiple machines while it overlooks the locality of low-degree vertices and still uniformly processes all vertices. Besta and Hoefler [3] propose Atomic Active Messages that leverages Hardware Transactional Memory (HTM) to accelerate irregular graph computation. Chaos [56] enables graph processing built on the aggregate secondary storage of a cluster, which is shown capable of processing trillion-edge graphs. There are also a few systems considering GPU [45, 80, 81], NUMA [100], RDMA [64, 83], stream processing [17, 55, 96], and temporal graphs [27].

Single-machine graph processing systems: There are also several efforts aiming at leveraging multicore platforms for graph processing [39, 46, 53, 57, 65, 66, 92, 101] which focus on such issues as improving out-of-core accesses [39], selecting appropriate execution modes [65], supporting a sophisticated task scheduler [53], reducing random operations on edges [57], adopting NUMA-aware data layout and access strategy [92], leveraging fine-grained partitioning [101], saving memory consumption [66], and exploiting heterogeneous devices [46]. Malicevic et al. [48] provide an end-to-end study on existing multicore graph processing systems, including various data structures and preprocessing approaches, as well as optimizations to improve cache locality, synchronization, and NUMA-awareness. Such techniques should be useful to enhance the performance of PowerLyra on each machine in the cluster.

Graph replication and partitioning: Generally, prior graph partitioning approaches can be categorized into vertex-cut [24, 31] and edge-cut [49, 61, 68, 72] according to their partition mechanism. Several greedy heuristics [24] and 2D mechanisms [9, 31, 89] are proposed to reduce communication cost and partitioning time on skewed graphs. Surfer [15] exploits the underlying heterogeneity of a public cloud for graph partitioning to reduce communication cost. Cube [94] uses 3D graph partitioning by dividing and assigning vertex data to different machines for MLDM applications. HotGraph [97] extracts a backbone structure from an original graph to remove the cross-partition bottleneck for asynchronous graph processing. LazyGraph [78] proposes a lazy data coherency approach to avoid frequent global synchronizations and communications among vertex replicas. However, most of these are degree-oblivious but focus on using a general propose method for all vertices or edges. Degree-based hashing [86] also considers the vertex degree but still adopts a uniform partitioning strategy. Based on the skewed degree distribution of vertices, PowerLyra is built with a hybrid graph partitioning as well as a new heuristic that notably improves performance.

Other graph processing systems: Besides the vertex-centric model, various programming paradigms are extended to handle graph processing. SociaLite [62] stores the graph data in tables and abstracts graph algorithms as declarative rules on the tables by Datalog. CombBLAS [7]

13:34 R. Chen et al.

expresses the graph computation as operations on sparse matrices and vectors, resulting in efficient computation time but also lengthy preprocessing time for data transformation. It also uses 2D partitioning to distribute the matrix for load balance. Trinity [63] uses a distributed in-memory key-value table abstraction to support graph processing. Naiad [51] provides timely dataflow abstraction to support low-latency streaming and cyclic computations, which allows the efficient implementation of iterative graph processing. None of existing graph processing systems uses differentiated computation and partitioning. In addition, PowerLyra is orthogonal to the preceding techniques and can further improve the performance of these systems on skewed graphs.

8 CONCLUSION

This article argued that the "one-size-fits-all" design in existing graph-parallel systems may result in suboptimal performance, and introduced PowerLyra, a new graph-parallel system. PowerLyra used a hybrid and adaptive design that differentiated the computation and partitioning on high-degree and low-degree vertices. Based on PowerLyra, we also design locality-conscious data layout optimization to improve locality during communication. Experimental results showed that PowerLyra improved over PowerGraph and other graph-parallel systems substantially, yet fully preserved the compatibility with various graph algorithms.

ACKNOWLEDGMENTS

We thank Kaiyuan Zhang for evaluating graph-parallel systems on single machine platform and Di Xiao for porting Random hybrid-cut to GraphX, as well as members of our research group for their thoughts and comments on this work at various stages.

REFERENCES

- [1] Amine Abou-Rjeili and George Karypis. 2006. Multilevel algorithms for partitioning power-law graphs. In *Proceedings of the 20th International Conference on Parallel and Distributed Processing (IPDPS'06)*. IEEE Computer Society, Washington, DC, USA, 124–124. http://dl.acm.org/citation.cfm?id=1898953.1899055.
- [2] Lada A. Adamic and Bernardo A. Huberman. 2002. Zipf's law and the internet. Glottometrics 3, 1 (2002), 143-150.
- [3] Maciej Besta and Torsten Hoefler. 2015. Accelerating irregular computations with hardware transactional memory and active messages. In *Proceedings of the 24th International Symposium on High-Performance Parallel and Distributed Computing (HPDC'15)*. ACM, New York, 161–172. DOI: https://doi.org/10.1145/2749246.2749263
- [4] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004. UbiCrawler: A scalable fully distributed web crawler. *Software Practice and Experience* 34, 8 (July 2004), 711–726. DOI: https://doi.org/10.1002/spe.587
- [5] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30, 1–7 (April 1998), 107–117. DOI: https://doi.org/10.1016/S0169-7552(98)00110-X
- [6] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, et al. 2013. Tao: Facebook's distributed data store for the social graph. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC'13). 49–60.
- [7] Aydin Buluc and John R Gilbert. 2011. The combinatorial BLAS: Design, implementation, and applications. *Int. J. High Performance Computer Applications* 25, 4 (Nov. 2011), 496–509. DOI: https://doi.org/10.1177/1094342011403516
- [8] Umit Catalyurek and Cevdet Aykanat. 1996. Decomposing irregularly sparse matrices for parallel matrix-vector multiplication. In *Proceedings of the 3rd International Workshop on Parallel Algorithms for Irregularly Structured Problems (IRREGULAR'96)*. Springer-Verlag, London, UK, 75–86. http://dl.acm.org/citation.cfm?id=646010.676990.
- [9] Ümit V. Çatalyürek, Cevdet Aykanat, and Bora Uçar. 2010. On two-dimensional sparse matrix partitioning: Models, methods, and a recipe. SIAM Journal of Science and Computing 32, 2 (Feb. 2010), 656–683. DOI: https://doi.org/10. 1137/080737770
- [10] Haibo Chen, Heng Zhang, Mingkai Dong, Zhaoguo Wang, Yubin Xia, Haibing Guan, and Binyu Zang. 2017. Efficient and available in-memory KV-store with hybrid erasure coding and replication. ACM Transactions on Storage 13, 3, Article 25 (Sept. 2017), 30 pages. DOI: https://doi.org/10.1145/3129900
- [11] Rong Chen, Xin Ding, Peng Wang, Haibo Chen, Binyu Zang, and Haibing Guan. 2014. Computation and communication efficient graph processing with distributed immutable view. In Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed Computing (HPDC'14). ACM, New York, 215–226. DOI: https://doi.org/10.1145/2600212.2600233

- [12] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: Differentiated graph computation and partitioning on skewed graphs. In Proceedings of the 10th European Conference on Computer Systems (EuroSys'15). ACM, New York, Article 1, 15 pages. DOI: https://doi.org/10.1145/2741948.2741970
- [13] Rong Chen, Jiaxin Shi, Binyu Zang, and Haibing Guan. 2014. Bipartite-oriented distributed graph partitioning for big learning. In Proceedings of 5th Asia-Pacific Workshop on Systems (APSys'14). ACM, New York, Article 14, 7 pages. DOI: https://doi.org/10.1145/2637166.2637236
- [14] Rong Chen, Jia-Xin Shi, Hai-Bo Chen, and Bin-Yu Zang. 2015. Bipartite-oriented distributed graph partitioning for big learning. *Journal of Computer Science and Technology* 30, 1 (2015), 20–29.
- [15] Rishan Chen, Mao Yang, Xuetian Weng, Byron Choi, Bingsheng He, and Xiaoming Li. 2012. Improving large graph processing on partitioned graphs in the cloud. In *Proceedings of the 3rd ACM Symposium on Cloud Computing (SoCC'12)*. ACM, New York, Article 3, 13 pages. DOI: https://doi.org/10.1145/2391229.2391232
- [16] Rong Chen, Youyang Yao, Peng Wang, Kaiyuan Zhang, Zhaoguo Wang, Haibing Guan, Binyu Zang, and Haibo Chen. 2018. Replication-based fault-tolerance for large-scale graph processing. IEEE Transactions on Parallel and Distributed Systems 29, 7 (2018), 1621–1635.
- [17] Raymond Cheng, Ji Hong, Aapo Kyrola, Youshan Miao, Xuetian Weng, Ming Wu, Fan Yang, Lidong Zhou, Feng Zhao, and Enhong Chen. 2012. Kineograph: Taking the pulse of a fast-changing and connected world. In Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys'12). ACM, New York, 85–98. DOI: https://doi.org/10.1145/2168836.2168846
- [18] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro Panconesi, and Prabhakar Raghavan. 2009. On compressing social networks. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'09). ACM, New York,219–228. DOI: https://doi.org/10.1145/1557019. 1557049
- [19] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and Sambavi Muthukrishnan. 2015. One trillion edges: Graph processing at facebook-scale. Proceedings of the VLDB Endowment 8, 12 (Aug. 2015), 1804–1815. DOI: https://doi.org/10.14778/2824032.2824077
- [20] DIMACS. 2006. The 9th DIMACS Implementation Challenge Shortest Paths. http://www.dis.uniroma1.it/ challenge9/.
- [21] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. 1999. On power-law relationships of the internet topology. In Proceedings of the Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM'99). ACM, New York, 251–262. DOI: https://doi.org/10.1145/316188.316229
- [22] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, Matthew P. Grosvenor, Allen Clement, and Steven Hand. 2015. Musketeer: All for one, one for all in data processing systems. In Proceedings of the 10th European Conference on Computer Systems (EuroSys'15). ACM, New York, Article 2, 16 pages. DOI: https://doi.org/10.1145/2741948.2741968
- [23] Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. 2011. Parallel gibbs sampling: From colored fields to thin junction trees. In *Proceedings of the 14th International Conference on Artificial Intelligence and Statistics* (AISTATS'11). PMLR, 15:324–332. http://proceedings.mlr.press/v15/gonzalez11a.html.
- [24] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin. 2012. PowerGraph: Distributed graph-parallel computation on natural graphs. In *Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation (OSDI'12)*. USENIX Association, Berkeley, CA,17–30. http://dl.acm.org/citation.cfm?id=2387880.2387883.
- [25] Joseph E. Gonzalez, Yucheng Low, Carlos Guestrin, and David O'Hallaron. 2009. Distributed parallel inference on large factor graphs. In *Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence (UAI'09)*. AUAI Press, Arlington, VA, 203–212. http://dl.acm.org/citation.cfm?id=1795114.1795139.
- [26] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. 2014. GraphX: Graph processing in a distributed dataflow framework. In *Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation (OSDI' 14)*. USENIX Association, Berkeley, CA, 599–613. http://dl.acm.org/citation.cfm?id=2685048.2685096.
- [27] Wentao Han, Youshan Miao, Kaiwei Li, Ming Wu, Fan Yang, Lidong Zhou, Vijayan Prabhakaran, Wenguang Chen, and Enhong Chen. 2014. Chronos: A graph engine for temporal graph analysis. In *Proceedings of the Ninth European Conference on Computer Systems (EuroSys'14)*. ACM, New York, Article 1, 14 pages. DOI: https://doi.org/10.1145/2592798.2592799
- [28] Henry Haselgrove. 2010. Wikipedia page-to-page link database. http://haselgrove.id.au/wikipedia.htm.
- [29] Imranul Hoque and Indranil Gupta. 2013. LFGraph: Simple and fast distributed graph analytics. In Proceedings of the First ACM SIGOPS Conference on Timely Results in Operating Systems (TRIOS'13). ACM, New York, Article 9, 17 pages. DOI: https://doi.org/10.1145/2524211.2524218
- [30] Andy Huang and Wei Wu. 2014. Mining Ecommerce Graph Data with Apache Spark at Alibaba Taobao. Retrieved April 1, 2018, from https://databricks.com/blog/2014/08/14/mining-graph-data-with-spark-at-alibaba-taobao.html.

13:36 R. Chen et al.

[31] Nilesh Jain, Guangdeng Liao, and Theodore L. Willke. 2013. GraphBuilder: Scalable graph ETL framework. In Proceedings of the 1st International Workshop on Graph Data Management Experiences and Systems (GRADES'13). ACM, New York, Article 4, 6 pages. DOI: https://doi.org/10.1145/2484425.2484429

- [32] Saehan Jo, Jaemin Yoo, and U Kang. 2018. Fast and scalable distributed loopy belief propagation on real-world graphs. In *Proceedings of the 11th ACM International Conference on Web Search and Data Mining (WSDM'18)*. ACM, New York, 297–305. DOI: https://doi.org/10.1145/3159652.3159722
- [33] Xiaoen Ju, Hani Jamjoom, and Kang G. Shin. 2017. Hieroglyph: Locally-sufficient graph processing via compute-sync-merge. Proceedings of the ACM Measurement Analysis Computer Systems 1, 1, Article 9 (June 2017), 25 pages. DOI: https://doi.org/10.1145/3084446
- [34] Tim Kaler, William Hasenplaugh, Tao B. Schardl, and Charles E. Leiserson. 2014. Executing dynamic data-graph computations deterministically using chromatic scheduling. In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA'14). ACM, New York, 154–165. DOI: https://doi.org/10.1145/2612669. 2612673
- [35] U. Kang, Charalampos E. Tsourakakis, Ana Paula Appel, Christos Faloutsos, and Jure Leskovec. 2011. HADI: Mining radii of large graphs. ACM Transactions on Knowledge Discovery Data 5, 2, Article 8 (Feb. 2011), 24 pages. DOI: https://doi.org/10.1145/1921632.1921634
- [36] George Karypis and Vipin Kumar. 1999. Parallel multilevel series k-way partitioning scheme for irregular graphs. SIAM Review 41, 2 (1999), 278–300.
- [37] Zuhair Khayyat, Karim Awara, Amani Alonazi, Hani Jamjoom, Dan Williams, and Panos Kalnis. 2013. Mizan: A system for dynamic load balancing in large-scale graph processing. In Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys'13). ACM, New York, 169–182. DOI: https://doi.org/10.1145/2465351.2465369
- [38] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is twitter, a social network or a news media?. In Proceedings of the 19th International Conference on World Wide Web (WWW'10). ACM, New York, 591–600. DOI: https://doi.org/10.1145/1772690.1772751
- [39] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-scale graph computation on just a PC. In *Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation (OSDI'12)*. USENIX Association, Berkeley, CA, 31–46. http://dl.acm.org/citation.cfm?id=2387880.2387884.
- [40] Michael LeBeane, Shuang Song, Reena Panda, Jee Ho Ryoo, and Lizy K. John. 2015. Data partitioning strategies for graph workloads on heterogeneous clusters. In *Proceedings of International Conference for High Performance Computing*, Networking, Storage and Analysis (SC'15). IEEE, 1–12.
- [41] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery Data 1, 1, Article 2 (March 2007). DOI: https://doi.org/10.1145/1217299. 1217301
- [42] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. 2009. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. *Internet Mathematics* 6, 1 (2009), 29– 123.
- [43] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and Joseph M. Hellerstein. 2012. Distributed graphlab: A framework for machine learning and data mining in the cloud. *Proceedings of the VLDB Endowment* 5, 8 (April 2012), 716–727. DOI: https://doi.org/10.14778/2212351.2212354
- [44] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry. 2007. Challenges in parallel graph processing. *Parallel Processing Letters* 17, 01 (2007), 5–20.
- [45] Lingxiao Ma, Zhi Yang, Han Chen, Jilong Xue, and Yafei Dai. 2017. Garaph: Efficient GPU-accelerated graph processing on a single machine with balanced replication. In *Proceedings of 2017 USENIX Annual Technical Conference (USENIX ATC'17)*. USENIX Association, 195–207.
- [46] Steffen Maass, Changwoo Min, Sanidhya Kashyap, Woonhak Kang, Mohan Kumar, and Taesoo Kim. 2017. Mosaic: Processing a trillion-edge graph on a single machine. In Proceedings of the 12th European Conference on Computer Systems (EuroSys'17). ACM, New York, 527–543. DOI: https://doi.org/10.1145/3064176.3064191
- [47] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A system for large-scale graph processing. In *Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data (SIGMOD'10)*. ACM, New York, 135–146. DOI: https://doi.org/10.1145/1807167.1807184
- [48] Jasmina Malicevic, Baptiste Lepers, and Willy Zwaenepoel. 2017. Everything you always wanted to know about multicore graph processing but were afraid to ask. In *Proceedings of 2017 USENIX Annual Technical Conference (USENIX ATC'17)*. USENIX Association, 631–643.
- [49] Daniel Margo and Margo Seltzer. 2015. A scalable distributed graph partitioner. *Proceedings of the VLDB Endowment* 8, 12 (Aug. 2015), 1478–1489. DOI: https://doi.org/10.14778/2824032.2824046

- [50] Kameshwar Munagala and Abhiram Ranade. 1999. I/O-complexity of graph algorithms. In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'99). Society for Industrial and Applied Mathematics, Philadelphia, PA, 687–694. http://dl.acm.org/citation.cfm?id=314500.314891.
- [51] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and Martín Abadi. 2013. Naiad: A timely dataflow system. In Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP'13). ACM, New York, 439–455. DOI: https://doi.org/10.1145/2517349.2522738
- [52] Mark E. J. Newman. 2005. Power laws, pareto distributions and Zipf's law. Contemporary Physics 46, 5 (2005), 323–351.
- [53] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight infrastructure for graph analytics. In Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP'13). ACM, New York, 456–471. DOI: https://doi.org/10.1145/2517349.2522739
- [54] Biswanath Panda, Joshua S. Herbach, Sugato Basu, and Roberto J. Bayardo. 2009. PLANET: Massively parallel learning of tree ensembles with MapReduce. Proceedins of the VLDB Endowment 2, 2 (Aug. 2009), 1426–1437. DOI: https://doi.org/10.14778/1687553.1687569
- [55] Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, Taizhi Zhang, Lidong Zhou, Yuan Yu, and Zheng Zhang. 2013. TimeStream: Reliable stream computation in the cloud. In *Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys'13)*. ACM, New York,1–14. DOI: https://doi.org/10.1145/2465351.2465353
- [56] Amitabha Roy, Laurent Bindschaedler, Jasmina Malicevic, and Willy Zwaenepoel. 2015. Chaos: Scale-out graph processing from secondary storage. In Proceedings of the 25th Symposium on Operating Systems Principles (SOSP'15). ACM, New York, 410–424. DOI: https://doi.org/10.1145/2815400.2815408
- [57] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-centric graph processing using streaming partitions. In Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP'13). ACM, New York, 472–488. DOI: https://doi.org/10.1145/2517349.2522740
- [58] Alessandra Sala, Lili Cao, Christo Wilson, Robert Zablit, Haitao Zheng, and Ben Y. Zhao. 2010. Measurement-calibrated graph models for social network experiments. In Proceedings of the 19th International Conference on World Wide Web (WWW'10). ACM, New York, 861–870. DOI: https://doi.org/10.1145/1772690.1772778
- [59] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y. Zhao. 2011. Sharing graphs using differentially private graph models. In *Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference (IMC'11)*. ACM, New York, 81–98. DOI: https://doi.org/10.1145/2068816.2068825
- [60] Semih Salihoglu and Jennifer Widom. 2013. GPS: A graph processing system. In Proceedings of the 25th International Conference on Scientific and Statistical Database Management (SSDBM'13). ACM, New York, Article 22, 12 pages. DOI: https://doi.org/10.1145/2484838.2484843
- [61] Kirk Schloegel, George Karypis, and Vipin Kumar. 2000. Parallel multilevel algorithms for multi-constraint graph partitioning (distinguished paper). In Proceedings of the 6th International Euro-Par Conference on Parallel Processing (Euro-Par'00). Springer-Verlag, London, UK, 296–310. http://dl.acm.org/citation.cfm?id=646665.698944.
- [62] Jiwon Seo, Jongsoo Park, Jaeho Shin, and Monica S. Lam. 2013. Distributed socialite: A datalog-based language for large-scale graph analysis. Proceedings of the VLDB Endowment 6, 14 (Sept. 2013), 1906–1917. DOI: https://doi.org/ 10.14778/2556549.2556572
- [63] Bin Shao, Haixun Wang, and Yatao Li. 2013. Trinity: A distributed graph engine on a memory cloud. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data (SIGMOD'13). ACM, New York, 505–516. DOI: https://doi.org/10.1145/2463676.2467799
- [64] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei Li. 2016. Fast and concurrent RDF queries with RDMA-based distributed graph exploration. In *Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI'16)*. USENIX Association, Berkeley, CA, 317–332. http://dl.acm.org/citation.cfm?id=3026877. 3026902.
- [65] Julian Shun and Guy E. Blelloch. 2013. Ligra: A lightweight graph processing framework for shared memory. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'13). ACM, New York, 135–146. DOI: https://doi.org/10.1145/2442516.2442530
- [66] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. 2015. Smaller and faster: Parallel processing of compressed graphs with Ligra+. In 2015 Data Compression Conference. IEEE, 403–412.
- [67] Alexander Smola and Shravan Narayanamurthy. 2010. An architecture for parallel topic models. Proceedings of the VLDB Endowment 3, 1-2 (Sept. 2010), 703–710. DOI: https://doi.org/10.14778/1920841.1920931
- [68] Isabelle Stanton and Gabriel Kliot. 2012. Streaming graph partitioning for large distributed graphs. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'12). ACM, New York, 1222–1230. DOI: https://doi.org/10.1145/2339530.2339722
- [69] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. 2009. Scalable collaborative filtering approaches for large recommender systems. Journal of Machine Learning Research 10 (June 2009), 623–656. http://dl.acm.org/ citation.cfm?id=1577069.1577091.

13:38 R. Chen et al.

[70] Tencent. 2018. Design and Practice of the Anomaly Detection Framework for Billions of User in WeChat (in Chinese). https://cloud.tencent.com/developer/article/1028442.

- [71] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda, and John McPherson. 2013. From "Think Like a Vertex" to "Think Like a Graph." *Proceedings of the VLDB Endowment* 7, 3 (Nov. 2013), 193–204. http://dl.acm.org/citation.cfm?id=2732232.2732238.
- [72] Charalampos Tsourakakis, Christos Gkantsidis, Bozidar Radunovic, and Milan Vojnovic. 2014. FENNEL: Streaming graph partitioning for massive scale graphs. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining (WSDM'14). ACM, New York, 333–342. DOI: https://doi.org/10.1145/2556195.2556213
- [73] Alexander Ulanov, Manish Marwah, Mijung Kim, Roshan Dathathri, Carlos Zubieta, and Jun Li. 2017. Sandpiper: Scaling probabilistic inferencing to large scale graphical models. In *Proceedings of 2017 IEEE International Conference on Big Data*. IEEE, 383–388.
- [74] Leslie G. Valiant. 1990. A bridging model for parallel computation. Communications of the ACM 33, 8 (Aug. 1990), 103–111. DOI: https://doi.org/10.1145/79173.79181
- [75] Shiv Verma, Luke M. Leslie, Yosub Shin, and Indranil Gupta. 2017. An experimental comparison of partitioning strategies in distributed graph processing. *Proceedings of the VLDB Endowment* 10, 5 (Jan. 2017), 493–504. DOI: https://doi.org/10.14778/3055540.3055543
- [76] Huaimin Wang, Peichang Shi, and Yiming Zhang. 2017. Jointcloud: A cross-cloud cooperation architecture for integrated internet service customization. In Proceedings of the 37th International Conference on Distributed Computing Systems (ICDCS'17). IEEE, 1846–1855.
- [77] Hao Wang, Jing Zhang, Da Zhang, Sarunya Pumma, and Wu-chun Feng. 2017. PaPar: A parallel data partitioning framework for big data applications. In Proceedings of 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS'17). IEEE, 605–614.
- [78] Lei Wang, Liangji Zhuang, Junhang Chen, Huimin Cui, Fang Lv, Ying Liu, and Xiaobing Feng. 2018. Lazygraph: Lazy data coherency for replicas in distributed graph-parallel computation. In *Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'18)*. ACM, New York, 276–289. DOI: https://doi.org/10.1145/3178487.3178508
- [79] Peng Wang, Kaiyuan Zhang, Rong Chen, Haibo Chen, and Haibing Guan. 2014. Replication-based fault-tolerance for large-scale graph processing. In Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN'14). IEEE Computer Society, Washington, DC,562–573. DOI: https://doi.org/10. 1109/DSN.2014.58
- [80] Siyuan Wang, Chang Lou, Rong Chen, and Haibo Chen. 2018. Fast and concurrent RDF queries using RDMA-assisted GPU graph exploration. In *Proceedings of 2018 USENIX Annual Technical Conference (USENIX ATC'18)*. 651–664.
- [81] Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D. Owens. 2016. Gunrock: A high-performance graph processing library on the GPU. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'16). ACM, New York, Article 11, 12 pages. DOI: https://doi.org/10.1145/2851141.2851145
- [82] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P. N. Puttaswamy, and Ben Y. Zhao. 2009. User interactions in social networks and their implications. In *Proceedings of the 4th ACM European Conference on Computer Systems (EuroSys'09)*. ACM, New York, 205–218. DOI: https://doi.org/10.1145/1519065.1519089
- [83] Ming Wu, Fan Yang, Jilong Xue, Wencong Xiao, Youshan Miao, Lan Wei, Haoxiang Lin, Yafei Dai, and Lidong Zhou. 2015. GraM: Scaling graph computation to the trillions. In Proceedings of the 6th ACM Symposium on Cloud Computing (SoCC'15). ACM, New York, 408–421. DOI: https://doi.org/10.1145/2806777.2806849
- [84] Wencong Xiao, Jilong Xue, Youshan Miao, Zhen Li, Cheng Chen, Ming Wu, Wei Li, and Lidong Zhou. 2017. Tux2: Distributed graph computation for machine learning. In Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation (NSDI'17). 669–682.
- [85] Chenning Xie, Rong Chen, Haibing Guan, Binyu Zang, and Haibo Chen. 2015. SYNC or ASYNC: Time to fuse for distributed graph-parallel computation. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'15). ACM, New York, 194–204. DOI: https://doi.org/10.1145/2688500.2688508
- [86] Cong Xie, Ling Yan, Wu-Jun Li, and Zhihua Zhang. 2014. Distributed power-law graph computing: Theoretical and empirical analysis. In Proceedings of the 28th Annual Conference on Neural Information Processing Systems (NIPS'14). 1673–1681.
- [87] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-centric framework for distributed computation on real-world graphs. Proceedings of the VLDB Endowment 7, 14 (2014), 1981–1992.
- [88] Jerry Ye, Jyh-Herng Chow, Jiang Chen, and Zhaohui Zheng. 2009. Stochastic gradient boosted distributed decision trees. In *Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM'09)*. ACM, New York, 2061–2064. DOI: https://doi.org/10.1145/1645953.1646301

- [89] Andy Yoo, Edmond Chow, Keith Henderson, William McLendon, Bruce Hendrickson, and Umit Catalyurek. 2005. A scalable distributed parallel breadth-first search algorithm on BlueGene/L. In *Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC'05)*. IEEE Computer Society, Washington, DC, 25. DOI: https://doi.org/10.1109/SC.2005.4
- [90] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (NSDI'12). USENIX Association, Berkeley, CA, 2–2. http://dl.acm.org/citation.cfm?id=2228298.2228301.
- [91] Heng Zhang, Mingkai Dong, and Haibo Chen. 2016. Efficient and available in-memory kv-store with hybrid erasure coding and replication. In *Proceedings of 14th USENIX Conference on File and Storage Technologies (FAST'16).* USENIX Association, Santa Clara, CA, 167–180. https://www.usenix.org/conference/fast16/technical-sessions/presentation/zhang-heng.
- [92] Kaiyuan Zhang, Rong Chen, and Haibo Chen. 2015. NUMA-aware graph-structured analytics. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP'15). ACM, New York, 183–193. DOI: https://doi.org/10.1145/2688500.2688507
- [93] Mingxing Zhang, Yongwei Wu, Kang Chen, Teng Ma, and Weimin Zheng. 2016. Measuring and optimizing distributed array programs. Proceedings of the VLDB Endowment 9, 12 (Aug. 2016), 912–923. DOI:https://doi.org/10.14778/2994509.2994511
- [94] Mingxing Zhang, Yongwei Wu, Kang Chen, Xuehai Qian, Xue Li, and Weimin Zheng. 2016. Exploring the hidden dimension in graph processing. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI'16). USENIX Association, Berkeley, CA, 285–300.
- [95] Mingxing Zhang, Youwei Zhuo, Chao Wang, Mingyu Gao, Yongwei Wu, Kang Chen, Christos Kozyrakis, and Xuehai Qian. 2018. GraphP: Reducing communication for PIM-based graph processing with efficient data partition. In Proceedings of 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA'18). IEEE, 544–557.
- [96] Yunhao Zhang, Rong Chen, and Haibo Chen. 2017. Sub-millisecond stateful stream querying over fast-evolving linked data. In Proceedings of the 26th Symposium on Operating Systems Principles (SOSP'17). ACM, New York, 614– 630. DOI: https://doi.org/10.1145/3132747.3132777
- [97] Yu Zhang, Xiaofei Liao, Hai Jin, Lin Gu, Guang Tan, and Bing Bing Zhou. 2017. HotGraph: Efficient asynchronous processing for real-world graphs. IEEE Transactions on Computing 66, 5 (May 2017), 799–809. DOI: https://doi.org/ 10.1109/TC.2016.2624289
- [98] Xiaohan Zhao, Adelbert Chang, Atish Das Sarma, Haitao Zheng, and Ben Y. Zhao. 2013. On the embeddability of random walk distances. Proceedings of the VLDB Endowment 6, 14 (Sept. 2013), 1690–1701. DOI: https://doi.org/10. 14778/2556549.2556554
- [99] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. 2008. Large-scale parallel collaborative filtering for the netflix prize. In Proceedings of the 4th International Conference on Algorithmic Aspects in Information and Management (AAIM'08). Springer-Verlag, Berlin, Heidelberg, 337–348. DOI:https://doi.org/10.1007/978-3-540-68880-8 32
- [100] Xiaowei Zhu, Wenguang Chen, Weimin Zheng, and Xiaosong Ma. 2016. Gemini: A computation-centric distributed graph processing system. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation (OSDI'16). USENIX Association, Berkeley, CA, 301–316.
- [101] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large scale graph processing on a single machine using 2-level hierarchical partitioning. In *Proceedings of the 2015 USENIX Conference on Annual Technical Conference* (USENIX ATC'15). USENIX Association. https://www.usenix.org/conference/atc15/technical-session/presentation/ zhu.

Received August 2015; revised October 2016; accepted March 2018