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Abstract
Log-structured data stores (LSM-DSs) are widely accepted

as the state-of-the-art implementation of key-value stores.

They replace random disk writes with sequential I/O, by

accumulating large batches of updates in an in-memory

data structure and merging it with the on-disk store in the

background. While LSM-DS implementations proved to be

highly successful at masking the I/O bottleneck, scaling

them up on multicore CPUs remains a challenge. This is

nontrivial due to their often rich APIs, as well as the need to

coordinate the RAM access with the background I/O.

We present cLSM, an algorithm for scalable concurrency

in LSM-DS, which exploits multiprocessor-friendly data

structures and non-blocking synchronization. cLSM sup-

ports a rich API, including consistent snapshot scans and

general non-blocking read-modify-write operations.

We implement cLSM based on the popular LevelDB key-

value store, and evaluate it using intensive synthetic work-

loads as well as ones from production web-serving appli-

cations. Our algorithm outperforms state of the art LSM-

DS implementations, improving throughput by 1.5x to 2.5x.

Moreover, cLSM demonstrates superior scalability with the

number of cores (successfully exploiting twice as many

cores as the competition).
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1. Introduction
Over the last decade, key-value stores have become preva-

lent for real-time serving of Internet-scale data [16]. Gigan-

tic stores managing billions of items serve Web search in-

dexing [33], messaging [12], personalized media, and adver-

tising [18]. A key-value store is essentially a persistent map

with atomic get and put operations used to access data items

identified by unique keys. Modern stores also support con-

sistent snapshot scans and range queries for online analytics.

In write-intensive environments, key-value stores are

commonly implemented as Log-Structured Merge Data
Stores (LSM-DSs) [2, 4, 8, 16, 18, 25, 36] (see Section 2).

The main centerpiece behind such data stores is absorb-

ing large batches of writes in a RAM data structure that

is merged into a (substantially larger) persistent data store

upon spillover. This approach masks persistent storage la-

tencies from the end user, and increases throughput by per-

forming I/O sequentially. A major bottleneck of such data

stores is their limited in-memory concurrency, which, as we

show in Section 5, restricts their vertical scalability on mul-

ticore servers. In the past, this was not a serious limitation,

as large Web-scale servers did not harness high-end multi-

core hardware. Nowadays, however, servers with more cores

have become cheaper, and 16-core machines commonplace

in production settings.

Our goal in this work is to improve the scalability of state-

of the art key-value stores on multicore servers. We focus on

a data store that runs on a single multicore machine, which

is often the basic building block for a distributed database

that runs on multiple machines (e.g., [16, 18]). Although

it is possible to scale up by further partitioning the data

and running multiple LSM-DS’s on the same machine, there

are significant advantages to consolidation [11]; see more

detailed discussion in Section 2. We therefore strive to scale

up a single LSM-DS by maximizing its parallelism.



We present (in Section 3) cLSM, a scalable LSM-DS al-

gorithm optimized for multi-core machines. We implement

cLSM in the framework of the popular LevelDB [4] library

(Section 4), and evaluate it extensively (Section 5), show-

ing better scalability and 1.5x to 2.5x performance improve-

ments over the state-of-the art.

Contributions
This paper makes the following contributions:

Non-blocking synchronization. cLSM overcomes the scala-

bility bottlenecks incurred in previous works [4, 21] by elim-

inating blocking during normal operation. It never explicitly

blocks get operations, and only blocks puts for short periods

of time before and after batch I/Os.

Rich API. Beyond atomic put and get operations, cLSM

also supports consistent snapshot scans, which can be used

to provide range queries. These are important for applica-

tions such as online analytics [16], and multi-object trans-

actions [41]. In addition, cLSM supports fully-general non-

blocking atomic read-modify-write (RMW) operations. We

are not aware of any existing lock-free support for such op-

erations in today’s key-value stores. Such operations are use-

ful, e.g., for multisite update reconciliation [18, 19].

Generic algorithm. Our algorithm for supporting puts, gets,

snapshot scans, and range queries is decoupled from any spe-

cific implementation of the LSM-DS’s main building blocks,

namely the in-memory component (a map data structure),

the disk store, and the merge process that integrates the for-

mer into the latter. Only our support for atomic read-modify-

write requires a specific implementation of the in-memory

component as a skip-list data structure. This allows one to

readily benefit from numerous optimizations of other com-

ponents (e.g., disk management [8]) which are orthogonal to

our contribution.

Implementation. We implement a working prototype of

cLSM based on LevelDB [4], a state-of-the-art key-value

store. Our implementation supports the full functionality of

LevelDB and inherits its core modules (including disk and

cache management), and therefore benefits from the same

optimizations.

Evaluation. We compare cLSM’s performance to LevelDB

and three additional open-source key-value stores, Hyper-

LevelDB [21], bLSM [36], and RocksDB [8], on production-

grade multi-core hardware. We evaluate the systems under

large-scale intensive synthetic workloads as well as produc-

tion workloads from a web-scale system serving personal-

ized content and ad recommendation products.

In our experiments, cLSM achieves performance im-

provements ranging between 1.5x and 2.5x over the best

competitor, on a variety of workloads. cLSM’s RMW op-

erations are also twice as fast as a popular implementation

based on lock striping [22]. Furthermore, cLSM exhibits

superior scalability, successfully utilizing at least twice as

many threads, and also benefits more from a larger RAM

allocation to the in-memory component.

2. Architecture Principles
We overview our design choices, as motivated by today’s

leading key-value store implementations. We discuss their

API, approaches to scaling them, and the LSM approach to

data management.

2.1 Data Model and API
In key-value stores [2, 16, 18], the data is comprised of items

(rows) identified by unique keys. A row value is a (sparse)

bag of attributes called columns. The internal structure of

data items is largely opaque for the rest of our discussion.

The basic API of a key-value store includes put and

get operations to store and retrieve values by their keys.

Updating an item is cast into putting an existing key with

a new value, and deleting one is performed by putting a

deletion marker, ⊥, as the key’s value.

To cater to the demands of online analytics applica-

tions (e.g., [33]), key-value stores typically support snap-
shot scans, which provide consistent read-only views of the

data. A scan allows the user to acquire a snapshot of the data

(getSnap), from which the user can iterate over items in lex-

icographical order of their keys by applying next operations.

Geo-replication scenarios drive the need to reconcile con-

flicting replicas. This is often done through vector clocks [19],

which require the key-value store to support conditional up-

dates, namely, atomic read-modify-write operations.

2.2 Scalability in Distributed Key-Value Stores
Distributed key-value stores achieve scalability by shard-

ing data into units called partitions (also referred to as

tablets [16, 18] or regions [2]). Partitioning provides hor-
izontal scalability – stretching the service across multiple

servers. Nevertheless, there are penalties associated with

having many partitions, as argued in [11]: First, the data

store’s consistent snapshot scans do not span multiple par-

titions. Analytics applications that require large consistent

scans are forced to use costly transactions across shards.

Second, this requires a system-level mechanism for man-

aging partitions [2, 16, 18], whose meta-data size depends

on the number of partitions, and can become a scalability

bottleneck.

The complementary approach of increasing the serving

capacity of each individual partition is called vertical scal-
ability. First, this necessitates optimizing the speed of I/O-

bound operations. The leading approach to do so, espe-

cially in write-intensive settings, is LSM (discussed in Sec-

tion 2.3), which effectively eliminates the disk bottleneck.

Once this is achieved, the rate of in-memory operations be-

comes paramount (as we show in Section 5). Increasing this

rate is the challenge we focus on in this paper.

We argue here that we can improve performance while

reducing the number of partitions, which in turn allows for



Figure 1: Comparing two approaches to scalability with
production workload. The resource-isolated configura-
tion exercises LevelDB and HyperLevelDB with 4 sep-
arate partitions, whereas the resource-shared configura-
tion evaluates cLSM with one big partition.

larger snapshot scans and reduces meta-data size. To illus-

trate this point, Figure 1 shows sample results from our ex-

periments (the experiment setup is detailed in Section 5).

In this example, we evaluate cLSM with one big partition

versus LevelDB and HyperLevelDB with four small parti-

tions, where each small partition’s workload is based on a

distinct production log, and the big partition is the union

thereof. Each of the small partitions is served by a dedicated

one quarter of the thread pool (resource separation), whereas

the big partition is served by all worker threads (resource

sharing). We see that cLSM’s improved concurrency con-

trol scales better than partitioning, achieving a peak through-

put of above 1 million operations/sec – approximately 25%

above the competition.

2.3 Log-Structured Merge
Disk access is a principal bottleneck in storage systems, and

remains a bottleneck even with today’s SSDs [10, 38, 40].

Since reads are often effectively masked by caching, signif-

icant emphasis is placed on improving write throughput and

latency [38]. It is therefore not surprising that log-structured

merge solutions [31], which batch writes in memory and

merge them with on-disk storage in the background, have

become the de facto choice for today’s leading key-value

stores [4, 8, 12, 16, 21, 36].

An LSM data store organizes data in a series of compo-

nents of increasing sizes, as illustrated in Figure 2a. The first

component, Cm, is an in-memory sorted map that contains

most recent data. The rest of the components C1, . . . , Cn re-

side on disk. For simplicity, in the context of this work, they

are perceived as a single component, Cd. An additional im-

portant building block is the merge procedure, (sometimes

called compaction), which incorporates the contents of the

memory component into the disk, and the contents of each

component into the next one.

A put operation inserts an item into the main memory

component Cm, and logs it in a sequential file for recov-

ery purposes. Logging can be configured to be synchronous

(blocking) or asynchronous (non-blocking). The common

default is asynchronous logging, which avoids waiting for

disk access, at the risk of losing some recent writes in case

of a crash.

When Cm reaches its size limit, which can be hard or

soft, it is merged with component Cd, in a way reminiscent

of merge sort: The items of both Cm and Cd, are scanned and

merged. The new merged component is then migrated to disk

in bulk fashion, replacing the old component. When consid-

ering multiple disk components, Cm is merged with compo-

nent C1. Similarly, once a disk component Ci becomes full

its data is migrated to the next component Ci+1. Compo-

nent merges are executed in the background as an automatic

maintenance service.

The get operation may require going through multiple

components until the key is found. But when get operations

are applied mostly to recently inserted keys, the search is

completed in Cm. Moreover, the disk component utilizes a

large RAM cache. Thus, in workloads that exhibit locality,

most requests that do access Cd are satisfied from RAM as

well.

During a merge, the memory component becomes im-

mutable, at which point it is denoted as C ′
m. To allow put

operations to be executed while rolling the merge, a new

memory component Cm then becomes available for updates

(see Figure 2b). The put and get operations access the com-

ponents through three global pointers: pointers Pm and P ′
m

to the current (mutable) and previous (immutable) memory

components, and pointer Pd to the disk component. When

the merge is complete, the previous memory component is

discarded. Allowing multiple puts and gets to be executed in

parallel is discussed in the sequel.

3. cLSM Algorithm
We now present cLSM, our algorithm for concurrency sup-

port in an LSM-DS. Section 3.1 presents our basic approach

for providing scalable concurrent get and put operations;

this solution is generic, and can be integrated with many

LSM-DS implementations. In Section 3.2, we extend the

functionality with snapshot scans, which are implemented

in state-of-the-art key-value stores (e.g., [4, 21]). This ex-

tension assumes that the in-memory data structure supports

ordered iterated access with weak consistency (explained

below), as various in-memory data structures do (e.g., [1,

7, 15]). Finally, in Section 3.3, we provide general-purpose

non-blocking atomic read-modify-write operations. These

are supported in the context of a specific implementation of

the in-memory store as a skip list data structure (or any col-

lection of sorted linked lists).

cLSM optimizes in-memory access in the LSM-DS,

while ensuring correctness of the entire data store. Specifi-



(a) LSM-DS consists of a small memory component, and a

large disk component comprised of a series of components

of increasing sizes.

(b) Global pointers Pm to current (mutable) memory compo-

nent Cm, P ′
m to previous (immutable) memory component

C
′
m, and Pd to disk component Cd. Merge incorporates C

′
m

into Cd, while new items are added to Cm.

Figure 2: LSM-DS architecture.

cally, if the in-memory component’s operations ensure seri-

alizability [32], then the same is guaranteed by the resulting

LSM-DS.

3.1 Put and Get Operations
We assume a thread-safe map data structure for the in-

memory component, i.e., its operations can be executed

by multiple threads concurrently. Numerous data structure

implementations, (e.g., see [1, 20, 23]), provide this func-

tionality in a non-blocking and atomic manner. In order to

differentiate the interface of the internal map data structure

from that of the entire LSM-DS, we refer to the correspond-

ing functions of the in-memory data structure as insert

and find:

insert(k,v) – inserts the key-value pair (k, v) into the

map. If k exists, the value associated with it is over-

written.

find(k) – returns a value v such that the map contains an

item (k, v), or ⊥ if no such value exists.

The disk component and merge function are implemented

in an arbitrary way.

We implement our concurrency support in two hooks,

beforeMerge and afterMerge, which are executed im-

mediately before and immediately after the merge process,

respectively. The merge function returns a pointer to the

new disk component, Nd, which is passed as a parameter

to afterMerge. The global pointers Pm, P
′
m to the mem-

ory components, and Pd to the disk component, are updated

during beforeMerge and afterMerge.

Puts and gets access the in-memory component directly.

Get operations that fail to find the requested key in the

current in-memory component search the previous one (if

it exists) and then the disk store. Recall that insert and

find are thread-safe, so we do not need to synchronize put

and get with respect to each other. However, synchronizing

between the update of global pointers and normal operation

is a subtle issue.

We observe that for get operations, no blocking synchro-

nization is needed. This is because the access to each of the

pointers is atomic (as it is a single-word variable). The order

in which components are traversed in search of a key follows

the direction in which the data flows (from Pm to P
′
m and

from there to Pd) and is the opposite of the order in which

the pointers are updated in beforeMerge and afterMerge.

Therefore, if the pointers change after get has searched the

component pointed by Pm or P
′
m, then it will search the

same data twice, which may be inefficient, but does not vio-

late safety.

We use reference counters to avoid freeing a memory

component while it is being read. In addition, we apply

an RCU-like mechanism to protect the pointers to memory

components from being switched while an operation is in the

middle of the (short) critical section in which the pointer is

read and its reference counter is increased. As we only use

reference counters per component (and not per row), their

overhead is negligible.

For put operations, a little more care is needed to avoid

insertion to obsolete in-memory components. This is be-

cause such insertions may be lost in case the merge process

has already traversed the section of the data structure where

the data is inserted. To this end, we use a shared-exclusive

lock (sometimes called readers-writer lock [20]), Lock, in

order to synchronize between put operations and the global

pointers’ update in beforeMerge and afterMerge. (Such

a lock does not block shared lockers as long as no exclusive

locks are requested.) The lock is acquired in shared mode

during the put procedure, and in exclusive mode during

beforeMerge and afterMerge. In order to avoid starva-

tion of the merge process, the lock implementation should

prefer exclusive locking over shared locking. Such a lock

implementation is given, e.g., in [1].

The basic algorithm is implemented by the four proce-

dures in Algorithm 1.

3.2 Snapshot Scans
We implement serializable snapshot scans using the com-

mon approach of multi-versioning: each key-value pair is

stored in the map together with a unique, monotonically

increasing, timestamp. That is, the elements stored in the



Algorithm 1 Basic cLSM algorithm.

1: procedure PUT(Key k, Value v)

2: Lock.lockSharedMode()

3: Pm.insert(k, t)
4: Lock.unlock()

5: procedure GET(Key k)

6: v ← find k in Pm, P ′
m, or Pd, in this order

7: return v

8: procedure BEFOREMERGE

9: Lock.lockExclusiveMode()

10: P
′
m ← Pm

11: Pm ← new in-memory component

12: Lock.unlock()

13: procedure AFTERMERGE(DiskComp Nd)

14: Lock.lockExclusiveMode()

15: Pd ← Nd

16: P
′
m ← ⊥

17: Lock.unlock()

underlying map are now key-timestamp-value triples. The

timestamps are internal, and are not exposed to the LSM-

DS’s application.

Here, we assume the underlying map is sorted in lexico-

graphical order of the key-timestamp pair. Thus, find oper-

ations can return the value associated with the highest times-

tamp for a given key. We further assume that the underlying

map provides iterators with the so-called weak consistency
property, which guarantees that if an element is included in

the data structure for the entire duration of a complete snap-

shot scan, this element is returned by the scan. Several map

data structures and data stores support such sorted access and

iterators with weak consistency (see [7, 15]).

To support multi-versioning, a put operation acquires a

timestamp before inserting a value into the in-memory com-

ponent. This is done by atomically incrementing and reading

a global counter, timeCounter; there are non-blocking imple-

mentations of such counters (e.g., see [20]). A get operation

now returns the highest timestamped value for the given key.

Our support for snapshots and full scans thereof is ex-

plained in Section 3.2.1. We discuss other snapshot-based

operations (like range queries) in Section 3.2.2.

3.2.1 Snapshot Management Mechanism
A snapshot is associated with a timestamp, and contains,

for each key, the latest value updated up to this timestamp.

Thus, although a snapshot scan spans multiple operations, it

reflects the state of the data at a unique point in time.

The getSnap operation returns a snapshot handle s, over

which subsequent operations may iterate. In cLSM, a snap-

shot handle is simply a timestamp ts. A scan iterates over all

live components (one or two memory components and the

disk component) and filters out items that do not belong to

the snapshot: for each key k, the next operation filters out

items that have higher timestamps than the snapshot time, or

 ⊥
⊥

 ⊥
⊥

Figure 3: Snapshots s1 and s2 cannot use the current values

of timeCounter, 99 and 98 respectively, since a next oper-

ation pertaining to snapshot s1 may miss the concurrently

written key a with timestamp 98, while a next operation

pertaining to snapshot s2 filters out the key b with timestamp

99. The snapshot time should instead be 97, which excludes

the concurrently inserted keys.

are older than the latest timestamp (of key k) that does not

exceed the snapshot time. When there are no more items in

the snapshot, next returns ⊥.

Our snapshot management algorithm appears in Algo-

rithm 2. Determining the timestamp of a snapshot is a bit

subtle. In the absence of concurrent operations, one could

simply read the current value of the global counter. How-

ever, in the presence of concurrency, this approach may lead

to inconsistent scans, as illustrated in Figure 3. In this exam-

ple, next operations executed in snapshot s2, which reads

98 from timeCounter, filter out a key written with timestamp

99, while next operations executed in snapshot s1, which

reads timestamp 99, read this key, but miss a key written

with timestamp 98. The latter is missed because the put op-

eration writing it updates timeCounter before the getSnap

operation, and inserts the key into the underlying map after

the next operation is completed. This violates serializability

as there is no way to serialize the two scans.

We remedy this problem by tracking timestamps that

were obtained but possibly not yet written. These are kept

in a set data structure, Active, which can be implemented in

a non-blocking manner. The getSnap operation chooses a

timestamp that is earlier than all active ones. In the above

example, since both 98 and 99 are active at the time s1 and

s2 are invoked, they choose 97 as their snapshot time.

Note that a race can be introduced between obtaining a

timestamp and inserting it into Active as depicted in Fig-

ure 4. In this example, a put operation reads timestamp 98
from timeCounter, and before it updates the Active set to

include it, a getSnap operation reads timestamp 98 from

timeCounter and finds the Active set empty. The snapshot

timestamp is therefore set to 98. The value later written by

the put operation is not filtered out by the scan, which may

lead to inconsistencies, as in the previous example. To over-

come this race, the put operation verifies that its chosen

timestamp exceeds the latest snapshot’s timestamp (tracked



 
⊥

Figure 4: The put operation cannot use the value 98 since

a snapshot operation already assumes there are no active

put operations before timestamp 99. Using the timestamp

98 may lead to the problem depicted in Figure 3. The put

operation should instead acquire a new timestamp.

in the snapTime variable), and re-starts if it does not, while

getSnap waits until all active put operations have times-

tamps greater than snapTime.

We note that our scan is serializable but not lineariz-

able [24], in the sense that it can read a consistent state “in

the past”. That is, it may miss some recent updates, (includ-

ing ones written by the thread executing the scan). To pre-

serve linearizability, the getSnap operation could be modi-

fied to wait until it is able to acquire a snapTime value greater

than the timeCounter value at the time the operation started.

This can be done by omitting lines 10-11 in Algorithm 2.

Since puts are implemented as insertions with a new

timestamp, the key-value store potentially holds many ver-

sions for a given key. Following standard practice in LSM-

DS, old versions are not removed from the memory compo-

nent, i.e., they exist at least until the component is discarded

following its merge into disk. Obsolete versions are removed

during a merge once they are no longer needed for any snap-

shot. In other words, for every key and every snapshot, the

latest version of the key that does not exceed the snapshot’s

timestamp is kept.

To consolidate with the merge operation, getSnap in-

stalls the snapshot handle in a list that captures all active

snapshots. Ensuing merge operations query the list to iden-

tify the maximal timestamp before which versions can be

removed. To avoid a race between installing a snapshot han-

dle and it being observed by a merge, the data structure is

accessed while holding the lock. The getSnap operation ac-

quires the lock in shared mode while updating the list, and

beforeMerge queries the list while holding the lock in ex-

clusive mode. The timestamp returned by beforeMerge is

then used by the merge operation to determine which ele-

ments can be discarded. As in levelDB, we assume handles

of unused snapshots are removed from the list either by the

application (through an API call), or based on TTL; failing

to do so may reduce the amount of available memory for

useful data.

Because more than one getSnap operation can be exe-

cuted concurrently, we have to update snapTime with care,

to ensure that it does not move backward in time. We there-

fore atomically advance snapTime to ts (e.g., using a CAS1)

1 Compare and Swap operation [23].

Algorithm 2 cLSM snapshot algorithm.

1: procedure PUT(Key k, Value v)

2: Lock.lockSharedMode()

3: ts← getTS()

4: Pm.insert(k, ts, v)

5: Active.remove(ts)

6: Lock.unlock()

7: procedure GETSNAP

8: Lock.lockSharedMode()

9: ts← timeCounter.get()

10: tsa ← Active.findMin()

11: if tsa �= ⊥ then ts← tsa − 1

12: atomically assign max(ts, snapT ime) to snapTime
13: while Active.findMin() < snapTime do nop

14: tsb ← snapT ime
15: install tsb in the active snapshot list

16: Lock.unlock()

17: return tsb

18: procedure GETTS

19: while true do
20: ts← timeCounter.incAndGet()

21: Active.add(ts)

22: if ts ≤ snapTime then Active.remove(ts)

23: else break
24: return ts

25: procedure BEFOREMERGE

26: Lock.lockExclusiveMode()

27: P
′
m ← Pm

28: Pm ← new in-memory component

29: ts← find minimal active snapshot timestamp

30: Lock.unlock()

31: return ts

in line 12. The rollback loop in getTS may cause the star-

vation of a put operation. We note, however, that each re-

peated attempt to acquire a timestamp implies the progress

of some other put and getSnap operations, as expected in

non-blocking implementations.

3.2.2 Partial Scans and Snapshot Reads
A full snapshot scan traverses all keys starting with the

lowest and ending with the highest one. More common are

partial scans, (e.g., range queries), in which the application

only traverses a small consecutive range of the keys, or even

simple reads of a single key from the snapshot. Given our

snapshot management mechanism, it is straightforward to

support these by using a find function to locate the first entry

to be retrieved (like finding a key in a get operation).

3.3 Atomic Read-Modify-Write
We now introduce a general read-modify-write operation,

RMW(k,f), which atomically applies an arbitrary function

f to the current value v associated with key k and stores

f(v) in its place. Such operations are useful for many appli-



Algorithm 3 RMW algorithm for linked list memory component.

1: procedure RMW(Key k, Function f )

2: Lock.lockSharedMode()

3: repeat
4: find (k, ts, v) with highest ts in Pm, P ′

m, or Pd

5: prev← Pm node with max(k′, ts′) ≤ (k,∞)
6: if prev.key = k and prev.time > ts then continue

� conflict

7: succ← prev.next
8: if succ.key = k then continue � conflict

9: tsn ← getTS()

10: create newNode with (k, tsn, f(v))
11: newNode.next← succ
12: ok← CAS(prev.next, succ, newNode)

13: if ¬ok then Active.remove(tsn) � conflict

14: until ok
15: Active.remove(tsn)

16: Lock.unlock()

cations, ranging from simple vector clock update and valida-

tion to implementing full-scale transactions.

Our solution is efficient and avoids blocking. It is given

in the context of a specific implementation of the in-memory

data store as a linked list or any collection thereof, e.g.,

a skip-list. Each entry in the linked list contains a key-

timestamp-value tuple, and the linked list is sorted in lexico-

graphical order. In a non-blocking implementation of such a

data structure, put updates the next pointer of the predeces-

sor of the inserted node using a CAS operation [23].

The pseudo-code for read-modify-write on an in-memory

linked-list appears in Algorithm 3. The idea is to use opti-

mistic concurrency control – having read v as the latest value

of key k, our attempt to insert f(v) fails (and restarts) in case

a new value has been inserted for k after v. This situation is

called a conflict, and it means that some concurrent opera-

tion has interfered between our read step in line 4 and our

update step in line 12.

The challenge is to detect conflicts efficiently. Here, we

take advantage of the fact that all updates occur in RAM, en-

suring that all conflicts will be manifested in the in-memory

component. We further exploit the linked list structure of this

component. In line 5, we locate, and store in prev, the inser-

tion point for the new node. If prev is a node holding key

k and a timestamp higher than ts, then it means that another

thread has inserted a new node for k between lines 4 and 5 —

this conflict is detected in line 6. In line 8, we detect a con-

flict that occurs when another thread inserts a new node for k
between lines 5 and 7 — this conflict is observed when succ
is a node holding key k. If the conflict occurs after line 7, it

is detected by failure of the CAS in line 12.

When the data store consists of multiple linked lists, as

libcds’s lock-free skip-list does [1], items are inserted to the

lists one at a time, from the bottom up [23]. Only the bot-

tom list is required for correctness, while the others ensure

the logarithmic search complexity. Our implementation thus

first inserts the new item to the bottom list atomically using

Algorithm 3. It then adds the item to each higher list using a

CAS as in line 12, but with no need for a new timestamp 9

or conflict detection as in lines 6 and 8.

We note that the lock-free skip-list [1] (which is based

on the skip-list algorithm in [23]) satisfies the requirements

specified in Section 3.2 — weak consistency is guaranteed

as long as items are not removed from the skip-list, as is the

case in cLSM.

4. Implementation
We implement cLSM in C++ based on the popular open

source LevelDB LSM-DS library [4]. LevelDB is used by

numerous applications including Google Chrome and Face-

book’s embeddable key-value store [8].

LevelDB implements a rich API that includes read (get),

write (put), and various snapshot operations. Its memory

component is implemented as a skip list with custom con-

currency control. Every write is logged to a sequential file

following the LSM-DS update. Typically, the data store is

configured to perform logging asynchronously, which al-

lows writes to occur at memory speed; hence, a write only

queues the request for logging and a handful of writes may

be lost due to a crash. LevelDB features a number of opti-

mizations, including multilevel merge, custom memory allo-

cation, caching via memory-mapped I/O, Bloom filters [14]

to speed up reads, etc.

The original LevelDB acquires a global exclusive lock to

protect critical sections at the beginning and the end of each

read and write. The bulk of the code is guarded by a mech-

anism that allows a single writer thread and multiple reader

threads to execute at any given time. Snapshots are imple-

mented using timestamps – the timestamp management is

simpler than ours (i.e., no need for Active set) since concur-

rent write operations are not permitted. LevelDB supports an

atomic batch of write operations that is implemented using

coarse-grained synchronization of simple write operations.

cLSM supports the full functionality of LevelDB’s API.

Its implementation inherits the core of LevelDB’s modules

(disk component, cache, merge function, etc), and benefits

from the same optimizations. It implements the algorithm

described in Section 3, which eliminates the blocking parts

of the LevelDB code. Our support for atomic batches of

write operations continues to block (similarly to the original

LevelDB) – its synchronization is implemented by holding

the shared-exclusive lock in exclusive mode.

We harness the libcds concurrent data structures’ li-

brary [1] to implement the in-memory store and the log-

ging queue (via the non-blocking skip list and queue imple-

mentations, respectively). We also implement multiple cus-

tom tools based on atomic hardware instructions: a shared-

exclusive lock, and a non-blocking memory allocator [29].

All accesses we add to shared memory are protected by



memory fences, whereas the libraries we use include fences

where deemed necessary by their developers.

Relaxing LevelDB’s single-writer constraint implies that

writes might get logged out of order. Since all the log records

bear cLSM-generated timestamps, the correct order is easily

restored upon recovery.

5. Evaluation
We evaluate our cLSM implementation versus a number of

open source competitors. In Section 5.1, our experiments are

based on synthetic CPU-bound workloads. In Section 5.2

we use real web-scale application workloads. Finally, in

Section 5.3, we use a synthetic disk-bound benchmark from

RocksDB’s benchmarks suite [10].

Our platform is a Xeon E5620 machine with 2 quad-core

CPUs, each core with two hardware threads (16 hardware

threads overall). The server has 48GB of RAM and 720GB

SSD storage2.

We vary the concurrency degree in our experiments from

one to sixteen worker threads performing operations; these

are run in addition to the maintenance compaction thread (or

threads in Section 5.3).

We compare cLSM with four open-source LSM data

stores: LevelDB [4], HyperLevelDB [5, 21], RocksDB [8],

and bLSM [36]. HyperLevelDB and RocksDB are exten-

sions of LevelDB that employ specialized synchronization

to improve parallelism (see [3]), and bLSM is a single-writer

prototype that capitalizes on careful scheduling of merges.

Unless stated otherwise, each LSM store is configured to

employ an in-memory component of 128MB (this is the

standard value in key-value stores like HBase); we use the

default values of all other configurable parameters.

Recall that in LSM-DS, component merges occur as a

background process, which is often called compaction. All

systems except RocksDB use a single background thread for

compaction. RocksDB has a configurable parameter deter-

mining the maximum number of compaction threads, which

we set to one3, except in Section 5.3. We note that in ex-

periments that involve writes (i.e., put operations), the com-

paction thread is working a significant portion of the time

— in the CPU-bound experiments reported in Sections 5.1

and 5.2, we found that it runs roughly between a quarter and

three-quarters of the time, in all systems. In Section 5.3 we

consider disk-bound workloads, where compaction runs vir-

tually all the time, and creates a bottleneck.

5.1 Synthetic Workloads
We start with a set of benchmarks that exercise the systems

in a variety of controlled settings. Our experiment harnesses

a 150GB dataset (100x the size of the collection used to

compare HyperLevelDB to LevelDB in the publicly avail-

2 Composed of four 240GB SSD SATA/300 OCZ Deneva MLC, configured

as RAID-5.
3 This is the default value in RocksDB.

able benchmark [6]). The key-value pairs have 8-byte keys,

and the value size is 256 bytes.

Write performance. We start by exploring a write-only

workload. The keys are drawn uniformly at random from the

entire range. (Different distributions lead to similar results –

recall that the write performance in LSM stores is locality-

insensitive.)

Figure 5a depicts the results in terms of throughput. Lev-

elDB, HyperLevelDB, and cLSM start from approximately

the same point, but they behave differently as we increase

the number of threads. LevelDB, bLSM and RocksDB are

bounded by their single-writer architectures, and do not scale

at all. Moreover, having multiple threads contending for a

single synchronization point (e.g., a writers queue) causes

the throughput to decrease. HyperLevelDB achieves a 33%
throughput gain with 4 workers, and deteriorates beyond that

point. cLSM’s throughput scales 2.5x and becomes saturated

at 8 threads. The degragation in write performance can be ex-

plained by cross-chip latency and cache invalidations, since

only the 16 threads experiment spans more than one chip.

cLSM’s peak rate exceeds 430K writes/sec, in contrast with

240K for HyperLevelDB, 160K for LevelDB and 65K for

RocksDB.

Figure 5b refines the results by presenting the throughput-

latency perspective, where the latency is computed for the

90-th percentile; other percentiles exhibit similar trends. For

better readability we delineate improvement trends and omit

points exhibiting decreasing throughput. This figure marks

the point in which each implementation saturates, namely,

either achieves a slight throughput gain while increasing the

latency by a factor of 2x-3x or achieves no gain at all. It is

clear that cLSM scales better than all competitors.

Read performance. We turn to evaluate performance in

a read-only scenario. In this context, uniformly distributed

reads would not be indicative, since the system would spend

most of the time in disk seeks, devoiding the concurrency

control optimizations of any meaning. Hence, we employ

a skewed distribution that generates a CPU-intensive work-

load: 90% of the keys are selected randomly from “popular”

blocks that comprise 10% of the database. The rest are drawn

u.a.r. from the whole range. This workload is both dispersed

and amenable to caching. Its locality is similar to that of pro-

duction workloads analyzed in Section 5.2. All the following

experiments exercise this distribution.

Figure 6a demonstrates throughput scalability. LevelDB

and HyperLevelDB exhibit similar performance. Neither

scales beyond 8 threads, reflecting the limitations of Lev-

elDB’s concurrency control, namely, read operations block-

ing even when data is available in memory. On the other

hand, cLSM and RocksDB scale all the way to 128 threads,

far beyond the hardware parallelism (more threads than

cores are utilized, since some threads block when reading

data from disk). In all cases, RocksDB is not only slower

than cLSM, but even slower than LevelDB. In this exper-
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Figure 5: Write performance – a 100% write scenario, with the keys uniformly distributed across the domain. cLSM
scales to 8 threads and achieves 80% throughput advantage over the closest competitor, which only scales to 4.

iment, the peak throughput of cLSM is almost 1.8 million

reads/sec – 2.3x as much as the peak competitor rate.

Again, Figure 6b shows the throughput-latency (90-th

percentile) perspective. This figure emphasizes the scalabil-

ity advantage of cLSM: it shows that while RocksDB scales

all the way, this comes at a very high latency cost, an order of

magnitude higher than other LevelDB-based solutions with

the same throughput (800K reads/sec).

Mixed workloads. Figure 7a depicts the throughput

achieved by the different systems under a 1:1 read-write mix.

The original LevelDB fails to scale, even though the writes

are now only 50% of the workload. HyperLevelDB slightly

improves upon that result, whereas cLSM fully exploits the

software parallelism, scaling beyond 730K operations/sec

with 16 workers.

We note that while under cLSM and HyperLevelDB the

reads and the writes scale independently (and the through-

put numbers are roughly the avarage of the 100% writes and

100% reads scenarios), in LevelDB and RocksDB the writes

impede the reads’ progress, and therefore the absolute num-

bers are lower than the average of the 100% writes and 100%

reads scenarios.

Figure 7b repeats the same experiment with reads re-

placed by range scans. (bLSM is not part of this evalua-

tion because it does not directly support consistent scans).

The size of each range is picked uniformly between 10 and

20 keys. The number of scan operations is therefore smaller

than the number of writes by an order of magnitude, to main-

tain the balance between the number of keys written and

scanned. The cumulative throughput is measured as the over-

all number of accessed keys. Similarly to the previous cases,

the competitors are slower than cLSM by more than 60%.

Note that scans are faster than read operations since in each

scan operation, the scanned items are located close to the

first item, which results in write operations running substan-

tially more than 50% of the time, and the cross-chip effect

causes a small degragation in cLSM’s throughput with 16

worker threads.

We next evaluate how the system may benefit from addi-

tional RAM. Figure 8 compares LevelDB’s and cLSM’s ben-

efit from larger memory components, under the read-write

workload, with 8 working threads. LevelDB performs nearly

the same for all sizes beyond 16MB, whereas cLSM keeps

improving with the memory buffer growing to 512MB. In

general, LSM data stores may gain from increasing the in-

memory component size thanks to better batching of disk

accesses [11]. However, this also entails slower in-memory

operations. We see that cLSM successfully masks this added

latency via its high degree of parallelism, which the less scal-

able alternatives fail to do.

Read-Modify-Write. We now explore the performance

of atomic RMW operations (put-if-absent flavor [37]). To es-

tablish a comparison baseline, we augment LevelDB with a

textbook RMW implementation based on lock striping [22].

The algorithm protects each RMW and write operation with

an exclusive granular lock to the accessed key. The basic

read and write implementations remain the same.

We compare the lock-striped LevelDB with cLSM. The

first workload under study is comprised solely of RMW op-

erations. As shown in Figure 9, cLSM scales to almost 400K

operations/sec – a 2.5x throughput gain compared to the

standard implementation. This volume is almost identical to

the peak write load.

5.2 Production Workloads
We study a set of 20 workloads logged in a production key-

value store that serves some of the major personalized con-

tent and advertising systems on the web. Each log captures

the history of operations applied to an individual partition

server. The average log consists of approximately 5 million

operations. Operations have variable key and value sizes,

averaging 40-bytes per key, and 1KB values. The captured
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Figure 10: Throughput in workloads collected from a production web-scale system.

workloads are read-dominated (85% to 95% reads). The key

distributions are heavy-tail, all with similar locality proper-

ties. In most settings, 10% of the keys stand for more than

75% of the requests, while the 1-2% most popular keys ac-

count for more than 50%. Approximately 10% of the keys

are only encountered once.

Figure 10 depicts the evaluation results for 4 representa-

tive workloads. Although cLSM is slower than the alterna-

tives with a small number of threads, its scalability is much

better. These results are similar to the results shown in 7a.

However, our advantage over the competitors is reduced, be-

cause, with larger keys and values, the synchronization over-

head is less pronounced.

5.3 Workloads with Heavy Disk-Compaction
The above experiments demonstrate situations in which the

in-memory access is the main performance bottleneck. Re-

cently, the RocksDB project has shown that in some scenar-

ios, the main performance bottleneck is disk-compaction [10].

In these scenarios, a huge number of items is inserted (at

once) into the LSM store, leading to many heavy disk-

compactions. As a result of the high disk activity, the Cm

component frequently becomes full before the C ′
m com-

ponent has been merged into the disk. This causes client

operations to wait until the merge process completes.

We use a benchmark from [10] to demonstrate this situa-

tion. In this benchmark, the initial database is created by se-

quentially inserting 1 billion items. During the benchmark, 1

billion update operations are invoked by the worker threads.

As in [10], each key is of size 10 bytes; however, each value

is of size 400 bytes (instead of 800) to ensure that our 720GB

disk is sufficient.

We compare cLSM with RocksDB following the configu-

ration in [10]. RocksDB is configured to use multi-threaded

compactions so that multiple threads can simultaneously

compact non-overlapping key ranges in multiple levels. For

each parameter that appears both in cLSM and RocksDB,

we configure the systems to use the same values. Specifi-

cally, these parameters are: size of in-memory component

(128MB), total number of levels (6 levels), target file size at

level-1 (64MB), and number of bytes in a block (64KB).

Figure 11 depicts the results of this benchmark. The re-

sults show that both cLSM and RocksDB scale all the way

to 16 worker threads (despite the fact that disk-compaction

is running most of the time). At 16 threads, cLSM becomes

equivalent to RocksDB. Notice that RocksDB uses an op-

timized compaction algorithm that utilizes several back-

ground threads, whereas cLSM uses a simpler compaction

algorithm executed by a single background thread. It should

be noted that RocksDB’s compaction optimizations are or-

thogonal to our improved parallelism among worker threads.

6. Related Work
The basis for LSM data structures is the logarithmic method
[13]. It was initially proposed as a way to efficiently trans-

form static search structures into dynamic ones.
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Figure 11: Workload with heavy disk-compaction.

This method inspired the original work on LSM-trees [31]

and its variant for multi-versioned data stores [30]. LSM-

trees provide low-cost indexing for key-value stores with

high rates of put operations, by deferring in-place random

writes and batching them into sequential writes. The LSM-

tree indexing approach employs B+-tree-like structures as

its disk components, and for the main memory component,

an efficient key-lookup structure similar to a (2-3)-tree or—

more common in recent implementations—a skip-list [34].

Nowadays, key-value stores are commonly implemented

as LSM data stores [2, 8, 16, 18, 25]. Google’s LevelDB [4]

is the state-of-the-art implementation of a single machine

LSM that serves as the backbone in many of such key-value

stores. It applies coarse-grained synchronization that forces

all puts to be executed sequentially, and a single threaded

merge process. These two design choices significantly re-

duce the system throughput in multicore environment. This

effect is mitigated by HyperLevelDB [5], the data storage en-

gine that powers HyperDex [21]. It improves on LevelDB in

two key ways: (1) by using fine-grained locking to increase

concurrency, and (2) by using a different merging strategy.

Our evaluations show that cLSM outperforms both of them.

Facebook’s key-value store, RocksDB [8] also builds on

LevelDB. Much effort is done in order to reduce critical sec-

tions in the memory component [3, 9]. Specifically, readers

avoid locks by caching metadata in their thread local stor-

age. Only when a newer version becomes available readers

use locks to get hold of a reference to it. In addition, the

merge process of disk components is executed by multiple

threads concurrently, and some thread is always reserved for

flushing the memory component to the disk.

In the same vein, bLSM [36] introduces a new merge

scheduler, which bounds the time a merge can block write

operations. As bLSM optimizations focus on the merging

process and disk access, it is orthogonal to our work on

memory optimizations.

Several approaches for optimizing the performance of

the general logarithmic method have been proposed in re-

cent years. One such approach suggests adopting a new tree-

indexing data structure, FD-tree [28], to better facilitate the

properties of contemporary flash disks and solid state drives

(SSDs). Like components in LSM-trees, FD-trees maintain

multiple levels with cross-level pointers. This approach ap-

plies the fractional cascading [17] technique to speed up

search in the logarithmic structure. A follow-up work [39]

further refines FD-trees to support concurrency, allowing

concurrent reads and writes during ongoing index reorga-

nizations.

With a similar goal of exploiting flash storage as well as

the caches of modern multi-core processors, Bw-tree [27] is

a new form of a B-tree, used as an index for a persistent key-

value store. The implementation is non-blocking, allowing

for better scalability (throughput). It also avoids cache line

invalidation thus improving cache performance (latency). In-

stead of locks, their implementation, which bares similarity

to B-link design [26], uses CAS instructions, and therefore

blocks only rarely, when fetching a page from disk. At its

storage layer, Bw-tree uses log structuring [35].

None of these new approaches support consistent scans or

an atomic RMW operation (as cLSM does). In addition, each

of these algorithms builds upon a specific data structure as

its main memory component, whereas our work can employ

any implementation of a concurrent sorted map to support

the basic API.

7. Discussion
Leading key-value stores today rely on LSM-DS methodol-

ogy for serving requests mostly from RAM. With this ap-

proach, the implementation of in-memory building blocks is

critical for performance, as we have demonstrated in Sec-

tion 5. The primary challenge such systems face is scaling

up with the available hardware resources most notably, the

number of CPU cores. In this context, the concurrency con-

trol that protects shared data structures can be a major perfor-

mance roadblock. Our work overcomes this roadblock and

presents cLSM, an efficient concurrent LSM-DS implemen-

tation. Scalability is achieved by eliminating blocking in sce-

narios that do not involve physical access to disk.

In addition to atomic reads and writes, cLSM supports

consistent snapshot scans, range queries, and atomic read-

modify-write operations. Our algorithm is generic, and can

be applied to a range of implementations. Such decoupling

allows our solution to be combined with other optimization

applied to the disk components and merge utility.

Our evaluation versus state-of-the-art LSM implementa-

tions shows performance improvements and superior scala-

bility, even when the competitors utilize smaller partitions.

The latter, along with other disadvantages of partitioning dis-

cussed in Section 2, suggests that our approach can poten-

tially serve as an alternative for vertical scalability.
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