
Revisiting the Design of Data Stream Processing
Systems on Multi-Core Processors

Shuhao Zhang1,2, Bingsheng He2, Daniel Dahlmeier1, Amelie Chi Zhou3, Thomas Heinze4

1SAP Innovation Center Singapore, 2National University of Singapore, 3INRIA, 4SAP SE Walldorf

Abstract—Driven by the rapidly increasing demand for han-
dling real-time data streams, many data stream processing
(DSP) systems have been proposed. Regardless of the different
architectures of those DSP systems, they are mostly aiming at
scaling out using a cluster of commodity machines and built
around a number of key design aspects: a) pipelined processing
with message passing, b) on-demand data parallelism, and c)
JVM based implementation. However, there lacks a study on
those key design aspects on modern scale-up architectures, where
more CPU cores are being put on the same die, and the on-
chip cache hierarchies are getting larger, deeper, and complex.
Multiple sockets bring non-uniform memory access (NUMA)
effort. In this paper, we revisit the aforementioned design aspects
on a modern scale-up server. Specifically, we use a series of
applications as micro benchmark to conduct detailed profiling
studies on Apache Storm and Flink. From the profiling results, we
observe two major performance issues: a) the massively parallel
execution model causes serious front-end stalls, which are a
major performance bottleneck issue on a single CPU socket, b)
the lack of NUMA-aware mechanism causes major drawback
on the scalability of DSP systems on multi-socket architectures.
Addressing these issues should allow DSP systems to exploit
modern scale-up architectures, which also benefits scaling out
environments. We present our initial efforts on resolving the
above-mentioned performance issues, which have shown up to
3.2x and 3.1x improvement on the performance of Storm and
Flink, respectively.

I. INTRODUCTION

Many data stream processing (DSP) systems have recently
been proposed to meet the increasing demand of processing
streaming data, such as Apache Storm [1], Flink [2], Spark
Streaming [3], Samza [4] and S4 [5]. Regardless of the
different architectures of those DSP systems, they are mainly
designed and optimized for scaling out using a cluster of
commodity machines (e.g., [6], [7], [8]). We observe the
following three common design aspects in building those
existing DSP systems:

a) Pipelined processing with message passing: A streaming
application is usually implemented as multiple operators
with data dependencies, and each operator performs three
basic tasks continuously, i.e., receive, process and output.
Such a pipelined processing design enables DSP systems
to support very low latency processing, which is one of
the key requirements in many real applications that cannot
be well supported in batch-processing systems.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. It contains a few typo amendments compared to
the recorded version. The definitive Version of Record was published in IEEE
33rd International Conference on Data Engineering (ICDE), April 2017, San
Diego, CA, USA, https://doi.org/10.1109/ICDE.2017.119

b) On-demand data parallelism: Fine-grained data paral-
lelism configuration is supported in many DSP systems.
Specifically, users can configure the number of threads in
each operator (or function) independently in the stream-
ing application. Such an on-demand data parallelism
design aims at helping DSP systems scale for high
throughput.

c) JVM-based implementation: DSP systems are mostly
built on top of JVM (Java Virtual Machine). Although
the use of JVM-based programming language makes
the system development more productive (e.g., built-in
memory management), many JVM runtime performance
issues such as data reference and garbage collection are
transparent to programmers.

On the other hand, modern servers are being deployed in
the cluster environment. More CPU cores are being put on
the same die. Subsequently, the on-chip cache hierarchies
that support these cores are getting larger, deeper, and more
complex. Furthermore, as modern machines scale to multiple
sockets, non-uniform memory access (NUMA) becomes an
important performance factor for data management systems
(e.g., [9], [10]). For example, recent NUMA systems have
already supported hundreds of CPU cores and multi-terabytes
of memory [11]. However, there is a lack of detailed studies
on profiling the above common design aspects of DSP systems
on modern architectures.

In this paper, we experimentally revisit those common
design aspects on a modern machine with multiple CPU
sockets. We aim to offer a better understanding of how current
design aspects of modern DSP systems interact with modern
processors when running different types of applications. We
use two DSP systems (i.e., Apache Storm [1] and Flink [2]) as
the evaluation targets. Note that the major goal of this study
is to evaluate the common design aspects of DSP systems
on scale-up architectures using profiled results so that our
results and findings can be applicable to many other DSP
systems, rather than to compare the absolute performance of
individual systems. There has been no standard benchmark for
DSP systems, especially on scale-up architectures. Thus, we
design our micro benchmark with seven streaming applications
according to the four criteria proposed by Jim Gray [12]
(Section III-C).

Through detailed profiling studies with our benchmark on a
four-socket machine, we make the following key observations.

First, the design of supporting both pipelined and data

parallel processing leads to a very complex massively par-
allel execution model in DSP systems, which poorly utilizes
modern multi-core processors. Based on our profiling results,
a significant portion (∼40%) of the total execution time is
wasted due to L1-instruction cache (L1-ICache) misses. The
significant L1-ICache misses are mainly due to the large
instruction footprint between two consecutive invocations of
the same function.

Second, the design of continuous message passing between
operators causes a serious performance degradation to DSP
systems running on multiple CPU sockets. Furthermore, the
current design of data parallelism in DSP systems tends to
equally partition input streams regardless of the location of
executors (i.e., they may be scheduled on different CPU
sockets), which overlooks the NUMA effect. The throughput
of both Storm and Flink on four CPU sockets is only slightly
higher or even lower than that on a single socket for all
applications in our benchmark. The costly memory accesses
across sockets severely limit the scalability of DSP systems.

Third, the JVM runtime brings two folds of overhead to
the execution, and they are moderate in DSP systems. 1)
The translation lookaside buffer (TLB) stalls take 5∼10%
and 3∼8% of the total execution time for most applications
on Storm and Flink, respectively. The major causes include
the frequent pointer referencing issues in data accesses and
Java execution. 2) The overhead from garbage collection (GC)
accounts for only 1 ∼ 3% of the total execution time. The
observed minor impact of GC is very different from previous
studies on other data-intensive platforms with large memory
footprints (e.g., [13], [14]).

Addressing the above-mentioned issues should allow DSP
systems to exploit modern scale-up architectures. As initial
attempts, we evaluate two optimizations: 1) non-blocking tuple
batching to reduce the instruction footprint for processing
a tuple so that the instruction cache performance can be
improved; 2) NUMA-aware executor placement to make
thread placement aware of remote memory accesses across
sockets. The evaluation results show that both optimizations
are effective in improving the performance of DSP systems
on multi-socket multi-core processors. Putting them altogether
achieves 1.3∼3.2x and 1.2∼3.1x throughput improvement on
Storm and Flink, respectively.

To the best of our knowledge, this is the first detailed
study of common design aspects of DSP systems on scale-
up architectures with a wide range of applications. Improving
DSP systems on the scale-up architectures is also beneficial for
the scale-out setting, by either offering a better performance
with the same number of machines or reducing the number of
machines to achieve the same performance requirement.

The remainder of this paper is organized as follows. Section
II introduces preliminary and background of this study. Section
III presents the experimental setup and design, followed by the
evaluation and profiling in Sections IV and V, respectively.
Section VI describes our preliminary efforts in addressing the

Instruction Fetch Units

Instruction Length
Decoder (ILD)

Instruction Queue (IQ)

Instruction Decoders

ITLB

1.5k
D-ICache

Instruction Decode
Queue (IDQ)

L2
Cache

LLC

Renamer

Retirement

DTLB
L1-

DCache

Memory

Fr
o

n
t

e
n

d
B

ac
k

e
n

d Scheduler

Execution Core

ITLB miss Stalls
& L1-I cache miss stalls

LCP Stalls

IQ full stalls

ILD Stalls

IDQ Stalls

DTLB miss Stalls
& Data miss stalls

L1-
ICache

µops issued

µops dispatched

µops executed

Fig. 1: Pipeline execution components of processor: (left)
various stalls caused in the pipeline, (middle) pipelines
interactions with cache and memory systems and (right) the
interactions among the cache, TLB, and memory systems.

Socket 0
(8 Cores)

DRAM
(128 GB)

16 GB/S

(bidirectional)

51.2 GB/S

DRAM
(128 GB)

DRAM
(128 GB)

DRAM
(128 GB)

Socket 1
(8 Cores)

Socket 2
(8 Cores)

Socket 3
(8 Cores)

QPI

Fig. 2: NUMA topology and peak bandwidth of our sever.
performance issues of DSP systems. We review the related
work in Section VII and conclude in Section VIII.

II. PRELIMINARIES AND BACKGROUND

In this section, we first introduce the background of the
multi-socket multi-core processors. Then, we introduce three
design aspects of two DSP systems studied in this paper,
namely Apache Storm [1] and Flink [2].

A. Multi-Socket Multi-core Processors

Modern processors consist of multiple different hardware
components with deep execution pipelines, as shown in Fig-
ure 1. We also illustrate the stalls and the interactions among
pipelines and memory systems in the figure. The pipeline can
be divided into the front-end component and the back-end
component [15].

The front-end is responsible for fetching instructions and
decodes them into micro-operations (µops). It feeds the next
pipeline stages with a continuous stream of micro-ops from
the path that the program will most likely execute, with the
help of the branch prediction unit. Starting from Sandy Bridge
micro-architecture, Intel introduces a special component called
Decoded ICache (D-ICache), which is essentially an accelera-
tor of the traditional front-end pipeline. D-ICache maintains up
to 1.5k of decoded µops. Future references to the same µops
can be served by it without performing the fetch and decode
stages. D-ICache is continuously enhanced in terms of size and

throughput in the successor generations of Intel processors.
Note that, every µops stored in D-ICache is associated with
its corresponding instruction in L1-ICache. An L1-ICache miss
also causes D-ICache to be invalidated.

The back-end is where the actual instruction execution
happens. It detects the dependency chains among the decoded
µops (from IDQ or the D-ICache), and executes them in an
out-of-order manner while maintaining the correct data flow.

As modern machines scale to multiple sockets, non-uniform
memory access (NUMA) brings more performance issues.
Figure 2 illustrates the NUMA topology of our sever with
four sockets. Each CPU socket has its local memory, which
is uniformly shared by the cores on the socket. Sockets are
connected by a much slower (compared to local memory
access) channel called Quick Path Interface (QPI).

B. Data Stream Processing Systems

In the following, we introduce three design aspects of Storm
and Flink: 1) pipelined processing with message passing, 2)
on-demand data parallelism, and 3) JVM-based implementa-
tion.

Pipelined processing with message passing. We describe
the execution model with a general definition [16]. A stream-
ing application is represented by a graph, where nodes in the
graph represent either data source operators or data processing
operators, and edges represent the data flow between operators.
In general, there are two types of operators defined in the
topology. 1) a data source operator generates (or receives from
the external environment) events to feed into the topology, and
2) a data processor operator encapsulates specific processing
logics such as filtering, transforming or user-defined function.

In a shared-memory environment, an operator (continu-
ously) writes its output data into the local memory. For each
output data, the operator also pushes a tuple consisting of a
reference (i.e., pointer) of the output data into its output queue.
The corresponding consumer (continuously) fetches the tuple
from the queue, and then accesses on the output data generated
by the producer operator through memory fetches. In other
words, the communication between two operators are through
the data reference. This pass-by-reference message passing
approach avoids duplicating data in a shared-memory environ-
ment and is the common approach adopted by most modern
DSP systems. Figure 3 illustrates an example of message
passing between operators in a shared-memory environment,
where the producer and consumer are scheduled to CPU socket
0 and socket 1, respectively. The producer first writes its output
data to the local memory of socket 0 (step 1) and emits a tuple
containing a reference to the output data to its output queue
(step 2). The consumer fetches from the corresponding queue
to obtain the tuple (step 3) and then accesses the data by
the reference (step 4). This example also demonstrates remote
memory accesses across sockets during message passing in
DSP systems, which we will study in details in Section V-C.

On-demand data parallelism. Modern DSP systems such

Pass value

Pass reference

Memory

Socket 0 Socket 1

queue

Producer Consumer

QPI

1 2 3 4

x Step x

Fig. 3: Message passing mechanism.
as Storm and Flink are designed to support task pipeline and
data parallelism at the same time. The actual execution of an
operator is carried out by one or more physical threads, which
are referred to as executors. Input stream of an operator is
(continuously) partitioned among its executors. The number
of executors for a certain operator is referred to as the
parallelism level and can be configured by users in the
topology configuration. A topology at the executor level is
called an execution graph. An example execution graph of
the word-count application is shown in Figure 4. In this
example, the split, count, and sink operators have three, two
and one executors, respectively. Streams are partitioned
and delivered to specific destination executors according to
the grouping strategy specified by the user. In the previous
example, the shuffle grouping strategy used in the data source
operator uniformly distributes the tuples to each split executor.
Meanwhile, each spilt executor sends tuples to count executors
according to the attribute of the tuple (specified as field
grouping) so that the same key (i.e., the same word) is always
delivered to the same count executor.

JVM-based implementation. Both Storm and Flink are
implemented with JVM-based programming languages (i.e.,
Closure, Java, and Scala), and their execution relies on JVM.
Two aspects of JVM runtime are discussed as follows.

Data reference: As we have mentioned before, message
passing in DSP systems always involves passing the reference.
That is, operators access the data through the reference in the
tuple, which may lead to pointer chasing and stress the cache
and TLB of the processor heavily.

Garbage collection (GC): Another important aspect of the
JVM-based system is the built-in memory management. Mod-
ern JVM implements generational garbage collection which
uses separate memory regions for different ages of objects. The
significant overhead of GC has been reported in many existing
studies (e.g., [14], [13]). To this end, some DSP systems have
even implemented its own memory management besides JVM
(e.g., Flink).

III. METHODOLOGY

We conduct an extensive set of experiments to profile the
performance of Storm and Flink on a modern scale-up server
using different applications. In this section, we first present the
evaluation goals of this study. Next, we introduce our profiling
tools, followed by our benchmark.

Data
Source Sink

Split Count

Split

Split
Shuffle
grouping

Count
Global
grouping

Fields
grouping

Fig. 4: Word-count execution graph.TABLE I: JVM profile flags

Flags Description
JIT Logging Trace just-in-time compilation activities

UnlockDiagnosticVMOptions Enable processing of flags
relating to field diagnostics

TraceClassLoading Trace all classes loaded
LogCompilation Enable log compilation activity
PrintAssembly Print assembly code

GC Logging Trace garbage collection activities
PrintGCTimeStamps Print timestamps of garbage collection

PrintGCDetails Print more details of GC including size of
collected objects, time of objects promotion

A. Evaluation Goals

This study has the following design goals.
First, we aim to identify the common designs of modern

DSP systems, and to understand how those designs (i.e.,
pipelined processing with message passing, on-demand data
parallelism, and JVM-based implementation) interact with
modern processors when running different types of applica-
tions. Second, with the detailed profiling study, we hope to
identify some hardware and software approaches to resolving
the bottleneck and point out the directions for the design and
implementation of future DSP systems.

B. Profiling Tools

JVM profile. Table I lists the JVM flags that we use to
monitor the performance of JVM. We are mainly interested
in two kinds of activities, including those in just-in-time (JIT)
compilation and GC. We only enable those trace logs when
we need to analyze the corresponding activities. Otherwise, the
trace logs are disabled. We use Performance Inspector [17] for
gathering detailed instruction-tracing information. We measure
the size of the objects created at runtime using the MemoryUtil
tool from the Classmexer library [18].

Processor profile. We systematically categorize where the
processor time is spent for executing Storm and Flink to
identify common bottlenecks of their system designs when
running on multi-socket multi-core processors. We use Intel
Vtune [19] for profiling at the processor level.

Similar to the recent study [14], we break down the total
execution time to the following components: 1) computation
time, which is contributed by the issued µops that subse-
quently be executed and retired; 2) branch misprediction stall
time (TBr), which is mainly due to the executed µops that will
however never be retired; 3) front-end stall time (TFe), which
is due to the µops that were not issued because of the stalls
in any components in the front-end; 4) back-end stall time
(TBe), which is due to the µops that were available in the IDQ

TABLE II: Processor measurement components

Variable Description
TC Effective computation time
TBr Branch misprediction stall time
TFe Front-end stall time

ITLB stalls Stall time due to ITLB misses that causes
STLB hit or further cause page walk

L1-I cache stalls Stall time due to L1 instruction cache misses
ILD stalls Instruction Length Decoder stalls
IDQ stalls Instruction Decoder Unit stalls

TBe Back-end stall time

DTLB stalls Stall time due to DTLB misses, which causes
STLB hit or further cause page walk

L1-D Stalls Stall time due to L1 data cache
misses that hit L2-Cache

L2-Cache Stalls Stall time due to L2-Cache misses that hit in LLC

LLC stalls (local) Stall time due to LLC misses that hit in
local memory

LLC stalls (remote) Stall time due to LLC misses that hit in
memory of other socket

TABLE III: Detailed specification on our testing environment

Component Description
Processor Intel Xeon E5-4640, Sandy Bridge EP

Cores (per socket) 8 * 2.4GHz (hyper-threading disabled)
Sockets 4
L1 cache 32KB Instruction, 32KB Data per core
L2-Cache 256KB per core
Last level cache 20MB per socket

Memory 4 * 128GB, Quard DDR3 channels, 800 MHz
Apache Flink version 1.0.2 (checkpoint enabled)
Apache Storm version 1.0.0 (acknowledge enabled)

Java HotSpot VM java 1.8.0 77, 64-Bit Server VM, (mixed mode)
-server -XX:+UseG1GC -XX:+UseNUMA

but were not issued because of resources being held-up in the
back-end.

Table II shows the measurement components for individual
stalls. We have conducted an extensive measurement on stalls
from front-end, back-end, and branch misprediction.

All our experiments are carried out on a four-sockets server
with the Intel Xeon Sandy Bridge EP-8 processors. Table III
shows the detailed specification of our server and relevant
settings in Storm and Flink.

C. Micro Benchmark

We design our streaming benchmark according to the four
criteria proposed by Jim Gray [12]. As a start, we design the
benchmark consisting of seven streaming applications includ-
ing Stateful Word Count (WC), Fraud Detection (FD), Spike
Detection (SD), Traffic Monitoring (TM), Log Processing
(LG), Spam Detection in VoIP (VS), and Linear Road (LR).

We briefly describe how they achieve the four criteria. 1)
Relevance: the applications cover a wide range of memory
and computational behaviors, as well as different application
complexities so that they can capture the DSP systems on
scale-up architectures; 2) Portability: we describe the high-
level functionality of each application, and they can be easily
applied to other DSP systems; 3) Scalability: the benchmark
includes different data sizes; 4) Simplicity: we choose the
applications with simplicity in mind so that the benchmark
is understandable.

Our benchmark covers different aspects of application fea-
tures. First, our applications cover different runtime charac-
teristics. Specifically, TM has highest CPU resource demand,
followed by LR, VS and LG. CPU resource demand of FD
and SD is relatively low. The applications also have variety
of memory bandwidth demands. Second, topologies of the
applications have various structural complexities. Specifically,
WC, FD, SD, and TM have single chain topologies, while
LG, VS, and LR have complex topologies. Figure 5 shows
the topologies of the seven applications.

In the following, we describe each application including its
application scenario, implementation details and input setup.
In all applications, we use a simple sink operator to measure
the throughput.

Stateful Word Count (WC): The stateful word-count counts
and remembers the frequency of each received word unless
the application is killed. The topology of WC is a single
chain composed of a Split operator and a Count operator.
The Split operator parses sentences into words and the Count
operator reports the number of occurrences for each word by
maintaining a hashmap. This hashmap is once created in the
initialization phase and is updated for each receiving word.
The input data of WC is a stream of string texts generated
according to a Zipf-Mandelbrot distribution (skew set to 0)
with a vocabulary based on the dictionary of Linux kernel
(3.13.0-32-generic).

Fraud Detection (FD): Fraud detection is a particular use
case for a type of problems known as outliers detection. Given
a transaction sequence of a customer, there is a probability
associated with each path of state transition, which indicates
the chances of fraudulent activities. We use a detection
algorithm called missProbability [20] with sequence window
size of 2 events. The topology of FD has only one operator,
named as Predict, which is used to maintain and update the
state transition of each customer. We use a sample transaction
with 18.5 million records for testing. Each record includes
customer ID, transaction ID, and transaction type.

Log Processing (LG): Log processing represents the stream-
ing application of performing real-time analyzing on system
logs. The topology of LG consists of four operators. The Geo-
Finder operator finds out the country and city where an IP
request is from, and the Geo-Status operator maintains all the
countries and cities that have been found so far. The Status-
Counter operator performs statistics calculations on the status
codes of HTTP logs. The Volume-Counter operator counts the
number of log events per minute. We use a subset of the web
request data (with 4 million events) from the 1998 World
Cup Web site [21]. For data privacy protection, each actual
IP address in the requests is mapped to randomly generated
but fixed IP address.

Spike Detection (SD): Spike detection tracks measurements
from a set of sensor devices and performs moving aggregation
calculations. The topology of SD has two operators. The
Moving-Average operator calculates the average of input

data within a moving distance. The Spike-Detection operator
checks the average values and triggers an alert whenever the
value has exceeded a threshold. We use the Intel lab data
(with 2 million tuples) [22] for this application. The detection
threshold of moving average values is set to 0.03.

Spam Detection in VoIP (VS): Similar to fraud detection,
spam detection is a use case of outlier detection. The topology
of VS is composed of a set of filters and modules that are used
to detect telemarketing spam in Call Detail Records (CDRs).
It operates on the fly on incoming call events (CDRs), and
keeps track of the past activity implicitly through a number of
on-demand time-decaying bloom filters. A detailed description
of its implementation can be found at [23]. We use a synthetic
data set with 10 million records for this application. Each
record contains data on a calling number, called number,
calling date, answer time, call duration, and call established.

Traffic Monitoring (TM): Traffic monitoring performs real-
time road traffic condition analysis, with real-time mass GPS
data collected from taxis and buses1. TM contains a Map-
Match operator which receives traces of an object (e.g., GPS
loggers and GPS-phones) including altitude, latitude, and
longitude, to determine the location (regarding a road ID) of
this object in real-time. The Speed-Calculate operator uses
the road ID result generated by Map-Match to update the
average speed record of the corresponding road. We use a
subset (with 75K events) of GeoLife GPS Trajectories [24]
for this application.

Linear Road (LR): Linear Road (LR) is used for measuring
how well a DSP system can meet real-time query response
requirements in processing a large volume of streaming and
historical data [25]. It models a road toll network, in which
tolls depend on the time of the day and level of congestions.
Linear Road has been used by many DSP systems, e.g.,
Aurora [26], Borealis [27], and System S [28]. LR produces
reports of the account balance, assessed tolls on a given
expressway on a given day, or estimates cost for a journey
on an expressway. We have followed the implementation of
the previous study [29] for LR. Several queries specified in
LR are implemented as operators and integrated into a single
topology. The input to LR is a continuous stream of position
reports and historical query requests. We merge the two data
sets obtained from [30] resulting in 30.2 million input records
(including both position reports and query requests) and 28.3
million historical records.

IV. PERFORMANCE EVALUATION

In this section, we present the performance evaluation
results of different applications on Storm and Flink on multi-
core processors. We tune each application on both Storm and
Flink according to their specifications such as the number of
threads in each operator.

Throughput and resource utilization on a single socket.
Figure 6a shows the throughput and Table IV illustrates the

1A real deployment at http://210.75.252.140:8080/infoL/sslk weibo.html.

SinkCountSplitData Source

(a) Stateful Word Count (WC)

Data Source SinkPredict

(b) Fraud Detection (FD)

Data Source SinkSpike
Detection

Moving
Average

(c) Spike Detection (SD)

Data Source SinkSpeed
Calculate

Map
Match

(d) Traffic Monitoring (TM)

Data Source

Count
Sink

Status
Sink

Geo
Status

Volume
Counter

Status
Counter

Geo
Finder

Geo
Sink

(e) Log Processing (LG)

Data Source

Score

URL

Global
ACD

FoFIR

ACDCT24

ECR24

ENCR

ECRF

RCRF

Voice
Dispatcher

Sink

(f) Spam Detection in VoIP (VS)

Account
Balance

Last Average
Speed

Toll
Notification

Accident
Notification

Daily
Expenses

Count
Vehicles

Accident
Detection

Average
Speed

Dispatcher

Data Source

Sink

(g) Linear Road (LR)

Fig. 5: Topologies of seven applications in our benchmark.

TABLE IV: CPU and memory bandwidth utilization on a
single CPU socket

WC FD LG SD VS TM LR

Storm
CPU Utilization 62% 39% 61% 28% 75% 98% 71%
Memory Utilization 20% 16% 10% 7% 19% 60% 31%

Flink
CPU Utilization 75% 27% 31% 13% 92% 97% 78%
Memory Utilization 53% 16% 18% 6% 17% 52% 20%

CPU and memory bandwidth utilizations of running different
applications on Storm and Flink on a single CPU socket.
We measure the overall resource utilization during stable
execution by avoiding the beginning and ending phases of each
application. We have two observations. First, the comparison
between Storm and Flink is inconclusive. Flink has higher
throughput than Storm on WC, FD, and SD, while Storm
outperforms Flink on VS and LR. The two systems have
similar throughput on TM and LG. Second, our benchmark
covers different runtime characteristics. Specifically, VS and
TM have high CPU utilization. CPU utilization of LG and LR
is median, and that of WC and SD is low.

It is noteworthy that the major goal of this study is to
identify the issues in common designs of DSP systems on
scale-up architectures, rather than to compare the absolute per-
formance of different DSP systems. We present the normalized
performance results in the rest of this paper.

Scalability on varying number of CPU cores. We vary
the number of CPU cores from 1 to 8 on the same CPU
socket and then vary the number of sockets from 2 to 4 (the
number of CPU cores from 16 to 32). Figures 6b and 6c show
the normalized throughput of running different applications
with varying number of cores/sockets on Storm and Flink,
respectively. The performance results are normalized to their
throughputs on a single core.

We have the following observations. First, on a single
socket, most of the applications scale well with the increasing
number of CPU cores for both Storm and Flink. Second, most
applications perform only slightly better or even worse on
multiple sockets than on a single socket. FD and SD become
even worse on multiple sockets than on a single socket, due
to their relatively low compute resource demand. Enabling

multiple sockets only brings additional overhead of remote
memory accesses. WC, LG and VS perform similarly for
different numbers of sockets. The throughput of LR increases
marginally with the increasing number of sockets. Third, TM
has a significantly higher throughput in both systems on four
sockets than on a single socket. This is because TM has high
resource demands on both CPU and memory bandwidth.

V. STUDY THE IMPACT OF COMMON DESIGNS

In the following section, we investigate the underlying rea-
sons for the performance degradation and how the three design
aspects (i.e., pipelined processing with message passing, on-
demand data parallelism, and JVM-based implementation) in-
teract with multi-socket multi-core processors. Specifically, we
first show an execution time breakdown on running different
applications on Storm and Flink on a single socket. Then,
we study the impact of massively parallel execution model,
message passing and stream partitioning and JVM runtime
environment.

A. Execution time breakdown

Finding (1): During execution of most applications (except
TM) on both Storm and Flink, ∼ 70% of their execution
times are spent on processor stalls.

Figure 7 shows the execution time breakdown of Storm
and Flink running on a single socket on different processor
components as introduced in Section II-A. We find that
59∼77% and 58∼69% of the overall execution time are spent
on stalls (Branch misprediction stalls, Front-end stalls, Back-
end stalls) for all applications running on Storm and Flink,
respectively.

Front-end stalls account for 35∼55% and 25∼56% of the
total execution time of Storm and Flink, respectively. This
result is significantly different from the batch processing
framework (e.g., [13]). Back-end stalls account for approxi-
mately 13∼40% and 7∼40% of the total execution time of
Storm and Flink, respectively. Branch misprediction stalls are
low, ranging from 3∼ 4% for all applications.

0

50

100

150

200

250

300

WC FD LG SD VS TM LR

Th
ro

u
gh

p
u

t
(k

 e
ve

n
ts

/s
)

Storm
Flink

1025.6

0.20 0.26

(a) Evaluation of seven applications on a single
socket.

0%

500%

1000%

1500%

2000%

2500%

1 core 2 cores 4 cores 8 cores 16 cores 32 cores

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t WC FD LG SD VS TM LR

(b) Storm with varying number of cores/sockets.

0%

500%

1000%

1500%

2000%

2500%

1 core 2 cores 4 cores 8 cores 16 cores 32 cores

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t WC FD LG SD VS TM LR

(c) Flink with varying number of cores/sockets.

Fig. 6: Performance evaluation results on Storm and Flink.

0%

20%

40%

60%

80%

100%

WC FD LG SD VS TM LRP
e

rc
e

n
ta

ge
 o

f
d

if
fe

re
n

t
co

m
p

o
n

e
n

ts

Computation Front-end stalls

Back-end stalls Bad speculation

(a) Storm

0%

20%

40%

60%

80%

100%

WC FD LG SD VS TM LRP
e

rc
e

n
ta

ge
 o

f
d

if
fe

re
n

t
co

m
p

o
n

e
n

ts

Computation Front-end stalls

Back-end stalls Bad speculation

(b) Flink

Fig. 7: Execution time breakdown.

0%

20%

40%

60%

80%

100%

WC FD LG SD VS TM LR

P
e

rc
e

n
ta

ge
 o

f
Fr

o
n

t-
e

n
d

co

m
p

o
n

e
n

ts
 s

ta
ll

ti
m

e

I-Decoding stalls L1-I cache miss stalls

ITLB stalls

(a) Storm

0%

20%

40%

60%

80%

100%

WC FD LG SD VS TM LR

P
e

rc
e

n
ta

ge
 o

f
Fr

o
n

t-
e

n
d

co

m
p

o
n

e
n

ts
 s

ta
ll

ti
m

e

I-Decoding stalls L1-I cache miss stalls

ITLB stalls

(b) Flink

Fig. 8: Front-end stall breakdown.
In the following, we examine the processor stalls in more

details with respect to the three designs of DSP systems (i.e.,
pipelined processing with message passing, on-demand data
parallelism, and JVM-based implementation).

B. Massively parallel execution model

Finding (2): The design of supporting both pipelined and
data parallel processing results in a very complex massively
parallel execution model in DSP systems. Our investigation
reveals that the high front-end stalls are mainly caused by
this execution model.

Figure 8 illustrates the breakdown of the front-end stalls in
running Storm and Flink on a single socket. Each of the L1
instruction cache (L1-ICache) miss and instruction decoding
(I-Decoding) stalls contributes nearly a half of the front-end
stalls.

L1-ICache miss stalls: Our investigation reveals that there
are two primary sources responsible for the high L1-ICache
miss. First, due to the lack of a proper thread scheduling
mechanism, the massive threading execution runtime of both
Storm and Flink produces frequent thread context switching.
Second, each thread has a large instruction footprint. By

logging JIT compilation activities, we found that the average
size of the native machine code generated per executor thread
goes up to 20KB. As the size of current L1-ICache (32KB per
core) is still fairly limited, it cannot hold those instructions at
runtime, which eventually leads to L1-ICache thrashing.

We now study the details of the instruction footprints
between two consecutive invocations of the same function. In
order to isolate the impact of user-defined functions, we test a
“null” application, which performs nothing in both Storm and
Flink (labeled as “null”). Figure 9 illustrates the cumulative
density function (CDF) of instruction footprints on a log scale,
which stands for the percentage that instruction footprint is no
larger than a certain number of distinct instructions.

We add three solid vertical arrows to indicate the size of L1-
ICache (32KB), L2-Cache (256KB), and LLC (20MB). With
the detailed analysis on the instruction footprint, we make
three observations. First, two turning points on the CDF curves
are observed at x=1KB and x=10MB for Storm and x=1KB
and x=1MB for Flink, which reflects the common range of
their instruction footprints during execution. Second, the cross-
over points of L1-ICache line and different CDF curves are
between 0.3∼ 0.5 for Storm and 0.6∼ 0.8 for Flink. It means,
around 50 ∼ 70% and 20 ∼ 40% of the instruction footprints
between two consecutive calls to the same functions are larger
than the L1-ICache in Storm and Flink, respectively. This
causes severe L1-ICache stalls. Flink has a better instruction
locality than Storm on L1-ICache. Third, Storm has similar
tracing on instruction footprint with or without running user
applications. This indicates that many of the instruction cache
misses may come from Storm platform itself. This also
explains the reason that different applications show similar
L1-ICache miss in Storm. In contrast, the platform of Flink
has a smaller instruction footprint.

I-Decoding stalls: The high instruction decoding (I-
Decoding) stalls are related to the high L1-ICache miss
issue. The I-Decoding stalls can be further broken down
into instruction length decoder (ILD) stalls and instruction
decoding queue (IDQ) stalls.

The ILD stalls further consist of instruction queue (IQ) full
stalls and length change prefix (LCP) stalls. IQ is used to
store the pre-fetched instructions in a separate buffer while

(a) Storm (b) Flink

Fig. 9: Instruction footprint between two consecutive invo-
cations of the same function.

the processor is executing the current instruction. Due to
the large footprint between two consecutive invocation of the
same function, IQ full stalls are frequent and contribute nearly
20% of front-end component stall time for all applications on
both Storm and Flink. On the other hand, the LCP stalls are
negligible, with less than 0.05% for all applications according
to our measurement.

Another important aspect of I-Decoding stalls is the IDQ
stalls, which consist mainly of decoded instruction cache (D-
ICache) stalls. D-ICache enables skipping the fetch and decode
stages if the same µops are referenced later. However, two
aspects of D-ICache may offset its benefits, or even degrade
the performance. First, when L1-ICache miss occurs, the D-
ICache also needs to be invalidated, which subsequently causes
a switch penalty (i.e., the back-end has to re-fetch instructions
from the legacy decoder pipeline). Second, if a hot region of
code is too large to fit in the D-ICache (up to 1.5k µops), the
front-end incurs a penalty when µop issues switch from the
D-ICache to the legacy decoder pipeline. As we have shown
earlier that L1-ICache misses are high during Storm and Flink
execution, this issue propagates to a later stage, which causes
frequent misses in the D-ICache and eventually causes high
IDQ stalls.

C. Message passing and stream partitioning

Finding (3): The design of message passing between op-
erators causes a severe performance degradation to the
DSP systems running on multiple CPU sockets. During
execution, operators may be scheduled into different sockets
and experience frequent costly remote memory accesses
during the fetching of input data. Furthermore, the current
design of data parallelism has overlooked the NUMA effect.

Recently, the NUMA-aware allocator has already been
implemented in the Java HotSpot Virtual Machine to take
advantage of such infrastructures, which provides automatic
memory placement optimizations for Java applications. We en-
able this optimization in our JVM by specifying the useNUMA
flag. However, our experiments have already shown that this
flag is insufficient for reducing the NUMA impact and we have

TABLE V: LLC miss stalls when running Storm with four
CPU sockets.

WC FD LG SD VS TM LR
LLC Miss (local) 0% 5% 3% 4% 4% 1% 7%
LLC miss (remote) 6% 16% 17% 13% 17% 24% 22%

observed poor scalability in both Storm and Flink on multiple
sockets. The main problem is the high remote memory access
overhead due to the heavy pipelined message passing design.
During execution, each executor needs to fetch data from the
corresponding producer continuously. On the multi-socket and
multi-core architectures, an executor can have three kinds of
data accesses. (1) In cache: the input data is accessed in the
cache. This comes with minimum access penalty. (2) In local
memory: access data with a miss in the cache but a hit in
its local memory. This happens when producer and consumer
executors are located in the same CPU socket, and it comes
with a cost of local memory read. (3) In remote memory:
access data with a miss in the cache and a further miss in its
local memory. This comes with very high access penalty, and
it happens when producer and consumer executors are located
in different CPU sockets.

As a result, the data access cost is depending on the location
of the producer and consumer, which creates significant
performance divergence among parallel executors of even the
same operator. However, neither Storm nor Flink is aware
of such performance heterogeneity issues and continuously
distributes equal amounts (in the case of shuffle grouping) of
tuples among executors. Table V shows the LLC miss stalls for
executing on Storm with four CPU sockets. We have similar
observations when running the applications on Flink with four
CPU sockets enabled.

We take TM on Storm as an example to further study
the impact of stream partitioning. We start with the tuned
number of threads (i.e., 32) of Map-Matcher operator of
TM on four sockets, and further increase the number of
threads up to 56. Figure 10a shows a significant increase
in the standard derivation of executors’ latencies with the
increasing of the number of executors when running Storm
on four CPU sockets. Those executors experience up to 3
times difference in the average execution latency in the case
of 56 Map-Matcher executors, which reaffirms our analysis
on performance heterogeneity in NUMA. Further, due to the
significant overhead caused by remote memory access, the
mean execution latency also increases along with the growing
number of executors. Figure 10b shows that the back-end stalls
gradually become worse with the increase in the number of
executors. This indicates the remote memory access penalty
prevents DSP systems from scaling well.

0

2

4

6

8

10

12

14

16

18

0

10

20

30

40

50

60

70

80

90

32 40 48 56

St
an

d
ar

d
 d

e
vi

at
io

n

P
ro

ce
ss

 la
te

n
cy

(m

s/
ev

e
n

t)

Mean execution
latency

Standard deviation

(a) Average execution time per event.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32 40 48 56

P
e

rc
e

n
ta

ge
 o

f
B

ac
k

e
n

d

st
al

l

Others

LLC Miss (local)

LLC Miss (remote)

(b) Back-end stalls.

Fig. 10: Varing number of executors of Map-Matcher oper-
ator of TM when running Storm with four CPU sockets.

D. JVM Runtime Environment

Finding (4): The overhead of JVM runtime contains two
major and moderate components. First, TLB stalls account
for 5 ∼ 10% and 3 ∼ 8% on Storm and Flink, respectively.
This is caused by frequent pointer referencing in data
accesses and Java execution. Second, the overhead of GC
in running streaming applications (1∼ 3%) is insignificant.

Both Storm and Flink are implemented using JVM-based
programming language. The efficiency of JVM runtime is
crucial to the performance of Storm and Flink. As we have
mentioned before, the back-end of the processor is where the
actual execution happens. Figure 11 breaks down the back-
end stalls into L1-DCache stalls, L2-Cache stalls, LLC stalls,
and DTLB stalls when running Storm and Flink on a single
socket.

Data cache stalls: Stalls in L1-DCache and L2-Cache
dominate the back-end stalls in both systems. We measure the
size of intermediate results generated during execution of all
streaming applications in our benchmark, and we have the fol-
lowing observations. First, the private data structures accessed
during execution do not often fit into L1-DCache (32KB) but
can fit into L2-Cache (256KB), which causes frequent L1-
DCache stalls. Second, the output data for message passing
mostly fit into the LLC, and cannot fit into L2 cache. As a
result, data passing among executors in a single socket usually
get served by the shared LLC (20MB).

TLB stalls: Tuples are passed with reference (instead of
the actual data) in both systems. Upon a class loading in
java, the invokevirtual instruction is triggered to search the
method table and identify the specific method implementation,
which may cause random accesses on method tables. As a
result, the frequent pointer references lead to stress on TLB
on both systems. Our further investigation found that enabling
huge page improves the performance of both Storm and Flink
marginally for all seven applications.

Garbage collection overhead: We use G1GC [31] as the
garbage collector in our JVM. The garbage collection (GC)
is infrequent in running all applications on both Storm and
Flink, and the same observation is made even if we run
the benchmark for hours. Based on GC logs, we find that
no major GC occurs during the execution and minor GC
contributes only 1∼ 3% to the total execution time across all
the applications for both Storm and Flink. As a sanity check,

0%

20%

40%

60%

80%

100%

WC FD LG SD VS TM LR

P
e

rc
e

n
ta

ge
 o

f
B

ac
k-

e
n

d

co
m

p
o

n
e

n
ts

 s
ta

ll
ti

m
e

L1-DCache Stalls L2 cache Stalls

LLC stalls DTLB stalls

(a) Storm

0%

20%

40%

60%

80%

100%

WC FD LG SD VS TM LR

P
e

rc
e

n
ta

ge
 o

f
B

ac
k-

e
n

d

co
m

p
o

n
e

n
ts

 s
ta

ll
ti

m
e

L1-DCache Stalls L2 cache Stalls

LLC stalls DTLB stalls

(b) Flink

Fig. 11: Back-end stall breakdown.
we also study the impact of using an older version of GC
named parallelGC. When the parallelGC mechanism is used,
the overhead of GC increases to around 10 ∼ 15%, which
indicates the effectiveness of G1GC. Nevertheless, we plan to
evaluate the impact of GC with more extensive applications.

VI. TOWARDS MORE EFFICIENT DSP SYSTEMS

In this section, we present our initial attempt to address the
performance issues found in the previous section. We present
two optimization techniques, including non-blocking tuple
batching (to reduce instruction cache stalls) and NUMA-aware
executor placement (to reduce remote memory accesses). We
evaluate the effectiveness of the techniques by first studying
their individual impacts and then combining both techniques
together. We note that, the two optimization techniques ad-
dress the efficiency issues of the two common designs (i.e.,
pipelined processing with message passing and on-demand
data parallelism), and we conjecture that the optimizations can
be applied to other DSP systems with the same designs.

A. Non-blocking Tuple Batching

Our profiling results suggest that the large instruction
footprints between two consecutive invocations of the same
function cause severely performance issues including L1-
ICache miss and I-Decoding stalls, which lead to high front-
end stalls. One of the solutions is batching multiple tuples
together before passing to the consumer executor for process-
ing. In this way, each function invocation can process multiple
tuples so that the instruction footprint between two consecutive
invocations of the same function is reduced. Similar ideas
of tuple batching are already proposed [29] or in use in
some DSP systems [2]. However, those techniques rely on
a buffering stage, which introduces wait delay in execution.
For example, Sax et al. [29] proposed to create an independent
batching buffer for each consumer in order to batch all tuples
that will be processed by the same consumer. Tuples are not
emitted until the corresponding buffer becomes full. However,
the additional explicit buffering delay in every executor may
introduce serious negative impact on the system latency. In
order to preserve low latency processing feature of DSP
system, we develop a simple yet effective non-blocking tuple
batching strategy to address this issue.

The basic idea of our solution is as follows. Consider an
executor processes a batch of tuples and outputs multiple
tuples, we try to put its output tuples together as a batch, or
multiple batches each containing tuples belonging to the same

key. Once the corresponding consumer receives such a batch,
it can then process multiple tuples from the batch with a single
function invocation and further batching its output tuples in a
similar manner. Our solution requires that the data producer
to prepare the initial batches of tuples, where the size of batch
S is a parameter that we will tune in later experiments. When
the Data Producer of an application generates multiple tuples
(more than S) each time, it simply groups them into batches
with size up to S and feeds to the topology. Otherwise, we can
let the data producer accumulate S tuples before feeding to the
topology. As Data Producer is usually relatively light-weight
compared to other operators in an application, this kind of
batching has little overhead.

It is rather straightforward to implement the non-blocking
tuple batching algorithm for any grouping policy (Section II-B)
except the key-grouping policy (i.e., fields grouping), as we
can simply group together all the output tuples of an executor.
However, if an executor uses fields grouping, simply putting
output tuples into one batch may cause errors [29] due to
wrongly sending output tuples targeting at different consumers
based key in each tuple. Existing batching techniques rely on a
buffering stage in order to resolve such issue [29]. In contrast,
we develop an algorithm for non-blocking tuple batching of
fields grouping, as illustrated in Algorithm 1.

The basic idea is to store multiple output tuples into a
multi-valued hash map (at lines 10-12), and the fields (i.e.,
keys) used in choosing consumer are re-computed based
on the fields originally declared (at lines 10-11). At line
4, the HashMultimap is the multi-value hash map used to
batch multiple values with the same key (implemented based
on org.apache.storm.guava.collect.HashMultimap). At line 10,
we use a concatenate function to combine the original multiple
fields. In this way, we guarantee the correctness by always
generating the same new key from the same original fields
while batching as many tuples as possible (i.e., it may generate
the same new key for tuples with different original fields which
are can be safely batched together).
Algorithm 1 Non-blocking tuple batching for fields grouping
Input: batch B
1: to: temporary output tuple;
2: to.attributeList: fields grouping attributes;
3: n: the number of executors of the consumer;
4: Initialize cache as an empty HashMultimap;
5: Initialize newkey as an empty object;
6: for each tuple ti of B do
7: /*Perform custom function of the operator.*/
8: to ← function process (ti);
9: /*Combine the values of fields grouping attributes of to into temp.*/

10: temp ← Combine(to.attributeList);
11: newkey ← (hash value of temp) mod n;
12: Store the < newkey, to > pair in cache, where the values of the same key are

maintained in a list L;
13: end for
14: for each key Ki of the key sets of cache do
15: Get the < Ki, L > pair from cache;
16: /*Emit multiple tuples of the same key as a batch.*/
17: emit(< Ki, L >);
18: end for

We now study the impact of tuple batching optimization
by varying S. Figure 12 illustrates the normalized throughput
of Storm and Flink with tuple batching optimization for

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

WC FD LG SD VS TM LR

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t non-batch
batch size (S)=2
batch size (S)=4
batch size (S)=8

(a) Storm

0%

50%

100%

150%

200%

250%

300%

350%

400%

WC FD LG SD VS TM LR

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t non-batch
batch size (S)=2
batch size (S)=4
batch size (S)=8

(b) Flink

Fig. 12: Normalized throughput of tuple batching optimiza-
tion.

0%

100%

200%

300%

400%

500%

600%

700%

800%

WC FD LG SD VS TM LR

N
o

rm
al

iz
e

d
 la

te
n

cy

non-batch
batch size (S)=2
batch size (S)=4
batch size (S)=8

(a) Storm

0%

100%

200%

300%

400%

500%

600%

700%

800%

WC FD LG SD VS TM LR

N
o

rm
al

iz
e

d
 la

te
n

cy

non-batch
batch size (S)=2
batch size (S)=4
batch size (S)=8

(b) Flink

Fig. 13: Normalized latency of tuple batching optimization.
different applications on a single CPU socket. Results are
normalized to the original non-batch setting of Storm and
Flink (denoted as non-batch). As expected, tuple batching
can significantly reduce instruction cache misses and hence
improve the performance of most applications.

With tuple batching, the processing latency of each tuple
may be increased as they are not emitted until all tuples in
the same batch are processed. Figure 13 shows the normal-
ized average latency per tuple under different batch sizes.
Comparing Figures 12 and 13, we observe a clear trade-off
between the throughput and latency. Meanwhile, our non-
blocking tuple batching scheme preserves a sublinear increase
in process latency for most applications, which is due to the
much-improved performance and no explicit buffering delay.

B. NUMA-Aware Executor Placement

In order to reduce the remote memory accesses among
sockets, the executors in a topology should be placed in an
NUMA-aware manner. To this end, we develop a simple yet
effective NUMA-aware executor placement approach.

Definition 1: Executor placement. Given a topology exe-
cution graph T and the set of executors W in T , an executor
placement P(T,k) represents a plan of placing W onto k CPU
sockets. k can be any integer smaller than or equal to the total
number of sockets in a NUMA machine.

Definition 2: We denote the remote memory access penalty
per unit as R, and the total size of tuples transmitted between
any two executors w and w′ (w,w′ ∈W) as Trans(w,w′). Each
placement P(T,k) has an associated cross-socket communica-
tion cost, denoted by Cost(P(T,k)) as shown in Equation 1.
We denote the set of executors placed onto socket x as ξx,
where x = 1, . . . ,k.

0%

40%

80%

120%

160%

200%

240%

WC FD LG SD VS TM LR

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t Single socket (w/o optimizations)
Four sockets (w/o optimizations)
Four sockets (executor grouping)

(a) Storm

0%

40%

80%

120%

160%

200%

240%

WC FD LG SD VS TM LR

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t Single socket (w/o optimizations)
Four sockets (w/o optimizations)
Four sockets (executor grouping)

(b) Flink

Fig. 14: NUMA-aware executor placement.

Cost(P(T,k)) =
k−1

∑
i=1

k

∑
j=i+1

∑
w∈ξi,w′∈ξ j

R∗Trans(w,w′) (1)

Definition 3: The optimal executor placement, denoted by
Popt , is defined as Cost(Popt(T,k)) ≤ Cost(P(T,k)), ∀P ∈ Q,
where Q is the set of all feasible executor placement solutions.

Our optimization problem is to find Popt(T,k) for a given
topology T and a number of enabled sockets k. In our
experiment, we consider k from one to four on the four-socket
server. We now illustrate that this problem can be mapped into
the minimum k-cut problem [32].

Definition 4: The minimum k-cut on weighted graph G =
(V,E) produces a vertex placement plan (Copt) such that V is
partitioned into k non-empty disjoint sets, and the total weight
of edges across disjoint sets is minimized.

Given a topology execution graph T , we can map it to
a directed weighted graph G. A mapping from T to G is
defined as follows: (I) ∀ executor w ∈ W , there is a one-to-
one mapping from w to a vertex in G. (II) For any producer-
consumer (<w,w′>, w,w′ ∈W) message passing relationships
in T , there is a one-to-one mapping to one edge in G. The
communication cost (R∗Trans(w,w′)) is assigned as the edge
weight. The cross-socket communication cost corresponds to
the total weight of all edges crossing the disjoint sets. Thus,
optimizing Copt is equivalent to optimizing Popt .

We use the state-of-the-art polynomial algorithm [32] for
solving this problem by fixing k from one to the number of
sockets in the machine. Then, from the results optimized for
different k values, we test and select the plan with the best
performance.

Figure 14 shows the effectiveness of the NUMA-aware
executor placement. Results are normalized to four sockets
without optimization. The placement strategy improves the
throughput of all applications by 7∼32% and 7∼31% for
Storm and Flink, respectively.

C. Put It All Together

Finally, we put both optimizations, namely non-blocking
tuple batching (S = 8) and NUMA-aware executor placement
together. Figure 15 illustrates the optimization effectiveness
on a single socket and four sockets. Results are normalized
to four sockets without optimization. With four sockets, our
optimizations can achieve 1.3∼3.2x and 1.2∼3.1x improve-
ment on the performance for Storm and Flink, respectively.

0%

100%

200%

300%

400%

500%

WC FD LG SD VS TM LR

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t Single socket (w/o optimizations)
Four sockets (w/o optimizations)
Four sockets (w/ both optimizations)

(a) Storm

0%

50%

100%

150%

200%

250%

300%

350%

400%

450%

WC FD LG SD VS TM LR

N
o

rm
al

iz
e

d
 t

h
ro

u
gh

p
u

t Single socket (w/o optimizations)
Four sockets (w/o optimizations)
Four sockets (w/ both optimizations)

(b) Flink

Fig. 15: Normalized throughput with all optimizations en-
abled.

Although our initial attempts have significantly improved the
performance, there is still a large room to linear scale-up.

VII. RELATED WORK

Performance evaluation for DSP systems: DSP systems
have attracted a great amount of research effort. A number of
systems have been developed, for example, TelegraphCQ [33],
Borealis [27], Yahoo S4 [5], IBM System S [28] and the
more recent ones including Storm [1], Flink [2] and Spark
Streaming [3]. However, little attention has been paid to the re-
search on the key and common design aspects of various DSP
systems on modern multi-core processors. Through profiling
studies on those design aspects in Storm and Flink, we are able
to identify the common bottlenecks of those system design
aspects when running on multi-socket multi-core processors.
There have been a few studies on comparing different DSP
systems. A recent study [34] comparing Flink, Storm, and
Spark Streaming has shown that, Storm and Flink have sub-
second latency with relatively low throughputs, while Spark
streaming has higher throughput at a relatively high latency.
A comparison of S4 and Storm [35] uses a micro-benchmark
to understand the performance issues of the systems regarding
scalability, execution time and fault tolerance. A similar
study [36] has been conducted to compare the performance
characteristics of three DSP systems, including System S, S4,
and Esper. However, those studies still aim at scaling out
setting. In contrast, our study does not focus on the problem
of which system runs faster. Rather, we focus on the common
system design aspects in DSP systems and conduct detailed
profiling on those design aspects of DSP systems on scale-
up architectures. Our findings could be generalized to DSP
systems other than Storm and Flink, and even future DSP
systems.

Optimization for DSP systems: Several recent efforts
have been made with the aim of optimizing distributed DSP
systems. Sax et al. [29] proposed to create an independent
batching buffer for each consumer in order to batch all tuples
that will be processed by the same consumer to avoid wrong
fields grouping problem. However, the additional explicit
buffering delay in every executor may introduce serious
negative impact on the system latency. T-Storm [6] assigns/re-
assigns executors according to run-time statistics in order to
minimize inter-node and inter-process traffic while ensuring
load balance. However, based on our study, executor placement

inside a single machine also needs to be considered due to the
NUMA effect.

Database optimizations on scale-up architectures: Scale-
up architectures have brought many research challenges and
opportunities for in-memory data management, as outlined in
recent surveys [37], [38]. There have been studies on optimiz-
ing the instruction cache performance [39], [40], the memory
and cache performance [41], [42], [43], [44] and NUMA [9],
[10], [45]. In the following, we focus on two kinds of studies
that are closely related to our optimization techniques. Related
to the tuple batching optimization, StagedDB [46] reveals that
the interference caused by context-switching during the exe-
cution results in high performance penalties due to additional
conflict and cache misses. They hence introduced a staged de-
sign for DBMS, which breaks down DBMS into smaller self-
contained modules. The parallel pipeline processing design of
DSP systems also has a similar serious problem of frequent
instruction cache misses. The design of non-blocking tuple
batching is inspired by StagedDB [46]. Query deployment on
multi-core machines [45] proposed recently is related to our
study of NUMA-aware executor placement. We apply a similar
idea to query operator placement in DSP systems in order to
minimize the impact of NUMA.

VIII. CONCLUSIONS

This paper revisits three common design aspects of modern
DSP systems on modern multi-socket multi-core architectures,
including a) pipelined processing with message passing, b) on-
demand data parallelism, and c) JVM-based implementation.
Particularly, we conduct detailed profiling studies with micro
benchmark on Apache Strom and Flink. Our results show
that those designs have underutilized the scale-up architec-
tures in these two key aspects: a) The design of supporting
both pipelined and data parallel processing results in a very
complex massively parallel execution model in DSP systems,
which causes high front-end stalls on a single CPU socket;
b) The design of continuous message passing mechanisms
between operators severely limits the scalability of DSP
systems on multi-socket multi-core architectures. We further
present two optimizations to address those performance issues
and demonstrate promising performance improvements.

ACKNOWLEDGEMENT

This work is partially funded by a MoE AcRF Tier 1 grant
(T1 251RES1610), a startup grant of NUS in Singapore and
NSFC Project 61628204 in China. Shuhao Zhang’s work is
partially funded by the Economic Development Board and the
National Research Foundation of Singapore.

REFERENCES

[1] “Apache Storm,” http://storm.apache.org/.
[2] “Apache Flink,” https://flink.apache.org/.
[3] M. Zaharia and et al., “Discretized Streams: Fault-tolerant Streaming

Computation at Scale,” in SOSP, 2013.
[4] “Apache Samza,” http://samza.apache.org/.
[5] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed

Stream Computing Platform,” in ICDMW, 2010.
[6] J. Xu and et al., “T-Storm: Traffic-Aware Online Scheduling in Storm,”

in ICDCS, 2014.

[7] L. Aniello and et al., “Adaptive online scheduling in storm,” in DEBS,
2013.

[8] B. Peng and et al., “R-Storm: Resource-Aware Scheduling in Storm,” in
Middleware, 2015.

[9] V. Leis and et al., “Morsel-driven Parallelism: A NUMA-aware Query
Evaluation Framework for the Many-core Age,” in SIGMOD, 2014.

[10] Y. Li and et al., “NUMA-aware algorithms: the case of data shuffling,”
in CIDR, 2013.

[11] “SGI UVTM 300H System Specifications,” https://www.sgi.com/pdfs/
4559.pdf.

[12] J. Gray, Benchmark Handbook: For Database and Transaction Process-
ing Systems. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1992.

[13] A. J. Awan and et al., “Performance Characterization of In-Memory
Data Analytics on a Modern Cloud Server,” in BDCloud, 2015.

[14] S. Sridharan and J. M. Patel, “Profiling R on a Contemporary Processor,”
Proc. VLDB Endow., 2014.

[15] Intel 64 and IA-32 Architectures optimization Reference Manual.
http://www.intel.sg/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf.

[16] J. Ghaderi and et al., “Scheduling Storms and Streams in the Cloud,” in
SIGMETRICS, 2015.

[17] “Performance Inspector,” http://perfinsp.sourceforge.net.
[18] “Classmexer agent,” http://www.javamex.com/classmexer/.
[19] “Intel VTune Amplifier,” https://software.intel.com/en-us/

intel-vtune-amplifier-xe.
[20] “Fraud-detection,” https://pkghosh.wordpress.com/2013/10/21/

real-time-fraud-detection-with-sequence-mining/.
[21] “Data request to 98 world cup web site,” ita.ee.lbl.gov/html/contrib/

WorldCup.html.
[22] “Intel lab data,” http://db.csail.mit.edu/labdata/labdata.html.
[23] G. Bianchi and et al., “On-demand time-decaying bloom filters for

telemarketer detection,” SIGCOMM Comput. Commun. Rev., 2011.
[24] Y. Zheng and et al., “Mining Interesting Locations and Travel Sequences

from GPS Trajectories,” in WWW, 2009.
[25] A. Arasu and et al., “Linear Road: A Stream Data Management

Benchmark,” in VLDB, 2004.
[26] D. Abadi and et al., “Aurora: a new model and architecture for data

stream management,” The VLDB Journal, vol. 12, no. 2, 2003.
[27] D. J. Abadi and et al., “The Design of the Borealis Stream Processing

Engine,” in CIDR, 2005.
[28] N. Jain and et al., “Design, Implementation, and Evaluation of the Linear

Road Bnchmark on the Stream Processing Core,” in SIGMOD, 2006.
[29] M. J. Sax and M. Castellanos, “Building a Transparent Batching Layer

for Storm,” 2014.
[30] “Uppsala University Linear Road Implementations,” http://www.it.uu.se/

research/group/udbl/lr.html.
[31] D. Detlefs and et al., “Garbage-first Garbage Collection,” in ISMM,

2004.
[32] O. Goldschmidt and D. S. Hochbaum, “A Polynomial Algorithm for the

k-Cut Problem for Fixed k,” Mathematics of Operations Research.
[33] S. Chandrasekaran and et al., “Telegraphcq: Continuous dataflow pro-

cessing for an uncertain world,” in CIDR, 2003.
[34] “Benchmarking Streaming Computation Engines at

Yahoo!” https://yahooeng.tumblr.com/post/135321837876/
benchmarking-streaming-computation-engines-at.

[35] M. R. Mendes and et al., “Performance Evaluation and Benchmarking,”
R. Nambiar and M. Poess, Eds. Berlin, Heidelberg: Springer-Verlag,
2009, ch. A Performance Study of Event Processing Systems.

[36] J. Chauhan and et al., “Performance Evaluation of Yahoo! S4: A First
Look,” in 3PGCIC, 2012.

[37] K.-L. Tan and et al., “In-memory Databases: Challenges and Opportuni-
ties From Software and Hardware Perspectives,” SIGMOD Rec., 2015.

[38] H. Zhang and et al., “In-Memory Big Data Management and Processing:
A Survey,” TKDE, 2015.

[39] J. Zhou and K. A. Ross, “Buffering Databse Operations for Enhanced
Instruction Cache Performance,” in SIGMOD, 2004.

[40] S. Harizopoulos and A. Ailamaki, “Improving Instruction Cache Perfor-
mance in OLTP,” ACM Trans. Database Syst., 2006.

[41] A. Ailamaki and et al., “DBMSs on a Modern Processor: Where Does
Time Go?” in VLDB, 2009.

[42] B. He and et al., “Cache-conscious automata for xml filtering,” in ICDE,
2005.

[43] P. A. Boncz and et al., “Database Architecture Optimized for the new.
Bottleneck: Memory Access,” in VLDB, 1999.

[44] C. Balkesen and et al., “Main-Memory Hash Joins on Multi-Core CPUs:
Tuning to the Underlying Hardware,” in ICDE, 2013.

[45] J. Giceva and et al., “Deployment of Query Plans on Multicores,” Proc.
VLDB Endow., 2014.

[46] S. Harizopoulos and A. Ailamaki, “A Case for Staged Database
Systems,” in CIDR, 2003.

