J. Parallel Distrib. Comput. 120 (2018) 395-404

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Many-core needs fine-grained scheduling: A case study of query A
processing on Intel Xeon Phi processors

Xuntao Cheng ®*, Bingsheng He ®, Mian Lu ¢, Chiew Tong Lau ¢

2 LILY, Interdisciplinary Graduate School, Nanyang Technological University, Singapore

b School of Computing, National University of Singapore, Singapore

¢ Huawei Singapore Research Center, Singapore

4 College of Professional and Continuing Education, Nanyang Technological University, Singapore

HIGHLIGHTS

e We find that the state-of-the-art implementations of in-memory database operators suffer severely from memory stalls. Also, such implementations
under-utilize available hardware resources.

e To improve the performance of in-memory database processing, we argue a finegrained approach to decompose an operator into phases and achieve
concurrent executions of two independent phases from different operators by co-scheduling them. This co-scheduling approach is also applicable on
operators.

o The operator-based co-scheduling approach reduces the execution time by 42%. The fine-grained scheduling approach further reduces the execution
time by 47%.

ARTICLE INFO ABSTRACT

Article history:

Received 9 January 2017
Accepted 17 September 2017
Available online 5 December 2017

Emerging many-core processors feature very high memory bandwidth and computational power. For
example, Intel Xeon Phi many-core processors of the Knights Corner (KNC) and Knights Landing (KNL)
architectures embrace 60 to 64 x86-based CPU cores with 512-bit SIMD capabilities and high-bandwidth
memories like the GDDR5 on KNC and on-package DRAMs on KNL. In this paper, we study the perfor-
mance main-memory database operators and online analytical processing (OLAP) on such many-core
architectures. We find that even the state-of-the-art database operators suffer severely from memory
stalls and resource underutilization on those many-core processors. We argue that a software approach
decomposing a coarse-grained operator into fine-grained phases and executing two independent phases
with complementary resource requirements concurrently can address this problem. This approach allows
more fine-grained control of resource utilization. Our experiments demonstrate significant performance
gain and high resource utilization achieved by our proposed approaches on both KNC and KNL.

© 2017 Elsevier Inc. All rights reserved.

Keywords:

In-memory query processing
Many-core processor
Fine-grained scheduling

1. Introduction

Adapting the design and implementation of database systems
to the advent of many-core processors has been a promising trend
to optimize the performance of in-memory OLAP systems. The
recently emerging Intel Xeon Phi has become a hardware plat-
form for researchers to explore the future trend of many-core
processors. Due to significant architectural differences to multi-
core CPUs, Xeon Phi has brought valuable research opportuni-
ties. In fact, it has been used for many applications including

* Corresponding author.
E-mail addresses: xcheng002@ntu.edu.sg (X. Cheng), hebs@comp.nus.edu.sg
(B. He), lumian@huawei.com (M. Lu), asctlau@ntu.edu.sg (C.T. Lau).

https://doi.org/10.1016/j.jpdc.2017.09.005
0743-7315/© 2017 Elsevier Inc. All rights reserved.

high-performance computing and scientific computing [5,18]. In
the field of databases, research efforts have been made to optimize
the performance of database operators [13,26,11,22,7,6]. These
efforts take advantage of Xeon Phi’s key features including its many
cores and advanced Vector Processing Units (VPUs) supporting
a rich set of 512-bit wide SIMD instructions. In this paper, we
investigate whether and how we can further improve the query
processing performance on such many-core architectures.

We start with a detailed profiling study on the state-of-the-
art implementations of database operators on Xeon Phi of the
Knights Corner architecture (KNC) [26]. We find that these op-
erators suffer from significant memory stalls and underutilized
memory bandwidth. More than one-third of all cycles are spent in
waiting for memory accesses. And, the utilized memory bandwidth

https://doi.org/10.1016/j.jpdc.2017.09.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2017.09.005&domain=pdf
mailto:xcheng002@ntu.edu.sg
mailto:hebs@comp.nus.edu.sg
mailto:lumian@huawei.com
mailto:asctlau@ntu.edu.sg
https://doi.org/10.1016/j.jpdc.2017.09.005

396 X. Cheng et al./]. Parallel Distrib. Comput. 120 (2018) 395-404

Table 1
Hardware specifications.

Intel Xeon Phi KNC

Intel Xeon Phi KNL

Core 60 in-order cores 64 out-of-order cores
Frequency 1.05 GHz 1.3-1.5 GHz

L1 cache 32 kB data cache and instruction cache

L2 cache 512 kB per core 1 MB per tile (2 cores)
Interconnect Ring 2D mesh

Memory GDDR5 DDR4 and on-package MCDRAM
VPU 512-bit KNC-specific SIMD ISA AVX-512

is much smaller than the peak bandwidth. The reasons are two-
fold. Firstly, in-order pipelines have to be stalled while waiting
for long-latency memory requests. Many operators with random
memory access patterns can hardly take advantage of prefetch-
ing and local caches to reduce the long memory access latency.
Secondly, although concurrently executing multiple threads of an
operator can potentially improve the instruction per cycle (IPC) per
core by exploiting Thread Level Parallelism (TLP), executing many
threads with the same or similar resource requirements (regarding
computation and memory bandwidth) concurrently may cause
resource contentions rather than improving hardware utilization.
Thus, we need to schedule threads carefully with complimentary
hardware resource requirements.

To address these issues, we propose to co-schedule two in-
dependent operators for concurrent execution on the many-core
processor. The involved operators should require complimentary
resources so that they can be executed together achieving a higher
performance without jeopardizing the performance of each other
severely. While operator co-scheduling can improve the resource
utilization to some extent, an operator usually has multiple code
regions (or phases) with different hardware resource require-
ments. We further propose a fine-grained approach to decompose
an operator into phases and achieve concurrent execution of two
independent phases.

We evaluate our proposed approaches on both KNC and KNL.
Compared with KNC, KNL has out-of-order cores with higher
frequencies connected to a 2D mesh, instead of in-order ones
connected to a ring. KNL also contains 16 GB on-package DRAM
with very high memory bandwidth. Because of these improved
hardware features, we expect KNL to have better performance on
memory accesses. Our experiments show that (1) the operator-
based scheduling approach reduces the execution time by 52% and
29% on KNC and KNL, respectively; (2) fine-grained scheduling on
phases demonstrates much better resource utilization and further
reduces the execution time by 42% and 11% on KNC and KNL,
respectively.

The remainder of this paper is organized as follows. In Section 2,
we introduce the background and the state-of-the-art design and
implementation of database operators on Xeon Phi, and our obser-
vations which motivate our study. In Section 3, we introduce the
design and implementation of the system, including details of the
decomposition method. In Section 4, we present the details of our
performance model. Evaluations are presented in Section 5. Finally,
we discuss additional related work in Section 6 and conclude in
Section 7.

2. Background and motivation

Xeon Phi Many-core Architecture. We first use KNC for our
study, and later extend the study to KNL in Section 5.3.3. The spec-
ifications of KNC and KNL are summarized in Table 1. On KNG, there
are 60 in-order cores, sharing the same GDDR5 main memory (8 GB
in total). Each core has its private L1 and L2 caches. All L2 caches
are connected through a high-speed shared bus fabric. It features
hardware prefetchers at each L2 cache and supports software

prefetching at both caches. Each core has a VPU to process 512-
bit SIMD instructions. A single SIMD instruction can process up to
16 32-bit data or 8 64-bit data. There are four hardware threads
on each core. Instructions are issued from these four hardware
threads in a round-robin fashion. At each cycle, when some threads
are waiting for outbound data requests, the core pipeline issues
available instructions from other threads. By properly scheduling
multiple threads on the same core, the core pipeline’s utilization
can be potentially improved. Different to KNC, KNL features out-
of-order cores and a slightly different cache organization. More-
over, KNL is available as a stand-alone processor connecting to
DDR4 main memory and the on-package Multi-channel DRAM
(MCDRAM) which has very high memory bandwidth. We experi-
mentally studied the impacts of these hardware features on main-
memory hash join algorithms in existing work [13,6].

Database Operators on Xeon Phi. In-memory databases
on emerging architectures have been a fruitful research area
(e.g., [29,12,3,14]). Database operators have been re-designed and
evaluated extensively on multi-core CPUs, such as hash joins [1,2]
and table scans [17,8]. For additional related work, we refer readers
to a more recent survey on in-memory databases [30].

For hash joins, Schuh et al. summarized and studied thirteen
hash join algorithms on multi-core processors and proposed a
NUMA-aware scheduling and partitioning optimizations for parti-
tioned hash joins [28]. They also modeled the impacts of hardware-
specific parameters for partitioned hash joins on multi-core CPUs.
On KNC, Jha et al. utilized the 512-bit SIMD for key hashing
calculations, and the materialization of matched tuples for in-
memory hash joins [13]. Polychroniou et al. presented the vec-
torized designs and implementations of database operators using
many advanced SIMD operations such as gather/scatter intrinsics
available on Xeon Phi [26]. To the best of our knowledge, Polychro-
niou’s design and implementations are the state-of-the-art for in-
memory databases on Xeon Phi. We refer readers for more details
of these implementations in their original paper [26]. Meanwhile,
we have demonstrated a prototype main-memory database on
KNC [7] and experimentally revisited the software optimizations
and algorithmic designs of hash join algorithms on KNL [6].

Motivations. To study whether the state-of-the-art implemen-
tation scales well and fully utilize hardware resources on Xeon Phi,
we start with a detailed profiling study on each operator on KNC
using the state-of-the-art implementations [25]. More experimen-
tal setup can be found in Section 5.

Observation 1: the state-of-the-art implementations suffer from
severe memory stalls on KNC. Among all these state-of-the-art im-
plementations, we have a common observation that cores have
significant percentages of stalled cycles, during which they are
waiting for long-latency memory accesses and supplying no in-
struction to the pipelines for executions. Fig. 1(a) shows the av-
erage breakdown of cycles per core under the optimal settings of
the operators on KNC. We have tuned each operator according to
the previous study [26]. In the figure, “memory instructions” refers
to the total number of cycles used in issuing memory instructions.
“computation instructions” refers to the number of cycles while
the pipeline is executing computation instructions. All the rest
cycles are counted in “stalls”. Stalls contribute to over 60% for scan,

X. Cheng et al. /]. Parallel Distrib. Comput. 120 (2018) 395-404 397

[] Memory instructions
100

754

50

25 A

Cycles breakdown (%)

Scan Sort Hash join

(a) Breakdown of cycles.

120 q

100 -
80
60 -

404
204

Peak bandwidth (GB/s)

Peak Scan
(b) Bandwidth.

Sort Hash join

Fig. 1. Observations on KNC.

and about 40% for sort and hash join. For all these operators, the
percentage of stalls is significant. While the latency of a compu-
tation instruction like the SIMD comparison is only four cycles, it
takes about 250 cycles to read from the main memory.

Observation 2: the state-of-the-art implementations under-utilize
the memory bandwidth on KNC. To evaluate the utilization of the
main memory bandwidth, we have measured their peak band-
width during their executions through profiling using a STREAM
memory bandwidth benchmark. We modified the benchmark by
replacing ordinary memory read and write instructions with their
SIMD counterparts. Fig. 1(b) shows the bandwidth comparisons,
where “peak” refers to the results achieved using our modified
benchmark. Scan is almost close to the peak, whereas sort and hash
join have left a non-trivial part of the bandwidth unused, compared
with the peak. We also observed significant memory bandwidth
underutilization for other operators.

Even with various hardware-conscious optimizations [26], even
the state-of-the-art database operators suffer severely from mem-
ory stalls and resource underutilization. On the other hand, many-
core processors like Xeon Phi feature very high memory bandwidth
and computational power. Our profiling study demonstrates the
opportunities that, the overall hardware resource can potentially
support more concurrently running workloads, utilizing the idled
resources when only one operator is being executed. Thus, we are
motivated to improve query processing performance by schedul-
ing multiple operators/tasks for concurrent executions.

3. System design and implementation
3.1. System overview

Fig. 2 shows the system overview of query processing on many-
core processors. There are three major components: Candidate
Phases Identification, Candidate Phase Graph Processing, and
Phase Scheduling. The first two components are offline, and the
last component is online.

The Candidate Phases Identification component identifies the
above discussed finest granularity of code regions. We identify
code regions of this granularity as SIMD sections. Each such section
is a candidate phase. Next, we measure the resource requirements
of each candidate phase and apply the concept of Resource Vectors
(RVs) to represent the resource requirements in both the pipeline
and memory bandwidth.

The algorithm of each operator is expressed as a candidate
phase graph, where each candidate phase is a vertex and data
dependencies among them are captured as edges. To maximize

scheduling profit, we collapse some candidate phases into a single
phase according to certain conditions. After the collapsing process,
each renaming vertex is transformed into a phase. Given input
workload consisting of multiple operators, we apply this method to
generate a set of phases and schedule these phases for executions.

We choose to co-schedule operators/phases to maximize the
average IPC per core of co-scheduling. The IPC of co-scheduling can
be obtained from our performance model. We propose a greedy
algorithm to maximize this IPC per core. When there is no phase
currently being executed on the processor, we select a pair of
phases with the highest estimated IPC from the set of candidate
phases in the pool and then schedule it for concurrent executions.
If there is already a phase being executed, we choose to select
another phase for execution. To predict the average IPC during ex-
ecutions, we extend an existing Markov chain-based performance
model [31]. The original model is designed for many-core GPU
architecture while taking the impact of memory interference into
account. We find that the model captures well on our goal of phase
co-scheduling, as shown in our experiments.

In the following, we introduce the details on resource vector
and decomposition.

3.2. Resource vectors

With profiling results of query processing on Xeon Phi, we have
identified two main hardware resources: the pipeline on each core
and memory bandwidth shared by all the cores. The pipeline on
each core is shared by all hardware threads scheduled on the same
core. The previous study [10] uses a vector structure to capture the
requirements for the CPU and memory bandwidth. We define it to
be aresource vector of the following two dimensions. The definition
and methodology can be applied to both KNC and KNL.

o Pipeline requirement (RV, = gzt x 100%) is the ideal IPC
of a single thread, when no threads are interfering it. It represents
the usage of a core’s pipeline of a thread during its execution.

e Bandwidth requirement (RV;, = #m x 100%)
is the ideal percentage of a thread’s demanded usage of memory
bandwidth in the total available bandwidth per thread when no
threads are interfering it. Because all the threads share memory
controllers, the actual bandwidth available to each thread is af-
fected by the number of concurrent threads.

With the definition of resource vector, we can further deter-
mine whether two threads are complementary in the two di-
mensions of resource requirement. We apply the same idea to
co-scheduling two scheduling units (either operators or phases).

398 X. Cheng et al. /]. Parallel Distrib. Comput. 120 (2018) 395-404

s Candidate Phases
ource ; ;
Codes Candldajt.e Pf_mases phases Candidate Pha.se »| Phase Scheduling
Identification Graph Processing
—~ - - — A
—~ - = —_
. Identify Measure = Collapse
Identif . - Perf
et;]alrr\i/esrznc > SIMD Resource [O-)M ™ candidate erl\(j(l;r;\;nce
sections Vectors Generate the candidate phase graph phases

Fig. 2. System overview.

3.3. Fine-Grained operator decomposition

In this section, we introduce how we decompose operators into
phases. We first take the source codes of the operators’ implemen-
tations as input. Then, we identify candidate phases by examining
synchronization barriers and SIMD sections.

SIMD Sections. Although a segment of code can be decomposed
into smaller and smaller pieces until there is only one instruction
in a piece, there exists a certain point that beyond which no
performance improvement is possible by further decomposing the
code or the overhead of decomposition outweighs the potential
benefits. Thus, it is important to identify the overhead of decompo-
sition as we decompose the code. When using SIMD instructions, a
typical pattern of the state-of-the-art implementations is that the
data must be loaded from the memory to SIMD registers before
any computation can take place. Read, and its following com-
putation instructions are ordered in a way that each instruction
is dependent on its predecessor. If we split them into multiple
short sections, each one of them has to invoke extra memory read
instruction, and memory writes instructions to reload and store
intermediate data, except that the first short section only needs
to invoke memory write instructions to store its output. These
short sections are still ordered by their data dependencies. Thus,
the added extra memory read and write instructions are all on
the critical path. Considering that the underlying architecture is
in-order if we split the original section in this way, the IPC of
the thread is going to be reduced significantly because of these
expensive memory accesses. Thus, we consider such a section that
cannot benefit from further decomposition as the finest granularity
of code regions.

To identify such SIMD sections in source codes, we start with the
memory read instructions. Firstly, we only consider instructions
that are very likely reading data from the main memory because
of the high memory access latency. Secondly, each memory read
instruction starts a life cycle of the data it loads. Each such life cycle
contains multiple computation instructions processing the loaded
data. Regarding of these life cycles, there are two general cases:
non-overlap and overlap cycles. In the first non-overlap case, the
entire section works on the same data, without reading other data
into SIMD registers. We can consider a life cycle of this case as a
SIMD section. In the second overlap case, the life cycles of at least
two loaded SIMD registers overlap with each other. We can cut the
union of life cycles into multiple SIMD sections at each memory
read instruction so that each section only has read instructions at
the very beginning. For the same reason explained above, these
SIMD sections invoke extra memory read instructions which are on
the critical path and decrease the IPC. Thus, for this overlap case,
we take the union of life cycles as a SIMD section without splitting
it into more sections.

Decomposition method. Each SIMD section is a candidate
phase. After identifying them, we formulate the SIMD implemen-
tation of each operator as a graph of candidate phases. Each can-
didate phase is a vertex in the graph. Edges capture the control

flow among such vertices. If SIMD section B follows SIMD section
A in the execution, there is an edge from A to B in the graph. Then,
we collapse candidate phases together if they do not satisfy the
condition to be phases. After this collapsing, each candidate phase
remaining in the graph becomes a phase we need for our proposed
query scheduling.

For two candidate phases s; and s;; 1, connected by an edge from
s; to s;11 in the graph, they are collapsed to a single phase if they do
not satisfy the following conditions. We refer these two conditions
as condition one and two in the following discussions, respectively.

L H G~ G H = Dc, or HMSi - My, ” > Dy
2. Ts; > Tschedule and T5i+1 > Tschedule

Cs; and My, denote the computation and memory requirements
of s;, respectively. Ty, refers to the ideal execution time of candidate
phase s;. Tscpedule is the minimum time needed for the scheduler to
perform one scheduling operation. These conditions mean that two
candidate phases should be collapsed together in two scenarios. If
the differences in their resource requirements are not big enough
or the execution time of a candidate phase is too small, it is not
worthwhile for the scheduler to act between two such phases.
Thus, they should be collapsed to be a single phase. Dc and Dy,
are two predefined thresholds for the differences in computational
and memory resources. We heuristically set Dc and Dy, to 10% and
measure Tscpeque €Xperimentally.

For each operator in databases, we first identify SIMD sections
to build a graph of candidate phases. Then, we collapse candidate
phases into final phases, according to the method explained above.

Histogram. Histogram has two candidate phases, as shown in
Fig. 4. The first candidate phase is in its main loop, involving the
loading of keys, calculating hash indexes, and updating counters
of each hash bucket. All these computational tasks determine that
this candidate phase requires significant pipeline resources. The
second candidate phase reduces the counter for each hash bucket.
Due to its simplicity, the second candidate phase only contains
2 x #partitions SIMD instructions, where #partitions is the total
number of partitions. Thus, this second candidate phase is too short
to satisfy condition two. Thus, we collapse them into a single phase.
Fig. 5(a) and Fig. 5(b) illustrate the candidate phase graph before
and after this collapsing, where these two candidate phases are
denoted as Hy and Hy, respectively.

Scan. Although the implementation of scan is short, it has
two candidate phases. Assuming the scan is a range selection in
which two SIMD comparisons are needed at each iteration, 50%
of instructions in the first phase are computational instructions.
The second phase consists of memory reads and streaming stores,
with no computational instructions. Fig. 3 shows the RVs of these
two candidate phases where they are denoted as Scang and Scany,
respectively. The difference between their RVs is very small. Scang
requires about 6% more pipeline than Scan;. Thus, they do not
satisfy the condition one. Thus, these two candidate phases are
collapsed.

X. Cheng et al. /]. Parallel Distrib. Comput. 120 (2018) 395-404 399

XYY Memory bandwidth requirement
R ENENENENENEY

Il Pipeline requirement

~
6,1

N
[6)]

Resource Vectors (%)
(&)
o

N
SEN
N N
N N
"
N

Scani %
Scan M

o ~ C cC T O £ I °
<= £ kel = - 2 o
s S8 L8358t xT=
T ® 8 ot @ F

o o2 P S

o L 5 2o

588"

< < <

Fig. 3. Resource vectors obtained on KNC.

for (i=0;i<size;i+=16){

SIMD load keys[i];] Ho:
SIMD hash keys[i]; Calculate
SIMD update counters; histogram
}
for (p=0;p<partitions;++p){ H
SIMD load counters[p]; B
SIMD reduction to accumulate counters; Merge
counters

Fig. 4. SIMD sections of histogram.

size/16

partitions
(a) Before collapsing. (b)
After
collaps-
ing.

Fig. 5. Candidate phase graph of histogram.

Aggregation. Aggregation has the same first candidate phase
with the scan. The second candidate phase in aggregation conducts
arithmetic operators on the loaded keys, instead of comparisons
against the predicates like that in the scan. The third candidate
phase is a reduction to accumulate the partial results calculated
by each thread. Because the third phase has only one addition
operation, its length does not satisfy the condition 2. It is collapsed
with the second candidate phase. The RVs of the first and the sec-
ond candidate phases, Aggregation, and Aggregation,, are shown
in Fig. 3. Like candidate phases in the scan, their differences are
not big enough to satisfy condition 1. Thus, these three candidate
phases are all collapsed together.

Sort. Sort has two candidate phases: histogram and partition.
Their RVs are shown in Fig. 3. Partition requires about 7% more

//For all threads:

SIMD histogram (R);

SIMD histogram (S);

SIMD partition (R);

SIMD partition (S);

//For each thread:

for (f=0;fanout[f]!=1;++f){

for (p=0;p<partitions[f];++p){

SIMD histogram (R[p]); |
SIMD histogram (S[p]);
SIMD partition (R[p]);
SIMD partition (S[p]);

Ho: Calculate histograms of
global relations

Po: Partition global relations

H;: Calculate histograms of
thread-local relations
P,: Partition thread-local
relations

}

}

//For each thread:

for (p=0;p<partitions;++p){
SIMD build (R[p]);] B: Build hash tables
SIMD probe (S[p]);] Pr: Probe relations

Fig. 6. SIMD sections of hash join.

memory bandwidth than the histogram. Although both these two
candidate phases access the entire input relations, the achieved
bandwidth is much lower than that of the scan. This is mainly
because both these two phases have frequent random memory
access, which can only achieve a low memory bandwidth. The
difference between their RVs is small than the threshold D so that
they do not satisfy the condition 1. Thus, these two candidate
phases are collapsed.

Partition. Partition has only one SIMD section and thus only one
candidate phase. This phase is a loop containing several parts: key
hashing, conflicts detection, temporal store in buffer and materi-
alizations. Conflicts detection and following phases depend on the
output of key hashing.

Hash join. Fig. 6 illustrates SIMD sections of hash join. Because
we have already collapsed candidate phases in histogram and
partition, we show them as standalone candidate phases in Fig. 6.
Because histogram requires only about 8% more pipeline and about
7% less memory bandwidth than partition as shown in Fig. 3, they
do not satisfy the condition one. Thus, we collapse histogram and
its following partition. Because Hy and Py mostly read the main
memory while H; and P; have some inputs residing in local caches,
they have significantly different memory behaviors. We refer the
collapsed Hy + Py and H; + P; as HJ y, HJ 1, respectively. As shown in
Fig. 3, H] , requires more than 30% of the memory bandwidth than
HJ,. Thus, we do not further collapse HJ, and HJ,. Build and probe
also have very similar RVs as shown in Fig. 3, because they both
operate on cache-resident data. Thus, they do not satisfy condition
one. We collapse build and probe into a single phase. The difference
of the memory requirements of H/; and HJ, is about 14%. Thus, we
also do not collapse HJ; and HJ,.

This decomposition of hash join is in line with its algorithmic
design. Partitioned hash join has three parts. The first part, corre-
sponding to HJ, is global partitioning, where input relations are
split into thread-local partitions. Each thread has its partitions of
the input inner and outer relations. In the second part, correspond-
ing to HJ,, each thread splits its thread-local partition into a set
of cache-resident small partitions. The third part is built & probe,
corresponding to HJ,, which operates on such small partitions (see
Fig. 7).

4. Performance model

The decision of co-scheduling includes which two workloads to
run together and the numbers of threads for the two workloads

400 X. Cheng et al./]. Parallel Distrib. Comput. 120 (2018) 395-404

Z; fanout(f) * partitions(f) partitions

OO0
S OIEE

(a) Before collapsing.

Hlo HJ;

HJ,

(b) After collapsing.

Fig. 7. Candidate phase graph of hash join.

Table 2
List of notions.
Notion Description
y The percentage of memory requests in the instruction queue.
N The number of co-located threads on a core.
Pi,; The probability that a thread transits to state j from state i.
P; The probability that a thread i is in the ready state.
L The average memory access latency (cycles).

(i.e., mixing ratio). We develop a performance model to predict the
performance in the form of IPC for co-scheduling. We first model
the IPC of each core assuming no interference among threads.
We then extend the model with the impacts of interference (see
Table 2).

A common pattern for query processing is that computations
follow memory retrievals of the data to be processed. Computation
instructions cannot be issued when their input operands have not
been retrieved from the memory. Thus, regardless of whether the
processor is in-order like KNC or out-of-order like KNL, a thread
has to remain in the idle state when it is waiting for outbound
memory requests. When the data is retrieved, the thread transits
to the ready state. While y is the percentage of memory requests
in the instruction queue, 1 — y is the percentage of computational
instructions. Each computation instruction takes only one cycle to
issue while a memory request needs to wait for L cycles on average.
Assuming a thread is currently in the idle state, we have two cases
for its transitions:

e It remains in the idle state waiting for outbound memory
requests with the probability of Py .y = L*}/Liiﬁ—y
e It transits to the ready state once the memory request is

returned with the probability of Py g = 1 — Pw_w.

A thread remains in the ready state when it is waiting for the
core’s pipeline to issue its instruction, or when the next instruction
issued is a computational one with data already loaded in the
registers. If the thread issues a memory request, which has a long
latency, it has to transits to the idle state. Because the pipeline picks
threads to issue instructions in the round-robin manner among N
threads on a core, a thread has the chance of getting its instruction
issued with the probability of % and the probability of waiting
for the pipeline to execute the instruction from the thread is %
Assuming a thread is currently in the ready state, we have two
cases for its transitions (see Fig. 8):

e [t remains in the ready state with the probability of Pr_.g =
M1+ 2 x(1—y)

. Wait/issue a
Wait for memory Memory accesses computation
accesses returned . P .

instruction

e
Ready)
v

Issue a long-latency
memory access

Fig. 8. Thread state transition diagram.

e [t transits to the idle state once a memory request is issued
with the probability of P,y = 1 — Pg_k.

The state of a thread transits at each cycle during executions.
With the above-explained probabilities derived, we can obtain the
state transition matrix according to the Markov chain theory [21].
Further, we can derive the probability of a thread i in the ready
state, P;, by calculating the steady-state vector of the corresponding
state transition matrix. On a core with N threads, we can derive
its IPC using Eq. (1). In our model, the pipeline can issue one
instruction when there is at least one thread with its instruction in
the ready state. We validate the accuracy of this model in Section 5.

N
H)Cpercore:l_l_[(l_Pi)- (1)
i=1

We now extend our model with the impact of interference. On
KNC, we identify that the memory interference is a key source
of performance interference. More outstanding memory requests
usually lead to higher latency because of memory contention.
Although a comprehensive analytical model is feasible to capture
the impact, this paper adopts a simple and still accurate approach,
as demonstrated in the experiments. We adopt a linear memory
latency model to account for the memory contention effects [31].
We calculate L as L = ag-x+ bg, where x is the number of outstand-
ing memory requests, and ap and by are the constant parameters
in the linear model. We follow the previous micro-benchmarks on
varying the number of outstanding memory requests [31] to obtain
ap and by. On KNL, the impact of contentions on the memory access
latency is similar to the findings by Ramos et al. [27].

Please note that there is no significant pipeline interference. On
KNC, the pipeline takes interleaved instructions from all threads.
The multi-threaded implementations of query processing are
mostly data-parallel, the pipeline is not going to be blocked by
interleaved instructions.

5. Evaluations
5.1. Experiment setup

Hardware and software configuration. All of our experiments
are first executed natively on an Intel KNC of the 5110P model
and later extended to Intel KNL, the specifications of which are
shown in Table 1. Intel ICC 15.0.3 is used for compilation, with -
03 optimization enabled. We use Intel VTune Amplifier XE 2015 to
obtain hardware performance counters for profiling. KNC and KNL
run native Linux 2.6 and 3.10 natively.

Workload. To evaluate the proposed performance model, we
generate relations for each operator and phase. For scan and sort,
the input relation consists of 128 million 8-byte records with
4-byte keys and 4-byte payloads. Keys are uniformly distributed.
The default selectivity for the scan is set as 1%. We also vary this

X. Cheng et al. /]. Parallel Distrib. Comput. 120 (2018) 395-404 401

o
o

e
T
%

©o o
>~ o

Predicted IPC per core
o
N

o
=}

02 04 06 08 1.0
Measured IPC per core

o
o

(a) Operator-level.

1.0 -

N
A o o
L
N
L.]
-
-
.

Predicted IPC per core
o
o

o
o

1

02 04 06 08 1.0
Measured IPC per core
(b) Phase-level.

o
o

Fig. 9. Comparisons of measured and predicted IPC per core on KNC.

selectivity setting as a sensitivity study. The same relation is used
as the outer relation for the hash join. The inner relation for hash
join consists of 12.8 million records. This step is limited by the
KNC’s main memory capacity. For evaluations of TPC-H queries, the
scale factor (SF) is set as five due to memory limitations of KNC.
In this experiment, we have implemented three TPC-H queries:
Q9, Q11, and Q21. These three queries have a different degree
of data dependency among operators. Q9 has many independent
operators with no data dependencies between them, and some of
them have complementary resource requirements. Query 11 has
concurrent operators, but they require non-complimentary hard-
ware resources. Operators in Q21 have strong data dependencies.

Scheduling approaches. We evaluate three scheduling ap-
proaches for query processing. They are the operator-at-a-time
execution, our proposed coarse-grained scheduling approach on
operators, and our proposed fine-grained scheduling approach
on phases. In the operator-at-a-time execution, all operators are
executed one by one, each using all the hardware threads. In
the coarse-grained approach, we adopt the proposed concurrent
execution scheduling algorithm based on operators. Finally, in the
fine-grained approach, we decompose operators into phases and
apply our proposed scheduling algorithm. The three scheduling
approaches are shortened as “Operator”, “Coarse” and “Fine” in
figures.

For a given workload, we compare the time of executing queries
using the three scheduling approaches. To investigate the effi-
ciency of hardware resources, we further profile the executions to
acquire the average IPC per core.

5.2. Validation of performance model

In this section, we validate the accuracy of our performance
model while predicting the IPC per core at two granularities:
the operator level and the phase level. For each granularity, we
compare the measured and predicted IPC per core for all valid
combinations. We show the results for operator-level and phase-
level predictions in Figs. 9(a) and 9(b), respectively. To illustrate the
accuracy of our predictions, we plot the two lines indicating the
10% error ranges. Firstly, as shown in the figures, most predicted
IPCs are within this range. We consider these predictions accurate
enough to support our proposed query scheduling. Secondly, we
find that the IPC per core of pairs of operators is much more clus-
tered than those of phases. This demonstrates that decomposing
operators into phases have successfully exposed more fine-grained
resource requirements which cannot be exploited at the opera-
tor level. Meanwhile, the decomposition has created fine-grained
phases with higher IPCs that can better utilize the pipelines.

125 - m Operator
O Coarse

Fine

0.75 A §

0.5 A

0.25 4 §
0

Q9 Q11 Q21

Normalized execution time

Fig. 10. Performance of processing single queries on KNC.

5.3. Query scheduling

We first evaluate our query scheduling on operators and phases
by executing TPC-H queries. Then, we further provide an example
in which the three approaches are applied to a given set of opera-
tors and phases, where we showcase how the scheduler operates
at runtime. Our query plans are adopted from existing work [15].

5.3.1. Single queries

We evaluate our query scheduling approach when processing
a single TPC-H query. Fig. 10 shows normalized execution time of
them using the three scheduling approaches. For Q9, our schedul-
ing approach achieves significant speedup over the operator-at-a-
time execution by exploiting such concurrency. The coarse-grained
approach is faster than operator-at-a-time one by 52%, and the
fine-grained one is faster than coarse-grained by 42%. For Q11, our
scheduling approach can only slightly outperform the “Operator-
at-a-time” approach. Q21 contains a left-most query plan tree,
where our approach does not apply to most of the operators. Thus,
there is no difference between the three approaches. Fig. 11 shows
the cycles breakdown of all these approaches which are shortened
as “Operator”, “Coarse” and “Fine”, respectively. By applying our
approach on Q9, we can reduce the percentage of cycles from 34%
to 17%. For Q11, our approach managed to reduce the percentage
of stalls slightly. Fig. 12 shows the utilized bandwidth of all these
approaches. For Q9 and Q11, the bandwidth utilization has been
increased. For Q21, our proposed approach does not make any
notable impact.

402 X. Cheng et al. /]. Parallel Distrib. Comput. 120 (2018) 395-404

m Computation instructions
|:| Memory instructions

100 ez 221 R
R X B8
%! R RS
58 Y RIS
I XL KK
R KA BRKS
%0 3580 KX
58 SIS BLKS
I XA KL
—~ 75X 0 B
o Sote% 3 XSS
9 dosele 3] BOSS
= bo%ess 5 R
c
3
(o]
© 50 .
X
©
(0]
8 254 dle 2
o 25+
[$]
>
(@)
0 T T T T T T T T T T T
= O [0) = [N O] = 0 ()
S v c S w c S v c
© © IL c O iC © © iL
S @ L c O i S g i
o 9 o 9 o 9
o O o O o O
O O O
Q9 Qi1 Q21

Fig. 11. Cycles break down.

For queries like Q9 with many independent operators, our
query scheduler has a large space to choose candidates for con-
current executions. Thus, significant benefits in applying our ap-
proach to queries of this type can be expected. For Q11 with some
concurrent operators that require non-complimentary hardware
resources, no significant benefits can be acquired through our
scheduling approach. Operators in Q21 have strong data depen-
dencies. They are executed as a left-most query plan tree. There
is almost no concurrency among operators. Thus, our approach is
unable to improve the performance.

5.3.2. Multiple queries

Now we evaluate our query scheduling approach on multiple
concurrent TPC-H queries. Because our query scheduling algorithm
works on the level of operators and phases, it can process both sin-
gle queries and multiple queries. Due to the limited main memory
capacity on KNC, there is not enough space to run multiple TPC-
H queries when SF = 5. Thus, we downgrade the SF to 1 in this
section. Fig. 13 shows the normalized execution time of processing
workload containing all valid combinations of any two queries
from Q9, Q11 and Q21. Our approaches have achieved speedup
in all cases with executing two Q9 achieving the highest speedup.
While executing Q21 with Q9 and Q11 concurrently, our proposed
scheduling approach has achieved up to 1.66X and 1.26X speedup,
respectively. Firstly, executing multiple Q9 is beneficial because Q9
itself contains significant co-scheduling opportunities. Secondly,
although our proposed approach cannot achieve speedup while
executing Q21 alone because it does not contain as many co-
scheduling opportunities, executing Q21 with other queries allow
operators from different queries to be executed concurrently. This
brings co-scheduling opportunities. Our proposed approach has
taken advantage of these opportunities to reduce the execution
time of the workload in such cases.

5.3.3. Evaluation on the knights landing architecture

With our approaches on the KNC architecture evaluated, we
now move on to extend them to the latest KNL architecture and
evaluate their impacts. Because KNC and KNL have the same
hyper-threading feature in cores which share all the memory, our

100~

\

N

Bandwidth (GB/s)
o0
<

N
o
|

0 T T T T T T T T T T T
s 8 2 s & 2 s 8 2
S g g S g g
8 o g o 8 o
(@] o o
Q9 Q11 Q21
Fig. 12. Bandwidth.
M Operator
1.25+
O Coarse
g 14 Fine
g -
.g BN
2 075+ M §
N\
: |
g 0.5+ §
: \
g 0.25 \
z. \
§
0. N BN BN
9 \\ "1:\’ \\ f»\ q,\
&XQ qxo qxo L K& L
QO o o &

Fig. 13. Performance of processing multiple queries on KNC.

methods are still applicable on KNL. Although cores are out-of-
order on KNL, they still issue memory requests in-order, and
the hash join algorithms have strong data dependencies between
many instructions.

We show the impacts of our three approaches on selected single
and multiple TPC-H queries on KNL in Fig. 14, and Fig. 15, re-
spectively. On Q9 where our approaches have achieved the largest
speedup, the coarse-grained approach has reduced the execution
time of the operator-at-a-time approach by 19%. The fine-grained
approach further reduces the execution time by 12%. Compared
with KNG, similar results are achieved on Q11, Q21 and multiple
queries. The impacts here are much lower compared with those
on KNC. This is mostly because of KNL's new hardware features.
Memory controllers and channels are connected by a 2D mesh on
KNL, instead of a ring on KNC. This helps to reduce the bandwidth
contention on KNL, compared with that on KNC. These results show
that our approaches apply to both in-order and out-of-order design
of x86-based many-core processors.

6. Additional related work
Exploiting available hardware resources is crucial for the per-

formance of query processing. During the processing of a query,
operators usually require multi-dimensional hardware resources,

X. Cheng et al. /]. Parallel Distrib. Comput. 120 (2018) 395-404 403

B Operator
1.254
0O Coarse

Fine

0.75

0.254

Normalized execution time
=
wn U
Il Il

§
§
\
.
.
.

0, I IR —
Q9 Q11 Q21

Fig. 14. Performance of processing single queries on KNL.

1.5 - M Operator
’ O Coarse
ﬂé ’ N Fine
2 - - _
2 _
§ 0.75 \
5
B 05
=
£
0.25
z
0, N || || || L1
S N N\ N N\ N\
SN O N VA O MY U 2
OO', o’x o’x \>< \>< \x
@ QO o o &

Fig. 15. Performance of processing multiple queries on KNL.

such as CPU and memory bandwidth. Garofalakis et al. established
a model of resource usages for query scheduler to explore oppor-
tunities for concurrent operators to share hardware resources [9].
Petraki et al. observed the underutilization of multi-core CPUs
when processing queries and proposed to use those idle CPU cycles
to refine adaptive indexes [24]. While collapsing operators into
compound ones can preserve good data localities between them
on multi-cores [10], we need to further consider whether the
grouping of operators can highly utilize resources on each in-order
core on the many-core architecture. Giceva et al. formulated the
deployment of query plans as a bin-packing problem to utilize just
enough resources [10]. Different to their work, the optimization
goal in this paper is to exploit all available cores on the many-
core architecture. Neumann et al. proposed a compilation strategy
that combines operators of a query into pipelines achieving good
code and data locality [20]. While their pipeline-based approach
helps to reduce memory access overhead, we focus on hiding such
overhead using our fine-grained scheduling approach in this paper.
Leis et al. proposed to schedule small fragments of input data to
worker threads that run entire pipelines in a NUMA-aware way
on many-core processors [16]. We share their belief that a fine-
grained scheduling during query execution is necessary to exploit
the many-core processor in this work.

Regarding of architectures of various accelerators, KNC is sim-
ilar to GPUs which are all connected to the CPU as a co-processor.

There are many factors limiting the performance of such archi-
tectures while processing database queries. Bref3et al. identified
cache thrashing and heap contention as two factors that limit the
performance when resources on co-processors become scarce [4].
They proposed data-driven operators placement to avoid harmful
data transfers and query chopping to limit memory usages. Paul
et al. identified that kernel-based executions cannot fully utilize
the hardware resources and memory ping-pong brings too much
memory overhead on GPUs [23]. They proposed a novel pipelined
query engine for analytical queries using a new feature on GPUs
called channels which assist data transfers between kernels.

While concurrent execution of operators can improve the over-
all hardware utilization, it also brings potential resource inter-
ference. Multiple contention-aware scheduling approaches have
been proposed on multi-core machines [32,19]. Acknowledging
the importance of avoiding contentions, we focus on utilizing idled
resources by scheduling concurrent operators.

7. Conclusions

As emerging many-core processors have higher memory band-
width and computation power, we find that even highly opti-
mized database operators suffer from significant memory stalls
and memory bandwidth underutilization on many-core processors
like Xeon Phi. We, therefore, argue that in-memory query pro-
cessing on many-core processors needs fine-grained scheduling.
Particularly, we propose to co-scheduling workloads with comple-
mentary resource requirements. We start with operator-level co-
scheduling, and further propose fine-grained scheduling to have
more precise control over the memory and computational resource
usage. Our experiments on both KNC and KNL show that (1) the
operator-based scheduling approach reduces the execution time
by 52% and 19% on KNC and KNL, respectively; (2) fine-grained
scheduling on phases demonstrates much better resource utiliza-
tion and further reduces the execution time by 42% and 12% on KNC
and KNL, respectively. These results show the importance of fine-
grained scheduling on many-core architectures.

Acknowledgments

This research is supported by the National Research Foundation,
Prime Minister’s Office, Singapore under its IDM Futures Funding
Initiative and an MoE AcRF Tier 2 grant from Singapore (MOE2017-
T2-1-122).

References

[1] C.Balkesen, G. Alonso,]. Teubner, M.T. Ozsu, Multi-core, main-memory joins:
Sort vs. hash revisited, Proc. VLDB Endow. 7 (1) (2013) 85-96. URL http://dx.
doi.org/10.14778/2732219.2732227.

[2] Balkesen,]. Teubner, G. Alonso, M.T. Ozsu, Main-memory hash joins on modern
processor architectures, [EEE Trans. Knowl. Data Eng. 27 (7) (2015) 1754-1766.
http://dx.doi.org/10.1109/TKDE.2014.2313874.

[3] R.Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri, N. Chainani, S.
Lightstone, D. Sharpe, Memory-efficient hash joins, Proc. VLDB Endow. 8 (4)
(2014) 353-364.

[4] S. BreB, H. Funke,]. Teubner, Robust query processing in co-processor-

accelerated databases, in: Proceedings of the 2016 International Conference

on Management of Data, SIGMOD’'16, ACM, New York, NY, USA, 2016,

pp. 1891-1906. http://dx.doi.org/10.1145/2882903.2882936. URL http://doi.

acm.org/10.1145/2882903.2882936.

R. Brook, A. Heinecke, A. Costa, P. Peltz Jr., V. Betro, T. Baer, M. Bader, P.

Dubey, Beacon: Deployment and application of intel xeon phi coprocessors for

scientific computing, Comput. Sci. Eng. 17 (2) (2015) 65-72.

[6] X.Cheng, B. He, X. Du, C.T. Lau, A study of main-memory hash joins on many-
core processor: A case with intel knights landing architecture, in: International
Conference on Information and Knowledge Management, ACM, 2017.

[7] X.Cheng, B.He, M. Lu, C.T. Lau, H.P. Huynh, R.S.M. Goh, Efficient query process-
ing on many-core architectures: A case study with intel xeon phi processor,
in: Proceedings of the 2016 International Conference on Management of Data,
ACM, 2016, pp. 2081-2084.

5

http://dx.doi.org/10.14778/2732219.2732227
http://dx.doi.org/10.14778/2732219.2732227
http://dx.doi.org/10.14778/2732219.2732227
http://dx.doi.org/10.1109/TKDE.2014.2313874
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb3
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb3
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb3
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb3
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb3
http://dx.doi.org/10.1145/2882903.2882936
http://doi.acm.org/10.1145/2882903.2882936
http://doi.acm.org/10.1145/2882903.2882936
http://doi.acm.org/10.1145/2882903.2882936
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb5
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb5
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb5
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb5
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb5
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb6
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb6
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb6
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb6
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb6
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb7
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb7
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb7
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb7
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb7
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb7
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb7

404

(8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

X. Cheng et al. /]. Parallel Distrib. Comput. 120 (2018) 395-404

Z. Feng, E. Lo, B. Kao, W. Xu, Byteslice: Pushing the envelop of main mem-
ory data processing with a new storage layout, in: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, SIGMOD’15,
ACM, New York, NY, USA, 2015, pp. 31-46. http://dx.doi.org/10.1145/2723372.
2747642, URL http://doi.acm.org/10.1145/2723372.2747642.

M.N. Garofalakis, Y.E. loannidis, Parallel query scheduling and optimization
with time- and space-shared resources, in: Proceedings of the 23rd Interna-
tional Conference on Very Large Data Bases, VLDB’97, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1997, pp. 296-305. URL http://dl.acm.
org/citation.cfm?id=645923.671004.

J. Giceva, G. Alonso, T. Roscoe, T. Harris, Deployment of query plans on mul-
ticores, Proc. VLDB Endow. 8 (3) (2014) 233-244. URL http://dx.doi.org/10.
14778/2735508.2735513.

K. Hou, H. Wang, W.-c. Feng, Aspas: A framework for automatic simdization
of parallel sorting on x86-based many-core processors, in: Proceedings of the
29th ACM on International Conference on Supercomputing, ICS'15, ACM,
New York, NY, USA, 2015, pp. 383-392. http://dx.doi.org/10.1145/2751205.
2751247. URL http://doi.acm.org/10.1145/2751205.2751247.

S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender, M. Kersten, et al.,
Monetdb: Two decades of research in column-oriented database architectures,
Quart. Bull. [EEE Comput. Soc. Tech. Committee Database Eng. 35 (1) (2012)
40-45.

S.]Jha, B. He, M. Lu, X. Cheng, H.P. Huynh, Improving main memory hash joins
on intel xeon phi processors: An experimental approach, Proc. VLDB Endow.
8 (6) (2015) 642-653. URL http://dx.doi.org/10.14778/2735703.2735704.

A. Kemper, T. Neumann, Hyper: A hybrid oltp amp;olap main memory
database system based on virtual memory snapshots, in: 2011 IEEE 27th
International Conference on Data Engineering, 2011, pp. 195-206. http://dx.
doi.org/10.1109/ICDE.2011.5767867.

A. Kemper, T. Neumann, F. Funke, V. Leis, H. Mache, Hyper, 2016. URL http:
[[hyper-db.de/.

V. Leis, P. Boncz, A. Kemper, T. Neumann, Morsel-driven parallelism: A numa-
aware query evaluation framework for the many-core age, in: Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data,
SIGMOD’14, ACM, New York, NY, USA, 2014, pp. 743-754. http://dx.doi.org/10.
1145/2588555.2610507. URL http://doi.acm.org/10.1145/2588555.2610507.
Y. Li, .M. Patel, Widetable: An accelerator for analytical data processing,
Proc. VLDB Endow. 7 (10) (2014) 907-918. URL http://dx.doi.org/10.14778/
2732951.2732965.

M. Lu, Y. Liang, H.P. Huynh, Z. Ong, B. He, R.S.M. Goh, Mrphi: An optimized
mapreduce framework on intel xeon phi coprocessors, IEEE Trans. Parallel
Distrib. Syst. 26 (11) (2015) 3066-3078. http://dx.doi.org/10.1109/TPDS.2014.
2365784.

[19] J. Mars, N. Vachharajani, R. Hundt, M.L. Soffa, Contention aware execution:

[20]

Online contention detection and response, in: Proceedings of the 8th Annual
IEEE/ACM International Symposium on Code Generation and Optimization,
CGO’10, ACM, New York, NY, USA, 2010, pp. 257-265. http://dx.doi.org/10.
1145/1772954.1772991. URL http://doi.acm.org/10.1145/1772954.1772991.

T. Neumann, Efficiently compiling efficient query plans for modern hardware,
Proc. VLDB Endow. 4 (9) (2011) 539-550 URL http://dx.doi.org/10.14778/
2002938.2002940.

[21] J.R. Norris, Markov Chains, no. 2008, Cambridge University Press, 1998.

[22]

S. Olsen, B. Romoser, Z. Zong, Sqlphi: A sql-based database engine for intel
xeon phi coprocessors, in: Proceedings of the 2014 International Conference
on Big Data Science and Computing, BigDataScience’14, ACM, New York, NY,
USA, 2014, pp. 17:1-17:6. http://dx.doi.org/10.1145/2640087.2644172. URL
http://doi.acm.org/10.1145/2640087.2644172.

[23] J. Paul, J. He, B. He, Gpl: A gpu-based pipelined query processing engine,

[24]

[25]

[26]

in: Proceedings of the 2016 International Conference on Management of
Data, SIGMOD’16, ACM, New York, NY, USA, 2016, pp. 1935-1950. http://dx.
doi.org/10.1145/2882903.2915224. URL http://doi.acm.org/10.1145/2882903.
2915224.

E. Petraki, S. Idreos, S. Manegold, Holistic indexing in main-memory column-
stores, in: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD’15, ACM, New York, NY, USA, 2015,
pp. 1153-1166. http://dx.doi.org/10.1145/2723372.2723719. URL http://doi.
acm.org/10.1145/2723372.2723719.

0. Polychroniou, Source codes of rethinking simd vectorization for in-memory
databases, 2015. URL http://www.cs.columbia.edu/~orestis/sigmod15source.
zip.

0. Polychroniou, A. Raghavan, K.A. Ross, Rethinking simd vectorization for in-
memory databases, in: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD’15, ACM, New York, NY, USA,
2015, pp. 1493-1508. http://dx.doi.org/10.1145/2723372.2747645. URL http:
//doi.acm.org/10.1145/2723372.2747645.

(27]

(28]

(29]

(30]

S.Ramos, T. Hoefler, Capability models for manycore memory systems: a case-
study with xeon phi knl, in: Parallel and Distributed Processing Symposium
(IPDPS), 2017 IEEE International, IEEE, 2017, pp. 297-306.

S. Schuh, X. Chen,]. Dittrich, An experimental comparison of thirteen rela-
tional equi-joins in main memory, in: Proceedings of the 2016 International
Conference on Management of Data, SIGMOD’16, ACM, New York, NY, USA,
2016, pp. 1961-1976. http://dx.doi.org/10.1145/2882903.2882917. URL http:
//doi.acm.org/10.1145/2882903.2882917.

M. Stonebraker, D.J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau,
A. Lin, S. Madden, E. O'Neil, P. O’'Neil, A. Rasin, N. Tran, S. Zdonik, C-store: A
column-oriented dbms, in: Proceedings of the 31st International Conference
on Very Large Data Bases, VLDB’05, VLDB Endowment, 2005, pp. 553-564. URL
http://dl.acm.org/citation.cfm?id=1083592.1083658.

H. Zhang, G. Chen, B.C. Ooi, K.L. Tan, M. Zhang, In-memory big data manage-
ment and processing: A survey, IEEE Trans. Knowl. Data Eng. 27 (7) (2015)
1920-1948. http://dx.doi.org/10.1109/TKDE.2015.2427795.

[31] J. Zhong, B. He, Kernelet: High-throughput gpu kernel executions with dy-

(32]

namic slicing and scheduling, IEEE Trans. Parallel Distrib. Syst. 25 (6) (2014)
1522-1532. http://dx.doi.org/10.1109/TPDS.2013.257.

S. Zhuravlev, S. Blagodurov, A. Fedorova, Addressing shared resource con-
tention in multicore processors via scheduling, in: Proceedings of the Fif-
teenth Edition of ASPLOS on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS XV, ACM, New York, NY, USA, 2010,
pp. 129-142. http://dx.doi.org/10.1145/1736020.1736036. URL http://doi.
acm.org/10.1145/1736020.1736036.

Xuntao Cheng received his Bachelor degree in 2011 from
Northwestern Polytechnical University. He is now a Ph.D.
candidate in the Nanyang Technological University. His
research focuses on improving performance of OLAP and
OLTP database systems taking advantage of emerging
hardware platforms, such as Intel Xeon Phi many-core
processors.

™

Bingsheng He is currently an Associate Professor at De-
partment of Computer Science, National University of Sin-
gapore. Before joining NUS in May 2016, he held a research
position in the System Research group of Microsoft Re-
search Asia (2008-2010) and a faculty position in Nanyang
Technological University, Singapore. He got the Bachelor
degree in Shanghai Jiao Tong University (1999-2003), and
the Ph.D. degree in Hong Kong University of Science &
Technology (2003-2008).

Mian Lu received the bachelor’s degree in software en-
gineering from the Huazhong University of Science and
Technology in 2003-2007, and the Ph.D. degree in com-
puter science from the Hong Kong University of Science
and Technology in 2007-2012. Before joining Huawei
Technologies Co., Ltd, he was a scientist at the Institute
of High Performance Computing, A*STAR, Singapore. His
research interests are high performance computing and
big data analytics.

Chiew Tong Lau received his B.Eng. degree from Lakehead
University in 1983 and M.A.Sc. and Ph.D. degrees in Elec-
trical Engineering from the University of British Columbia
in 1985 and 1990 respectively. He is currently an Associate
Professor in the School of Computer Engineering, Nanyang
Technological University, Singapore. His main research
interests are in wireless communications.

http://dx.doi.org/10.1145/2723372.2747642
http://dx.doi.org/10.1145/2723372.2747642
http://dx.doi.org/10.1145/2723372.2747642
http://doi.acm.org/10.1145/2723372.2747642
http://dl.acm.org/citation.cfm%3Fid%3D645923.671004
http://dl.acm.org/citation.cfm%3Fid%3D645923.671004
http://dl.acm.org/citation.cfm%3Fid%3D645923.671004
http://dx.doi.org/10.14778/2735508.2735513
http://dx.doi.org/10.14778/2735508.2735513
http://dx.doi.org/10.14778/2735508.2735513
http://dx.doi.org/10.1145/2751205.2751247
http://dx.doi.org/10.1145/2751205.2751247
http://dx.doi.org/10.1145/2751205.2751247
http://doi.acm.org/10.1145/2751205.2751247
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb12
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb12
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb12
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb12
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb12
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb12
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb12
http://dx.doi.org/10.14778/2735703.2735704
http://dx.doi.org/10.1109/ICDE.2011.5767867
http://dx.doi.org/10.1109/ICDE.2011.5767867
http://dx.doi.org/10.1109/ICDE.2011.5767867
http://hyper-db.de/
http://hyper-db.de/
http://hyper-db.de/
http://dx.doi.org/10.1145/2588555.2610507
http://dx.doi.org/10.1145/2588555.2610507
http://dx.doi.org/10.1145/2588555.2610507
http://doi.acm.org/10.1145/2588555.2610507
http://dx.doi.org/10.14778/2732951.2732965
http://dx.doi.org/10.14778/2732951.2732965
http://dx.doi.org/10.14778/2732951.2732965
http://dx.doi.org/10.1109/TPDS.2014.2365784
http://dx.doi.org/10.1109/TPDS.2014.2365784
http://dx.doi.org/10.1109/TPDS.2014.2365784
http://dx.doi.org/10.1145/1772954.1772991
http://dx.doi.org/10.1145/1772954.1772991
http://dx.doi.org/10.1145/1772954.1772991
http://doi.acm.org/10.1145/1772954.1772991
http://dx.doi.org/10.14778/2002938.2002940
http://dx.doi.org/10.14778/2002938.2002940
http://dx.doi.org/10.14778/2002938.2002940
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb21
http://dx.doi.org/10.1145/2640087.2644172
http://doi.acm.org/10.1145/2640087.2644172
http://dx.doi.org/10.1145/2882903.2915224
http://dx.doi.org/10.1145/2882903.2915224
http://dx.doi.org/10.1145/2882903.2915224
http://doi.acm.org/10.1145/2882903.2915224
http://doi.acm.org/10.1145/2882903.2915224
http://doi.acm.org/10.1145/2882903.2915224
http://dx.doi.org/10.1145/2723372.2723719
http://doi.acm.org/10.1145/2723372.2723719
http://doi.acm.org/10.1145/2723372.2723719
http://doi.acm.org/10.1145/2723372.2723719
http://www.cs.columbia.edu/%7Eorestis/sigmod15source.zip
http://www.cs.columbia.edu/%7Eorestis/sigmod15source.zip
http://www.cs.columbia.edu/%7Eorestis/sigmod15source.zip
http://dx.doi.org/10.1145/2723372.2747645
http://doi.acm.org/10.1145/2723372.2747645
http://doi.acm.org/10.1145/2723372.2747645
http://doi.acm.org/10.1145/2723372.2747645
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb27
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb27
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb27
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb27
http://refhub.elsevier.com/S0743-7315(17)30259-9/sb27
http://dx.doi.org/10.1145/2882903.2882917
http://doi.acm.org/10.1145/2882903.2882917
http://doi.acm.org/10.1145/2882903.2882917
http://doi.acm.org/10.1145/2882903.2882917
http://dl.acm.org/citation.cfm%3Fid%3D1083592.1083658
http://dx.doi.org/10.1109/TKDE.2015.2427795
http://dx.doi.org/10.1109/TPDS.2013.257
http://dx.doi.org/10.1145/1736020.1736036
http://doi.acm.org/10.1145/1736020.1736036
http://doi.acm.org/10.1145/1736020.1736036
http://doi.acm.org/10.1145/1736020.1736036

	Many-core needs fine-grained scheduling: A case study of query processing on Intel Xeon Phi processors
	Introduction
	Background and motivation
	System design and implementation
	System overview
	Resource vectors
	Fine-Grained operator decomposition

	Performance model
	Evaluations
	Experiment setup
	Validation of performance model
	Query scheduling
	Single queries
	Multiple queries
	Evaluation on the knights landing architecture

	Additional related work
	Conclusions
	Acknowledgments
	References

