

Efficient Parallel Zonal Statistics on Large-Scale Global Biodiversity
Data on GPUs

Jianting Zhang
Dept. of Computer Science
City College of New York
New York City, NY, 10031

jzhang@cs.ccny.cuny.edu

Simin You
Dept. of Computer Science

CUNY Graduate Center
New York, NY, 10016

syou@gc.cuny.edu

Le Gruenwald
School of Computer Science

University of Oklahoma
Norman, OK 73071

ggruenwald@ou.edu

ABSTRACT
Analyzing how species are distributed on the Earth has been one

of the fundamental questions in the intersections of environmental

sciences, geosciences and biological sciences. With world-wide

data contributions, more than 375 million species occurrence

records for nearly 1.5 million species have been deposited into the

Global Biodiversity Information Facility (GBIF) data portal. The

sheer amounts of point and polygon data and the computation-

intensive point-in-polygon tests for zonal statistics for

biodiversity studies have imposed significant technical

challenges. In this study, we have developed efficient techniques

to enable parallel zonal statistics on the global GBIF data

completely on GPUs with limited memory capacity. Experiment

results have shown that an impressive end-to-end response time

under 100 seconds can be achieved for zonal statistics on the 375+

million species records over 15+ thousand global eco-regions

with 4+ million vertices on a single Nvidia Quadro 6000 GPU

device. The achieved high performance, which is several orders

of magnitude faster than reference serial implementations using

traditional open source geospatial techniques, not only

demonstrates the potential of GPU computing for large scale

geospatial processing, but also makes interactive query driven

visual exploration of global biodiversity data possible.

1. INTRODUCTION
Quantifying species-environment relationships, i.e.,

analyzing how species are distributed on the Earth has been one

of the fundamental questions studied by biogeographers and

ecologists for a long time [1]. Several enabling technologies have

made biodiversity data available at much finer scales in the past

decade [2], including DNA barcoding for species identification,

geo-referring for converting descriptive museum records to

geographical coordinates, database technologies for managing

species presence locations and related taxonomic and

environmental data, and, Geographical Information System (GIS)

for species distribution data modeling and analysis. The newly

emerging cyberinfrastructure technologies (e.g., metadata,

ontology, Web services and scientific workflow) have made

exchanging and sharing species distribution data over the Web

much easier. The currently largest species occurrence data

repository might be the Global Biodiversity Information Facility

(GBIF) which was established by governments in 2001 to

encourage free and open access to biodiversity data via the

Internet1. Through a global network of countries and

organizations, as of August 2012, the GBIF data portal has more

than 375 million species occurrences records on 1,487,496

species. The majority of the records are geo-referenced which

makes it possible to overlay species occurrence records with

different types of raster and vector data layers for exploring

biodiversity patterns and their relationships with environments

and human impacts at global and regional scales.

Given the virtually countless combinations of species

taxa, geographical regions and ecosystems [3], many types of

exploratory analysis on integrated taxonomic-geographical-

environmental data can be investigated [4]. In this study, we will

be focusing on a fundamental spatial operation for zone-based

point location data summation, i.e., counting the numbers of

points that fall within a set of polygons in a zonal dataset. The

operation is closely related to point-in-polygon test based spatial

joins [5] [6] and is well-supported in several leading GIS software

known as Zonal Statistics [7]. While both spatial databases and

GIS have exploited optimization techniques, such as indexing and

preprocessing, existing designs and implementations are mostly

based on serial CPU computing models and usually incur

significant delays when processing large scale datasets. Modern

commodity personal computers are increasingly equipped with

large memory and many-core accelerators, such as Nvidia GPUs

that are capable of general computing based on the Compute

Unified Device Architecture (CUDA) parallel programming

model [8]. Unfortunately, many commercial and open source

spatial databases and GIS are optimized for the previous

generations of hardware based on outdated cost models and fail

to make full use of the computing power provided by modern

commodity hardware.

Built on top of our previous research and development

efforts on spatial indexing and query processing on GPUs [6] [9],

in this study, we aim at accelerating explorations of the GBIF

global biodiversity data by designing and implementing efficient

data parallel algorithms for high-performance zonal statistics on

the hundreds of millions of species occurrences over tens of

thousands of complex polygons on commodity GPUs with limited

memory capacities. First of all, we have designed a framework to

allow efficient use of mapped memory on CPUs as extended GPU

memory automatically and support data parallel designs. Second,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to

post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

BigSpatial'15, November 03-06, 2015, Bellevue, WA, USA

© 2015 ACM. ISBN 978-1-4503-3974-2/15/11…$15.00

DOI: http://dx.doi.org/10.1145/2835185.2835187

we have developed a flexible point indexing technique to index

large point datasets that are beyond GPU memory capacity by

using mapped memory efficiently through batched processing.

Third, we have extended our binary search based spatial filtering

algorithm to work with the new point indexing technique. Fourth,

a cell-in-polygon test based optimization technique for advanced

spatial filtering is developed to allow assigning polygon

identifiers to points if the grid cell that the points fall into is tested

to be completely within a polygon without performing expensive

point-in-polygon tests for individual points. We have performed

extensive experiments to demonstrate the efficiency of GPU-

based massively data parallel zonal statistics technique and

compare it with two reference serial implementations using

traditional open source geospatial software packages. The

performance of the data parallel framework and techniques as

well as the effectiveness of the cell-in-polygon based

optimization technique are tested under different experiment

settings.

The rest of the paper is arranged as follows. Section 2

introduces background and motivation and briefly reviews related

work. Section 3 provides details of the data parallel zonal

statistics framework, the point indexing and spatial filtering

techniques, and the cell-in-polygon test based optimization

technique for advanced spatial filtering. Section 4 presents the

experiments and results. Finally Section 5 is the conclusion and

future work directions.

2. BACKGROUND, MOTIVATION AND

RELATED WORK
Given a point dataset T_O representing species

occurrences with two attributes (sp_id, the_geom) and a polygon

dataset T_Z representing zones also with two attributes (z_id,

the_geom), the basic zonal statistics operation to count the

number of occurrences of species in each polygon can be

expressed as the following SQL statement:

SELECT COUNT(*) from T_O, T_Z

WHERE ST_WITHIN (T_O.the_geom,T_Z.the_geom)
GROUP BY T_Z.z_id;

Here the_geom attributes in the two datasets represent

geometry, i.e., points and polygons, respectively. Advanced zonal

statistics operations likely involve species identifiers in additional

clauses (such as WHERE and GROUP) to derive the occurrence

counts for a single or a group of species. The species occurrence

counts can be used to compute abundance and richness

measurements for a variety of types of biodiversity studies [10].

The GBIF data portal has provided overview maps of species

occurrences for different species groups as well as countries

which is very useful in understanding the overall species

distribution patterns. However, the maps are mostly for

visualization purposes and are limited to a few fixed resolutions

up to 0.1 by 0.1 degree which might be too coarse for many

scientific inquiries. It is clear that the zonal statistics based data

summation operations are closely related to the point-in-polygon

test used in the ST_WITHIN function. The function is defined by

the Open Geospatial Consortium (OGC) Simple Feature

Specification (SFS2) and has been implemented in several spatial

database systems and GIS, e.g., Java Topology Suit (JTS3),

Geometry Engine - Open Source (GEOS4) and

PostGIS/PostgreSQL [11]. The Oracle Spatial development team

has recently proposed to build an in-memory R-Tree to speed up

topological relationship query processing for complex regions

[12], including point-in-polygon test.

Point-in-polygon test has been extensively investigated

by the computational geometry and spatial database research

communities. While computational geometry research usually

focuses on a single point and polygon pair, spatial database

research addresses the overall efficiency on testing a large set of

points and polygons that can be abstracted as a special type of

spatial joins. Spatial joins are typically divided into two phases,

i.e., the filtering phase and the refinement phase [5]. The filtering

phase utilizes some pre-built or on-the-fly constructed spatial

indices to pair subsets of points and subsets of polygons for

further refinements. The refinement phase in the point-in-polygon

test based spatial joins applies computational geometry

algorithms to determine whether a point is within a polygon for

paired points and polygons. Obviously, building indices incurs

additional overheads but can significantly reduce the number of

required point-in-polygon tests and improve spatial join

efficiency.

In our previous works, we have extensively

investigated the potentials of GPU-based spatial indexing and

spatial joins and many of them are based on data parallel designs.

For a brief review of these works, we refer the reader to our ACM

SIGSPATIAL SPECIAL paper [13]. In particular, a parallel

binary search based spatial join framework [9] is proposed for

joining indexed point data (using quadtrees or grid-files) and

indexed polyline or polygon data (using grid-files). Several

applications that demonstrate the effectiveness and efficiency of

the indexing and spatial join techniques have been reported,

including point-in-polygon test based spatial association between

taxi pickup/drop-off locations and census tracks in the New York

City (NYC) [6], point-to-polyline nearest neighbor search based

spatial associations between taxi pickup/drop-off locations and

street network in NYC [9] and Hausdorff distance based

trajectory similarity queries in Beijing [14].

Zonal statistics on GBIF species occurrence data is

conceptually similar to the point-in-polygon test based spatial join

which may suggest that we can simply apply the techniques we

have developed in [6] to this new dataset. However, first of all,

the number of species occurrences in the dataset (375+ million)

is more than two times larger than the number of taxi pickup

locations we have processed previously (~170 million) and it is

impossible to index all species occurrences on GPUs completely

due to their memory capacity limit. Second, the

polyline/polygon/trajectory data that we have used in our

previous applications are considerably simpler than the World

Wild Fund (WWF) ecoregion polygon data5. The average number

of vertices per polygon in the WWF dataset (279) is nearly three

times as large as that of the NYC census block dataset (108).

Third, comparing with taxi pickup locations that are mostly

clustered in major street intersections, the distributions of species

occurrences are much more dispersed which is likely to cause

significant execution flow divergences on GPUs, a typical

problem in degrading GPU computing performance [8]. As such,

effective optimization techniques are keys to achieving high

performance for large datasets at the scale in order to support

interactive visual explorations. Finally, perhaps more

importantly, while the recent Nvidia GPUs set the GPU memory

capacity (24 GB) to a new level, from a research perspective, it is

crucial to develop a flexible framework to support zonal statistics

and other types of geospatial processing on large datasets that

exceed GPU memory capacity limit.

3. Efficient Zonal Statistics on GPUs
We propose to follow the GPU-based spatial join framework we

have developed previously [9] and reuse existing components,

e.g., point-in-polygon test GPU routine presented in [6], whereas

possible. Our new contributions in this study are four-fold: 1) a

framework to allow efficient use of mapped CPU memory as

extended GPU memory automatically and support data parallel

designs, (2) a flexible and efficient point indexing technique to

index large point datasets that are beyond GPU memory capacity,

(3) an extended binary search based spatial filtering algorithm to

work with the new point indexing technique, and (4) a cell-in-

polygon test based optimization technique for advanced spatial

filtering. The four new designs are highlighted and numbered in

Fig. 1. We next introduce our data parallel framework as the

motherboard for relevant techniques before the design and

development details are presented in the following subsections.

3.1 Data Parallel Framework
The data parallel framework for high-performance

zonal statistics is shown in Fig. 1. Note that we use solid arrows

to show data processing steps and dashed arrows to show the

correspondences among data used in different components in the

framework. Following our previous studies [13], the point

coordinates and polygon vertices are stored as arrays with each

element has a fixed length, instead of storing them as objects that

may have variable lengths. Although not shown in Fig. 1 due to

space limit, a polygon index array is constructed to store the first

vertex positions of polygons to efficiently access polygon vertex

arrays on both GPUs (for coalesced memory accesses) and CPUs

(for cache-friendly memory accesses). Since the GPU-based

zonal statistics technique is built on top of the point-in-polygon

test based spatial joins, we reuse the relevant data parallel designs

presented in [9] including sort-based point indexing, grid-file

based polygon MBB (Minimum Bounding Box) rasterization and

indexing, and, binary search based spatial filtering and nested-

loop based spatial refinement. The GPU-based point-in-polygon

test technique [6] is plugged into spatial refinement to implement

the required zonal statistics functionality. These designs are

extended when necessary and will be described in their respective

subsections next. As both the previous implementations and the

implementations for new extensions can be realized using either

data parallel primitives supported by parallel libraries (e.g.,

Thrust6 that comes with CUDA SDK) or nested loops with regular

data access patterns and can be efficiently realized by using native

GPU programming languages (e.g. CUDA), we consider both the

new designs for individual components and the overall

framework data parallel [15].

Fig. 1 Data Parallel Framework for Efficient Zonal Statistics on GPUs

Is cell completely

inside polygon?

Yes

Cell-MBB pairs after

spatial filtering

Point coordinates

MBR Rasterization

Polygon coordinates

Output polygon identifier

for all points in the cell

Point-in-polygon test
No

Output test results

…

Point Indexing

CPU Main-Memory

GPU Mapped Memory

A

B

C

IO

Chunk-sorted point coordinates

Polygon

vertices

GPU Global Memory

IO

Polygon vertices (copy)

Dynamically access point coordinate chunks

using mapped memory

Cell-MBB

pairs

Cell-MBR pairs (copy)

PCI-E

bus

2

4

CPU0 CPU1 CPU2 CPU3

 Species ID

Polygon ID

GPU Thread Blocks

1

3

Our new flexible data parallel framework utilizes the

Unified Virtual Addressing (UVA) feature that is available in

newer generations of Nvidia GPUs [8], which include both Fermi,

Kepler and Maxwell based Nvidia GPUs, to allocate chunks of

CPU memory and make them accessible to both CPUs and GPUs.

We term such CPU memory chunks as GPU mapped memory on

CPUs, or simply GPU mapped memory when there is no

confusion. Using GPU mapped memory virtually extends GPU

memory capacity by using CPU memory which can be two orders

of magnitude larger (1-6 GB vs. 100-1000 GB). However, in a

way similar to using disks as virtual CPU memory [16], using

GPU mapped memory in a naive way may perform poorly. For

example, our experiments show that simply applying the parallel

sort primitive on GPUs (which is based on the radix sort

algorithm) for point indexing using mapped memory can result in

a much inferior performance. Our data parallel framework allows

GPU mapped memory to be effectively utilized for scalability

without significant degrading the overall performance when

applied to larger scale data.

3.2 Flexible Point Indexing on GPUs using

Batched Processing
As reported in [9], the Flatly Structured Grid-file (FSG) approach

is much simpler than the Multi-Level Quadrant (MLQ) based

approach for point indexing from both design and implementation

perspectives. The load balancing guarantee of the MLQ approach

is not instrumental for large scale data to achieve good

performance when the number of (point quadrants, polygon) pairs

after spatial filtering is much larger than the number of parallel

processing units. The multi-core CPU implementation (using 8

Intel Xeon E5405 CPU cores) of the FSG approach actually has

achieved much better performance than the MLQ approach on

GPUs (using Nvidia Quadro 6000) despite that the GPU can

achieve a much higher sorting rate which is a key to the

performance of both MLQ and FSG implementations. The results

suggest that the FSG approach is superior to the MLQ approach

for spatially joining large scale datasets. Therefore, the FSG

approach is adopted in this study for point indexing. While it is

interesting to implement the FSG approach on GPUs, it has a

much larger memory footprint which limits the number of species

occurrence point records to about 100 million when each record

has a length of 12 bytes, i.e., 4-byte float for x/y coordinate and 4

byte integer for taxon identifier. This is also the reason that we

were forced to index 170 million taxi trip records on multi-core

CPUs as reported in [9]. The scalability issue of the existing point

indexing technique has motivated us to develop a more flexible

parallel design for the FSG approach on GPUs.

Given a point dataset with N records where each record

includes a longitude and latitude pair (optionally with some other

attributes such as taxon identifier in the GBIF dataset), the dataset

is stored as an array of records in a CPU memory block which is

mapped by a GPU device through the UVA mechanism [8]. Both

the CPU and the GPU in a computing node can access the

memory block, not only for point indexing but also for point-in-

polygon test in spatial refinement. When GPUs access the

mapped memory in CPUs, as illustrated at the top of Fig. 1, they

are required to transfer data in small units from the mapped

memory in CPUs to their processors that need the data through a

PCI-E bus dynamically. This is quite different from the

conventional way that transfers data from CPUs to GPUs in large

chunks before they are processed by GPUs. Clearly the flexibility

of being able to utilize larger CPU memory is at the cost of lower

efficiency in data transfer, in a way very similar to virtual memory

in traditional CPU computing and buffer management in

relational database systems.

One might attempt to apply the FSG design to GPU

mapped memory to minimize the effort of reimplementation

which can be costly. However, this will not work for two reasons.

First, while the inputs and outputs of the FSG design can use GPU

mapped memory, the implementations of many parallel

primitives used in the design (including sort in Thrust which is

used by FSG) may use temporal GPU memory storage for

intermediate results which is typically proportional to input sizes.

The required temporal memory footprints are likely to exceed

GPU memory capacity for large scale data and the process will

fail due to out of memory. For example, the Nvidia Quadro 6000

GPU can only sort about 200 million records (including

longitude/latitude and taxon identifier) which is well below our

goal for a flexible solution. Second, even if little intermediate

results are produced and the GPU is free from the memory

capacity problem after putting both inputs and outputs in GPU

mapped memory in CPUs, excessive accesses to the mapped host

memory in an uncoordinated manner may significantly degrade

performance and make GPU implementations unattractive. For

example, sorting a subset of 125 million GBIF point data records

in a Quadro 6000 GPU using mapped memory needs 23.867

seconds while only 0.683 second is required if the sorting is done

completely in GPU memory. This represents a 34.7X slowdown

which is not surprising, given that the underlying radix sort

algorithm requires significant amount of data movements and

PCI-E bus bandwidths are about 1-2 orders of magnitude slower

than GPU memory bandwidths.

Our solution is to partition the input point data array

into chunks and process the chunks in batches. While we refer to

[9] for the detailed design of the original (i.e., single-chunk) FSG

algorithm and a multi-core CPU implementation for references,

we next briefly repeat the key ideas of the single-chunk FSG

design before presenting details of the multi-chunk FSG

algorithm and its GPU implementation for the purpose of being

self-contained. As discussed earlier, the FSG algorithm for point

indexing actually is much simpler than the MLQ algorithm

presented in [6] and requires a simple chaining of only four

parallel primitives, i.e., transform, sort, reduce (by key) and scan.

The transform primitive derives a cell identifier for each point

based on its (longitude, latitude) pair. Given a grid cell size, row-

major ordering is used to compute the cell identifier for easy

calculation. The next step is to sort the points based on their cell

identifiers to put all points that fall within a grid cell close to each

other. Clearly, points within a grid cell are not sorted for

performance concerns. A reduce (by key) primitive is used to

count the numbers of points within all grid cells which are

subsequently used to compute the positions of the first points

among the points that are within the corresponding grid cells. As

shown in the middle part of Fig. 2, given an input array PntRec,

four arrays will be in the output list. In addition to the sorted

PntRec array, we also have PntCID that stores grid cell

identifiers, PntLen array that stores the numbers of points in cells

and PntPos array that stores the positions of first points among

the points in a grid cell in the sorted PntRec array.

When there are multiple chunks in a point data array,

thanks to our data parallel design, each chunk can be processed

independently, either using a single GPU where the chunks are

processed sequentially, or using multiple GPUs where the chunks

are processed in parallel, or in a way that combines the two

options. For GPUs with smaller memory capacities, we can

simply decrease batch sizes and make the technique flexible. The

performance will degrade gracefully for smaller GPU memory

capacities but the tradeoff can be justified in this case. The design

is similar to the mapping phase in the MapReduce computing

model [17] in the sense that chunks are processed independently

and no communications are required among chunks in this step.

 While it seems that we will need to rearrange the sorted

point array in multiple chunks to proceed to spatial filtering, our

design avoids such data movements (which could be expensive

for hundreds of millions of records) by only manipulating the

three arrays at the grid cell level, i.e., PntCID, PntLen and PntPos

arrays. Since the number of the grid cells for indexing is typically

much smaller than the number of point records, the costs for

manipulating such arrays are much lower. This is the key to the

scalability and efficiency of our new design for indexing point

data. The steps are illustrated in the lower part of Fig. 2. First of

all, the total number of points in each chunk is collected for all

chunks and stored in the CLen array. Similar to computing the

PntPos array from the PntLen array by using a scan (prefix-sum)

primitive, we can compute the CPos array from the CLen array.

Note that the lengths of the CLen and CPos arrays are the same

as the number of chunks which are typically very small and the

costs of this step are negligible. Next, the value of each CPos

array element is added back to all the elements in the PntPos array

within each chunk (bottom part of Fig. 2), so that the elements in

the PntPos array correctly index points in grid cells after

concatenating the PntRec, PntLen and PntPos arrays in all

chunks. Again, since all the steps are implemented using parallel

primitives, the design is highly data parallel and can be

implemented on top of parallel libraries that support these

fundamental primitives in a straightforward manner. Experiments

on the GBIF point data shows that, about 1/3 of the total

processing time is spent on transferring data between GPUs and

CPUs while the rest 2/3 of the time is spent on sorting for all

batches. The runtimes of the rest of the steps (including

transform, reduce and scans) are relatively insignificant. Given

that GPUs have excellent performance on sorting [18], the new

design, termed as Multi-Chunked FSG for point indexing, is

expected to be not only flexible but also highly efficient.

3.3 Extending Spatial Filtering to Support

Chunked Point Indexing
The binary search based spatial filtering design and its

GPU-based implementation [6] [9] does not allow duplicated cell

identifiers which means that the technique will not work for the

multi-chunked point indices using the technique presented in

Section 3.2. For a grid cell appears in K chunks, there will be K

duplicated cell identifiers in the PntCID array. We next present

details on how binary search based spatial filtering can be

extended to work with the Multi-Chunk FSG approach for point

indexing.

Fig. 2 Parallel Design for Indexing Point Data in Chunks

a b a b

Y

X

b

Step2: Sort

a a a b b ID b b

Step1: Transform

ID a b

Y

 X

Step3: Reduce (by key)

7

PntRec

Processing in a chunk

5 11

Step4: Scan

(prefix-sum)

a b
0 3

3 4

 PntRec

PntCID

PntLen

PntPos

7 10 9

CLen

+ + + scan +

0 5 16 23 33 CPos

First, the PntLen and PntPos arrays derived from the

Multi-Chunked FSG point indexing approach are sorted by using

the PntCID array as keys to make the same cell identifiers appear

next to each other in the PntCID array. Note that the positions of

the elements in the PntLen and PntPos arrays are changed

according to the key-value based sorting. Next, as shown in Fig.

3, for each of the elements in the MID array, our spatial filtering

algorithm binary searches the PntCID array by using the

corresponding element in the MC array as the key. Recall that the

MID array and the MC array store the correspondences between

polygon MBB identifiers and cell identifiers of rasterized polygon

MBBs [9]. The key extension is to match cell identifiers in the

MC array and the sorted PntCID array by using three parallel

primitives, i.e., binary_search, lower_bound and upper_bound,

as a bundle for binary searches. While the lower_bound and

upper_bound primitives return the first and the last positions

where values could be inserted without violating the ordering

during binary searching, the binary_search primitive returns the

result of whether the values being searched are or are not in the

array being searched. The resulting position vectors from the

lower_bound and upper_bound primitives need to be filtered out

by the resulting boolean vector from the binary_search primitive

to eliminate unsuccessful searches while keeping the upper

bounds and lower bounds of successful searches. Note that it is

not necessary to use the upper_bound primitive if the cell

identifiers in the PntCID array are guaranteed to be unique, which

is the case if the point dataset is not chunked. This is exactly the

original FSG design for spatial filtering presented in [9]. Finally,

for each matched (MIDi, lower_boundi, upper_boundi) triple, we

can use MIDi and lower_boundi and upper_boundi values to

access the polygon vertex arrays and point coordinate arrays as

follows. Assuming the arrays that store the vertex positions and

the numbers of polygon vertices are PlyPos and PlyLen,

respectively, then the polygon vertices will be at the positions

PlyPos[idx(MIDi)] .. PlyPos[idx(MIDi)+1]-1 with PlyLen[i]

vertices. Function idx(i) maps polygon identifier i to an index in

the PlyPos or PlyLen array, which can be as simple as idx(i)=i.

Similarly points that fall within the grid cell whose identifier is

being searched are distributed in upper_boundi - lower_boundi

blocks. Note that here blocks are combinations of chunks and grid

cells, i.e., a block of points are within a grid cell in a chunk. For

each j= lower_boundi .. upper_boundi, the starting position and

number of points in these blocks are recorded in PntPos[j] and

PntLen[j], respectively. They can be used to access the PntRec

array to retrieve point coordinates or other information for further

processing. While supporting multiple data point chunks has

added significant complexity to our original spatial filtering

design, it eliminates the need to actually sort point records across

multiple chunks as it would have been done for a single chunk.

We note that data movements are typically expensive in various

sorting implementations on both CPUs and GPUs and should be

avoided as much as possible for large scale data.

To better illustrate our extended design, an example is

provided in Fig. 3. In the top part of the figure, after binary

searching each cell identifier in the MC array from the PntCID

array, while there are two matched cell identifiers in the PntCID

array (at positions 1 and 2 and shaded with light and dark gray

colors, respectively) are paired with cell identifier 2 in the MC

array, there is only one match for cell identifiers 6 and 8,

respectively, and there is no match for cell identifiers 5, 4 and 1.

As shown in the bottom part of Fig. 3, the three points in the first

chunk and the four points in the second chunk in grid cell #2 can

be accessed by combining the corresponding elements in the

PntPos and the PntLen arrays. The point data records are colored

in light and dark gray in the same way as the two matched

elements in the PntCID, Pntlen and PntPos arrays are colored.

3.4 Parallel Cell-in-Polygon Test for

Optimization
The tradeoffs between spatial filtering and spatial

refinement in spatial joins are well studied in spatial databases

[5]. In our FSG approach, clearly, using a high resolution grid for

point/polygon indexing will increase the amount of workload in

indexing and spatial filtering but is likely to reduce the workload

in the final spatial refinement phase. However, for heavily

clustered regions, the numbers of points that fall within some grid

cells are likely to be large. Assuming that there are K points in a

grid cell, directly applying the point-in-polygon test would

require O(K) tests, each requires O(V) operations where V is the

number of vertices in the polygon to be tested. When K is large in

such grid cells, directly performing point-in-polygon test can be

very expensive.

Fig. 3 Data Parallel Design for Spatial Filtering with Chunked Point Indexing

Lower bound binary search

Upper bound binary search

Binary Search

1 1 1 2 2 2 2 2 1

2 5 4 1 8 6

2 4 6 8 2

MID

MC

PntCID (key)

1

2

1

6

2

8

3 4 PntLen(value)

2 14 PntPos (value)

Key-value sorted

PntRec

1

2

5

5

6

6

MID

PntCID

Lower bound index

Upper bound index

By observing that if a grid cell is completely inside or

outside a polygon, we can directly assign the test results to all

points in the grid cell without requiring any point-in-polygon test.

Although a cell-in-polygon test is generally more expensive than

a point-in-polygon test, when K is large, the optimization is likely

to be beneficial. From a probabilistic perspective, if the

probability that the grid cell is completely within or outside of a

polygon is high, the overall computing cost can be significantly

decreased by performing a single cell-in-polygon test instead of

multiple point-in-polyline tests. We consider this optimization

technique as part of spatial filtering and refer it as advanced

spatial filtering in this study.

Several well-established computational geometry

principles can be used to test the relationships between a rectangle

(including a squared grid cell) and a polygon. Motivated by the

procedure used in [19], we have used the following two steps to

determine whether a grid cell intersects, is within, or, is outside

of a polygon. Note that multi-rings are allowed in our technique

by separating rings with the origin of the underlying coordinate

system. Our technique extends the work in [19] that only supports

single-ring polygons and the extension is necessary for WWF

ecoregion data as polygons in this dataset are complex and many

of them have multiple rings. As shown in Fig 4A, the first step for

cell-in-polygon test is to check whether any of the grid cell's four

edges intersects with any of the polygon edges, or, whether any

of the polygon's vertices is within the cell, to determine whether

the grid cell intersects with the polygon. If the grid cell does not

intersect with the polygon, then it is either completely inside (Fig.

4B) or completely outside the polygon (Fig. 4C). We

subsequently test whether any of the cell's corners is within the

polygon. If the test is true then the grid cell is inside the polygon;

otherwise the grid cell is outside of the polygon.

Fig. 4 Three Cases in Cell-in-Polygon Tests

4. EXPERIMENTS AND RESULTS

4.1 Data and Experiment Setup
The GBIF global species occurrence dataset has 375+

million species occurrences records as of 08/02/2012 when we

obtained the dataset. Our preprocessing results have shown that

the dataset contains 1,487,496 species, 168,280 genus, 1,142

families in 262 classes, 109 phyla and 9 kingdoms. The majority

(95.7%) of the records is related to animals and plants. A large

portion (74.1%) is geo-referenced (with latitude/longitude

coordinates at different accuracy levels) and can be associated

with terrestrial eco-regions. The WWF ecoregion dataset comes

in ESRI shapefile format7 and has 14,458 polygons, 16,838 rings

and 4,028,622 points. The ecoregion data volume is relatively

small when compared to today's CPU memory capacities.

However, the raw GBIF species occurrence data we received is in

the form of a relational database dump with 35 columns and has

a total data volume of 180 GB. Many of these columns use the

variable character type which makes random accesses very

difficult. We have extracted individual columns and converted

them into binary format for further processing. In this study, we

primarily focus on three attributes, i.e., latitude, longitude and

taxon identifier. The total data volume of the three columns is

about 4.2 GB for the 375 million point data records. As the total

data volume of the three attributes is less than 1/3 of the CPU

memory in our experiment system (16 GB), hereafter we assume

that all data involved are memory-resident.

We have empirically set the data grid resolution to 1

arc-minute (approximately 2 kilometers around the equator)

primarily because this might be the finest resolution for global

biodiversity studies and it may already be beyond the accuracy of

some species occurrence records. The width and height of the

resulting grid are 21,600 and 10,800, respectively. The gridded

coordinates of a point location can be easily stored as a 2-byte

short integer along both longitude and latitude dimensions. As the

indexing grid resolutions are allowed to be coarser than the data

grid resolution, we have chosen three grid resolutions for spatial

indexing, i.e., 2n*2n for n=13, 14 and 15, to investigate how

various performance measurements change with indexing grid

resolutions.

All experiments are performed on a Dell Precision

T5400 workstation equipped with 16 GB memory and a 500 GB

7200 RPM hard drive. The workstation has dual quad-core Intel

E5405 CPUs (8 cores in total) running at 2.00 GHZ and with 6MB

L2 cache per core pair, 128 KB L1 cache per core and 12.8 GB/s

memory bandwidth per CPU. The workstation is also equipped

with an Nvidia Quadro 6000 GPU device with 448 CUDA cores

(1.15 GHz), 6 GB GDDR5 memory and 144 GB/s memory

bandwidth. The sustainable disk I/O speed is about 100 MB/s

while the theoretical data transfer speed between the CPU and the

GPU is 8 GB/s through PCI-E. The relevant software installed on

the workstation are Nvidia CDUA SDK 5.0 (with Thrust library

1.6), g++ 4.6.3 and Intel TBB 4.1. All programs, including the

two serial implementations using traditional technologies

(Section 4.3), are optimized with -O3 option during compilations

for fair comparisons.

4.2 Overall Results
The runtimes of the four components in our GPU-based

zonal statistics technique, i.e., point indexing, polygon MBB

indexing, spatial filtering and spatial refinement, under the three

grid resolutions are measured. We do not plot polygon MBB

indexing runtimes in Fig. 5 because they are negligible (51, 197

and 787 milliseconds for the three grid cell levels, respectively)

when compared to others which are plotted. Note that the spatial

filtering runtimes are measured with the optimization technique

described in Section 3.4.

From Fig. 5 we can see that the runtimes of spatial

filtering and spatial refinement dominate the overall runtimes

under all the three grid resolutions. From an application

perspective, the most significant conclusion we can draw from the

experiment results is that, zonal statistics on the 375+ million

species occurrences over the 15 thousand complex ecoregion

polygons based on point-in-polygon test spatial relationship can

be completed on a commodity workstation equipped with a single

GPU device in the order of 100 seconds.

Our data parallel designs make it relatively easy to

implement the designs in multiple parallel hardware platforms.

For demonstration and comparison purposes, we have also

implemented the designs on multi-core CPUs. To minimize the

additional implementation efforts, since the Thrust parallel library

also provides interfaces to the Intel Threading Building Block

(A)

Intersect

(B)

Inside

(C)

Outside

(TBB8) library that is known to be efficient on multi-core CPUs,

we recompile our GPU-based Thrust code to use TBB and link it

with the TBB runtime library to utilize multi-core CPUs in a way

similar to the work reported in [9] for point-to-polyline nearest

neighbor search based spatial joins, but with two exceptions. The

first exception is on point indexing where we have found that the

GNU parallel mode library9 is more efficient for multi-core CPU

based sorting and we use it instead for fair comparisons. The

second exception is related to the native CUDA implementation

of the point-in-polygon test module as reported in [6]. For fair

comparisons, we have implemented the point-in-polygon test

module using the native TBB programming model by assigning a

range of (polygon, block) pairs as a task and letting a single CPU

core loop through all the points in the polygon for point-in-

polygon test.

As expected, the GPU-based implementations are

significantly faster than their peer multi-core CPU

implementations with speedups ranging from 2.7X to 4.7X for the

three major components (point indexing, spatial filtering and

spatial refinement) under the three grid resolutions, as shown in

Fig. 6. The speedups are higher for spatial filtering and spatial

refinement as they are more computing intensive and can better

use GPU’s massive floating point computing power. Please note

that the CPU performance is measured when all the 8 cores are

fully utilized and the multi-core CPU implementations have been

optimized as much as possible for fair comparisons. Our results

agree with the rigorous performance analysis on quite a few non-

geospatial benchmarks reported in [20] when comparing the

performance of GPUs and multi-core CPUs. The comparisons

also suggest that our data parallel designs can achieve high

efficiency on both GPUs and multi-core CPUs by using parallel

primitives that are optimized for the respective hardware

platforms. As such, they are less likely to depend on the

programming skills of individual programmers and are more

preferable from a software development perspective.

After comparing with the multi-core CPU

implementations based on our data parallel designs, we would

like to comment on the relationships between filtering and

refinement using different grid resolutions in our GPU-based

implementation as observed in the experiments. First of all, from

Fig. 5, it is easy to see that the filtering runtimes increase with

grid resolutions while the refinement runtimes decrease with grid

resolutions for both CPU and GPU implementations. This is

expected as using finer resolution grid for filtering reduces false

positives and requires fewer point-in-polygon tests in the

refinement phase. Since cell-in-polygon test is used in the

filtering phase as an optimization technique, which is also

computation intensive, the runtimes in the filtering phase are

comparable with the runtimes in the refinement phase, although

the computing workload for the basic spatial filtering design can

be quite light [9]. While the runtime of spatial filtering is about

1/5 of the runtime of spatial refinement at the grid level 13, the

ratio quickly increases to 1.6 at the grid level 15. The totals of the

filtering and refinement runtimes (and hence the end-to-end

runtimes) are minimized at the grid level 14. The results indicate

that choosing a proper grid level is important in improving the

system performance and we leave a more comprehensive

investigation for future work.

Fig. 5 Plots of runtimes (s) of Point Indexing, Spatial Filtering

and Spatial Refinement on GPUs using three grid resolutions

Fig. 6 Plots of GPU over multi-core CPU speedups

4.3 Comparisons with alternatives using

traditional technologies
It is not our intention to directly compare our memory-

resident massively data parallel technique with serial

implementations using traditional geospatial software packages

that are designed for uniprocessors and disk-resident systems.

This is because the two techniques are developed for different

applications targeting at different hardware. Nevertheless, we

report the performance comparisons with two serial

implementations using libspatialindex10 for R-Tree based

polygon indexing and GDAL11 (through GEOS) for point-in-

polygon tests for reference purposes. The comparisons can also

help understand the level of performance that our technique has

achieved due to data parallel designs and optimized

implementations on GPUs.

0

1

2

3

4

5

Level=13 Level=14 Level=15

Point Indexing Spatial Filtering Spatial Refinement

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

Point Indexing Spatial Filtering Spatial
RefinementLevel=13 Level=14 Level=15

The major difference between the two serial

implementations is the following: the second implementation

incorporates an optimization heuristic in hope to improve the

overall performance, while the first serial implementation simply

queries polygon MBBs that intersect with each and every point

before performing point-in-polygon test between the point and the

polygons whose MBBs intersect with the querying point. Given

that querying the polygon R-Tree for 375+ million points can be

expensive when traversing the polygon R-Tree individually, the

heuristic is to locate all the MBBs in the polygon R-Tree leaf

nodes that intersect with grid cells of groups of points where only

a single R-Tree query is needed for the groups of points within

the grid cells. The second implementation clearly requires grid-

based indexing of points but can potentially save R-Tree query

time as the number of accesses to R-Tree nodes can be

significantly reduced through point grouping. Although it is

possible to use R-Tree to index points by treating each point as a

degenerated MBB, the high index construction cost has led us to

decide to either not index the point data (implementation 1) or re-

use the results of our grid file based indexing (implementation 2).

 We believe the first serial implementation represents a

reasonably efficient implementation by applying spatial filtering

before refinement as a typically trained geospatial programmer

would do. We also expect the second serial implementation to be

more efficient by incorporating the optimization heuristic.

However, the results are quite the opposite as detailed below. The

code for the two serial implementations and the three subsets of

point data are publically available online12 and we encourage

interested readers to cross-examine the implementations, validate

the experiment results and make independent comparisons.

First of all, neither implementation is as efficient as we

have expected. It takes 18.77 hours to process a subset of

approximately 10 million point records with a throughput in the

order of 139 points per second. Additional experiments using two

smaller subsets of species with 279,808 and 746,302 points result

in similar performance, i.e., 138 points per second for both

smaller datasets. By using a linear extrapolation, it would take

600+ hours to complete the 375 million points using the serial

implementations, although the implementation does exhibit

excellent scalability and is suitable for MapReduce/Hadoop

systems. However, the performance is 4-5 orders of magnitude

slower (138 points per second) than our GPU based

implementation (375 million points in about 100 seconds) which

is inferior from both the usability and monetary cost perspectives.

Second, the experiments show that the optimization

heuristic employed in the second serial implementation is largely

ineffective. While measured accesses to the polygon R-Tree has

been dramatically reduced by the optimization, the runtimes do

not get improved noticeably. Further investigations have revealed

that the polygon R-Tree is fairly small (a few megabytes) and can

be completely cached in memory which makes reducing accesses

to R-Tree insignificant as in disk-resident cases. Since querying

cell boundaries against the polygon R-Tree will inevitably cause

more false positives when compared with directly querying points

and point-in-polygon tests, which is much more expensive than

accessing memory-resident R-Tree nodes, the heuristic does not

work as expected. Since point data are also made memory

resident in both serial implementations, we can conclude that the

low performance of the serial implementations is largely

unrelated to disk I/Os in our experiments.

While we are still in the process of fully understanding

the 4-5 orders of magnitude of performance differences, we

believe that excessive memory allocation/deallocation to

accommodate for low memory capacities, library overheads for

generality (e.g., object-oriented abstractions) and mismatches

between traditional data structures and algorithms with modern

hardware architectures (e.g., cache unfriendliness in depth-first

tree traversals) are among the factors that contribute to the low

performance of the two serial implementations by using

traditional geospatial techniques. Furthermore, it is interesting to

observe that, even assuming that our multi-core CPU-based

implementations have achieved perfect scalability (8X for 8

cores), the performance of the corresponding serial

implementations of our data parallel designs (by multiplying the

number of cores with the measured runtimes) is still about three

orders of magnitude faster than using traditional technologies.

This may suggest that there is a huge room to improve traditional

spatial data processing technologies by adopting data parallel

designs and hardware architecture aware implementations. We

leave this interesting interdisciplinary research topic for our

future work.

5. CONCLUSION AND FUTURE WORK
In this study, we have significantly extended our

previous techniques for point-in-polygon test based spatial joins

on GPUs for large scale data. The integrated flexible designs and

their GPU implementations have successfully performed zonal

statistics on 375+ million global species occurrence records over

15 thousand complex ecoregions in facilitating exploring global

biodiversity explorations. We have developed a flexible data

parallel framework by using GPU mapped memory in CPUs for

large-scale data that may exceed GPU memory capacity. We have

extended our point data indexing and binary search based spatial

filtering designs to accommodate multi-chunked point data

indexing while achieving much higher efficiency when compared

with using mapped memory naively. Including the cell-in-

polygon based optimization, the combined improvements have

reduced the total runtime to about 100 seconds using a single

GPU device. The performance is several orders of magnitude

faster than two reference serial implementations using traditional

open source geospatial techniques. The realized high performance

on top of flexible designs is not only significant for practical

applications in exploring increasingly larger global biodiversity

data but also suggests that there are huge rooms to improve the

performance of traditional geospatial technologies on modern

parallel hardware.

For future work, first of all, we would like to integrate

our technique with data management and visualization frontends

for practical applications. Second, since the flexible data parallel

framework is also applicable to other types of spatial processing,

it is thus interesting to examine its scalability in additional

applications with larger scale data. For example, spatially and

temporally associating 2.7 billion GPS points deposited into

Openstreetmap Planet13 with global road networks by using the

point-to-polyline nearest neighbor search based spatial joins [9].

Third, our new data parallel framework allows integrating multi-

core CPUs and multi-GPUs as well as other types of hardware

accelerators that share the same address space to synergistically

process large scale data by assigning chunks of array elements to

multiple processors in a straightforward manner. We plan to

materialize the design which essentially allows heterogeneous

computing and implement it on a hybrid CPU-GPU system for

performance evaluation using the GBIF data and the

Openstreetmap Planet GPS location data. Finally, while it is

certainly a challenging task that requires significant effort, we

plan to investigate the mismatches between the designs and

implementations of traditional geospatial processing software

packages and the new generation of parallel hardware in a

systematic manner. The findings may not only lead to improved

performance but also may provide new insights on how to make

better use of commodity parallel hardware and enable larger scale

geospatial processing with higher efficiency and better

scalability.

6. REFERENCES
[1] C. Cox and P. Moore, Biogeography: An Ecological and

Evolutionary Approach (7th Ed.), Wiley, 2005.

[2] F. A. Bisby, "The quiet revolution: Biodiversity informatics

and the internet," Science, vol. 289 (5488), pp. 2309-2312,

2000.

[3] J. Zhang, "A high-performance web-based information

system for publishing large-scale species range maps in

support of biodiversity studies," Ecological Informatics,

vol. 8, pp. 68-77, 2012.

[4] J. Zhang and L. Gruenwald:, "Embedding and extending

GIS for exploratory analysis of large-scale species

distribution data," in ACM-GIS Conference, 2008.

[5] E. H. Jacox and H. Samet, "Spatial Join Techniques," ACM

Trans. Database Syst., vol. 32, no. 1, p. Article #7, 2007.

[6] J. Zhang and S. You, "Speeding up large-scale point-in-

polygon test based spatial join on GPUs," in Proc. ACM

BigSpatial’12, 23-32, 2012.

[7] D. Theobald, GIS Concepts and ArcGIS Methods, 2nd Ed.,

Conservation Planning Technologies, Inc., 2005.

[8] D. B. Kirk and W.-m. W. Hwu, Programming Massively

Parallel Processors: A Hands-on Approach, 2nd ed.,

Morgan Kaufmann, 2012.

[9] J. Zhang, S. You and L. Gruenwald, "Parallel Online

Spatial and Temporal Aggregations on Multi-core CPUs

1 http://www.gbif.org/
2 http://www.opengeospatial.org/standards/sfs
3 http://www.vividsolutions.com/jts/JTSHome.htm
4 http://trac.osgeo.org/geos/
5 http://worldwildlife.org/biomes
6 https://thrust.github.io/
7 https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

and Many-Core GPUs," Information Systems, vol. 44, p.

134–154, 2014.

[10] C. Ricotta, "Through the jungle of biological diversity,"

Acta Biotheoretica, vol. 53, pp. 29-38, 2005.

[11] R. Obe and L. Hsu, PostGIS in Action, Manning

Publications, 2011.

[12] Y. Hu, S. Ravada, R. Anderson and B. Bamba,

"Topological relationship query processing for complex

regions in Oracle spatial," in Proc. ACM-GIS'12, 2012.

[13] J. Zhang, S. You and L. Gruenwald, "Large-Scale Spatial

Data Processing on GPUs and GPU-Accelerated Clusters,"

ACM SIGSPATIAL Special, vol. 6, no. 3, pp. 27-34, 2014.

[14] J. Zhang, S. You and L. Gruenwald, "U2STRA: High-

performance Data Management of Ubiquitous Urban

Sensing Trajectories on GPGPUs," in Proc. ACM CDMW

'12, 2012.

[15] M. McCool, J. Reinders and A. Robison, Structured

Parallel Programming: Patterns for Efficient Computation,

Morgan Kaufmann, 2012.

[16] L. Hennessy and D. A. Patterson, Computer Architecture:

A Quantitative Approach, 5th edition, Morgan Kaufmann,

2011.

[17] J. Dean and S. Ghemawat, "MapReduce: a flexible data

processing tool," Communications of the ACM, vol. 53, no.

1, pp. 72-77, 2010.

[18] D. Merrill and A. S. Grimshaw, "High performance and

scalable radix sorting: a case study of implementing

dynamic parallelism for GPU computing," Parallel

Processing Letters, vol. 21, no. 2, pp. 245-272, 2011.

[19] K. Wang, Y. Huai, R. Lee, F. Wang, X. Zhang and J. H.

Saltz, "Accelerating Pathology Image Data Cross-

comparison on CPU-GPU Hybrid Systems," Proc. VLDB

Endow., vol. 5, no. 11, pp. 1543--1554, 2012.

[20] V. W. Lee, C. Kim, et al, "Debunking the 100X GPU vs.

CPU myth: an evaluation of throughput computing on CPU

and GPU," in Proc. ACM/IEEE ISCA'10, 2010.

8 https://www.threadingbuildingblocks.org/
9 http://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
10 http://libspatialindex.github.io/
11 http://www.gdal.org/
12 http://www-cs.ccny.cuny.edu/~jzhang/zs_gbif.html.
13 http://wiki.openstreetmap.org/wiki/Planet.osm

