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ABSTRACT 
Analyzing how species are distributed on the Earth has been one 

of the fundamental questions in the intersections of environmental 

sciences, geosciences and biological sciences. With world-wide 

data contributions, more than 375 million species occurrence 

records for nearly 1.5 million species have been deposited into the 

Global Biodiversity Information Facility (GBIF) data portal. The 

sheer amounts of point and polygon data and the computation-

intensive point-in-polygon tests for zonal statistics for 

biodiversity studies have imposed significant technical 

challenges. In this study, we have developed efficient techniques 

to enable parallel zonal statistics on the global GBIF data 

completely on GPUs with limited memory capacity. Experiment 

results have shown that an impressive end-to-end response time 

under 100 seconds can be achieved for zonal statistics on the 375+ 

million species records over 15+ thousand global eco-regions 

with 4+ million vertices on a single Nvidia Quadro 6000 GPU 

device. The achieved high performance, which is several orders 

of magnitude faster than reference serial implementations using 

traditional open source geospatial techniques, not only 

demonstrates the potential of GPU computing for large scale 

geospatial processing, but also makes interactive query driven 

visual exploration of global biodiversity data possible. 

 

1. INTRODUCTION 
Quantifying species-environment relationships, i.e., 

analyzing how species are distributed on the Earth has been one 

of the fundamental questions studied by biogeographers and 

ecologists for a long time [1]. Several enabling technologies have 

made biodiversity data available at much finer scales in the past 

decade [2], including DNA barcoding for species identification, 

geo-referring for converting descriptive museum records to 

geographical coordinates, database technologies for managing 

species presence locations and related taxonomic and 

environmental data, and, Geographical Information System (GIS) 

for species distribution data modeling and analysis. The newly 

emerging cyberinfrastructure technologies (e.g., metadata, 

ontology, Web services and scientific workflow) have made 

exchanging and sharing species distribution data over the Web 

much easier. The currently largest species occurrence data 

repository might be the Global Biodiversity Information Facility 

(GBIF) which was established by governments in 2001 to 

encourage free and open access to biodiversity data via the 

Internet1. Through a global network of countries and 

organizations, as of August 2012, the GBIF data portal has more 

than 375 million species occurrences records on 1,487,496 

species. The majority of the records are geo-referenced which 

makes it possible to overlay species occurrence records with 

different types of raster and vector data layers for exploring 

biodiversity patterns and their relationships with environments 

and human impacts at global and regional scales. 

Given the virtually countless combinations of species 

taxa, geographical regions and ecosystems [3], many types of 

exploratory analysis on integrated taxonomic-geographical-

environmental data can be investigated [4]. In this study, we will 

be focusing on a fundamental spatial operation for zone-based 

point location data summation, i.e., counting the numbers of 

points that fall within a set of polygons in a zonal dataset. The 

operation is closely related to point-in-polygon test based spatial 

joins [5] [6] and is well-supported in several leading GIS software 

known as Zonal Statistics [7]. While both spatial databases and 

GIS have exploited optimization techniques, such as indexing and 

preprocessing, existing designs and implementations are mostly 

based on serial CPU computing models and usually incur 

significant delays when processing large scale datasets. Modern 

commodity personal computers are increasingly equipped with 

large memory and many-core accelerators, such as Nvidia GPUs 

that are capable of general computing based on the Compute 

Unified Device Architecture (CUDA) parallel programming 

model [8]. Unfortunately, many commercial and open source 

spatial databases and GIS are optimized for the previous 

generations of hardware based on outdated cost models and fail 

to make full use of the computing power provided by modern 

commodity hardware.  

Built on top of our previous research and development 

efforts on spatial indexing and query processing on GPUs [6] [9], 

in this study, we aim at accelerating explorations of the GBIF 

global biodiversity data by designing and implementing efficient 

data parallel algorithms for high-performance zonal statistics on 

the hundreds of millions of species occurrences over tens of 

thousands of complex polygons on commodity GPUs with limited 

memory capacities. First of all, we have designed a framework to 

allow efficient use of mapped memory on CPUs as extended GPU 

memory automatically and support data parallel designs. Second, 
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we have developed a flexible point indexing technique to index 

large point datasets that are beyond GPU memory capacity by 

using mapped memory efficiently through batched processing. 

Third, we have extended our binary search based spatial filtering 

algorithm to work with the new point indexing technique. Fourth, 

a cell-in-polygon test based optimization technique for advanced 

spatial filtering is developed to allow assigning polygon 

identifiers to points if the grid cell that the points fall into is tested 

to be completely within a polygon without performing expensive 

point-in-polygon tests for individual points. We have performed 

extensive experiments to demonstrate the efficiency of GPU-

based massively data parallel zonal statistics technique and 

compare it with two reference serial implementations using 

traditional open source geospatial software packages. The 

performance of the data parallel framework and techniques as 

well as the effectiveness of the cell-in-polygon based 

optimization technique are tested under different experiment 

settings.  

The rest of the paper is arranged as follows. Section 2 

introduces background and motivation and briefly reviews related 

work. Section 3 provides details of the data parallel zonal 

statistics framework, the point indexing and spatial filtering 

techniques, and the cell-in-polygon test based optimization 

technique for advanced spatial filtering. Section 4 presents the 

experiments and results. Finally Section 5 is the conclusion and 

future work directions.   

2. BACKGROUND, MOTIVATION AND 

RELATED WORK 
Given a point dataset T_O representing species 

occurrences with two attributes (sp_id, the_geom) and a polygon 

dataset T_Z representing zones also with two attributes (z_id, 

the_geom), the basic zonal statistics operation to count the 

number of occurrences of species in each polygon can be 

expressed as the following SQL statement:  

SELECT COUNT(*) from T_O, T_Z  

WHERE ST_WITHIN (T_O.the_geom,T_Z.the_geom)  
GROUP BY T_Z.z_id; 

Here the_geom attributes in the two datasets represent 

geometry, i.e., points and polygons, respectively. Advanced zonal 

statistics operations likely involve species identifiers in additional 

clauses (such as WHERE and GROUP) to derive the occurrence 

counts for a single or a group of species. The species occurrence 

counts can be used to compute abundance and richness 

measurements for a variety of types of biodiversity studies [10]. 

The GBIF data portal has provided overview maps of species 

occurrences for different species groups as well as countries 

which is very useful in understanding the overall species 

distribution patterns. However, the maps are mostly for 

visualization purposes and are limited to a few fixed resolutions 

up to 0.1 by 0.1 degree which might be too coarse for many 

scientific inquiries. It is clear that the zonal statistics based data 

summation operations are closely related to the point-in-polygon 

test used in the ST_WITHIN function. The function is defined by 

the Open Geospatial Consortium (OGC) Simple Feature 

Specification (SFS2) and has been implemented in several spatial 

database systems and GIS, e.g., Java Topology Suit (JTS3), 

Geometry Engine - Open Source (GEOS4) and 

PostGIS/PostgreSQL [11]. The Oracle Spatial development team 

has recently proposed to build an in-memory R-Tree to speed up 

topological relationship query processing for complex regions 

[12], including point-in-polygon test.  

Point-in-polygon test has been extensively investigated 

by the computational geometry and spatial database research 

communities. While computational geometry research usually 

focuses on a single point and polygon pair, spatial database 

research addresses the overall efficiency on testing a large set of 

points and polygons that can be abstracted as a special type of 

spatial joins. Spatial joins are typically divided into two phases, 

i.e., the filtering phase and the refinement phase [5]. The filtering 

phase utilizes some pre-built or on-the-fly constructed spatial 

indices to pair subsets of points and subsets of polygons for 

further refinements. The refinement phase in the point-in-polygon 

test based spatial joins applies computational geometry 

algorithms to determine whether a point is within a polygon for 

paired points and polygons. Obviously, building indices incurs 

additional overheads but can significantly reduce the number of 

required point-in-polygon tests and improve spatial join 

efficiency. 

In our previous works, we have extensively 

investigated the potentials of GPU-based spatial indexing and 

spatial joins and many of them are based on data parallel designs. 

For a brief review of these works, we refer the reader to our ACM 

SIGSPATIAL SPECIAL paper [13]. In particular, a parallel 

binary search based spatial join framework [9] is proposed for 

joining indexed point data (using quadtrees or grid-files) and 

indexed polyline or polygon data (using grid-files). Several 

applications that demonstrate the effectiveness and efficiency of 

the indexing and spatial join techniques have been reported, 

including point-in-polygon test based spatial association between 

taxi pickup/drop-off locations and census tracks in the New York 

City (NYC) [6], point-to-polyline nearest neighbor search based 

spatial associations between taxi pickup/drop-off locations and 

street network in NYC [9] and Hausdorff distance based 

trajectory similarity queries in Beijing [14].   

Zonal statistics on GBIF species occurrence data is 

conceptually similar to the point-in-polygon test based spatial join 

which may suggest that we can simply apply the techniques we 

have developed in [6] to this new dataset. However, first of all, 

the number of species occurrences in the dataset (375+ million) 

is more than two times larger than the number of taxi pickup 

locations we have processed previously (~170 million) and it is 

impossible to index all species occurrences on GPUs completely 

due to their memory capacity limit. Second, the 

polyline/polygon/trajectory data that we have used in our 

previous applications are considerably simpler than the World 

Wild Fund (WWF) ecoregion polygon data5. The average number 

of vertices per polygon in the WWF dataset (279) is nearly three 

times as large as that of the NYC census block dataset (108). 

Third, comparing with taxi pickup locations that are mostly 

clustered in major street intersections, the distributions of species 

occurrences are much more dispersed which is likely to cause 

significant execution flow divergences on GPUs, a typical 

problem in degrading GPU computing performance [8]. As such, 

effective optimization techniques are keys to achieving high 

performance for large datasets at the scale in order to support 

interactive visual explorations. Finally, perhaps more 

importantly, while the recent Nvidia GPUs set the GPU memory 

capacity (24 GB) to a new level, from a research perspective, it is 

crucial to develop a flexible framework to support zonal statistics 



 

 

and other types of geospatial processing on large datasets that 

exceed GPU memory capacity limit. 

3. Efficient Zonal Statistics on GPUs 
We propose to follow the GPU-based spatial join framework we 

have developed previously [9] and reuse existing components, 

e.g., point-in-polygon test GPU routine presented in [6], whereas 

possible. Our new contributions in this study are four-fold: 1) a 

framework to allow efficient use of mapped CPU memory  as 

extended GPU memory automatically and support data parallel 

designs, (2) a flexible and efficient point indexing technique to 

index large point datasets that are  beyond GPU memory capacity, 

(3) an extended binary search based spatial filtering algorithm to 

work with the new point indexing technique, and (4) a cell-in-

polygon test based optimization technique for advanced spatial 

filtering. The four new designs are highlighted and numbered in 

Fig. 1. We next introduce our data parallel framework as the 

motherboard for relevant techniques before the design and 

development details are presented in the following subsections. 

3.1 Data Parallel Framework  
The data parallel framework for high-performance 

zonal statistics is shown in Fig. 1. Note that we use solid arrows 

to show data processing steps and dashed arrows to show the 

correspondences among data used in different components in the 

framework. Following our previous studies [13], the point 

coordinates and polygon vertices are stored as arrays with each 

element has a fixed length, instead of storing them as objects that 

may have variable lengths. Although not shown in Fig. 1 due to 

space limit, a polygon index array is constructed to store the first 

vertex positions of polygons to efficiently access polygon vertex 

arrays on both GPUs (for coalesced memory accesses) and CPUs 

(for cache-friendly memory accesses). Since the GPU-based 

zonal statistics technique is built on top of the point-in-polygon 

test based spatial joins, we reuse the relevant data parallel designs 

presented in [9] including sort-based point indexing, grid-file 

based polygon MBB (Minimum Bounding Box) rasterization and 

indexing, and, binary search based spatial filtering and nested-

loop based spatial refinement. The GPU-based point-in-polygon 

test technique [6] is plugged into spatial refinement to implement 

the required zonal statistics functionality. These designs are 

extended when necessary and will be described in their respective 

subsections next. As both the previous implementations and the 

implementations for new extensions can be realized using either 

data parallel primitives supported by parallel libraries (e.g., 

Thrust6 that comes with CUDA SDK) or nested loops with regular 

data access patterns and can be efficiently realized by using native 

GPU programming languages (e.g. CUDA), we consider both the 

new designs for individual components and the overall 

framework data parallel [15].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Data Parallel Framework for Efficient Zonal Statistics on GPUs
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Our new flexible data parallel framework utilizes the 

Unified Virtual Addressing (UVA) feature that is available in 

newer generations of Nvidia GPUs [8], which include both Fermi, 

Kepler and Maxwell based Nvidia GPUs, to allocate chunks of 

CPU memory and make them accessible to both CPUs and GPUs. 

We term such CPU memory chunks as GPU mapped memory on 

CPUs, or simply GPU mapped memory when there is no 

confusion. Using GPU mapped memory virtually extends GPU 

memory capacity by using CPU memory which can be two orders 

of magnitude larger (1-6 GB vs. 100-1000 GB).  However, in a 

way similar to using disks as virtual CPU memory [16], using 

GPU mapped memory in a naive way may perform poorly. For 

example, our experiments show that simply applying the parallel 

sort primitive on GPUs (which is based on the radix sort 

algorithm) for point indexing using mapped memory can result in 

a much inferior performance. Our data parallel framework allows 

GPU mapped memory to be effectively utilized for scalability 

without significant degrading the overall performance when 

applied to larger scale data. 

3.2 Flexible Point Indexing on GPUs using 

Batched Processing 
As reported in [9], the Flatly Structured Grid-file (FSG) approach 

is much simpler than the Multi-Level Quadrant (MLQ) based 

approach for point indexing from both design and implementation 

perspectives. The load balancing guarantee of the MLQ approach 

is not instrumental for large scale data to achieve good 

performance when the number of (point quadrants, polygon) pairs 

after spatial filtering is much larger than the number of parallel 

processing units. The multi-core CPU implementation (using 8 

Intel Xeon E5405 CPU cores) of the FSG approach actually has 

achieved much better performance than the MLQ approach on 

GPUs (using Nvidia Quadro 6000) despite that the GPU can 

achieve a much higher sorting rate which is a key to the 

performance of both MLQ and FSG implementations. The results 

suggest that the FSG approach is superior to the MLQ approach 

for spatially joining large scale datasets. Therefore, the FSG 

approach is adopted in this study for point indexing. While it is 

interesting to implement the FSG approach on GPUs, it has a 

much larger memory footprint which limits the number of species 

occurrence point records to about 100 million when each record 

has a length of 12 bytes, i.e., 4-byte float for x/y coordinate and 4 

byte integer for taxon identifier. This is also the reason that we 

were forced to index 170 million taxi trip records on multi-core 

CPUs as reported in [9]. The scalability issue of the existing point 

indexing technique has motivated us to develop a more flexible 

parallel design for the FSG approach on GPUs.  

Given a point dataset with N records where each record 

includes a longitude and latitude pair (optionally with some other 

attributes such as taxon identifier in the GBIF dataset), the dataset 

is stored as an array of records in a CPU memory block which is 

mapped by a GPU device through the UVA mechanism [8]. Both 

the CPU and the GPU in a computing node can access the 

memory block, not only for point indexing but also for point-in-

polygon test in spatial refinement. When GPUs access the 

mapped memory in CPUs, as illustrated at the top of Fig. 1, they 

are required to transfer data in small units from the mapped 

memory in CPUs to their processors that need the data through a 

PCI-E bus dynamically. This is quite different from the 

conventional way that transfers data from CPUs to GPUs in large 

chunks before they are processed by GPUs. Clearly the flexibility 

of being able to utilize larger CPU memory is at the cost of lower 

efficiency in data transfer, in a way very similar to virtual memory 

in traditional CPU computing and buffer management in 

relational database systems.  

One might attempt to apply the FSG design to GPU 

mapped memory to minimize the effort of reimplementation 

which can be costly. However, this will not work for two reasons. 

First, while the inputs and outputs of the FSG design can use GPU 

mapped memory, the implementations of many parallel 

primitives used in the design (including sort in Thrust which is 

used by FSG) may use temporal GPU memory storage for 

intermediate results which is typically proportional to input sizes. 

The required temporal memory footprints are likely to exceed 

GPU memory capacity for large scale data and the process will 

fail due to out of memory. For example, the Nvidia Quadro 6000 

GPU can only sort about 200 million records (including 

longitude/latitude and taxon identifier) which is well below our 

goal for a flexible solution. Second, even if little intermediate 

results are produced and the GPU is free from the memory 

capacity problem after putting both inputs and outputs in GPU 

mapped memory in CPUs, excessive accesses to the mapped host 

memory in an uncoordinated manner may significantly degrade 

performance and make GPU implementations unattractive. For 

example, sorting a subset of 125 million GBIF point data records 

in a Quadro 6000 GPU using mapped memory needs 23.867 

seconds while only 0.683 second is required if the sorting is done 

completely in GPU memory. This represents a 34.7X slowdown 

which is not surprising, given that the underlying radix sort 

algorithm requires significant amount of data movements and 

PCI-E bus bandwidths are about 1-2 orders of magnitude slower 

than GPU memory bandwidths. 

Our solution is to partition the input point data array 

into chunks and process the chunks in batches. While we refer to 

[9] for the detailed design of the original (i.e., single-chunk) FSG 

algorithm and a multi-core CPU implementation for references, 

we next briefly repeat the key ideas of the single-chunk FSG 

design before presenting details of the multi-chunk FSG 

algorithm and its GPU implementation for the purpose of being 

self-contained. As discussed earlier, the FSG algorithm for point 

indexing actually is much simpler than the MLQ algorithm 

presented in [6] and requires a simple chaining of only four 

parallel primitives, i.e., transform, sort, reduce (by key) and scan. 

The transform primitive derives a cell identifier for each point 

based on its (longitude, latitude) pair. Given a grid cell size, row-

major ordering is used to compute the cell identifier for easy 

calculation. The next step is to sort the points based on their cell 

identifiers to put all points that fall within a grid cell close to each 

other. Clearly, points within a grid cell are not sorted for 

performance concerns. A reduce (by key) primitive is used to 

count the numbers of points within all grid cells which are 

subsequently used to compute the positions of the first points 

among the points that are within the corresponding grid cells. As 

shown in the middle part of Fig. 2, given an input array PntRec, 

four arrays will be in the output list. In addition to the sorted 

PntRec array, we also have PntCID that stores grid cell 

identifiers, PntLen array that stores the numbers of points in cells 

and PntPos array that stores the positions of first points among 

the points in a grid cell in the sorted PntRec array.  

When there are multiple chunks in a point data array, 

thanks to our data parallel design, each chunk can be processed 

independently, either using a single GPU where the chunks are 

processed sequentially, or using multiple GPUs where the chunks 



 

 

are processed in parallel, or in a way that combines the two 

options. For GPUs with smaller memory capacities, we can 

simply decrease batch sizes and make the technique flexible. The 

performance will degrade gracefully for smaller GPU memory 

capacities but the tradeoff can be justified in this case. The design 

is similar to the mapping phase in the MapReduce computing 

model [17] in the sense that chunks are processed independently 

and no communications are required among chunks in this step. 

 While it seems that we will need to rearrange the sorted 

point array in multiple chunks to proceed to spatial filtering, our 

design avoids such data movements (which could be expensive 

for hundreds of millions of records) by only manipulating the 

three arrays at the grid cell level, i.e., PntCID, PntLen and PntPos 

arrays. Since the number of the grid cells for indexing is typically 

much smaller than the number of point records, the costs for 

manipulating such arrays are much lower. This is the key to the 

scalability and efficiency of our new design for indexing point 

data. The steps are illustrated in the lower part of Fig. 2. First of 

all, the total number of points in each chunk is collected for all 

chunks and stored in the CLen array. Similar to computing the 

PntPos array from the PntLen array by using a scan (prefix-sum) 

primitive, we can compute the CPos array from the CLen array. 

Note that the lengths of the CLen and CPos arrays are the same 

as the number of chunks which are typically very small and the 

costs of this step are negligible. Next, the value of each CPos 

array element is added back to all the elements in the PntPos array 

within each chunk (bottom part of Fig. 2), so that the elements in 

the PntPos array correctly index points in grid cells after 

concatenating the PntRec, PntLen and PntPos arrays in all 

chunks. Again, since all the steps are implemented using parallel 

primitives, the design is highly data parallel and can be 

implemented on top of parallel libraries that support these 

fundamental primitives in a straightforward manner. Experiments 

on the GBIF point data shows that, about 1/3 of the total 

processing time is spent on transferring data between GPUs and 

CPUs while the rest 2/3 of the time is spent on sorting for all 

batches. The runtimes of the rest of the steps (including 

transform, reduce and scans) are relatively insignificant. Given 

that GPUs have excellent performance on sorting [18], the new 

design, termed as Multi-Chunked FSG for point indexing, is 

expected to be not only flexible but also highly efficient.  

3.3 Extending Spatial Filtering to Support 

Chunked Point Indexing 
The binary search based spatial filtering design and its 

GPU-based implementation [6] [9] does not allow duplicated cell 

identifiers which means that the technique will not work for the 

multi-chunked point indices using the technique presented in 

Section 3.2. For a grid cell appears in K chunks, there will be K 

duplicated cell identifiers in the PntCID array. We next present 

details on how binary search based spatial filtering can be 

extended to work with the Multi-Chunk FSG approach for point 

indexing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Parallel Design for Indexing Point Data in Chunks 
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First, the PntLen and PntPos arrays derived from the 

Multi-Chunked FSG point indexing approach are sorted by using 

the PntCID array as keys to make the same cell identifiers appear 

next to each other in the PntCID array. Note that the positions of 

the elements in the PntLen and PntPos arrays are changed 

according to the key-value based sorting. Next, as shown in Fig. 

3, for each of the elements in the MID array, our spatial filtering 

algorithm binary searches the PntCID array by using the 

corresponding element in the MC array as the key. Recall that the 

MID array and the MC array store the correspondences between 

polygon MBB identifiers and cell identifiers of rasterized polygon 

MBBs [9]. The key extension is to match cell identifiers in the 

MC array and the sorted PntCID array by using three parallel 

primitives, i.e., binary_search, lower_bound and upper_bound, 

as a bundle for binary searches. While the lower_bound and 

upper_bound primitives return the first and the last positions 

where values could be inserted without violating the ordering 

during binary searching, the binary_search primitive returns the 

result of whether the values being searched are or are not in the 

array being searched. The resulting position vectors from the 

lower_bound and upper_bound primitives need to be filtered out 

by the resulting boolean vector from the binary_search primitive 

to eliminate unsuccessful searches while keeping the upper 

bounds and lower bounds of successful searches. Note that it is 

not necessary to use the upper_bound primitive if the cell 

identifiers in the PntCID array are guaranteed to be unique, which 

is the case if the point dataset is not chunked. This is exactly the 

original FSG design for spatial filtering presented in [9]. Finally, 

for each matched (MIDi, lower_boundi, upper_boundi) triple, we 

can use MIDi and lower_boundi and upper_boundi values to 

access the polygon vertex arrays and point coordinate arrays as 

follows. Assuming the arrays that store the vertex positions and 

the numbers of polygon vertices are PlyPos and PlyLen, 

respectively, then the polygon vertices will be at the positions 

PlyPos[idx(MIDi)] .. PlyPos[idx(MIDi)+1]-1 with  PlyLen[i] 

vertices. Function idx(i) maps polygon identifier i to an index in 

the PlyPos or PlyLen array, which can be as simple as idx(i)=i. 

Similarly points that fall within the grid cell whose identifier is 

being searched are distributed in upper_boundi - lower_boundi 

blocks. Note that here blocks are combinations of chunks and grid 

cells, i.e., a block of points are within a grid cell in a chunk. For 

each j= lower_boundi .. upper_boundi, the starting position and 

number of points in these blocks are recorded in PntPos[j] and 

PntLen[j], respectively.  They can be used to access the PntRec 

array to retrieve point coordinates or other information for further 

processing. While supporting multiple data point chunks has 

added significant complexity to our original spatial filtering 

design, it eliminates the need to actually sort point records across 

multiple chunks as it would have been done for a single chunk. 

We note that data movements are typically expensive in various 

sorting implementations on both CPUs and GPUs and should be 

avoided as much as possible for large scale data.  

To better illustrate our extended design, an example is 

provided in Fig. 3. In the top part of the figure, after binary 

searching each cell identifier in the MC array from the PntCID 

array, while there are two matched cell identifiers in the PntCID 

array (at positions 1 and 2 and shaded with light and dark gray 

colors, respectively) are paired with cell identifier 2 in the MC 

array, there is only one match for cell identifiers 6 and 8, 

respectively, and there is no match for cell identifiers 5, 4 and 1. 

As shown in the bottom part of Fig. 3, the three points in the first 

chunk and the four points in the second chunk in grid cell #2 can 

be accessed by combining the corresponding elements in the 

PntPos and the PntLen arrays. The point data records are colored 

in light and dark gray in the same way as the two matched 

elements in the PntCID, Pntlen and PntPos arrays are colored. 

3.4 Parallel Cell-in-Polygon Test for 

Optimization 
The tradeoffs between spatial filtering and spatial 

refinement in spatial joins are well studied in spatial databases 

[5]. In our FSG approach, clearly, using a high resolution grid for 

point/polygon indexing will increase the amount of workload in 

indexing and spatial filtering but is likely to reduce the workload 

in the final spatial refinement phase. However, for heavily 

clustered regions, the numbers of points that fall within some grid 

cells are likely to be large. Assuming that there are K points in a 

grid cell, directly applying the point-in-polygon test would 

require O(K) tests, each requires O(V) operations where V is the 

number of vertices in the polygon to be tested. When K is large in 

such grid cells, directly performing point-in-polygon test can be 

very expensive.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Data Parallel Design for Spatial Filtering with Chunked Point Indexing 
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By observing that if a grid cell is completely inside or 

outside a polygon, we can directly assign the test results to all 

points in the grid cell without requiring any point-in-polygon test. 

Although a cell-in-polygon test is generally more expensive than 

a point-in-polygon test, when K is large, the optimization is likely 

to be beneficial. From a probabilistic perspective, if the 

probability that the grid cell is completely within or outside of a 

polygon is high, the overall computing cost can be significantly 

decreased by performing a single cell-in-polygon test instead of 

multiple point-in-polyline tests. We consider this optimization 

technique as part of spatial filtering and refer it as advanced 

spatial filtering in this study.  

Several well-established computational geometry 

principles can be used to test the relationships between a rectangle 

(including a squared grid cell) and a polygon. Motivated by the 

procedure used in [19], we have used the following two steps to 

determine whether a grid cell intersects, is within, or, is outside 

of a polygon. Note that multi-rings are allowed in our technique 

by separating rings with the origin of the underlying coordinate 

system. Our technique extends the work in [19] that only supports 

single-ring polygons and the extension is necessary for WWF 

ecoregion data as polygons in this dataset are complex and many 

of them have multiple rings. As shown in Fig 4A, the first step for 

cell-in-polygon test is to check whether any of the grid cell's four 

edges intersects with any of the polygon edges, or, whether any 

of the polygon's vertices is within the cell, to determine whether 

the grid cell intersects with the polygon. If the grid cell does not 

intersect with the polygon, then it is either completely inside (Fig. 

4B) or completely outside the polygon (Fig. 4C). We 

subsequently test whether any of the cell's corners is within the 

polygon. If the test is true then the grid cell is inside the polygon; 

otherwise the grid cell is outside of the polygon.  

 

 

 

 

 

Fig. 4 Three Cases in Cell-in-Polygon Tests  

4. EXPERIMENTS AND RESULTS 

4.1 Data and Experiment Setup 
The GBIF global species occurrence dataset has 375+ 

million species occurrences records as of 08/02/2012 when we 

obtained the dataset. Our preprocessing results have shown that 

the dataset contains 1,487,496 species, 168,280 genus, 1,142 

families in 262 classes, 109 phyla and 9 kingdoms. The majority 

(95.7%) of the records is related to animals and plants. A large 

portion (74.1%) is geo-referenced (with latitude/longitude 

coordinates at different accuracy levels) and can be associated 

with terrestrial eco-regions. The WWF ecoregion dataset comes 

in ESRI shapefile format7 and has 14,458 polygons, 16,838 rings 

and 4,028,622 points. The ecoregion data volume is relatively 

small when compared to today's CPU memory capacities. 

However, the raw GBIF species occurrence data we received is in 

the form of a relational database dump with 35 columns and has 

a total data volume of 180 GB. Many of these columns use the 

variable character type which makes random accesses very 

difficult. We have extracted individual columns and converted 

them into binary format for further processing. In this study, we 

primarily focus on three attributes, i.e., latitude, longitude and 

taxon identifier. The total data volume of the three columns is 

about 4.2 GB for the 375 million point data records. As the total 

data volume of the three attributes is less than 1/3 of the CPU 

memory in our experiment system (16 GB), hereafter we assume 

that all data involved are memory-resident. 

We have empirically set the data grid resolution to 1 

arc-minute (approximately 2 kilometers around the equator) 

primarily because this might be the finest resolution for global 

biodiversity studies and it may already be beyond the accuracy of 

some species occurrence records. The width and height of the 

resulting grid are 21,600 and 10,800, respectively. The gridded 

coordinates of a point location can be easily stored as a 2-byte 

short integer along both longitude and latitude dimensions. As the 

indexing grid resolutions are allowed to be coarser than the data 

grid resolution, we have chosen three grid resolutions for spatial 

indexing, i.e., 2n*2n for n=13, 14 and 15, to investigate how 

various performance measurements change with indexing grid 

resolutions.  

All experiments are performed on a Dell Precision 

T5400 workstation equipped with 16 GB memory and a 500 GB 

7200 RPM hard drive. The workstation has dual quad-core Intel 

E5405 CPUs (8 cores in total) running at 2.00 GHZ and with 6MB 

L2 cache per core pair, 128 KB L1 cache per core and 12.8 GB/s 

memory bandwidth per CPU. The workstation is also equipped 

with an Nvidia Quadro 6000 GPU device with 448 CUDA cores 

(1.15 GHz), 6 GB GDDR5 memory and 144 GB/s memory 

bandwidth. The sustainable disk I/O speed is about 100 MB/s 

while the theoretical data transfer speed between the CPU and the 

GPU is 8 GB/s through PCI-E. The relevant software installed on 

the workstation are Nvidia CDUA SDK 5.0 (with Thrust library 

1.6), g++ 4.6.3 and Intel TBB 4.1. All programs, including the 

two serial implementations using traditional technologies 

(Section 4.3), are optimized with -O3 option during compilations 

for fair comparisons.  

4.2 Overall Results 
The runtimes of the four components in our GPU-based 

zonal statistics technique, i.e., point indexing, polygon MBB 

indexing, spatial filtering and spatial refinement, under the three 

grid resolutions are measured. We do not plot polygon MBB 

indexing runtimes in Fig. 5 because they are negligible (51, 197 

and 787 milliseconds for the three grid cell levels, respectively) 

when compared to others which are plotted. Note that the spatial 

filtering runtimes are measured with the optimization technique 

described in Section 3.4.  

From Fig. 5 we can see that the runtimes of spatial 

filtering and spatial refinement dominate the overall runtimes 

under all the three grid resolutions. From an application 

perspective, the most significant conclusion we can draw from the 

experiment results is that, zonal statistics on the 375+ million 

species occurrences over the 15 thousand complex ecoregion 

polygons based on point-in-polygon test spatial relationship can 

be completed on a commodity workstation equipped with a single 

GPU device in the order of 100 seconds. 

Our data parallel designs make it relatively easy to 

implement the designs in multiple parallel hardware platforms. 

For demonstration and comparison purposes, we have also 

implemented the designs on multi-core CPUs. To minimize the 

additional implementation efforts, since the Thrust parallel library 

also provides interfaces to the Intel Threading Building Block 
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(TBB8) library that is known to be efficient on multi-core CPUs, 

we recompile our GPU-based Thrust code to use TBB and link it 

with the TBB runtime library to utilize multi-core CPUs in a way 

similar to the work reported in [9] for point-to-polyline nearest 

neighbor search based spatial joins, but with two exceptions. The 

first exception is on point indexing where we have found that the 

GNU parallel mode library9 is more efficient for multi-core CPU 

based sorting and we use it instead for fair comparisons. The 

second exception is related to the native CUDA implementation 

of the point-in-polygon test module as reported in [6]. For fair 

comparisons, we have implemented the point-in-polygon test 

module using the native TBB programming model by assigning a 

range of (polygon, block) pairs as a task and letting a single CPU 

core loop through all the points in the polygon for point-in-

polygon test.  

As expected, the GPU-based implementations are 

significantly faster than their peer multi-core CPU 

implementations with speedups ranging from 2.7X to 4.7X for the 

three major components (point indexing, spatial filtering and 

spatial refinement) under the three grid resolutions, as shown in 

Fig. 6. The speedups are higher for spatial filtering and spatial 

refinement as they are more computing intensive and can better 

use GPU’s massive floating point computing power. Please note 

that the CPU performance is measured when all the 8 cores are 

fully utilized and the multi-core CPU implementations have been 

optimized as much as possible for fair comparisons. Our results 

agree with the rigorous performance analysis on quite a few non-

geospatial benchmarks reported in [20] when comparing the 

performance of GPUs and multi-core CPUs. The comparisons 

also suggest that our data parallel designs can achieve high 

efficiency on both GPUs and multi-core CPUs by using parallel 

primitives that are optimized for the respective hardware 

platforms. As such, they are less likely to depend on the 

programming skills of individual programmers and are more 

preferable from a software development perspective. 

After comparing with the multi-core CPU 

implementations based on our data parallel designs, we would 

like to comment on the relationships between filtering and 

refinement using different grid resolutions in our GPU-based 

implementation as observed in the experiments. First of all, from 

Fig. 5, it is easy to see that the filtering runtimes increase with 

grid resolutions while the refinement runtimes decrease with grid 

resolutions for both CPU and GPU implementations. This is 

expected as using finer resolution grid for filtering reduces false 

positives and requires fewer point-in-polygon tests in the 

refinement phase. Since cell-in-polygon test is used in the 

filtering phase as an optimization technique, which is also 

computation intensive, the runtimes in the filtering phase are 

comparable with the runtimes in the refinement phase, although 

the computing workload for the basic spatial filtering design can 

be quite light [9]. While the runtime of spatial filtering is about 

1/5 of the runtime of spatial refinement at the grid level 13, the 

ratio quickly increases to 1.6 at the grid level 15. The totals of the 

filtering and refinement runtimes (and hence the end-to-end 

runtimes) are minimized at the grid level 14. The results indicate 

that choosing a proper grid level is important in improving the 

system performance and we leave a more comprehensive 

investigation for future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Plots of runtimes (s) of Point Indexing, Spatial Filtering 

and Spatial Refinement on GPUs using three grid resolutions 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Plots of GPU over multi-core CPU speedups  

 

4.3 Comparisons with alternatives using 

traditional technologies  
It is not our intention to directly compare our memory-

resident massively data parallel technique with serial 

implementations using traditional geospatial software packages 

that are designed for uniprocessors and disk-resident systems. 

This is because the two techniques are developed for different 

applications targeting at different hardware. Nevertheless, we 

report the performance comparisons with two serial 

implementations using libspatialindex10 for R-Tree based 

polygon indexing and GDAL11 (through GEOS) for point-in-

polygon tests for reference purposes. The comparisons can also 

help understand the level of performance that our technique has 

achieved due to data parallel designs and optimized 

implementations on GPUs. 
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The major difference between the two serial 

implementations is the following: the second implementation 

incorporates an optimization heuristic in hope to improve the 

overall performance, while the first serial implementation simply 

queries polygon MBBs that intersect with each and every point 

before performing point-in-polygon test between the point and the 

polygons whose MBBs intersect with the querying point. Given 

that querying the polygon R-Tree for 375+ million points can be 

expensive when traversing the polygon R-Tree individually, the 

heuristic is to locate all the MBBs in the polygon R-Tree leaf 

nodes that intersect with grid cells of groups of points where only 

a single R-Tree query is needed for the groups of points within 

the grid cells. The second implementation clearly requires grid-

based indexing of points but can potentially save R-Tree query 

time as the number of accesses to R-Tree nodes can be 

significantly reduced through point grouping. Although it is 

possible to use R-Tree to index points by treating each point as a 

degenerated MBB, the high index construction cost has led us to 

decide to either not index the point data (implementation 1) or re-

use the results of our grid file based indexing (implementation 2).  

 We believe the first serial implementation represents a 

reasonably efficient implementation by applying spatial filtering 

before refinement as a typically trained geospatial programmer 

would do. We also expect the second serial implementation to be 

more efficient by incorporating the optimization heuristic. 

However, the results are quite the opposite as detailed below. The 

code for the two serial implementations and the three subsets of 

point data are publically available online12 and we encourage 

interested readers to cross-examine the implementations, validate 

the experiment results and make independent comparisons. 

First of all, neither implementation is as efficient as we 

have expected. It takes 18.77 hours to process a subset of 

approximately 10 million point records with a throughput in the 

order of 139 points per second. Additional experiments using two 

smaller subsets of species with 279,808 and 746,302 points result 

in similar performance, i.e., 138 points per second for both 

smaller datasets. By using a linear extrapolation, it would take 

600+ hours to complete the 375 million points using the serial 

implementations, although the implementation does exhibit 

excellent scalability and is suitable for MapReduce/Hadoop 

systems. However, the performance is 4-5 orders of magnitude 

slower (138 points per second) than our GPU based 

implementation (375 million points in about 100 seconds) which 

is inferior from both the usability and monetary cost perspectives.  

Second, the experiments show that the optimization 

heuristic employed in the second serial implementation is largely 

ineffective. While measured accesses to the polygon R-Tree has 

been dramatically reduced by the optimization, the runtimes do 

not get improved noticeably. Further investigations have revealed 

that the polygon R-Tree is fairly small (a few megabytes) and can 

be completely cached in memory which makes reducing accesses 

to R-Tree insignificant as in disk-resident cases. Since querying 

cell boundaries against the polygon R-Tree will inevitably cause 

more false positives when compared with directly querying points 

and point-in-polygon tests, which is much more expensive than 

accessing memory-resident R-Tree nodes, the heuristic does not 

work as expected. Since point data are also made memory 

resident in both serial implementations, we can conclude that the 

low performance of the serial implementations is largely 

unrelated to disk I/Os in our experiments.  

While we are still in the process of fully understanding 

the 4-5 orders of magnitude of performance differences, we 

believe that excessive memory allocation/deallocation to 

accommodate for low memory capacities, library overheads for 

generality (e.g., object-oriented abstractions) and mismatches 

between traditional data structures and algorithms with modern 

hardware architectures (e.g., cache unfriendliness in depth-first 

tree traversals) are among the factors that contribute to the low 

performance of the two serial implementations by using 

traditional geospatial techniques. Furthermore, it is interesting to 

observe that, even assuming that our multi-core CPU-based 

implementations have achieved perfect scalability (8X for 8 

cores), the performance of the corresponding serial 

implementations of our data parallel designs (by multiplying the 

number of cores with the measured runtimes) is still about three 

orders of magnitude faster than using traditional technologies. 

This may suggest that there is a huge room to improve traditional 

spatial data processing technologies by adopting data parallel 

designs and hardware architecture aware implementations. We 

leave this interesting interdisciplinary research topic for our 

future work.   

5. CONCLUSION AND FUTURE WORK 
In this study, we have significantly extended our 

previous techniques for point-in-polygon test based spatial joins 

on GPUs for large scale data. The integrated flexible designs and 

their GPU implementations have successfully performed zonal 

statistics on 375+ million global species occurrence records over 

15 thousand complex ecoregions in facilitating exploring global 

biodiversity explorations. We have developed a flexible data 

parallel framework by using GPU mapped memory in CPUs for 

large-scale data that may exceed GPU memory capacity. We have 

extended our point data indexing and binary search based spatial 

filtering designs to accommodate multi-chunked point data 

indexing while achieving much higher efficiency when compared 

with using mapped memory naively. Including the cell-in-

polygon based optimization, the combined improvements have 

reduced the total runtime to about 100 seconds using a single 

GPU device. The performance is several orders of magnitude 

faster than two reference serial implementations using traditional 

open source geospatial techniques. The realized high performance 

on top of flexible designs is not only significant for practical 

applications in exploring increasingly larger global biodiversity 

data but also suggests that there are huge rooms to improve the 

performance of traditional geospatial technologies on modern 

parallel hardware.   

For future work, first of all, we would like to integrate 

our technique with data management and visualization frontends 

for practical applications. Second, since the flexible data parallel 

framework is also applicable to other types of spatial processing, 

it is thus interesting to examine its scalability in additional 

applications with larger scale data. For example, spatially and 

temporally associating 2.7 billion GPS points deposited into 

Openstreetmap Planet13 with global road networks by using the 

point-to-polyline nearest neighbor search based spatial joins [9]. 

Third, our new data parallel framework allows integrating multi-

core CPUs and multi-GPUs as well as other types of hardware 

accelerators that share the same address space to synergistically 

process large scale data by assigning chunks of array elements to 

multiple processors in a straightforward manner. We plan to 

materialize the design which essentially allows heterogeneous 

computing and implement it on a hybrid CPU-GPU system for 



 

 

performance evaluation using the GBIF data and the 

Openstreetmap Planet GPS location data. Finally, while it is 

certainly a challenging task that requires significant effort, we 

plan to investigate the mismatches between the designs and 

implementations of traditional geospatial processing software 

packages and the new generation of parallel hardware in a 

systematic manner. The findings may not only lead to improved 

performance but also may provide new insights on how to make 

better use of commodity parallel hardware and enable larger scale 

geospatial processing with higher efficiency and better 

scalability.   
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