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Abstract

We summarize the need and present our vision for accelerating geo-spatial computations and analyt-
ics using a combination of shared and distributed memory parallel platforms, with general-purpose
Graphics Processing Units (GPUs) with 100s to 1000s of processing cores in a single chip forming a
key architecture to parallelize over. A GPU can yield one-to-two orders of magnitude speedups and
will become increasingly more affordable and energy efficient due to mass marketing for gaming. We
also survey the current landscape of representative geo-spatial problems and their parallel, GPU-based
solutions.1

1 Introduction

Geo-spatial datasets are large and the related computations and analytics are computationally intensive. For
example, it takes about 13 minutes for polygonal overlay of two GIS shapefiles USA Detailed Water Bodies and
USA Block Group Boundaries containing about 600K polygons using ArcGiS 10.1 on Intel Core i5 processor,
and it takes roughly 20 hours to compute the spatial join of a polyline table with 73M records representing the
contiguous USA with itself on an Amazon EC2 instance [31]. Therefore, harnessing parallel processing capa-
bilities of modern hardware platforms is essential. Parallel processing technology is not just for real-time mon-
itoring and steering, making scientific and policy decisions within reasonable time, visualizing huge datasets,
and for enabling memory-constrained computations which cannot otherwise be solved on sequential computers.
This technology’s vast speed gains will also result in new capabilities for the masses that are barely imagined
today, analogous to what airplanes have meant over ships and trains.

The modern computing platforms are parallel, distributed and heterogeneous, ranging from mobile devices
to desktops to high performance computing (HPC) clusters and cloud data-centers. Mobile devices already
harness the backend cloud servers over the Internet for daily chores such as mapping and navigation. These
are expected to launch high-end computations and data analytics for future applications. For GIS and other
scientific applications such as multi-agent epidemic simulations, hot spot detections, and overlay computations,
scientists will increasingly employ the powerful shared-memory parallel processing capabilities of their lap-
tops and desktops. The individual compute nodes of these devices (as of clusters) consist of multi-core CPUs
containing tens of processing cores and many-core GPUs containing hundreds to thousands of cores, both with

1For readers interested in shared-memory parallel programming for geo-spatial problems, we are setting up a work-in-progress web-
page at http://www.cs.gsu.edu/˜dimos/?q=GIS-Resouces, which currently contains source code and input and output
data for (i) 1-D interesting region discovery using C/CUDA and Hadoop+CUDA (ii) bilateral filtering using C/CUDA, and (iii) Polygonal
overlay system using Java/Hadoop and C# over Azure Cloud.

19

http://www.cs.gsu.edu/~dimos/?q=GIS-Resouces


shared-memory architectures. For larger scale computing over huge data sets, possibly from multiple online
sources, these devices will work in tandem with dedicated clusters and will increasingly employ on-demand
HPC cloud clusters (distributed-memory parallel processing). In fact, for small-to-medium scale computations,
laptops/desktops would be cost-effective alternatives to the clusters as these are not readily accessible to most
scientists not involved with HPC.

Some scientists have begun employing distributed processing over clusters using map-reduce programming
such as Hadoop (e.g., Spatial-Hadoop [9]) and message-passing programming such as MPI (Message-Passing In-
terface - e.g. PySAL [32], hydrology [35]). However, these projects currently do not employ the shared memory
capabilities of the compute nodes. A few have employed multi-core capabilities of CPUs using OpenMP/Pthread
(e.g., for plane-sweep [23, 19]), but not GPUs. Not harnessing the many-core GPUs typically results in a loss
of at least 200%-300% speedup (2-3 fold) compared to a multi-core CPU, which can be obtained with reason-
able porting effort. More often, the loss is one to two orders of magnitude for many computations, but that
does require medium-to-expert level parallelization effort. The latter class of computations are typically either
embarrassingly parallel, such as independent bags of uniform tasks requiring little communication among the
processing cores, or are regular computations, those which have regular communication patterns among neigh-
boring tasks. Some are irregular computations with no well-defined communication pattern due to irregular
spatial and/or temporal task or data distributions, but can yield an order of magnitude speedup with sophisti-
cated data structures and algorithms.

Our vision is that the bulk of geo-spatial software packages will employ both distributed and shared mem-
ory parallel processing including the GPUs toward scalable solutions. How will this happen? Clearly, this
will require the collective effort of the GIS community and collaboration with computer scientists. Computer
scientists and their graduate students will be interested in such interdisciplinary collaborations because of an
excellent potential for computer science research in algorithms, data structures, database, data mining and sys-
tems over interesting datasets and domain applications. Such an investment is even more sensible given that the
GPU accelerators are here to stay, will continually improve both in performance and energy foot-print, and will
become more affordable due to mass usage by the gaming industry. The promising news is that a few groups
are employing both distributed and shared memory parallel computing including GPUs (e.g., polygonal overlay
over medical images using MPI and CUDA [37]).

In this article, we explain how you can recognize which of the three categories your favorite problems fall
into by understanding the nature of similar problems and get a sense of the potential speedup and how much
parallelization effort may be involved. You will also obtain pointers to some representative state-of-art projects,
specially for the non-embarrassignly parallel problems. For embarrassing parallel problems, Section 2 illustrates
several GIS and other problems, including hotspot detection problem for a fixed radius neighborhood. Section 3
describes regular computations, some related projects, and gives detailed description of interesting path/region
discovery problem and our CUDA-based analytics solutions. For irregular computations, Section 4 reviews the
literature with recent GPU parallelization efforts and provides details on our polygonal overlay MPI-GIS system.

2 Embarrassingly Parallel Problems

An embarrassingly parallel problem, is the easiest kind of parallelism as these problems exhibit little to no
task dependency [11]. Most of these problems can be solved with little communication between parallel tasks
and this makes them distinguishable from other problems which require exchanging intermediate results among
several tasks. In other words, an embarrassingly parallel problem imposes the least amount of overhead to be
parallelized and, therefore, usually does not suffer from parallel slowdown.

A celebrated example of an embarrassingly parallel problem is shared-memory matrix multiplication in
which for two n × n matrices, the multiplication process is split into n2 tasks, each responsible for calculating
one element of the result matrix [5]. In this case, each task needs one row of the first input matrix and one
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column of second input matrix to compute its result. However, it does not need to communicate with any other
task. All n2 tasks can function independently. [20] reports 776 to 11183-fold speedups using CUDA on a GPU
for 4096X4096 matrices in comparison with a traditional sequential code on a single CPU core, using a range
of improvements and parameter tunings including tile/thread-block dimensions, thread occupancy on cores,
computational load per thread, and hiding memory latency between device memory shared by all streaming
multipocessors and smaller memory shared by 8 cores within a multiprocessor considering number/volume of
memory transctions, coalesced access, bandwidth utilization, caching, bank conflicts, register usage, etc. These
GPU implementations correspond to 27 to 407-fold speedups relative to a 4-thread OpenMP cache-optimized
code on the multicore CPU. These experiments are reported for a 2.8GHz Xeon quad-core CPU and 240-core
NVIDIA Tesla C1060 GPU with 8 streaming multiprocessors each with 30 cores. Another example is searching
big files to find specific phrases. As the searching process over different part of one file or over several files is
independent, the search operation can be done in parallel; concurrent tasks do not require communication with
each other at all. Sifting through large volume shape files to find specific objects has been extensively used in
GIS applications [14].

Some fundamental building blocks of data mining algorithms can be formulated as embarrassingly parallel
problem. Some examples in this category are finding area in a region, generating minimal bounding rectangles
of individual polygons, points in polygon test, update phases of k means clustering, etc. In points in polygon
test [15] for a set of given points and a polygon, the membership of each point in the given polygon is to be
determined. Membership status of each point is independent of the status of other points, making it embar-
rassingly parallel. Similarly, the problem of forming k clusters in a given GIS grid is embarrassingly parallel.
Initially m random points are selected as cluster centers and each center is moved to mean value of distances of
k nearest neighbors from each center. These m centers are updated iteratively. New mean value of each cluster
depends only on old mean value of that cluster; hence the problem is task and data independent ([10] reports
13X speedup on NVIDIA GeForce 8800 GTX Ultra with 128 cores). Most pixel-based or fixed neighborhood
based computations over raster data such as intersection over multiple data layers and simple stencil-based im-
age processing tasks fall into this category ([4] reports 169 fold speedup for bilateral filtering on Nvidias GTX
280 GPU with 240 cores). It is also easy to implement these embarrassingly parallel problems using map-reduce
paradigm, wherein the intermediate results calculated by each slave nodes are conveyed to a master node.([40]
reports linear speedup in a distributed cluster for k means clustering.)

Hotspot detection over a fixed neighborhood: Hotspots are regions exhibiting unusual aggregation or out-
come of a phenomenon. Some examples of hotspot detection are detecting aggregation of some epidemic,
snowfall prediction, detecting most profitable regions to open a store for a business, regions of high level of ra-
diations on a planet, etc. In simple formulations, hotspot detection depends on the value of the point in relation
to its neighbors. In mathematical terms, on a given domain of data set, each point of the domain holds a value
of discrete/continuous random variable. The value of the random variable is compared to the extant of a fixed
radius using some predefined algorithm, and based on these comparisons, a spatial pattern of its distribution is
determined. The hotspots are the regions exhibiting the desired values/shapes of this pattern [27]. This problem
is embarrassingly parallel because usually each unit of the domain is processed with the same algorithm and
is independent of the rest of the data set outside its radius of comparison (although, not all formulations are
embarrassingly parallel). [21] reports up to 400X speedup on NVIDIA GTX280 GPUs.

3 Regular Computations

We now introduce the regularly structured problems and data which are the first tier of what is considered non-
trivial parallelization. Some raster data computation, complex matrix manipulation problems, problems with
many data independent loops, and certain types of graph problems typically fall within this category. Paral-
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lelization is achieved by exploiting the independent nature of the instructions and/or the data in order to achieve
good speedup. Matrix manipulation and raster data in particular lend themselves very well to GPU computation
due to their reliance on basic data types and array-based structures. Graph algorithms can be performed on
GPUs typically using their adjacency matrix representations which can then be stored conveniently on the GPU
[18]. All-to-all Floyd-Warshall shortest path algorithm or Gaussian elimination for a system of linear equations,
for example, manifest regular pattern of data access when parallelized [13].

The data collected in Earth Science are usually stored as raster data, where space and time are partitioned
into regular grids (e.g., latitude and longitude, weeks/months/years) with attributes imposed on the grids (e.g.,
rainfall, vegetation cover index). Examples of such data include remotely sensed images of Earth surface at var-
ious resolutions [8, 24], ground observations of temperature, precipitation, etc. [16]. Pattern discovery on such
datasets are potentially suitable for parallel computing due to the regular structures (grid) in the data. We intro-
duce one example from our recent work, namely, the interesting sub-path/sub-region discovery problem [41].

Interesting Sub-path/Region Discovery Problem

Given a spatiotemporal (ST) dataset and a path embedded in its spatiotemporal framework, the goal of the inter-
esting sub-path discovery problem is to identify all qualifying contiguous subsets of the given path according to
the given interest measure and interestingness test. The ability to discover interesting sub-paths is important for
many application domains. For example, vegetation cover is often used to study the response of ecological zones
to climate change, which may vary across different ecological zones in the world. Given a path (e.g., along a
longitude in Africa) and an interest measure of abrupt change, one can find sub-paths (e.g., the paths across the
Sahel) with sharp increases (decreases) of vegetation cover. Such sub-paths may outline the spatial footprint
of the transitional areas (known as ecotones [25]) between ecological zones. Due to their vulnerability to cli-
mate changes, finding and tracking ecotones gives us important information about how the ecosystem responds
to climate changes. Figure 1(a) shows the Sahel region (highlighted area in the box), a well-known ecotone
in Africa. The color represents the amount of vegetation measured in the normalized difference of vegetation
index (NDVI). The vegetation cover along a spatial path (in red) is plotted in Figure 1(b) as a sequence. As can
be observed, the sub-path between 15N and 20N latitude exhibit an abruptly decreasing trend. This reflects the
transition from tropical savannah to desert.

(a) Vegetation cover in Africa (from
GIMMS Dataset [8, 36])

(b) Vegetation cover along highlighted longitudinal path
(South to North)
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Figure 1: An example of interesting sub-path in vegetation cover data (best viewed in color).

In the specific application scenario described above, the goal is to discover all the sub-paths with abrupt
increase/decrease along each longitude of the input dataset/image. Particularly, we require that an abrupt change
sub-path should not be a subset of others so that redundant results could be removed. By performing this
analysis on each longitudinal column of the input data image, we are able to outline the entire Sahel region by
combining the footprint of Sahel along each longitudinal band. Figure 1(c) shows the output of the problem
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with min change = the 90th percentile of all the longitudinal unit changes, where maroon and aqua represent
decreases and increases of vegetation cover from south to north, respectively.

Sequential and GPU Solutions

The sequential solution to the above problem is non-trivial to design in that (1) the patterns lack of monotonicity
(decreasing segments in a increasing sub-path), (2) Unknown maximum length of change ranging from 0 to the
entire path, and (3) large volume of input data. A naive solution to this problem has two steps. Step 1: enumerate
all the sub-paths in each longitudinal path in the dataset and test the interest measure function to find a list of
candidate patterns. Step 2: enumerate every pair of sub-paths in the candidate list to eliminate dominated (i.e.,
subset) sub-paths. This solution has high time cost. For a single input longitudinal path with n locations, the
time complexity reaches O(n4) in the worst case, bringing the total time complexity on a data image with m
such longitudinal columns to O(m · n4) in the worst case.

In our previous work, a sub-path enumeration and pruning (SEP) approach was proposed to improve the
performance. First, a linear scan of all the units in the input data path is performed to precompute the basic
function needed in the interest measure and store them in a set of lookup tables. This step allows a constant-time
evaluation of each sub-path. Second, a row-wise traversal order is used to enumerate all the sub-paths from
longer ones to short ones. Once a sub-path is identified as an interesting sub-path, all its subsets will be pruned
from the enumeration to avoid further cost. Finally, the algorithm filters dominant sub-paths in the candidate
list. The SEP row-wise algorithm takes O(n) (to build the lookup table) in best scenario and O(n2) in the worse
case. For an entire input image (m× n), the time complexity is reduced to O(m · n2).

GPU Implementation: The GPU implementation of the interesting subpath problem is quite straightforward
and leverages the fact that each worst-case possible path is data independent from every other query and each
thread is largely performing the exact same set of computations. We can perform the naive algorithm in parallel
by launching a thread for every possible interesting interval, in effect eliminating a theoretical order of magnitude
from the total complexity. In many respects this gives a very nice speedup, however the SEP algorithm was found
to be roughly 50 times faster [28].

Implementing the SEP algorithm on the GPU required some re-engineering in order to accommodate con-
cepts that do not translate nicely to the GPU architecture such as dynamic data structures [26] and code branch-
ing. However, as the overall behavior of the algorithm is quite regular it produced very nice results that, with
some constraints relaxed, allowed for near real-time computation and rendering of results to be achieved [28].
Instead of naively launching a thread for every conceivable outcome only half as many threads were launched.
These threads were launched more intelligently with kernel dimensions that limited the potential effects of
branching while also coalescing global memory read and write access. This also allowed leveraging shared
memory on the GPU which drastically lowered compute time by reducing the time necessary for data access.
Overall this sped up computation from 836ms for sequential Row-wise SEP to 35.2ms on the GPU for a single
raster image (finding all intervals in the image), and from 576s to 20.1s for the entire raster image dataset.

This particular problem lent itself very well to implementation on the GPU as the dataset was raster data [8]
and the individual pieces of the total dataset were rather small (2 MB). This allowed further parallelization to
be undertaken. Each image being independent allowed us to further distribute this problem using the Hadoop
framework across multiple GPU device nodes and achieve a near linear speedup for each additional node that
was added. It also allowed us to run multiple instances of the program on a single GPU, however this is much
harder as the intermediary data gets quite expensive to hold in memory and the GPU (at the time of experiment,
NVidia GTX480) is resource limited to roughly 1 GB of memory on a standard consumer grade GPU.
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4 Irregular Computations

GPUs are very effective at exploiting parallelism in regular, data-parallel computations, and we have seen some
examples of efficient GPU parallelizations. However, many algorithms have to build, traverse, and update
irregular data structures such as trees, graphs, and priority queues to solve a given problem. Examples of
irregular computations includes breadth-first search, single-source shortest paths, n-body simulation, etc. In the
context of spatial algorithms, spatial overlay and join are examples of irregular computation. In these examples,
accesses to tree/graph based data structure is unpredictable and data-dependent. Moreover, parallelization of
these data structure is hard because of the underlying tree topology and the fine-grained computation.

Spatial overlay is the process of interrelating several spatial features (points, lines, or polygons) from multi-
ple datasets or layers of data, which creates a new output layer, visually similar to stacking several maps of the
same region together. Spatial overlay has been accelerated by NVIDIA Tesla GPU in [7, 22]. McKenney et al.
[22] developed GPU implementation of line segment intersection and the arrangement problem for overlay com-
putation. For some datasets, authors show that their implementation of geospatial overlay on GPU runs faster
than CPU-based plane-sweep implementation. Audet et al. [7] developed CUDA implementation of Uniform
Grid based overlay algorithm originally designed by Franklin et al. [12].

Spatial Join is a type of table join operation in which fields from one layer’s attribute table are appended to
another layer’s attribute table based on the relative locations of the features in the two layers. A typical example
of a spatial join is “Find all pair of rivers and cities that intersect.” Recent work on GPU based parallel spatial
join are discussed in [39, 33, 38, 6, 34]. Authors in [38] describe how a spatial join operation with R-Tree can
be implemented on a GPU. Hadoop map-reduce based spatial join is accelerated with GPU in [6] where GPU
threads perform spatial join computation in parallel by first converting spatial data to pixel format.

Polygonal overlay

Arguably, polygonal overlay computation is one of the difficult computations due to irregular distribution of
arbitrary shaped polygons. Our Azure cloud based parallel system for polygon overlay known as Crayons is
described in [1, 3]. It achieves 90x speedup for its task processing phase on Azure cloud - an embarrassingly
parallel phase once pairs of potentially intersecting polygons have been identified constituting independent tasks.
However, the end-to-end speed up is only 3 fold. An MPI version of Crayons is described in [2]. Polygon
overlay processing algorithms using Hadoop map-reduce framework are described in [30], with three versions
depending on the nature of the datasets, yielding up to 10x speedup. GPU-based parallelization of key tree-based
data structures, namely R-tree [29], with 200 fold speedup for construction, and heap [17], with 40X speedup
for concurrent inserts and min-deletes, have been explored recently. The parallel R-tree has been employed in
MPI-GIS, our polygon overlay system, which yields 40x to 70x speedup in comparison to ArcGIS [28]. The
architecture of MPI-GIS is shown in Figure 2a. Figure 2b shows the execution time for overlaying two real-world
GIS datasets.

5 Conclusions

We presented three classes of computations, namely embarrassignly parallel, regular and irregular compytations,
and illustrated each with representative parallelization of GIS computations and analytics over GPUs.
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