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ABSTRACT
It is imperative that for scalable solutions of GIS computa-
tions the modern hybrid architecture comprising a CPU-
GPU pair is exploited fully. The existing parallel algo-
rithms and data structures port reasonably well to multi-
core CPUs, but poorly to GPGPUs because of latter’s atyp-
ical fine-grained, single-instruction multiple-thread (SIMT)
architecture, extreme memory hierarchy and coalesced ac-
cess requirements, and delicate CPU-GPU coordination. Re-
cently, our parallelization of the state-of-art interesting se-
quence discovery algorithms calculates one-dimensional in-
teresting intervals over an image representing the normal-
ized di↵erence vegetation indices of Africa within 31 ms on
an nVidia 480GTX. To our knowledge, this paper reports
the first parallelization of these algorithms. This allowed us
to process 612 images representing biweekly data from July
1981 through Dec 2006 within 22 seconds. We were also able
to pipe the output to a display in almost real-time, which
would interest climate scientists. We have also undertaken
parallelization of two key tree-based data structures, namely
R-tree and heap, and have employed parallel R-tree in poly-
gon overlay system. These data structure parallelization are
hard because of the underlying tree topology and the fine-
grained computation leading to frequent access to such data
structures severely stifling parallel e�ciency.

⇤This invited paper extends our position paper in The NSF
CyberGIS Project All-Hands Meeting, Seattle, 2013 [24]
†This material is based upon work supported by the Na-
tional Science Foundation under Grant No. CCF 1048200,
CNS 1205650 (Dr. Prasad), 1029711, IIS-1320580, 0940818
and IIS-1218168 as well as USDOD under Grant No.
HM1582-08-1-0017, and HM0210-13-1-0005 (Dr. Shekhar).
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1. INTRODUCTION
1.1 Why GPGPU for GIS Data and Compu-

tation?
The computer architecture now is massively parallel and hy-
brid, with a pair of multi-core CPU and many-core GPGPU
(with dozens of cores on a CPU and hundreds of cores on a
GPGPU) now commonplace in laptops and desktops and the
computer nodes of high-performance machines and clouds.
Parallel and distributed processing is, therefore, imperative
for data-and-compute-intensive geospatial computations, such
as for polygonal overlay [30, 4, 5, 13, 29], evacuation routing
[10, 7], and interesting interval/region discovery [33, 14, 15,
16] (some of which turn out to be “Big Data” problems). An
e�cient utilization of the CPU-GPGPU pair is critical, else
the GIS programs will remain ine�cient, incurring loss of
one to two orders of magnitude in speedup, specially where
strong-scaling is needed. In addition, from GIS user per-
spective, a key niche for GPGPU (in contrast with cloud
computing or cluster) may lie in price-performance trade-o↵
- most laptops and workstations come with GPUs providing
opportunities for an order of magnitude faster response time
for many GIS problems without additional hardware cost.
The existing parallel algorithms and data structures port
reasonably well to multi-core CPUs, but poorly to GPG-
PUs. Therefore, we foresee the need for significant under-
taking by the geospatial and parallel processing communities
to redesign the traditional parallel data structures and al-
gorithms and discover new parallel techniques and tools, in
general, and for GPGPU platform, in particular.

1.2 Interesting Interval/Region Discovery Prob-
lem

Discovering interesting intervals/regions from spatiotempo-
ral (ST) datasets is important for applications such as un-
derstanding climate change, environmental monitoring, and
public health. In climatology, subsequence analysis of time
series data allows for the prediction of weather patterns and
to study and build predictive ecological models. In GIS,
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Figure 1: Sahel Region Abrupt Change [33]

subsequence analysis of time series data allows for identi-
fying spatiotemporal regions of interest such as in track-
ing and predicting migratory patterns, correlating ecological
phenomena, tracking the spread of disease, and search and
rescue.

Subsequence analysis involves searching through time series
data for groups of data points that pass a relevant interest
threshold. A typical naive approach exhaustively examines
every possible subsequence. This type of exhaustive search
is a very time consuming procedure. On small datasets
computation time can be relatively fast, however, on large
datasets such as in average climatology or bioinformatics
knowledge discovery, computations times very quickly be-
come very large. It is therefore very important to find ways
of speeding up these searches.

We consider the problem of finding areas of abrupt change
of vegetation, which may allow us to detect patterns of de-
sertification and deforestation over time. For the purpose of
this paper, our dataset is 26 years of bi-weekly normalized
di↵erence vegetative index (NDVI) data for Africa starting
in 1981 [9]. The problem becomes finding longitudinal se-
quences in NDVI data that increase or decrease faster than
a certain threshold. Formally, “Given a spatiotemporal path
S consisting of n locations S1, S2, ... Sn, a sub-path W =
(i, j) of S is a contiguous subset of locations from Si to Sj

in S. An interesting subpath is such a path which satisfies a
given interest measure such as in equation 1 [33].” Figure 1
indicates one part of a longitudinal band being analyzed in
red on the right and its graph on the left. The Sahel region
of Africa is surrounded by a cyan box on the right, and in
the graph it is represented by the enclosing vertical red bars.

The dataset is searched to find all the longest continuous
longitudinal bands of sharp increase in NDVI value, which
indicates abrupt increase in vegetation for the band. For
instance, in Figure 1, we can see the abrupt decrease in
vegetation across the Sahel region as it transitions from sa-
vannah to desert. When studied as time series this shows
the areas of rapid change in vegetation as seen in desertifi-
cation and deforestation and we can computationally study

and correlate the growth/shrinkage of the desert areas with
other spatio-temporal and geolocated environmental factors.

Subsequence discovery on the NDVI geoti↵ data [9] lends
itself well to the GPU/CUDA environment. Leveraging the
rectangular matrix structure of the data, the relatively low
branching of the subsequence interest measure, and the float-
ing point compute capabilities of CUDA, we are able to re-
duce the execution time by an order of magnitude over the
comparable sequential algorithm. This paper describes our
GPU-based design and implementation of an algorithm for
detection of 1-D interesting intervals based on the state-of-
art algorithms described in [33]. In addition to significant
speedups obtained, this case-study can provide a road-map
for GIS scientists for parallelizing similar workloads.

We conclude with summarizing our work on parallelizing R-
tree and heap data structures, and developing a polygonal
overlay system employing R-trees.

2. RELATED WORK
Early work on interesting interval discovery only aim to find
interesting points in a time series for abrupt change detec-
tion [23, 28]. [14] proposed a SWEET approach to discover
anomalous temporal intervals in a pair of sensor reading se-
ries measured from a river. [33] formulated the interesting
sub-path discovery problem as finding contiguous subsets of
a given ST path (e.g., a longitudinal paths or a time se-
ries) that are interesting according to a user-defined interest
measure function. A Sub-path Enumeration and Pruning
(SEP) approach was proposed to find ST intervals with rapid
changes, such as ecotones (e.g., the Sahel zone) and periods
of climate changes (e.g., rainfall decrease).

Other techniques discover interesting spatial regions (2D)
or space-time volumes (3D) in ST datasets. The spatial
scan statistic [15] and its variation, ST scan statistics [16],
have been designed to detection regions (and time periods)
of disease outbreaks. A recent work by Zhou et al. [34] in-
vestigated the problem of finding persistent change windows
(region and time interval) in earth science datasets.



To our knowledge, this paper reports first such paralleliza-
tion of interesting interval discovery algorithms.

3. ALGORITHM DESCRIPTION AND
METHODOLOGY

3.1 Sequential Algorithms
The naive algorithms in both their parallel and sequential
form are brute force algorithms which su↵er from ine�-
ciency due to performing many redundant operations and
in the case of the parallel algorithm breaking many of the
paradigms necessary for e�cient computation on the GPU
(see Section 3.3).

The sequential row-wise SEP algorithm [33] which signifi-
cantly improves upon the naive algorithm has three parts: a
scan phase wherein a lookup table is built, a discovery phase
wherein all subsequences are found and an elimination phase
where all dominated subsequences are removed.

1. The scan phase starts by first scanning all unit-size sub-
paths in a longitudinal band to build a lookup table of values
[33]. This lookup table functions much like a prefix sums.
This is O(n) for a single longitudinal band and O(n2) for
the whole NDVI image.

2. The discovery phase finds all longest subsequences in a
longitudinal path by starting at the longest potential subse-
quence and computing its interest measure, then doing the
same for the next longest, and so on until it finds an inter-
esting sub-path. Our interest measure is defined as follows
which should exceed a minimum score/threshold:

Interest Measure =

Average value of the unit subpath > threshold

Average value of the all unit subpaths

(1)

This computation is what makes the lookup table from the
scan phase so e↵ective. It allows us to not do a large portion
of these calculations by simply looking at what we previously
did and adding new information to it. This is O(n2) com-
parisons for a single longitudinal band and O(n3) for the
entire NDVI image in the worst-case.

3. The elimination phase takes all the subsequences returned
by the discovery phase and drops those subsequences that
are dominated by (subset of) larger subsequences. It pre-
serves subsequences where only one end is being overlapped.
It does this by comparing the endpoints of each subsequence
and seeing if those points fall inside the bounds of another
subsequence. This phase guarantees the correctness of the
algorithm. This is also O(n2) for a single longitudinal band
and O(n3) for the entire NDVI image.

Therefore, the entire SEP algorithm is O(n2) for a single
longitudinal band and O(n3) for the entire image. This is
because we have to do all three steps for each longitudinal
band of the image and there are n longitudinal bands to
consider.

3.2 Parallel Algorithms and Implementations
The GPU implementations closely mirror the sequential al-
gorithms of [33] - the major di↵erence is in the discovery

phase. Instead of iterating through every item in a longitu-
dinal band we introduce massively parallel allocation of the
workload where a thread processes only a minimal number
of items. The preprocessing steps are largely identical. The
Parallel row-wise SEP has an additional pre-processing step
and an additional post-processing step that transpose and
reverse transpose the data, respectively, in order to coalesce
global memory accesses.

Algorithm 1 Parallel Naive

1: for i n to threadID do in parallel . discovery
2: interest comput interest measure

3: if interest > threshold then
4: add to candidate list

5: end if
6: end parallel for
7: A sequence starting at threadID

8: for i threadID to A.end do in parallel
9: . elimination
10: B  sequence starting at threadID + i

11: if A dominates B then
12: drop B from candidates

13: end if
14: end parallel for
15: return candidates

The naive parallel implementation does not use a lookup
table and relies on mere parallelism in order to realize a
speedup. This means that for every interest measure calcu-
lation in a longitudinal band it must fetch large quantities
of single data items from the global memory of the GPU
and then perform large numbers of calculations on line 3.
It must do this type of ine�cient fetch from global memory
again in the elimination phase and, because each elimination
step is of no consistent length, su↵ers from large amounts of
thread divergence (see Section 3.3).

Algorithm 2 Parallel Row-Wise SEP)

1: for i n to threadID do in parallel . lookup and
discovery

2: compute lookup table entry for threadID

3: interest compute interest measure

4: if interest > threshold then
5: add to candidate list

6: end if
7: end parallel for
8: bounds largest candidate in block

9: A sequence starting at threadID

10: for i (A.start � bounds) to (A.end + bounds) do
in parallel . elimination

11: B  sequence starting at i

12: if B dominates A then
13: drop A from candidates

14: end if
15: if A dominates B then
16: drop B from candidates

17: end if
18: end parallel for
19: return candidates

In contrast, the parallel row-wise SEP algorithm constructs
a lookup table in O(n/p) time per longitudinal band, where
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n is the size of a column and p is the number of proces-
sors/cores. It must do this for each band rending this in
e↵ect O(n2

/p). It then uses this lookup table in the discov-
ery phase on line 4 which eliminates the needlessly redun-
dant computation that the naive algorithm does on line 3. It
also performs its fetches from global memory in a coalesced
fashion. In the elimination phase it avoids large amounts of
thread divergence by utilizing shared memory to ensure that
each thread in a warp performs almost the same number of
calculations (see Section 3.3). This elimination step, because
we limit the number of calculations it does, is O(m/p) where
m is the length of the largest candidate subsequence. Be-
cause we do this for each longitudinal column and because
the largest possible candidate subsequence is of length n,
this becomes O(n2

/p) as well. Finally, because we launch
n/2 threads for each longitudinal column in all three phases,
the overall computational complexity can become O(n).

3.3 Extracting Parallel Performance using
CUDA: General Guidelines

Our approach employs the GPU to do these searches in
a massively parallel way. This requires some important
paradigms to be incorporated into the implementation which
seek to maximize the strengths of the GPU while reducing
its weaknesses and are required to realize the best speedup
in computation time.

The first of these paradigms is how you tell the GPU how
many threads you want to launch. CUDA breaks this into
two parts: threads per block and blocks per grid [11]. A
block is a group of threads that can all read and write to
the same shared memory and can be coordinated to some
degree. There is no coordination between blocks other than
through reading and writing to global memory. A grid is
simply a group of blocks. There are two main types of mem-
ory that each thread has access to. There is shared memory
which is very limited (48 kilobytes in our case) but is many
times faster than global memory which is much larger (1
gigabyte or more). In general you want to use the maxi-
mum appropriate number of threads for a given task, but
(as we found out) this may not always be ideal. Instead of
launching a thread for every possible subsequence naively,
we launch one thread for every two possible subsequences.

The second of these paradigms is to minimize the communi-
cation between the CPU and the GPU. This is particularly
hard in the case of certain bioinformatics problems due to
the large memory footprint of the dataset compared to size
of the memory available on the GPU. In the case of our ex-
perimental data, there was adequate memory on the GPU
to store the complete search space needed (i.e., an NDVI
image). This allows us to read at least a single image at
a time into the GPU’s global memory which ultimately al-
lows us to generate an almost real-time visualization as the
processing is done.

The third paradigm is to maximize occupancy of the proces-
sors. Occupancy is the ratio of active warps to total warps
in a processor, a warp being a group of 32 threads. If oc-
cupancy is not as close to 100% as possible then the GPU
is not working as e�ciently as it can. It should be noted
that achieving higher occupancy is not a guarantee of higher
performance and 100% occupancy is impractical/impossible.

This has to do with how the GPU schedules threads in order
to hide the latency associated with warps reading from mem-
ory, writing to memory, or waiting on other warps [20]. The
general rule is that you want to have the maximum number
of threads running on a given GPU processor. The easiest
way to do this is to utilize the largest blocks of threads possi-
ble. Our implementation uses 576 threads and 1072 blocks.
This increased the workload of each thread by a factor of
2 over the naive implementation and allowed the warps to
contain a full 32 threads each.

The fourth paradigm is to minimize accesses to global mem-
ory. In the naive parallel algorithm, we did not minimize
access to global memory or minimize branching. In the non-
naive version, global memory accesses were kept to a mini-
mum. However, due to the size of the data being analyzed, it
was still necessary to make many reads and writes. In cases
like this, it is best to do this in a coalesced fashion, which is
to read from memory in such a way as to allow the threads in
a half-warp to access global memory from a contiguous part
of global memory at once [11]. So thread0 reads memory0,
thread1 reads memory1, ... , threadn reads memoryn. In
our implementation, each block reads an entire longitudinal
column at once into shared memory, computations are done
using that shared memory and then each block writes that
entire new longitudinal column back out to global memory.

Figure 2: False Color Africa NDVI Image [9]

The final paradigm is to minimize branch divergence and
to keep all your threads in a block doing the same thing
when possible. Branch divergence in CUDA must be kept
to a minimum simply because it has the e↵ect of reducing
parallelism [21]. Very simplistically, for a warp of threads if
the first half of the warp is executing true part of an if-else
statement and the other half is not, the GPU will ‘pause’
the second half while the first half executes then pause the
first half while the second half executes in order to keep
all the threads in a warp working on the same instruction.
This can happen each time we have a branch in our code.
Enough branching like this could cause a GPU algorithm
implementation to run much slower than its sequential ver-
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Figure 3: Interesting Subpaths Highlighted

sion and in fact this type of behavior is seen somewhat in
the naive parallel implementation [11]. The rule of thumb
here is that you always want all your threads in a given warp
doing the same thing at all times. In the elimination step,
this was leveraged by making sure each thread performed
the same number of comparisons. The naive version of this
step does significantly fewer comparisons in contrast but is
overall much slower because of branch divergence.

3.4 Major Optimizations
As previously mentioned, the parallel naive implementation
does not utilize all of the strengths of CUDA architecture.
For an 1152⇥1152 image, this means that the naive imple-
mentation launches a thread for every item in the matrix,
roughly 1.3 million threads. The row-wise algorithm only
needs half as many threads to outperform the naive algo-
rithm due to the use of the lookup table, optimized memory
access and minimized thread divergence in the elimination
step.

The optimized memory access is achieved by first transpos-
ing the matrix in a coalesced fashion [11], then reading a
whole row (corresponding to a full longitudinal column) into
the shared memory from the texture memory (which is a
type of spatially-arranged read-only global memory [22]) for
a given thread block. Computations can then be done by a
thread block by reading/writing to its shared memory and
output is then written back out to global memory in a coa-
lesced fashion [11]. This step increases memory bandwidth
utilization by ensuring that when we need to read or write
to global memory we are doing it in large contiguous blocks
defined by our warps instead of by threads within a warp in
a non-aligned fashion. We discussed this earlier with thread
divergence within a warp. Thread divergence coupled with
data-independent global memory reads and writes throttle
the performance due to the very slow nature of global mem-
ory. The di↵erence between the timing for the naive parallel
and the non-naive SEP parallel implementations illustrate
this problem. Even though the non-naive implementation

runs with half as many threads and actually does more com-
putation, it runs many times faster than the naive imple-
mentation.

When high fidelity in output correctness is needed the elim-
ination phase can be run explicitly. This adds to the ex-
ecution time but guarantees that all the dominated subse-
quences are removed and all intersecting subsequences which
are not dominated are preserved. For the purposes of visu-
alization of the interest measure, this may not be needed
and the elimination is done implicitly by simply allowing
the visualization to render all subsequences including the
dominated subsequences which would just be ‘overwritten’
by the dominating subsequences.

Figure 2 is a false color representation of the NDVI input
data for Africa. Figure 3 is the output results that have
been processed to show areas of abrupt increase in green.
Black areas represent areas of change below the threshold.
Blue and Cyan areas indicate water or areas for which there
is no data.

4. EXPERIMENTAL RESULTS
The results of the GPU implementation are promising (Fig-
ure 4). Almost real-time visualizations are possible when
running on an older consumer-grade nVidia GTX 480 using
an openGL render loop [26]. The elimination step is done
implicitly instead of explicitly in this case. The jump in
speedup between the naive and row-wise versions of the im-
plementation is significant. The parallel naive version runs
in 2701ms while the parallel row-wise version runs in 56 ms
(30.65 ms with implicit elimination) when processing a sin-
gle NDVI geoti↵. This is almost a 50 times speedup achieved
through the use of a lookup table and basic memory opti-
mizations. When processing the entire NDVI dataset for
Africa consisting of 612 1152⇥1152 geoti↵s, this di↵erence
quickly becomes very noticeable. The sequential processing
time for the visualization of the whole dataset for Afica is
9.6 minutes; when running the naive parallel algorithm with
implicit elimination this time is significantly longer at 26
to 34 minutes. The parallel row-wise SEP algorithm, how-
ever, reduces this time to an acceptable 20 to 26 seconds
when running the row-wise algorithm with implicit elimina-
tion; with explicit elimination this is 21 to 27 seconds. This
speedup allows for near real-time visualization.

5. CURRENT WORK
Currently, work is being done on a Hadoop implementation
of the algorithm in conjunction with GPU-parallelization.
This presents several challenges, one of which is interfac-
ing CUDA-C Kernel code with the Java implementation of
Apache Hadoop. A second challenge is that the individual
images are rather small to work with in Hadoop which causes
what is known as “the small file problem” to occur [31].

On our other GPGPU work on GIS datasets, we have under-
taken parallelization of two key tree-based data structures,
namely R-tree and heap, and have employed parallel R-tree
in a polygon overlay system. These data structure paral-
lelization are hard because of the underlying tree topology
and the fine-grained computation leading to frequent access
to such data structures severely stifling parallel e�ciency.
Therefore, the current best parallelization of R-tree on GPU
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Figure 4: Timings are representative of only the lookup, discovery, and elimination phases

Figure 5: R-Tree Construction

was limited to about 20-fold speedup [17, 19, 6, 27]. We
summarize our current results as follows.

Figure 6: Polygonal Overlay System

Parallel R-Tree: Our new parallel algorithms for construc-

tion and search has yielded the first demonstrated 200-fold
speedup in R-tree construction on a GPU (patent pending,
[8]). This would be useful for large-scale range querying
and can serve as template for parallelizing other tree-based
structures such as MVR tree, TPR tree, and other general-
izations of spatio-temporal datasets.

Figure 7: Parallel Priority Queue

Parallel Polygon Overlay System: Our GIS system employ-
ing the parallel R-tree can process about 200K polygons
within a few seconds with 70-fold speedup on a (12-node
Linux cluster that previously took tens of minutes [25, 12,
1, 3, 2]). Thus, it has the potential for bringing a practical
overlay tool to the Geo Scientists.

Parallel Priority Queue: Our parallel heap data structure
supports large batches of extracting highest priority items
and inserting newly produced items with 30-fold speedups
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(patent pending, [12]). This has potential application to
shortest path and evacuation route planning. For latter, the
current algorithms are sequential and slow. For instance,
state of art CCRP routing algorithm took more than a day of
computation time to compute evacuation routes and sched-
ules for San Francisco [18, 32].
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